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Abstract
Merging various task-specific Transformer-based
vision models trained on different tasks into a uni-
fied model can execute all the tasks concurrently.
Previous methods, exemplified by task arithmetic,
have proven to be both effective and scalable. Ex-
isting methods have primarily focused on seek-
ing a static optimal solution within the original
model parameter space. A notable challenge is
mitigating the interference between parameters
of different models, which can substantially de-
teriorate performance. In this paper, we propose
to merge most of the parameters while upscaling
the MLP of the Transformer layers to a weight-
ensembling mixture of experts (MoE) module,
which can dynamically integrate shared and task-
specific knowledge based on the input, thereby
providing a more flexible solution that can adapt
to the specific needs of each instance. Our key in-
sight is that by identifying and separating shared
knowledge and task-specific knowledge, and then
dynamically integrating them, we can mitigate the
parameter interference problem to a great extent.
We conduct the conventional multi-task model
merging experiments and evaluate the generaliza-
tion and robustness of our method. The results
demonstrate the effectiveness and provide a com-
prehensive understanding of our method.

1. Introduction
The swift advancement of deep learning has fostered a
shift towards fine-tuning large pre-trained models for down-
stream tasks, rather than training them from scratch. Having
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been initially trained on large-scale datasets, pre-trained
models have outstanding common sense and are adept at
recognizing and processing diverse data patterns (Radford
et al., 2019; He et al., 2021; Wang et al., 2023). These mod-
els can then be fine-tuned on downstream tasks to acquire
task-specific knowledge (Chung et al., 2022; Zheng et al.,
2023; Cao et al., 2024). In this context, merging multiple
task-specific models into a single unified model has emerged
as an effective and scalable strategy for knowledge transfer
and multi-task learning (Li et al., 2023; Lin et al., 2023).

There are several state-of-the-art algorithms for merging
models. A prominent example in this field is task arith-
metic (Ilharco et al., 2023), which interpolates the parame-
ters of models linearly. These methods excel in extracting
knowledge from various models and synthesizing a unified
model cheaply. Such approaches present a promising solu-
tion for constructing robust models (Izmailov et al., 2019;
Wortsman et al., 2022), especially in the scenarios where the
training data is decentralized, limited, or inaccessible due to
privacy constraints (Tang et al., 2023a; Jin et al., 2023).

Existing methods predominantly aim to find a static multi-
task optimal solution within the original parameter space.
These methods do not introduce any new parameters, thus
maintaining the original inference cost. This approach, how-
ever, imposes limitations on adaptability to the unique re-
quirements of each instance, as the task-specific optimal
solution varies. Another significant challenge of merging
multi-task models is mitigating the interference between
parameters of different models, which can substantially de-
teriorate the average performance (Yadav et al., 2023; Yu
et al., 2023; Tang et al., 2023b). Existing methods, while
effective in some scenarios, may not be flexible enough to
handle the dynamic nature of multi-task learning, where the
optimal solution can vary depending on the input.

To address these challenges, we propose a novel approach to
merge vision Transformers (ViTs). Our method merges most
of the parameters while upscaling the multilayer perceptron
(MLP) of the Transformer layers to a weight-ensembling
Mixture of Experts (MoE) module. This module can dynam-
ically integrate shared and task-specific knowledge based on
the input sample, thereby providing a more flexible solution
that can adapt to the specific needs of each instance.

Our primary realization is that the issue of parameter inter-
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Figure 1. (a) Framework overview. This figure shows the overall framework of our proposed method to merge the pre-trained model and
fine-tuned task-specific models. We merge weights in the Transformer Layers except for the MLPs. For the MLPs, we upcycle them into
weight-assembling MoE modules. (b) Wieght-Ensembling Mixture of Experts (MoE) Module. Here we outline the detailed structure
of the Weight-Ensembling MoE module, composed of the router, pre-trained MLP weights, and a collection of task vectors. Collaboration
between shared weights and task vectors is employed to create input-conditioned weights dynamically. In this way, we separate shared
information and task-specific knowledge, which are then combined based on input in time.

ference can be significantly alleviated by identifying and
separating shared and task-specific knowledge and then dy-
namically integrating them. So we can leverage the shared
knowledge that is beneficial across all tasks, while also tak-
ing into account the unique requirements. By dynamically
combining these two types of knowledge based on the spe-
cific input data, we can create a more flexible and adaptable
model that can effectively handle a wide range of tasks.

We validate our method through conventional multi-task
model merging experiments and evaluate its generalization
and robustness. The results demonstrate the effectiveness of
our method and provide a comprehensive understanding.

To summarize, our contributions are as follows:

• We propose a novel method to merge Transformer-
based models. Our method is effective in transferring
knowledge from various task-specific fine-tuned mod-
els and constructing a unified multi-task model.

• We design a novel Weight-Ensembling MoE (WEMoE)
module, which can dynamically integrate shared and
task-specific knowledge based on the input sample.

• We conduct extensive experiments, and the results
demonstrate the effectiveness of our method and pro-
vide a comprehensive understanding of our method.

2. Revisiting Model Merge for MTL
In this section, we first introduce the problem setting and
notations. Then we revisit the model merge methods for

multi-task learning and discuss their limitations.

2.1. Problem Formulation

We begin with a large pre-trained neural network, which is
parameterized by θ0 ∈ R|θ|, which is adaptable to a wide
range of downstream tasks through fine-tuning. Given a set
of n downstream tasks, denoted as S = {si}ni=1, we fine-
tune the pre-trained model f individually for each task si,
resulting in a series of fine-tuned models, each characterized
by its unique parameters θi. Our goal is to merge the pre-
trained model f and the fine-tuned models {fi}ni=1 into a
single model fmerged that can handle all the tasks in S.

Before providing an overview of our framework and delving
into the details, we first need to introduce the concept of
task vector, which is a critical element of our method.

Definition 2.1 (Task Vector (Ilharco et al., 2023)). Task
vector τi is defined as the difference between the parameters
of the fine-tuned model and the pre-trained model, i.e.,

τi = θi − θ0. (1)

2.2. Revisiting Model Merge

From a multi-objective optimization perspective, the solu-
tion space of the optimal merged models is the Pareto front
of the downstream tasks in S. In other words, an optimal
merged model should be able to achieve the best perfor-
mance for all tasks in S simultaneously. It is challenging
to find the optimal merged model, as the solution space is
large and complex. What’s more, we do not have access to
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the training data of the downstream tasks but only the pre-
trained model and the fine-tuned models, which makes it
impossible to train a model from scratch as in the traditional
multi-task learning setting. We thus need to find a way to
transfer the knowledge from the pre-trained model and the
fine-tuned models into a unified merged model.

Limitation of static solutions. Current merging methodolo-
gies predominantly aim to find a static solution within the
original model parameter space. This approach, however, re-
stricts their adaptability to the unique requirements of each
instance, as the optimal solution can depend on the input.
Finding a Pareto optimal solution in multi-objective opti-
mization can lead to suboptimal performance on individual
objectives. As the concept of Pareto optimality is rooted in
the idea that a solution is Pareto optimal if there is no static
solution that simultaneously improves one objective without
degrading at least one other objective. For example, we can
not minimize the loss of all tasks better than the global opti-
mal of the joint loss function argminθ

∑n
i=1 Li(θ), where

Li is the loss function of single downstream task si.

This concept is visually represented in Figure 2, where the
loss landscapes of s1, s2, and s1 ∪ s2 are shown. No static
solution θ′ that simultaneously satisfies L1(θ

′) < L1(θ
∗)

and L2(θ
′) < L2(θ

∗), where θ∗ = argminθ L1(θ)+L2(θ).
However, θ∗ is a suboptimal solution for both tasks individ-
ually, as L1(θ

∗) > minθ L1(θ) and L2(θ
∗) > minθ L2(θ).

Visualization of loss landscapes in Figure 7, Appendix A.

It’s important to note that there can be instances where two
tasks are sufficiently related to positively impact each other,
especially in specific multi-task learning and auxiliary-task
learning scenarios. However, this heavily depends on the
task set and domain. In our study, we primarily focus on
situations where negative transfer is a prevalent concern. In
our case, tasks from various domains are not closely related,
which creates a significant domain gap.

Knowledge separation. Common approaches to knowl-
edge separation include knowledge distillation (Hinton et al.,
2015), pruning (Frankle et al., 2021), and feature extrac-
tion (Yosinski et al., 2015). It often requires heavy computa-
tion to separate or extract the knowledge from deep neural
networks. However, knowledge separation is a crucial step
for model merging, as it allows us to leverage the shared
knowledge that is beneficial across all tasks, while also tak-
ing into account the unique requirements of each task. Here,
we aim to separate the shared knowledge and task-specific
knowledge computationally cheaply and data-freely.

Fortunately, as evident from Eq.(1), the task vector repre-
sents the modifications applied to the pre-trained model to
optimize it for a specific task si. Therefore, it can be in-
terpreted as encapsulating the knowledge specific to that
task naturally. On the other hand, the pre-trained model,

(a) (c)(b)

Figure 2. Illustration of the loss landscapes of s1, s2, and s1 ∪ s2.
There is no static solution θ′ that simultaneously minimizes the
loss of both tasks better than argminθ L1(θ) + L2(θ).
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Figure 3. The distance between the parameters of the pre-trained
model and the fine-tuned models (CLIP-ViT-B/32 on eight tasks).

characterized by its parameters θ0, encapsulates the shared
knowledge that is relevant across all tasks in the set S . This
shared knowledge is derived from the large dataset on which
the model was initially trained, and it forms the foundation
upon which task-specific adjustments are made.

Similarity in parameter space. Another consideration
we must address is the choice of the model segment to
undergo knowledge separation. Applying knowledge sepa-
ration across the entire model might yield a model overly
tailored to a specific task or one that is computationally
intensive during knowledge reintegration. Conversely, if we
limit knowledge separation to a small portion of the model,
we may not be able to separate the shared knowledge and
task-specific knowledge effectively, leading to a suboptimal
merged model. Striking a balance between computational
cost and performance necessitates identifying the most valu-
able segment for knowledge separation.

Empirically, we found that for Transformer models, the
weights of the Attention modules in the fine-tuned models
have a higher similarity to those in the pre-trained model
than MLP modules, consistent with findings in (Lawson
& Qureshi, 2023). In Figure 3, we illustrate the distance
between the parameters of the pre-trained model and the
fine-tuned models (CLIP-ViT-B/32 on eight tasks) using L2

norm and cosine similarity. As shown in Figure 3(a), the L2

norm indicates MLPs have higher similarity. However, in
Figure 3(b), Attention modules have higher cosine similar-
ity, suggesting a closer relationship. The discrepancy arises
because L2 norm assesses magnitude changes while cosine
similarity measures directional alignment. The magnitude
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of parameters in a neural network plays a crucial role in
determining the model’s performance and generalization
ability. Parameters with large magnitudes can lead to over-
fitting, where the model learns to fit the noise in the training
data, resulting in poor performance on unseen data. On the
other hand, parameters with small magnitudes can lead to
underfitting, where the model fails to capture the underlying
patterns in the data, resulting in suboptimal performance.
The L2 distance directly measures the differences in param-
eter magnitudes, providing a clear indication of how much
the model’s performance might change. To this end, we use
the L2 norm to measure the functional similarity between
the parameters of fine-tuned and pre-trained models.

3. Methodology
In this section, we provide an overview of our proposed
framework before delving into the detailed workings of
the Weight-Ensembling Mixture of Experts (MoE) module.
Finally, we discuss the test-time adaptation training process.

3.1. Framework Overview

From the previous observations and discussion, our key
insight is that we can separate the shared information and
task-specific knowledge and combine them dynamically in
parameter space based on inputs. Based on this insight, we
propose a novel framework to merge the pre-trained model
and the fine-tuned models, as shown in Figure 1(a).

So far we have identified the shared information and task-
specific knowledge. The next step is to combine them in a
way that allows the merged model to handle all the tasks in
S . The ability to separate and leverage both knowledge is a
key strength of our proposed framework. To achieve this, we
propose to dynamically integrate the shared information and
task-specific knowledge based on the input samples, rather
than seeking a static solution within the original parameter
space. This dynamic adjustment allows the model to better
adapt to the nuances of each task, thereby improving its
performance across source tasks.

To this end, we propose to upcycle the MLPs in the
pre-trained model and the fine-tuned models into Weight-
Ensembling MoE modules, which are designed to dynam-
ically select task-specific knowledge and combine it with
the shared information based on the input samples. We will
discuss the details of the Weight-Ensembling MoE module
in Section 3.2. For the remaining parts of the model, we
utilize the Task Arithmetic method (Ilharco et al., 2023) to
merge the weights. Task Arithmetic is a simple yet effec-
tive and scalable method for merging models, it operates
in the parameter space element-wise without modification
to the model structure. The merged model has parameters
θ = θ0 + λ

∑n
i=1 τi, where λ is a hyperparameter that

controls the contribution of the task vectors to the model.

3.2. Weight-Ensembling MoE Module

In this subsection, we delve into the specifics of the Weight-
Ensembling Mixture of Experts (MoE) module. As depicted
in Figure 1 (b), the Weight-Ensembling MoE module is
composed of three main components: the router, the pre-
trained MLP weights, and a collection of task vectors.

The router r : Rd → RT , which is essentially a simple
MLP, processes the input and subsequently generates a
routing weights. These routing weights are used to deter-
mine how the knowledge from different tasks is combined.
The pre-trained MLP weights θMLP

0 are the weights of the
MLPs from the pre-trained model. These weights are cru-
cial as they have been trained to recognize and process
a wide range of data patterns, and each finetuned model
encompasses this shared information. The task vectors
{τMLP

i |θMLP
i − θMLP

0 }Ti=1, on the other hand, represent the
differences between the MLPs that have been fine-tuned
for specific tasks and the pre-trained ones, thus capture the
unique adjustments made to the MLPs to optimize them for
specific tasks and contain the task-specific knowledge.

To summarize, our proposed Weight-Ensembling MoE mod-
ule is designed to segregate shared information and task-
specific knowledge. This separation allows the module to
handle a wide range of tasks without compromising the
general applicability of the shared information. The shared
information and task-specific knowledge are then dynami-
cally combined based on the input samples.

The mathematical representation of the weight-ensembling
MoE module can be expressed as follows: w = mean(r(hin

1:N )) ∈ RT×1,
θMLP = θMLP

0 +Dτw,
hout
1:N = fMLP(h

in
1:N ; θMLP).

(2)

Where hin
1:N is the input sequence of tokens, hout

1:N is the
output sequence of tokens, fMLP is the MLP function and
Dτ ∈ R|θMLP|×T is the dictionary matrix of task vectors,
which is made up of fixed task vectors. The mean function
averages the routing weights across the tokens in the input
sequence. From the perspective of dictionary learning, the
Weight-Ensembling MoE module can be viewed as a dic-
tionary look-up operation, where the routing weights are
used to select the task vectors from the dictionary matrix
Dτ , which are then added to the pre-trained MLP weights
θMLP
0 to create the input-conditioned weights θMLP.

The structure and initialization of the router. In our
weight-ensembling MoE module, the router plays a crucial
role. It is responsible for directing the input data to the
appropriate combination of expert task vectors. In our re-
search, we employed a straightforward n-layer MLP as the
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router. During our experiments, we explored two configu-
rations for the MLP: one with no hidden layers (l = 0) and
another with two hidden layers (l = 2). The mathematical
representation of these configurations is as follows:

r(h) = W2 ReLU(W1h+ b1) + b2, l = 2, (3)

and
r(h) = b0, l = 0. (4)

Where W and b are the weight and bias, respectively, and
ReLU is the rectified linear unit activation function. Unless
otherwise specified, we utilize a structure with l = 2. In Ap-
pendix B.3, we provide an in-depth analysis of the router’s
structure and its impact on the model’s performance.

Initializing the router is crucial to setting up the MoE mod-
ule, as it can greatly influence its performance. To ensure
that the initial routing weights are approximately equal to
λ, we initialize W1 and W2 by sampling from a Gaussian
distribution with a mean of 0 and a variance of 0.01. We
then set b1 and b2 to zeros and λ, respectively. In the
case where l = 0, we assign λ to b0. In fact, for a router
with l = 0, we can consider it as a partial implementation
of AdaMerging (Yang et al., 2023), where only the MLPs
undergo adaptive merging weights search.

3.3. Test-Time Adaptation Training

Once the router has been initialized, the next step is to fine-
tune its parameters. However, we have no access to the
training data of the downstream tasks. To achieve this, we
employ test-time adaptation training techniques, which are
widely used in the field of semi-supervised learning (Moun-
saveng et al., 2023; Liang et al., 2023). Test-time adaptation
is a powerful technique that allows the model to adjust its pa-
rameters based on the unlabeled test data, thereby improving
the performance of the merged model.

In our research, we focus on classification tasks and aim to
minimize the multi-task entropy loss of the merged model
on the unlabeled test data. Entropy loss is a measure of the
uncertainty of the predictions. It is defined as follows:

Lentropy = Ex∼Dtest [−p(ŷ|x) log p(ŷ|x)] (5)

≈ − 1

|D|

|D|∑
i=1

C∑
c=1

p(ŷc|xi) log p(ŷc|x). (6)

This is the empirically estimated entropy loss, where Dtest
represents the test data distribution, p(ŷ|x) is the predicted
posterior probability distribution, C is the total number of
classes, and |D| is the number of samples in the test dataset.
Minimizing it encourages the model to make predictions
with higher confidence. This can lead to improved perfor-
mance on the test data, as the model is more likely to make
correct predictions when it is confident in its decisions.

Table 1. Parameter count of the up-scaled models from eight tasks.

MODEL TRAINABLE TOTAL RATIO

l = 0
CLIP-VIT-B/32 96 566.80M 0.00%
CLIP-VIT-B/16 96 565.15M 0.00%
CLIP-VIT-L/14 192 1.95B 0.00%

l = 2
CLIP-VIT-B/32 7.16M 573.96M 1.25%
CLIP-VIT-B/16 7.16M 572.31M 1.25%
CLIP-VIT-L/14 25.39M 1.98B 1.28%
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Figure 4. The performance of the merged models with a varying
number of steps. (a) CLIP-ViT-B/32 model with different learning
rate. (b) Comparison of CLIP-ViT-B/32 and CLIP-ViT-L/14.

4. Experiments
In this section, we conduct experiments to evaluate the per-
formance of our proposed method, including the conven-
tional multi-task model merging experiments, and ablation
studies to evaluate the generalization ability and robust-
ness. The code is available at https://github.com/
tanganke/weight-ensembling_MoE.

4.1. Experimental Setup

We employ CLIP (Radford et al., 2021) as our pre-trained
models, which are trained on a large-scale dataset with
pairs of images and corresponding textual descriptions, and
are able to perform open-vocabulary image classification.
Subsequently, we fine-tune the models on eight distinct im-
age classification tasks, namely SUN397 (Xiao et al., 2010),
Stanford Cars (Krause et al., 2013), RESISC45 (Cheng et al.,
2017), EuroSAT (Helber et al., 2018), SVHN (Netzer et al.,
2021), GTSRB (Stallkamp et al., 2012), MNIST (Lecun
et al., 1998), and DTD (Cimpoi et al., 2014). The evaluation
of model performance is based on top-1 accuracy.

We compare our method with Fisher Merging (Matena
& Raffel, 2022), RegMean (Jin et al., 2023), Task Arith-
metic (Ilharco et al., 2023), Ties-Merging (Yadav et al.,
2023), and AdaMerging/Adamerging++ (Yang et al., 2023).
For all methods, unless explicitly specified, we follow the
configuration in (Yang et al., 2023) and initialize the scal-
ing coefficient of the task vector, denoted as λ, to 0.3. In
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Table 2. Multi-task performance when merging CLIP-ViT-B/32 models on all eight tasks.

METHOD SUN397 CARS RESISC45 EUROSAT SVHN GTSRB MNIST DTD AVG.

PRE-TRAINED 63.2 59.6 60.2 45.0 31.6 32.6 48.3 44.4 48.1
INDIVIDUAL 75.3 77.7 96.1 99.9 97.5 98.7 99.7 79.4 90.5
TRADITIONAL MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Multi-Task Model Fusion Methods
WEIGHT AVERAGING 65.3 63.3 71.4 73.6 64.2 52.8 87.5 50.1 66.0
FISHER MERGING 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
REGMEAN 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
TASK ARITHMETIC 55.3 54.9 66.7 77.4 80.2 69.7 97.3 50.1 69.0
TIES-MERGING 65.0 64.3 74.7 76.8 81.3 69.4 96.5 54.3 72.8
ADAMERGING (TASK) 58.3 53.2 71.8 80.1 81.6 84.4 93.4 42.7 70.7
ADAMERGING++ (TASK) 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
ADAMERGING (LAYER) 64.2 69.5 82.4 92.5 86.5 93.7 97.7 61.1 80.9
ADAMERGING++ (LAYER) 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
WEMOE (OURS) 74.1 77.4 93.7 99.1 96.2 98.9 99.6 76.4 89.4

Table 3. Multi-task performance when merging CLIP-ViT-L/14 models on all eight tasks.
METHOD SUN397 CARS RESISC45 EUROSAT SVHN GTSRB MNIST DTD AVG.

PRE-TRAINED 68.2 77.9 71.3 61.3 58.4 50.6 76.4 55.4 64.9
INDIVIDUAL 82.3 92.4 97.4 99.9 98.1 99.2 99.7 84.1 94.1
TRADITIONAL MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Multi-Task Model Fusion Methods
WEIGHT AVERAGING 72.1 81.6 82.6 91.4 78.2 70.6 97.0 62.8 79.5
FISHER MERGING 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2
REGMEAN 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7
TASK ARITHMETIC 74.1 82.1 86.7 92.6 87.9 86.8 98.9 65.6 84.4
TIES-MERGING 75.0 84.5 88.0 94.3 85.7 82.1 98.7 67.7 84.5
ADAMERGING (LAYER) 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
ADAMERGING++ (LAYER) 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 91.0
WEMOE (OURS) 81.4 92.6 95.4 99.4 97.7 99.3 99.7 83.7 93.6

Appendix B.1, we provide a comparison of the baselines.

4.2. Conventional Multi-Task Model Merging

Firstly, we conduct conventional multi-task model merging
experiments to evaluate the performance of our proposed
method. In Tables 1 and 8, we provides a detailed compari-
son of the parameter counts of the up-scaled models from
eight tasks. The models compared include CLIP-ViT-B/32,
CLIP-ViT-B/16, and CLIP-ViT-L/14, with two different
router depths (l = 0 and l = 2). The experimental results
are outlined in Table 2 and Table 3, respectively. We have
the following key observations:

(1) The performance of fine-tuned models on downstream
tasks is significantly better than that of the pre-trained model,
indicating that the fine-tuned models have learned task-
specific knowledge. (2) For larger models, the fused perfor-
mance tends to be better across all merging methods. This is
because the larger model scale introduces more redundancy
among parameters. Consequently, even simple averaging
can achieve better performance on larger models. (3) Our
proposed approaches, WEMoE, consistently demonstrate

the superiority of our approach over SOTA methods across
the majority of tasks. (4) In particular, WEMoE outper-
forms the traditional MTL baseline by 0.5% and 0.1% on
average. This is surprising as the traditional MTL baseline
is trained on all tasks simultaneously while merging meth-
ods are inaccessible to the training data. This indicates that
through our approach, we have successfully separated the
task-specific knowledge from fine-tuned models. On the
other hand, the weight-ensembling MoE module success-
fully captures the relationship between the input features
and knowledge combination, effectively alleviating the mu-
tual influence of parameters, which significantly enhances
the overall performance and flexibility of the model.

Convergence and sensitivity analysis. Figure 4 shows the
performance of the merged WEMoE models with varying
number of steps. In Figure 4a, we merge CLIP-ViT-B/32
models with different learning rate configurations. We ob-
serve that the performance of the merged model shows an
upward trend with an increase in the number of training
steps, and it converges rapidly, reaching a high accuracy
level in just 200 steps. Furthermore, the influence of dif-
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Table 4. Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

METHOD
SEEN TASKS UNSEEN TASKS

SUN397 CARS RESISC45 DTD SVHN GTSRB AVG. MNIST EUROSAT AVG.

TASK ARITHMETIC 63.4 62.3 75.3 57.8 84.7 80.4 70.7 77.3 45.6 61.4
TIES-MERGING 67.8 66.2 77.0 56.2 77.2 71.0 69.2 75.9 43.1 59.5
ADAMERGING 65.2 65.9 88.5 61.1 92.2 91.5 77.4 84.0 56.1 70.0
ADAMERGING++ 68.2 67.6 86.3 63.6 92.6 89.8 78.0 83.9 53.5 68.7
WEMOE (0-LAYER) 63.8 61.2 78.4 56.4 89.1 92.2 73.5 78.6 49.7 64.2
WEMOE (2-LAYER) 74.4 78.3 94.8 75.6 96.8 99.0 86.5 86.3 55.9 71.1

Table 5. Ablations of the test data distribution on ViT-B/32 (for all methods, λ = 0.3).
METHOD CARS EUROSAT RESISC45 GTSRB AVG. CARS EUROSAT RESISC45 GTSRB AVG.

CLEAN TEST SET CORRUPTED TEST SET (MOTION BLUR)
TASK ARITHMETIC 66.9 94.7 82.6 75.1 79.8 65.3 68.1 80.0 64.2 69.4
TIES-MERGING 67.5 83.7 79.8 65.3 74.1 65.6 57.5 77.5 55.4 64.0
ADAMERGING 73.7 96.1 85.8 96.3 88.0 71.2 74.6 82.7 94.1 80.6
WEMOE (0-LAYER) 68.5 94.6 82.0 93.2 84.6 65.3 74.1 79.8 89.0 77.0
WEMOE (2-LAYER) 78.8 99.5 95.4 99.1 93.2 78.1 79.7 94.6 97.8 87.6

CORRUPTED TEST SET (IMPLUSE NOISE) CORRUPTED TEST SET (GAUSSIAN NOISE)
TASK ARITHMETIC 62.1 49.1 72.7 40.4 56.1 63.6 55.4 75.9 49.4 61.1
TIES-MERGING 62.1 42.0 70.4 34.9 52.3 64.1 50.3 74.5 39.8 57.2
ADAMERGING 67.2 30.8 75.9 77.5 62.8 69.9 41.2 80.6 76.0 66.9
WEMOE (0-LAYER) 63.8 40.7 74.3 66.7 61.4 66.1 45.5 78.3 66.9 64.2
WEMOE (2-LAYER) 74.7 11.6 91.4 91.7 67.3 76.8 29.7 93.2 78.2 69.5

CORRUPTED TEST SET (PIXELATE) CORRUPTED TEST SET (SPATTER)
TASK ARITHMETIC 2.8 41.5 22.8 66.6 33.4 63.3 60.1 73.9 54.3 62.9
TIES-MERGING 4.1 40.8 20.6 57.1 30.6 64.4 50.8 71.4 44.3 57.8
ADAMERGING 2.5 53.8 22.4 90.6 42.3 69.9 43.6 75.4 89.4 69.6
WEMOE (0-LAYER) 2.1 52.7 23.4 84.5 40.7 65.8 49.3 72.9 83.3 67.8
WEMOE (2-LAYER) 0.4 9.6 2.2 97.0 27.3 76.2 28.2 91.2 96.0 72.9

CORRUPTED TEST SET (CONTRAST) CORRUPTED TEST SET (JPEG COMPRESSION)
TASK ARITHMETIC 66.0 62.9 75.9 70.6 68.9 66.5 72.3 82.2 60.0 70.3
TIES-MERGING 66.8 53.4 75.9 61.5 64.4 67.5 60.4 80.0 50.1 64.5
ADAMERGING 71.7 69.8 79.3 95.1 79.0 70.9 75.8 83.6 90.1 80.1
WEMOE (0-LAYER) 67.3 68.5 74.8 91.4 75.5 66.4 75.3 81.4 83.1 76.5
WEMOE (2-LAYER) 77.7 77.4 93.9 98.5 86.9 78.2 80.7 95.1 96.2 87.6

ferent learning rates is not significant, suggesting that our
method is insensitive to the learning rate parameter. This is
a desirable property as it reduces the need for hyperparam-
eter tuning. In Figure 4b, we compare the performance of
CLIP-ViT-B/32 and CLIP-ViT-L/14 models.

Ablations of the up-scaling strategy. To further inves-
tigate the impact of the up-scaling strategy, we conduct
experiments on CLIP-ViT-B/32. We compare three different
up-scaling strategies: (1) Entire Transformer Block: The
MoE up-scaling is applied on the entire Transformer block.
(2) Attention + MLP (separately): The MoE up-scaling is ap-
plied on the attention weights and MLP weights separately.
(3) MLP only: The MoE up-scaling is applied on the MLP
weights only, as we have done in the main experiments.

In Table 6, we present the results of this ablation study.
When both attention and MLP weights are up-scaled sep-
arately, the performance is significantly improved across
most tasks, surpassing the other two methods. Recall that

the decision to apply the routing network solely to the MLP
weights was intentional, driven by the empirical finding
that the MLP weights show less similarity between fine-
tuned and pre-trained models than the attention weights
(Section 2.2). This implies that MLPs may contain more
task-specific information, making them an ideal target for
the routing mechanism. If the routing network were ap-
plied to both MLPs and attention weights, it would result in
increased computational load and memory usage, and the
marginal performance gain might not warrant the cost.

4.3. Generalization and Robustness Evaluation

When we engage in merging multi-task models, our primary
objective is to enhance the model’s performance on the seen
task. However, it is also crucial to explore the model’s
ability to generalize across diverse data distributions and
assess the robustness of the merging algorithm when faced
with shifts in test distribution. This refers to scenarios where
the distribution of test data deviates from that of the training
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Figure 5. The results for robustness experiment on CLIP-ViT-B/32. The x-axis of each plot represents the scaling coefficient λ of task
vectors, while the y-axis shows the accuracy of the merged model on different merged tasks.

Table 6. Comparison of different up-scaling strategies on various tasks.
Method (1-layer router) SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg.

Entire Transformer Block 70.5 74.0 91.0 97.0 93.6 96.4 99.1 70.0 86.4
Attention + MLP (separately) 73.5 78.4 94.0 98.3 96.2 98.4 99.6 75.6 89.2
MLP only 73.2 76.7 93.8 98.6 95.7 98.6 99.5 74.5 88.3

(a) Clean (b) Motion (c) Impulse (d) Gaussian

(e) Pixelate (f) Spatter (g) Contrast (h) JPEG

Figure 6. Here are eight instances of distorted images, produced
using the method suggested in (Hendrycks & Dietterich, 2019).

data, which is common in real-world applications.

Generalization experiments. To assess the model’s gener-
alization, we selected two tasks from the eight downstream
tasks as unseen tasks. We utilized the fine-tuned models on
the remaining six tasks for merging, constructing a six-task
model. This six-task model was then applied to the unseen
tasks to evaluate the model’s generalization capability. We
conducted experiments on both 0-layer routers and 2-layer
routers, and the results are presented in Table 4.

Robustness experiments. To evaluate the robustness of
the merging algorithm, we utilized the methods suggested
in (Hendrycks & Dietterich, 2019) to generate distorted
images from the clean test set. We selected seven types of
distortions, including motion blur, impulse noise, gaussian
noise, pixelate, spatter, contrast, and JPEG compression.
We then merge and evaluate the performance of the merged
models on the distorted images. We compared routers of
two different depths, see Eq. (4) and Eq. (3) for details.
We conduct experiments on CLIP-ViT-B/32 and CLIP-VIT-
B/16, the results are presented in Table 5 and Table 11,
respectively. Figure 6 shows eight instances of distorted
images.

Our experimental results show that across various methods,
WEMoE (l = 2) consistently achieves the highest perfor-
mance on the clean test set and most of the distorted test
sets. This indicates that our method is effective in handling
both clean and distorted data. The superior performance
suggests its potential for robust multi-task merging. How-
ever, in scenarios where there is a significant loss in image
quality, such as pixelation, WEMoE (l = 2) might overfit
some specific tasks, resulting in a performance decline. In
contrast, WEMoE (l = 0) tends to exhibit more stability in
performance under such conditions. This is attributed to its
lower parameter count, making it less prone to overfitting.

In addition, we observe that the performance of WEMoE
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(l = 0) is comparable to AdaMerging, recalling that when
l = 0, WEMoE is essentially equivalent to a partial imple-
mentation of AdaMerging, with the scaling factor λ fixed at
0.3 for the majority of the model, except for MLP modules.
This observation validates the hypothesis we presented in
Section 2.2 regarding parameter similarity.

We also analyze the performance of our method with differ-
ent scaling coefficients λ of the task vector. The results are
presented in Figure 5 and Figure 10, respectively. We ob-
serve that the performance of the merged model is relatively
stable with respect to the scaling coefficient λ of the task
vector. This indicates that our method is also more robust to
the scaling coefficient λ of the task vector.

4.4. Routing Analysis

Here we perform a small analysis of the expert weighting by
the router. We use the CLIP-ViT-B/32 model as an example,
and the results are presented in Figure 11. Our examination
reveals a tendency of the router to allocate a greater weight
to the task vector corresponding to the source task of the
input sample. This indicates that the routers are able to
effectively identify the expert with the highest performance
depending on the input feature, and assign a higher weight to
it. Such behavior aligns with our expectations and intuition.
Additional details can be found in Appendix D.

5. Related Work
In this section, we review recent related works on multi-task
model fusion and mixture of experts (MoE).

Multi-Task Model Fusion. Weight interpolation proves
to be a straightforward yet powerful strategy, facilitating
scalable model fusion without the need for extensive com-
putations (Izmailov et al., 2019; Matena & Raffel, 2022;
Wortsman et al., 2022; Kaddour, 2022; Ilharco et al., 2023;
Yadav et al., 2023; Yang et al., 2023; Wu et al., 2023). How-
ever, this strategy also poses challenges, particularly when
merging models with diverse structures.

Mode connectivity has been uncovered by insights into the
loss landscape (Daniel Freeman & Bruna, 2017; Nagarajan
& Kolter, 2019). This phenomenon reveals that different
solutions can be connected by a pathway within the parame-
ter space, maintaining low objective function values along
the path, thus facilitating model fusion (Draxler et al., 2019;
Frankle et al., 2020; Entezari et al., 2022). Different meth-
ods such as discovering simple linear paths (Garipov et al.,
2018), non-linear trajectories (Tatro et al., 2020), or map-
pings within a lower dimension (Yunis et al., 2022; Benton
et al., 2021) have been proposed to leverage this concept.

Alignment emerges as another effective series of works.
This approach involves aligning and interpolating corre-

sponding components from various models to mitigate dis-
parities (Li et al., 2016; Tatro et al., 2020). Techniques
include matching activations or weights (George Stoica
et al., 2023; Jin et al., 2023), employing graph matching for
channel-wise alignment (Liu et al., 2022), or exploiting the
principle of permutation invariance (Ainsworth et al., 2023).

Mixture of Experts. The Mixture of Experts (MoE) model,
first introduced by (Jacobs et al., 1991), is a machine learn-
ing technique that involves training multiple models, each of
which specializes in a different part of the input space. Over
the years, MoE has garnered considerable attention (Jiang
et al., 2024; Dai et al., 2024). Much innovation revolves
around the design of more efficient routers. For instance,
the Switch Transformer (Fedus et al., 2022b) simplifies
the selection process by choosing only the top expert per
token, showcasing superior scalability compared to prior
approaches. Base Layers (Lewis et al., 2021) introduces
a linear assignment that optimizes token-expert affinities,
ensuring an equal distribution of tokens among experts. In
addition to methods that involve routers selecting experts,
there are alternative approaches such as allowing each expert
to choose tokens (Zhou et al., 2022). For a comprehensive
review of MoE, readers can refer to (Fedus et al., 2022a).

6. Conclusion
In this paper, we propose a novel method to merge
Transformer-based vision models from different tasks. Our
method is effective in transferring knowledge from various
task-specific fine-tuned models and constructing a unified
multi-task model. We propose a novel Weight-Ensembling
MoE (WEMoE) module, which can dynamically integrate
shared and task-specific knowledge based on the input sam-
ple. We conduct extensive experiments, the experimental
results demonstrate the effectiveness of our method and
provide a comprehensive understanding of our method.

In the future, we plan to explore the potential of our method
in other scenarios, such as merging transformers from dif-
ferent modality. We also plan to investigate the possibil-
ity of applying our method to other architectures, such as
CNNs. It’s also interesting to combine our method with
parameter-efficient fine-tuning methods such as Adapter
tuning (Houlsby et al., 2019) and LoRA (Hu et al., 2021) to
further improve the efficiency of our method.
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Figure 7. Visualization of the joint loss L1 + L2 and five task pairs for CLIP-ViT-B/32 in the loss landscape. We perform interpolations
between pre-trained weights and two fine-tuned weights in the weight space on a 2D plane using the formula θ = θ0 + λ1τ1 + λ2τ2,
where θ0 represents pre-trained weights, τi = θi − θ0 are two task vectors with λi in the range [-1, 1].

In Section 2.2, we highlight the inherent limitation of a static solution for multi-task model merging, emphasizing its
potential to result in suboptimal performance on individual tasks. To further illustrate this point, we present the visualization
of the loss landscape for the joint loss L1 + L2 and five task pairs using CLIP-ViT-B/32 in Figure 7. The visualization
involves interpolations between pre-trained weights and two fine-tuned weights in the weight space on a 2D plane, expressed
as θ = θ0 + λ1τ1 + λ2τ2, where θ0 represents pre-trained weights, and τi = θi − θ0 are two task vectors with λi in the

14



Merging Multi-Task Models via Weight-Ensembling Mixture of Experts

range [-1, 1]. The resulting heatmaps demonstrate that task-specific models fine-tuned from the same pre-trained model
share the same loss basin when evaluated on the joint task, yet none of them attains the global optimum.

B. Multi-Task Model Fusion
B.1. Baseline methods

Table 7. Comparison of different methods and their data access requirements.

Method Labeled tasks data Validation data (labeled) Test time adaptation

Fisher Merging (Matena & Raffel, 2022) Yes No No
RegMean (Jin et al., 2023) Yes No No
Task Arithmetic (Ilharco et al., 2023) No Yes No
Ties-Merging (Yadav et al., 2023) No Yes No
AdaMerging (Yang et al., 2023) No No Yes
Ours No No Yes

Here we provide a summary of the baseline methods used in the experiments conducted in this study.

• Simple Weight Average: This method involves taking the average of the weights of models that have been fine-tuned
on different tasks. It is sometimes referred to as ModelSoups in relevant literature. When applied to fully fine-tuned
models, the weights of the models are directly averaged. This is mathematically represented as θ = 1/n

∑n
i=1 θi,

where θ represents the average weight, n is the total number of models, and θi is the weight of the i-th model.

• Task Arithmetic: This method involves calculating a task vector for each task and then adding these vectors together
to create a multi-task vector. This multi-task vector is then scaled by a coefficient λ and added to the initial parameters
of the pre-trained model to create a multi-task model. The formula for this is θ = θ0 + λ

∑
i(θi − θ0), where θ0 is the

initial parameter of the pre-trained model, θi is the task vector for the i-th task, and λ is a hyperparameter chosen based
on the model’s performance on a validation set. In this study, λ was set to 0.3.

• Ties-Merging: This algorithm follows three steps (trim, elect sign of parameters, and disjoint merge) to obtain a
merged task vector ν. Given the final merged task vector τ , the final model is chosen in a similar way as task arithmetic,
i.e. θ = θ0 + λτ , where λ is a hyperparameter that the best-performing model is chosen on the validation set. In our
study, λ is chosen to be 0.3.

• Fisher Merging: This method requires access to some labeled data from all tasks in order to estimate the Fisher
information matrix. The Fisher information matrix is then used to assess the importance of each task and to merge the
models by computing a weighted average of the models’ weights.

• RegMean: This method also requires access to some labeled data from all tasks, but it is used to compute the Gram
matrix. The Gram matrix is a matrix that represents the inner products of vectors in a set.

• AdaMerging: AdaMerging is an adaptive model merging method where it autonomously learns the coefficients for
merging either on a task-wise or layer-wise basis, using entropy minimization on unlabeled test samples as a surrogate
objective function to refine the merging coefficients.

– The task-wise AdaMerging is formulated as θ = θ0 +
∑n

i=1 λiτi where λk is the merging coefficient for the k-th
task and τk is the task vector for the k-th task.

– The layer-wise AdaMerging is formulated as θl = θl0 +
∑n

i=1 λ
l
iτ

l
i . Where the superscript l denotes the layer

index.

B.2. Image Classification Tasks

In this section, we conduct experiments to validate the effectiveness of our method. We merge the CLIP-ViT-B/32 and
CLIP-ViT-L/14 models on all eight tasks. In Table 8, we compare the parameter counts and reductions in WEMoE models
with varying tasks. Where the proposed method has an MoE structure on MLP weights, which introduces additional
parameters compared to a single pre-trained model (the MLPs have about 60% of the parameters in a Transformer-based
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Table 8. Comparison of parameter counts and reductions in WEMoE models with varying tasks.
Method Trainable Parameters Total Parameters Parameters Reduced by Merging

Single Pre-trained 113.45M (100%) 113.45M -
WEMoE (2-layer, 2 tasks) 7.11M (3.04%) 233.89M -6.99M
WEMoE (2-layer, 3 tasks) 7.11M (2.45%) 290.57M 49.78M
WEMoE (2-layer, 4 tasks) 7.12M (2.02%) 347.25M 106.55M
WEMoE (2-layer, 5 tasks) 7.13M (1.77%) 403.93M 163.32M
WEMoE (2-layer, 6 tasks) 7.14M (1.55%) 460.61M 220.09M
WEMoE (2-layer, 7 tasks) 7.15M (1.38%) 517.28M 276.87M
WEMoE (2-layer, 8 tasks) 7.16M (1.25%) 573.96M 333.64M
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Figure 8. The performance of the merged models with a varying number of steps. (a) CLIP-ViT-B/32 model with different learning rates.
(b) Comparison of CLIP-ViT-B/32 and CLIP-ViT-L/14.

model). This is an inherent limitation of all mixture-of-experts based methods. It’s an interesting direction to explore
techniques to reduce memory overhead in future work, such as using a low-rank approximation or sparse structure.

Tables 2 and 3 present a comprehensive comparison of multi-task performance for CLIP-ViT-B/32 and CLIP-ViT-L/14
models across eight distinct tasks. The table includes results for various merging methods, such as traditional multi-
task learning (MTL), Weight Averaging, Fisher Merging (Matena & Raffel, 2022), RegMean (Jin et al., 2023), Task
Arithmetic (Ilharco et al., 2023), Ties-Merging (Yadav et al., 2023), AdaMerging/AdaMerging++ (task-wise and layer-
wise) (Yang et al., 2023), and our proposed WEMoE method. Additionally, individual task performance, traditional MTL,
and several model fusion methods are evaluated to provide a thorough understanding of the effectiveness of each approach.

We have the following key observations, which showcase WEMoE’s effectiveness in multi-task model fusion:

1. The performance of fine-tuned models on downstream tasks is significantly better than that of the pre-trained model,
indicating that the fine-tuned models have learned task-specific knowledge.

2. For larger models, the fused performance tends to be better across all merging methods. This is because the larger
model scale introduces more redundancy among parameters. Consequently, even simple averaging can achieve better
performance on larger models.

3. Our proposed approach, WEMoE, consistently demonstrates the superiority of our approach over SOTA methods
across the majority of tasks.

4. In particular, WEMoE outperforms the traditional MTL baseline by 0.5% and 0.1% on average. This is surprising
as the traditional MTL baseline is trained on all tasks simultaneously while merging methods are inaccessible to the
training data.

These observations indicate that through our approach, we have successfully separated the task-specific knowledge from
fine-tuned models. On the other hand, the weight-ensembling MoE module successfully captures the relationship between
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the input features and knowledge combination, effectively alleviating the mutual influence of parameters, which significantly
enhances the overall performance and flexibility of the model.

Figure 8 shows the performance of the merged WEMoE models with varying number of steps. In Figure 8a, we merge
CLIP-ViT-B/32 models with different learning rate configurations. We observe that the performance of the merged model
shows an upward trend with an increase in the number of training steps, and it converges rapidly, reaching a high accuracy
level in just 200 steps. Furthermore, the influence of different learning rates is not significant, suggesting that our method is
insensitive to the learning rate parameter. This is a desirable property as it reduces the need for hyperparameter tuning. In
Figure 8b, we compare the performance of CLIP-ViT-B/32 and CLIP-ViT-L/14 models.

B.3. Ablations of Router Ddepth

Table 9. Parameter comparison of WEMoE (1-layer) and WEMoE (2-layer) on CLIP-ViT-B/32 models. We add AdaMerging as a baseline
for comparison.

Method Number of Trainable Parameters

AdaMerging (layer-wise) 1.3K
WEMoE (1-layer) 73.8K(0.01%)
WEMoE (2-layer) 7.16M(1.25%)

Table 10. Ablation study of the router depth on the performance of the up-scaled CLIP-ViT-B/32 models. We add AdaMerging as a
baseline for comparison.

METHOD SUN397 CARS RESISC45 EUROSAT SVHN GRSRB MNIST DTD AVG.

ADAMERGING (LAYER-WISE) 66.6 68.3 82.4 92.5 86.5 93.7 97.7 61.1 80.9
WEMOE (1-LAYER) 73.2 76.7 93.8 98.6 95.7 98.6 99.5 74.5 88.3
WEMOE (2-LAYER) 74.1 77.4 93.7 99.1 96.2 98.9 99.6 76.4 89.4

To explore the influence of router depth on the performance of the scaled-up model, we perform an ablation study where the
router depth is varied. Before we delve into the experimental results, let’s clarify the router depth in our WEMoE model, as
introduced in Section 3.2. In our WEMoE modules, the router is implemented as a multi-layer perceptron (MLP).

• WEMoE (0-layer) functions as a bias-only model, representing a special case of an MLP with no hidden layers. It
generates a constant routing weight for all inputs, captured by the formula as follows

r(h) = b0, (7)

indicating that it does not adjust based on the input. When we only up-scale the MLP modules of the vision Transformers
to MoE modules, WEMoE (0-layer) can be considered as a partial implementation of AdaMerging. Add when we
up-scale the vision Transformers layer-wisely, WEMoE (0-layer) can be considered equivalent to AdaMerging. For
WEMoE (0-layer), the MoE modules can be unloaded, thus no additional parameters and inference cost are introduced.

• For WEMoE (1-layer), each router is a one-layer MLP that takes the input sample h and outputs the routing weight
r(h), which is adaptive to the input. The routing weight is calculated as follows

r(h) = W1h+ b1. (8)

• For WEMoE (2-layer), each router is a two-layer MLP and the routing weight is calculated as follows

r(h) = W2ReLU(W1h+ b1) + b2. (9)

In Tables 4 and 5, we note a substantial performance improvement when comparing WEMoE (2-layer) to WEMoE (0-layer).
While it may appear that the auxiliary parameters are the primary contributors to the final performance, rather than the
proposed MoE design, this is not the case. In fact, the key innovation of our approach lies in the proposed MoE design,
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which offers the ability to dynamically integrate shared and task-specific knowledge based on input, i.e. the data adaptability
of the routing mechanism.

In Tables 9 and 10, we present additional findings to support our argument. We compare the number of trainable parameters
and performance between WEMoE (1-layer) and WEMoE (2-layer). The data reveal that WEMoE (1-layer) possesses 73.8K
trainable parameters, which constitute only 0.01% of the total parameters in the merged model. Notably, the performance of
WEMoE (1-layer) is significantly better than AdaMerging and nearly matches that of WEMoE (2-layer) across all tasks.
This evidence underscores our claim that the MoE design is crucial for performance enhancement.

C. Robustness to Out-of-Distribution Data

(a) Clean (b) Motion Blur (c) Impulse Noise (d) Gaussian Noise

(e) Pixelate (f) Spatter (g) Contrast (h) JPEG Compression

Figure 9. Here are eight instances of distorted images, produced using the method suggested in (Hendrycks & Dietterich, 2019).

In real-world applications, it is common to encounter out-of-distribution (OOD) data, i.e. the unlabeled test data that we
seek to generalize may deviate from the distribution of the training data. To evaluate the robustness of our method, we
conduct experiments on the clean test dataset and seven corrupted test datasets. The corrupted test datasets are generated
using the method suggested in (Hendrycks & Dietterich, 2019). In Figure 9, we show eight example images from the
corrupted test datasets. Following (Yang et al., 2023), we conduct experiments on four datasets: Cars (Stallkamp et al.,
2012), EuroSAT (Helber et al., 2018), RESISC45 (Cheng et al., 2017), and GTSRB (Stallkamp et al., 2012).

We compare our method with the Task Arithmetic (Ilharco et al., 2023), Ties-Merging (Yadav et al., 2023), and AdaMerg-
ing (Yang et al., 2023). We first set the scaling factor λ = 0.3 and merge the models trained on the clean test dataset. The
results are shown in Tables 5 and 11.

The results in Table 5 and Table 11 that among various approaches, WEMoE (l = 2) consistently demonstrates the highest
performance across both the clean test set and the majority of distorted test sets. This underscores the effectiveness of
our method in handling both clean and distorted data, suggesting its potential for robust multi-task merging. We also
note that in situations where there is a significant degradation in image quality, such as pixelation, WEMoE (l = 2) may
exhibit overfitting to some specific tasks, leading to a decline in performance. In contrast, WEMoE (l = 0) tends to display
greater stability in performance under such conditions. This can be attributed to its lower parameter count, rendering it less
susceptible to overfitting.

Furthermore, we note that the performance of WEMoE (l = 0) closely aligns with that of AdaMerging. It is worth recalling
that when l = 0, WEMoE corresponds to a partial implementation of AdaMerging, with the scaling factor λ fixed at 0.3
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Table 11. Ablations of the test data distribution on ViT-B/16 (for all methods, λ = 0.3).

METHOD CARS EUROSAT RESISC45 GTSRB AVG. CARS EUROSAT RESISC45 GTSRB AVG.

CLEAN TEST SET CORRUPTED TEST SET (MOTION BLUR)
TASK ARITHMETIC 75.3 96.3 85.3 80.5 84.3 73.5 70.9 83.9 72.2 75.1
TIES-MERGING 74.8 93.4 84.0 65.8 79.5 73.1 65.5 82.3 57.4 69.6
ADAMERGING 83.4 97.2 88.6 97.5 91.7 81.3 75.9 87.4 95.6 85.0
WEMOE (0-LAYER) 78.6 95.3 86.3 95.9 89.0 75.8 73.3 84.8 91.1 81.2
WEMOE (2-LAYER) 87.3 99.3 96.2 99.3 95.5 86.3 76.8 95.2 98.2 89.1

CORRUPTED TEST SET (IMPLUSE NOISE) CORRUPTED TEST SET (GAUSSIAN NOISE)
TASK ARITHMETIC 70.4 59.5 75.2 54.0 64.8 72.2 60.8 78.5 51.0 65.6
TIES-MERGING 70.5 46.2 73.0 42.0 57.9 72.8 47.6 77.0 42.2 59.9
ADAMERGING 77.6 42.1 81.9 90.2 73.0 79.1 58.9 81.2 74.5 73.4
WEMOE (0-LAYER) 72.7 47.0 77.2 80.5 69.4 74.1 58.3 80.1 64.7 69.3
WEMOE (2-LAYER) 83.2 11.1 92.3 96.2 70.7 84.8 11.7 94.4 73.3 66.1

CORRUPTED TEST SET (PIXELATE) CORRUPTED TEST SET (SPATTER)
TASK ARITHMETIC 3.8 38.0 24.8 71.3 34.5 72.1 58.4 79.9 60.1 67.6
TIES-MERGING 4.9 36.3 21.4 57.6 30.1 72.1 50.7 77.8 46.9 61.9
ADAMERGING 4.1 46.4 23.6 91.3 41.3 79.3 60.9 85.8 93.7 80.0
WEMOE (0-LAYER) 3.1 42.4 26.1 84.3 39.0 73.7 57. 82.0 87.1 74.9
WEMOE (2-LAYER) 0.5 20.6 1.9 97.3 30.1 84.0 11.9 93.8 97.5 71.8

CORRUPTED TEST SET (CONTRAST) CORRUPTED TEST SET (JPEG COMPRESSION)
TASK ARITHMETIC 73.4 62.5 81.3 76.9 73.5 75.1 73.1 84.8 64.7 74.4
TIES-MERGING 73.4 58.0 80.0 63.1 68.6 74.8 66.9 83.8 54.1 69.9
ADAMERGING 81.4 68.1 85.8 96.8 83.0 81.9 76.0 87.3 91.0 84.1
WEMOE (0-LAYER) 76.2 65.6 82.2 93.6 79.4 77.3 74.2 86.1 84.1 80.4
WEMOE (2-LAYER) 86.0 67.8 95.1 98.9 87.0 86.9 82.0 96.2 95.9 90.2
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Figure 10. The results for the robustness experiment on CLIP-ViT-B/16. The x-axis of each plot represents the scaling coefficient λ of
task vectors, while the y-axis shows the accuracy of the merged model on different merged tasks.
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for the majority of the model, except for MLP modules. This observation provides support for the hypothesis outlined in
Section 2.2 concerning parameter similarity.

Figures 5 and 10 show more detailed results of the robustness experiments on CLIP-ViT-B/32 and CLIP-ViT-B/16,
respectively. The x-axis of each plot represents the scaling coefficient λ of task vectors, while the y-axis shows the accuracy
of the merged model on the four merged tasks. The results show that WEMoE (l = 2) outperforms other methods across
all tasks and datasets in the majority of cases. It also exhibits stability across variations in hyperparameter λ. It achieves
nearly optimal performance for all configurations of λ when the test dataset follows the same distribution as the training
data. Even when there is a significant disparity between the distributions of test and training data, comparable performance
can be achieved with Task Arithmetic and Ties-Merging.

D. Routing Analysis
In this section, we delve into an analysis of the expert weighting as determined by the router. For this analysis, we use the
CLIP-ViT-B/32 model that has been merged on eight downstream tasks as a representative example. The results of this
analysis are visually represented in Figure 11. In the figure, we demonstrate how routers at different depths in the network
allocate routing weights for inputs from different tasks. This visualization helps in understanding how the routing weights
vary across different tasks and layers, providing insights into the network’s decision-making process.

Upon examining the router’s behavior, we notice a distinct pattern. For shallow-layer routers, there is no clear correlation
between routing weight allocation and the source task of the input sample. Input samples from different tasks exhibit similar
routing weights. In contrast, deep-layer routers show a pronounced correlation between weight allocation and the source
task of the input sample. In these cases, the router tends to favor the task vector corresponding to the input sample’s source
task by assigning it a higher weight. This observation suggests that deeper-layer routers possess the capability to identify the
expert likely to perform better based on input features. As a result, they assign a higher weight to this expert, reflecting
increased confidence in its performance. This behavior of the router is in line with our expectations and intuition. This
ability to discern and assign weights effectively is a key factor in the overall performance of the merged model.

This also indicates that shallow-level features are insufficient to distinguish between different tasks; instead, these features
predominantly contain shared information. In contrast, deep-level features contain more task-specific information. This
provides us with insights, suggesting that we can further narrow down the scope of information separation and integration.
For instance, we might consider applying methods like Task Arithmetic to merge parameters of shallow-level MLPs as well,
while constructing MoE for information separation exclusively in deep-level MLPs. This approach can further reduce the
inference cost overhead by further reducing additional parameters introduced by MoE while maintaining the performance of
the merged model.

Figure 12 presents the first choice matrix of the CLIP-ViT-B/32 model. This matrix indicates the percentage of samples for
which the router assigns the highest weight to the corresponding task. At the first layer, the router assigns almost all samples
to Cars. As the layer index increases, the router gradually assigns more samples to the correct task. From the 6th layer
onwards, the router assigns the highest weight to the correct task for the majority of samples. This is consistent with our
previous observation from Figure 11, where we notice that the router at the 6th layer is the first to exhibit a clear correlation
between routing weight allocation and the source task of the input sample.

Why not perform a qualitative analysis of features from various experts? Such an analysis is often beneficial for a
comprehensive understanding. However, visualizing features from different experts in our study is not straightforward. This
difficulty arises because our proposed Mixture of Experts (MoE) design differs from research that analyzes features, such
as Ye & Xu (2023). Our method generates input-conditioned weights and infers through the MLP modules only once. In
contrast, Ye & Xu (2023) pass the input through each expert. Instead, in this Appendix section, we offer a routing analysis
that provides insights into the routing mechanism of Weight-Ensembling MoE (WEMoE).
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Figure 11. Analysis of expert weighting by the router using the CLIP-ViT-B/32 model at layers 0,3,6,9 and 11. This figure presents the
routing weights for different layers and tasks in the neural network. Each subplot corresponds to a specific task, and the y-axis represents
the routing weights for that task. The x-axis labels indicate the task names.
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Figure 12. This heatmap presents the first choice matrix of the CLIP-ViT-B/32 model. Each row corresponds to a specific task, and the
x-axis labels indicate the layer index. Each entry in the matrix represents the percentage of samples for which the router assigns the
highest weight to the corresponding task.
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