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Abstract
Damage to imaging systems and complex external
environments often introduce corruptions, which
can impair the performance of deep learning mod-
els pretrained on high-quality image data. Previ-
ous methods have focused on restoring degraded
images or fine-tuning models to adapt to out-
of-distribution data. However, these approaches
struggle with complex, unknown corruptions and
often reduce model accuracy on high-quality data.
Inspired by the use of warning colors and camou-
flage in the real world, we propose designing a
robust appearance that can enhance model recog-
nition of low-quality image data. Furthermore,
we demonstrate that certain universal features in
radiance fields can be applied across objects of the
same class with different geometries. We also ex-
amine the impact of different proxy models on the
transferability of robust appearances. Extensive
experiments demonstrate the effectiveness of our
proposed method, which outperforms existing im-
age restoration and model fine-tuning approaches
across different experimental settings, and retains
effectiveness when transferred to models with dif-
ferent architectures. Code will be available at
https://github.com/SilverRAN/YARM.

1. Introduction
Neural network-based deep learning technologies have
made significant impacts across various domains in mod-
ern society, including facial recognition, autonomous driv-
ing, and 3D reconstruction. However, previous research
has shown that neural network models can yield erroneous
predictions in certain scenarios, such as under adversarial
attacks or image degradation (Hosseini et al., 2017; Dodge
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Figure 1. The proposed method is illustrated in this diagram. Dur-
ing imaging of a real-world object, various types of degradation
(e.g., noise from damaged camera components, blur from object
motion, or adverse weather conditions like snowfall) can be intro-
duced, resulting in low-quality images that degrade performance in
downstream tasks (e.g., image classification). Previous approaches
have primarily focused on data preprocessing (image restoration)
or model fine-tuning. In contrast, we propose addressing this issue
from a data perspective, enhancing robustness to low-quality imag-
ing by altering the appearance of natural objects.

& Karam, 2017; Geirhos et al., 2017). For instance, com-
monly encountered conditions like rain or snow can reduce
the accuracy of target detection models in recognizing traffic
signs (Wang et al., 2022). This lack of robustness hinders
the advancement of neural network technologies in indus-
trial applications where high accuracy and reliability are
essential. Addressing these issues is also critical for the tran-
sition from Artificial Narrow Intelligence (ANI) to Artificial
General Intelligence (AGI).

Previous studies have proposed two primary approaches
to address this issue (see Fig.1): input preprocessing (Pei
et al., 2018; Liu et al., 2018; Son et al., 2020), and model
fine-tuning (Wang et al., 2020; Kim et al., 2021; Yang et al.,
2023). Since model accuracy often degrades due to input
data being attacked or corrupted, restoring low-quality data
to its original state could theoretically prevent prediction
errors. This approach typically employs image restoration
techniques to remove corruptions in the input image, aim-
ing to recover its original content as closely as possible.
Methods include image denoising, deblurring, rain and fog
removal, and super-resolution. However, these techniques
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generally focus on the quality of the image restoration rather
than the restored image’s effectiveness in downstream tasks.
On the other hand, some researchers argue that changes in
input images are typically insufficient to impair human judg-
ment, suggesting that model performance declines because
neural networks lack the robustness of human perception.
By applying adversarial training or fine-tuning, it is possible
to improve model performance on corrupted data. However,
previous studies have shown that the effectiveness of this
approach remains limited.

To address this issue, we propose an innovative approach.
In the real world, it is well known that the ease with which
objects are perceived by humans can be modified by chang-
ing their colors and textures. For instance, traffic cones
are typically painted bright red, while military vehicles like
tanks are designed with camouflage. Similarly, could we
synthesize a texture for object surfaces that makes them
easier for deep learning models to recognize, regardless
of the environment? Unlike previous methods, our study
focuses on mitigating the effects of data degradation on
model performance from a data-centric perspective. Con-
sequently, in industrial applications, manufacturers could
leverage our research to design product appearances that
enhance recognizability. For example, in a future where
autonomous driving systems based on computer vision are
widely deployed, a bicycle designed with textures that en-
able accurate identification under various conditions would
be preferable to a standard bicycle, as it could help reduce
accident risks. Based on this rationale, we believe that dual
enhancements in both data and model design are essential
for developing highly reliable AI systems, which imparts
significant societal relevance to our work.

In this paper, we investigate three specific questions: (1) Can
texture optimization enhance neural network models’ object
recognition performance, achieving better results than pre-
vious methods? (2) Is it possible for these robust textures to
be transferable, allowing them to generalize across objects
with different geometries? (3) Do robust textures generalize
effectively across different neural network architectures? To
address these questions, we propose a method for synthesiz-
ing robust textures in this paper. For object-specific robust
texture optimization, we first obtain a voxel representation
containing the object’s geometry and color by employing
3D reconstruction on multi-view images. Next, we ran-
domly select a viewing angle, render the corresponding 2D
image, and apply various image degradation operations of
differing intensities, including noise, blur, weather effects,
and compression. A classifier is used as a surrogate model
to recognize the degraded images, and backpropagation is
performed to optimize the color features of the voxel repre-
sentation. For the optimization of universal robust textures,
we first reconstruct voxel representations for multiple ob-
jects of the same category based on multi-view image sets.

We then initialize a random perturbation delta, applying
it to the features of different voxel representations for op-
timization. Extensive experiments demonstrate that these
robust textures show significantly improved resistance to
image corruptions compared to previous methods and can
be optimized to produce a universal texture adaptable to
objects of the same category with varying geometries.

The primary contributions of our research are as follows:

• We propose a data-centric approach to enhance the per-
formance of deep learning models in the presence of
image corruptions. By using multi-view 3D reconstruc-
tion to obtain a voxel representation of the target object
and optimizing for a robust texture, our method signifi-
cantly improves model recognition accuracy without
requiring any preprocessing or model fine-tuning.

• We demonstrate the existence of a universal robust
texture that can transfer across objects of the same
category but with different geometries. This universal
texture effectively aids downstream models in resisting
degraded imaging, even in zero-shot scenarios.

• Through an analysis of the transfer performance of ro-
bust textures generated under various surrogate models,
we establish insights into how different models impact
final performance. Based on this, we propose a method
for selecting the most suitable surrogate model.

2. Related Works
2.1. Visual Recognition against Image Corruptions

Image corruption during the imaging process often leads
to suboptimal performance in downstream deep learning
models (Hosseini et al., 2017; Dodge & Karam, 2017;
Geirhos et al., 2017). Therefore, how to improve accu-
racy on corrupted input images is an urgent problem to
address. (Hendrycks & Dietterich, 2018) firstly introduced
an image dataset containing 15 types of corruptions and eval-
uated the robustness of various deep learning models against
different kinds and severities of corruption. (Bai et al., 2021)
compared the performance of CNNs and Transformers on
corrupted images under a fairer setup, revealing the rea-
sons why Transformer architectures demonstrate superior
generalization on out-of-distribution (OOD) data.

To reduce model vulnerability to low-quality images, some
studies have attempted to fine-tune models for different
kinds of corruption. However, (Vasiljevic et al., 2016; Zheng
et al., 2016) found that models fine-tuned on a single type of
blur did not generalize well to other types, while fine-tuning
on multiple degradation types often resulted in decreased
overall performance. Works such as (Wang et al., 2020; Kim
et al., 2021) have shown that model performance decline
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is due to the degradation of the deep feature representa-
tion space. These approaches aim to map degraded fea-
tures to clean features to improve accuracy in downstream
tasks. (Yang et al., 2023) leverages vector quantization to
bridge the gap between low-quality and high-quality fea-
tures, learning representations that are invariant to quality.
Additionally, (Liu et al., 2024) identified that the channel
correlation matrix of features is a reliable indicator of degra-
dation type and provides a clear optimization direction for
unsupervised solution space by reducing the difference be-
tween the channel correlation matrices of degraded and
clean features.

Additionally, some studies have attempted to restore de-
graded images directly to preserve the performance of down-
stream models. Although there is already extensive research
on image restoration (Zhang et al., 2021; Ren et al., 2019;
Ji et al., 2023), (Pei et al., 2018) noted that simply applying
dehazing operations to images does not improve accuracy
in downstream classification tasks, as restored images still
differ from high-quality images in feature space. To ad-
dress this, (Liu et al., 2018; Son et al., 2020) have jointly
optimized the image restoration module alongside high-
level models to make the restored images more suitable for
downstream tasks, finding that this approach also enhances
restoration effectiveness.

Apart from these two methods, some research has explored
robustness in 3D objects, such as (Salman et al., 2021; Wang
et al., 2022; Lin et al., 2025). However, these approaches
have not been thoroughly tested on large-scale datasets or
across different model architectures, nor do they offer a
straightforward, user-friendly workflow.

2.2. NeRF-based 3D Editing

Novel view synthesis is a long-standing research topic in
the field of 3D reconstruction. Its goal is to synthesize
images from previously unseen viewpoints, given a set of
images that capture a scene. Traditional approaches include
direct interpolation across densely captured scenes and com-
bining depth maps to handle sparse viewpoints (Buehler
et al., 2001; Shi et al., 2014; Shih et al., 2020). However,
these methods often come with significant limitations. With
the advancement of neural rendering, novel view synthesis
methods based on neural radiance fields (NeRF) (Milden-
hall et al., 2020; Barron et al., 2021; 2022) have shown
immense potential. NeRF employs a multi-layer percep-
tron (MLP) with positional encoding as an implicit and
continuous volumetric representation. Impressive visual
results and flexible configuration make NeRF a suitable
foundation for further 3D editing tasks, including geometric
transformations (Yuan et al., 2022; Yang et al., 2022), style
transfer (Wang et al., 2023; Zhang et al., 2022), and text-to-
texture synthesis (Richardson et al., 2023; Dong & Wang,

2024). Despite various acceleration techniques (Fridovich-
Keil et al., 2022; Müller et al., 2022), NeRF’s lengthy train-
ing times and slow inference speeds remain significant draw-
backs. To address this, (Sun et al., 2022; Karnewar et al.,
2022) have combined NeRF’s original setup with explicit
volumetric grid modeling, significantly accelerating both
training and inference. Subsequent work (Sella et al., 2023)
has also shown that voxel grid-based 3D representations can
be effectively used for scene editing.

3. Methodology
3.1. Problem Formulation

Given a 3D object X with a true class label y, when an imag-
ing system captures a 2D image vi from a given viewpoint i
and applies it to a downstream task (e.g., classification), the
downstream model fθ should provide the correct prediction
theoretically, such that fθ(vi) = y. However, due to com-
plexities in the imaging process or environment, unknown
corruption C can be introduced. When a degraded image
v′i = C(vi) is used by the downstream classifier, this may
lead to incorrect predictions, i.e., fθ(v′i) = y′ ̸= y.

The objective of our research is to optimize the appearance
of the given 3D object X to get a robust version XR, which
can ensure that its visual features remain robust against
various types of corruptions during the imaging process,
thereby improving the prediction accuracy of downstream
models.

Furthermore, inspired by studies on universal adversarial
perturbations (UAP) (Moosavi-Dezfooli et al., 2017; Hen-
drik Metzen et al., 2017), we explore the potential existence
of a universal robust texture (URT). Specifically, given a
set X = {X1⟨G1, T1⟩, X2⟨G2, T2⟩, ..., Xi⟨Gi, Ti⟩} con-
taining multiple objects of the same class y, where Gi

and Ti represent the geometry and texture of object Xi,
respectively. We aim to optimize a universal texture TU that
can transform any object in the set into a robust version:
Xi⟨Gi, TU ⟩ → XR

i .

3.2. 3D Reconstruction based on Voxel Grid

Given a set of multi-view images captured in a static scene,
NeRF (Neural Radiance Fields) learns a mapping between
each image’s viewpoint coordinates and direction to the
corresponding pixel values, constructing a neural radiance
field F (x, d) → (c, σ). Here, the input x ∈ R3 represents
coordinates within the radiance field, d is the unit-norm
viewing direction, and the output consists of σ ∈ R+ (the
volume density) and c ∈ [0, 1]3 (the emitted RGB color).
During inference, given any arbitrary camera viewpoint,
NeRF queries multiple sample points along rays emitted
from the camera center and calculates pixel values at specific
locations based on the volumetric rendering formula.
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Figure 2. The framework of our proposed method is illustrated as follows. Given an object, we first collect multi-view images to
reconstruct a 3D voxel representation. We then initialize a perturbation δ, with the same shape as the color voxel grid and combine it with
the original voxel representation to perform random-view rendering, producing 2D images. These images are then degraded by randomly
selected types and intensities of corruption, and the degraded image is fed into a surrogate classifier to obtain predictions and compute
loss for updating δ’s parameters. For universal robustness textures, we first select multiple objects of the same category, reconstructing
individual voxel representations for each. During training, in each iteration, a random pair of density and color voxel grids is selected, and
a universal perturbation δU is applied, followed by the same training process described above. After training, the optimized δU can be
combined with any reconstructed voxel representation to render robust images.

Although NeRF can establish a continuous and implicit
radiance field, previous work has highlighted that editing
its parameter space is challenging, and the training pro-
cess is time-intensive. Consequently, our work employs an
improved NeRF approach based on a voxel grid representa-
tion. Voxel grid representation explicitly models the scene’s
modalities of interest (e.g., density, color, features) using
grid cells, offering higher query efficiency. For a point of
interest x, its value within the voxel grid can be obtained
through trilinear interpolation.

interp(x,V ) : (R3,RC×Nx×Ny×Nz )→ RC (1)

where x is the queried 3D point, V represents the voxel grid,
C is the modality dimension, and Nx×Ny×Nz is the total
number of voxels. To reduce training difficulty, DVGO (Sun
et al., 2022) employs a coarse-to-fine staged training ap-
proach. In the coarse stage, the target radiance field is ini-
tialized over a large spatial region, learning view-invariant
colors V (rgb)(c) ∈ R3×N(c)

x ×N(c)
y ×N(c)

z and raw volume den-
sities V (density)(c) ∈ R1×N(c)

x ×N(c)
y ×N(c)

z . In the fine stage,

to capture finer surface details and view-dependent colors,
the bounding box is progressively scaled down, and free
space is skipped to accelerate query speeds. We apply an im-
proved version (Karnewar et al., 2022) of this approach, re-
placing the softplus activation function with ReLU because
it can preserve the discontinuities present in real-world sig-
nals. After training we can get two voxel grids V (density)(f)

and V (rgb)(f).

3.3. Optimize Single Robust Texture

After obtaining the fine-stage voxel grids V (density)(f) and
V (rgb)(f), we can optimize them to enhance robustness
against image corruptions. We consider changing the ob-
ject’s geometry impractical in real-world scenarios, as the
functionality of various items is closely tied to their shape.
Therefore, we fix the density grid V (density)(f) obtained from
the previous stage and only optimize the color grid. Adopt-
ing a setup similar to adversarial attacks, we initialize a
perturbation δ with the same shape as the color grid and add
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Figure 3. Transferable performance of textures on proxy model to other models. We used ResNet-18, ResNet-34, ResNet-50, ResNet-101,
and ResNet-152 as surrogate models and transferred the resulting textures to other models for testing. It was observed that using a model
as its own surrogate consistently yielded the best performance. Aside from this self-surrogacy, textures generated with smaller-parameter
models as surrogates tended to perform better across other models, especially evident with ResNet-18, ResNet-34, and ResNet-50. In
contrast, for ResNet-101 and ResNet-152, the performance differences across surrogate models were minimal. Overall, our findings
suggest that smaller-parameter models generally serve as more effective surrogates for robust texture transfer across models.

it to the pre-trained voxel grid V (rgb)(f).

During training, we randomly select a viewpoint v to ren-
der the corresponding 2D image Iv. To improve resilience
to unknown corruptions, following the experimental setup
in (Hendrycks & Dietterich, 2018), we introduce random
types of corruption to the image Iv. Here, we apply 15
corruption types, including gaussian noise, shot noise, im-
pulse noise, glass blur, defocus blur, zoom blur, motion blur,
fog, frost, snow, contrast, brightness, JPEG compression,
pixelation, and elastic transformation. The details of these
corruptions can be found in supplementary A. This phase is
similar to data augmentation in standard training.

I ′v ← C(Iv(V
(density)(f), V (rgb)(f) + δ), s), ∥ δ ∥< ϵ (2)

where s represent severity level and ϵ is the bound of δ.
There are five different severity levels for each type cor-
ruption, which will be selected randomly in training. This
approach aims to prevent the model’s recognition accuracy
of objects under normal imaging conditions from reducing
when only using high-severity corruptions. The degraded
image I ′v can be viewed as low-quality data obtained in com-
plex real-world environments. We then use a proxy classifier
fθ to make predictions on I ′v and compute the cross-entropy

loss between the output and the true label y.

δ ← ∇δ Lce( fθ(I
′
v), y ) (3)

Through back-propagation, perturbation δ can be optimized
to make the object more robust in any random view direction
and any corruption.

3.4. Universal Robust Texture

Optimizing the surface texture of a single object to make
its 2D images more robust has been explored in previous
research (Salman et al., 2021). In comparison, we propose
a more lightweight and flexible framework that enhances
optimization speed by nearly 50 times. Leveraging the flex-
ibility of our framework, we further investigate universal
robust textures (URT). For a set of objects V belonging to
category y but differing in shape and appearance, we re-
construct each object’s voxel grid V

(density)(f)
i and V

(rgb)(f)
i

using multi-view images, with all grids at the same reso-
lution. As in 3.3, we initialize a perturbation δU with the
same shape as V (rgb)(f)

i at the start of training. Then, in each
iteration, we randomly select a pair of voxel grids from the
set and render a 2D image Iv from a random viewpoint.
Similarly, we apply corruptions of random types and inten-
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sities to obtain I ′v, which is then passed to a downstream
model for prediction.

I ′v ← C(Iv(V
(density)(f)
i , V (rgb)(f) + δU ), s), Vi ∈ V (4)

At the end of training, we obtain a robust universal texture
that adapts to different V (density)(f) objects within the same
category and generalizes successfully to unseen objects.

3.5. Transfering Performance With Proxy Model

During training, a surrogate model is required to obtain gra-
dient information. However, in practical scenarios, access
to the internal parameters of the target model may not be
feasible. Thus, whether the robust texture generated using
a surrogate model can effectively transfer to an unknown
model remains to be validated. Fortunately, our findings
confirm that robust textures exhibit properties similar to
adversarial perturbations, in that they can be transferred
across models. This observation leads us to consider the
relationship between the choice of surrogate model and
transferability performance.

It is well known that adversarial perturbations generated
by a model with higher generalization ability tend to be
more transferable. Intuitively, if an adversarial example
can deceive a stronger model, it is more likely to deceive
a weaker model as well. In our task, we hypothesize the
reverse relationship: if a robust example enables a weaker
model to recognize it correctly, it is more likely to succeed
with a stronger model. To substantiate this hypothesis, we
conducted a set of comparative experiments. Using ResNet
models with the same architecture but different parame-
ter sizes—specifically, ResNet-18, ResNet-34, ResNet-50,
ResNet-101, and ResNet-152—we generated robust textures
for 10 randomly selected objects with each variant as a sur-
rogate model, then transferred the textures to other ResNet
models for evaluation. From Fig. 3, we observe that, aside
from textures generated using the model itself as the surro-
gate in a white-box training setting, textures created with
ResNet-18 as the surrogate model perform well across other
models, particularly those with initially poorer performance,
such as ResNet-34 and ResNet-50. For ResNet-101 and
ResNet-152, however, due to their relatively strong initial
performance, the differences among textures generated by
various surrogate models are minimal when transferred to
these models. Taking these findings together, we conclude
that choosing a surrogate model with weaker performance
can better accommodate a broader range of transfer scenar-
ios.

4. Experiment
In this section, we conduct extensive experiments to demon-
strate the superiority of our proposed method.

Dataset. Since most classification models are trained on
the ImageNet dataset, and typical NeRF datasets lack cate-
gory labels, we used the IM3D (Ruan et al., 2023) dataset to
evaluate our method. This dataset includes 40 classes from
ImageNet, with each class containing 10 objects, and each
object represented by 100 rendered images from hemispher-
ical viewpoints. When optimizing a single robust texture,
we utilized random viewpoints for texture optimization and
validated with sampled viewpoints from the dataset. For
optimizing a generic robust texture, we randomly selected 8
objects from each category for training, while the remaining
2 objects were used for validation and testing, respectively.

Testing Models. To evaluate classification performance,
we selected ResNet-18 (He et al., 2016) and VGG16 (Si-
monyan, 2014) as proxy models during the training process
for each method. Additionally, since our approach enhances
robustness from a data-centric perspective, the augmented
data remain effective across various classification models.
Therefore, we further selected ResNet-50, ResNet-152, Mo-
bileNetV2 (Sandler et al., 2018), Inception-V3 (Szegedy
et al., 2016), ViT-b-16 (Dosovitskiy et al., 2020), and Swin-
Small (Liu et al., 2021) as transfer models to assess perfor-
mance on these architectures.

Metrics. We employed two metrics to assess model perfor-
mance on corrupted images: accuracy and Corruption Error
(CE). Accuracy, a commonly used metric in classification
tasks, is defined as the proportion of correctly classified
samples over the total number of samples. Additionally,
to evaluate model robustness against corruption, the Cor-
ruption Error (CE) proposed by (Hendrycks & Dietterich,
2018) quantifies the performance degradation before and
after applying corruption. Specific calculation methods are
provided in the supplementary B. In this study, we use Rela-
tive mCE alongside accuracy as evaluation metrics.

Implementation Details. Our experiments were conducted
on an Nvidia H100 GPU. The voxel grid resolution for
3D reconstruction was set to Nx = Ny = Nz = 160,
with the training iterations set to 2000. The Bound of δ
ϵ = 5.0. During the texture optimization phase, the number
of training iterations was set to 8000.

4.1. Performance on Proxy Model

We first analyze the test results on the surrogate model. As
shown in Tab 1, we report accuracy under different fixed
and random corruption intensities, as well as the Corrup-
tion Error (CE) for various types of corruptions. From the
table, it can be observed that although performing well on
ImageNet data, unfortunately, the methods fine-tuned on
multi-view images exhibit a poor performance in our task
setup. Among these methods, both DCP (Liu et al., 2024)
and Unadv (Salman et al., 2021) damaged the robustness
of original model. We think the architecture of DCP may
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Table 1. Testing performance on proxy model. We report classification accuracy under conditions of no corruption (none), severity 1
through 5, and random severity, along with the mean corruption error (mCE) and relative mean corruption error (R.mCE) across 15 types
of corruption. The top-performing results are represented in bold.

PROXY METHOD TYPE
ACCURACY↑ CE↓

NONE 1 2 3 4 5 RANDOM MCE R.MCE

VGG16

CLEAN - 0.3785 0.3088 0.2611 0.2360 0.1958 0.1496 0.2303 - -
URIE (SON ET AL., 2020) RESTORATION 0.5645 0.5217 0.4898 0.4716 0.4396 0.4027 0.4531 0.6698 0.6702

VQSA (YANG ET AL., 2023) FINETUNE 0.8917 0.8259 0.7945 0.7521 0.7213 0.6847 0.7406 0.3020 0.3455
DCP (LIU ET AL., 2024) FINETUNE 0.1817 0.1377 0.1106 0.0972 0.0803 0.0614 0.0967 1.7976 1.8520

UNADV (SALMAN ET AL., 2021) AUGMENTATION 0.3592 0.3352 0.3126 0.2927 0.2708 0.2354 0.3181 1.0064 1.0265
OURS (SINGLE OBJ.) AUGMENTATION 0.9270 0.9114 0.8874 0.8628 0.8175 0.7772 0.8540 0.1746 0.1878
OURS (UNIVERSAL) AUGMENTATION 0.4150 0.3560 0.3245 0.3112 0.2825 0.2555 0.3247 0.9831 1.0253

RESNET-18

CLEAN - 0.3645 0.3064 0.2670 0.2391 0.2044 0.1656 0.2365 - -
URIE (SON ET AL., 2020) RESTORATION 0.5773 0.5300 0.4997 0.4820 0.4530 0.4156 0.4713 0.6586 0.6636

VQSA (YANG ET AL., 2023) FINETUNE 0.8834 0.8436 0.8220 0.7952 0.7519 0.7262 0.8051 0.3125 0.3332
DCP (LIU ET AL., 2024) FINETUNE 0.3084 0.1853 0.1586 0.1311 0.1108 0.0748 0.1246 1.8025 1.8262

UNADV (SALMAN ET AL., 2021) AUGMENTATION 0.3132 0.2715 0.2641 0.2458 0.2039 0.1849 0.2413 1.1716 1.2202
OURS (SINGLE OBJ.) AUGMENTATION 0.9205 0.9073 0.8846 0.8590 0.8126 0.7769 0.8427 0.1771 0.1901
OURS (UNIVERSAL) AUGMENTATION 0.3850 0.3377 0.3097 0.2942 0.2748 0.2568 0.3178 1.0490 1.0408

Table 2. Transferable performance on other models. We report the average classification accuracy (Ave.Acc) under severity 1 through 5,
along with the relative mean corruption error (R.mCE) across 15 types of corruption. The top-performing results are represented in bold.

PROXY METHOD
RESNET-50 RESNET-152 MOBILENETV2 INCEPTION-V3 VIT-B-16 SWIN-SMALL

AVE.ACC R.MCE AVE.ACC R.MCE AVE.ACC R.MCE AVE.ACC R.MCE AVE.ACC R.MCE AVE.ACC R.MCE

VGG16

URIE (SON ET AL., 2020) 0.3241 1.6237 0.3728 1.5716 0.2835 0.9320 0.2959 1.5178 0.3215 1.4302 0.4252 1.1846
UNADV (SALMAN ET AL., 2021) 0.2745 2.2163 0.3271 1.8688 0.2103 1.3102 0.2642 1.7422 0.3704 1.2525 0.3652 1.8482

OURS (SINGLE OBJ.) 0.6019 0.6477 0.6306 0.6365 0.4749 0.7040 0.5726 0.6435 0.5449 0.7177 0.6175 0.7034
OURS (UNIVERSAL) 0.3366 1.5723 0.3720 1.6258 0.2405 1.1922 0.3112 1.2648 0.3596 1.3477 0.3618 1.8525

RESNET-18

URIE (SON ET AL., 2020) 0.3472 1.6995 0.3971 1.5741 0.3187 0.9157 0.3115 1.2507 0.3487 1.4351 0.4127 1.0458
UNADV (SALMAN ET AL., 2021) 0.3127 1.0964 0.3281 1.0348 0.2658 1.0823 0.2694 1.5120 0.3577 1.3832 0.3901 1.3538

OURS (SINGLE OBJ.) 0.6684 0.5160 0.6823 0.5449 0.4631 0.6007 0.5221 0.5625 0.6028 0.6273 0.6612 0.6000
OURS (UNIVERSAL) 0.3481 1.6376 0.3967 1.5970 0.2457 1.1883 0.3220 1.2413 0.3600 1.3711 0.3647 1.8556

only be suitable for natural images like ImageNet, while the
Unadv method shows large performance variations across
objects of different geometries, with average performance
still lower than that of the original data. URIE (Son et al.,
2020) partly enhanced the robustness of original model by
removing corruptions but its performance is still unsatisfy-
ing. Although VQSA (Yang et al., 2023) performs well, it
requires a long time to fine-tune the model, and this fine-
tuning time increases exponentially with the amount of data,
making it difficult to meet the demands of practical appli-
cations. In contrast, our proposed method not only demon-
strates strong generalization across corruption intensities
but also significantly improves the accuracy of the original
model when recognizing uncorrupted images. As for the
universal robust texture, although it did not outperform the
texture optimized for a single object, it offers higher prac-
tical applicability and demonstrates superior performance
compared to most baseline methods.

4.2. Transferable Performance Cross Various Models

Since our proposed method does not rely on fine-tuning a
specific classification model, the generated robust textures
can be transferred for use on other models. We further

tested the performance of textures generated with different
surrogate models when transferred to models of various
architectures. For comparison, we selected URIE and Un-
adv, both of which are transferable, as baseline methods.
We used average accuracy and relative mean corruption
error as evaluation metrics. As shown in Tab 2, when trans-
ferred to other models, textures trained with ResNet-18
performed slightly better than those based on VGG16, sug-
gesting that the features learned by ResNet-18 may be more
similar to those in the transfer models. Additionally, be-
cause models like ResNet-152, ViT-b-16, and Swin-small
already exhibit good robustness against corruptions, most
methods had a counterproductive effect on these models,
even leading to worse performance. We observed that our
method consistently outperformed others when transferred
across various models. In contrast, URIE and Unadv tend
to degrade the natural feature representations learned by the
models, thereby reducing accuracy. Comparing individu-
ally optimized textures for each object with universal robust
textures shows that the former have superior cross-model
generalization performance. This finding suggests that fur-
ther enhancement of generalization may be necessary to
develop highly transferable universal robust textures.
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Figure 4. A visual comparison between the original appearance of various objects and their appearance after adding the robust texture is
presented. It can be observed that the optimized robust texture does not significantly alter the objects’ original appearance, thus preserving
normal human perception. However, these subtle modifications to the appearance grant the objects considerable robustness under
low-quality imaging conditions. In cases where low-quality images of the original appearance lead to misclassification by downstream
models, objects with our optimized texture still enable stable and accurate predictions by the classifier.

4.3. Ablation Study

In this section, we examine the impact of different hyper-
parameter configurations on the final performance. In our
proposed method, the primary hyperparameters are the voxel
grid resolution and the boundary ϵ of the generated pertur-
bation. We evaluated the final performance of the textures
obtained with voxel grid resolutions of 160 and 320 and
with ϵ values of 1.0 and 5.0. As shown in Tab 3, regardless
of the model used as the proxy, results with ϵ = 5.0 con-
sistently outperform those with ϵ = 1.0, indicating that a
larger boundary value generally leads to better performance.
For voxel grid resolution, when using VGG16 as the proxy
model, a denser voxel grid with ϵ = 5.0 slightly decreases
the final performance. Conversely, for ResNet-18, increas-
ing the voxel grid resolution consistently improves results.
We hypothesize that the increased voxel grid resolution may
lead to overfitting on smaller models, thereby impacting
generalization.

Table 3. Performance comparison under different hyperparame-
ter combinations. We report the average classification accuracy
(Ave.Acc) under severity 1 through 5, along with the relative mean
corruption error (R.mCE) across 15 types of corruption.

PROXY GRID ϵ AVE.ACC R.MCE

VGG16

160 1.0 0.6857 0.3203
160 5.0 0.8513 0.1878
320 1.0 0.7063 0.2985
320 5.0 0.8492 0.1958

RESNET-18

160 1.0 0.6531 0.3478
160 5.0 0.8481 0.1901
320 1.0 0.6762 0.3511
320 5.0 0.8504 0.1837

5. Conclusions
In this paper, we propose a data-driven approach to enhance
robustness against low-quality imaging. Our method re-
constructs a given object in 3D by sampling multi-view
images to obtain its voxel representation, then optimizes a
perturbation on its color grid to alter its appearance, thereby
achieving robustness against various types and intensities

8
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of corruption. Additionally, we introduce a universal robust
texture, which optimizes the appearance of multiple objects
with different geometries within the same category to obtain
a transferable texture that generalizes to zero-shot objects.
We further analyze the performance of textures obtained
using different proxy models, summarizing the influence
of the proxy model on the final outcome. Extensive ex-
periments demonstrate the effectiveness of our proposed
method, which outperforms existing image restoration and
model fine-tuning approaches across different experimen-
tal settings, and retains effectiveness when transferred to
models with different architectures.
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A. Details of 15 Types of Corruptions
In this section, we provide the detailed calculation methods
for each type of corruption. Given an input tensor X ∈
RB×3×H×W , let Y denote the tensor of corrupted low-
quality images, then for

A.1. Gaussian Noise:

Y = clamp
(
X+ Z, 0, 1

)
, Z ∼ N (0, σ2I), (5)

where Z ∈ RB×3×H×W . For severity ranging from 1 to
5, the value of σ is set to 0.08, 0.12, 0.18, 0.26, and 0.38,
respectively.

A.2. Shot Noise:

Y = clamp
(P
c
, 0, 1

)
, P ∼ Poisson(c ·X). (6)

For severity ranging from 1 to 5, the value of scaling factor
c is set to 60, 25, 12, 5 and 3, respectively.

A.3. Impulse Noise:

Y = clamp
(
S ◦B(1− S) ◦X, 0, 1

)
, (7)

where S ∼ Bernoulli(r) and B ∼ Bernoulli(0.5). For
severity ranging from 1 to 5, the value of r 0.03, 0.06, 0.09,
0.17 and 0.27, respectively.

A.4. Glass Blur:

To explain Glass blur, it is necessary first to introduce Gaus-
sian blur. A Gaussian kernel G(u, v) with a standard
deviation σ and size k is defined as:

G(u, v) =
1

2πσ2
exp

(
− u2 + v2

2σ2

)
(8)

where u, v ∈ −⌊k/2⌋, ..., ⌊k/2⌋ is the coordinate index
of the gaussian kernel. The values in the kernel will be
normalized so that: ∑

u,v

G(u, v) = 1 (9)

The output tensor Y of gaussian blur is calculated by con-
ducting 2D convolution on the input tensor X and gaussian
kernel G:

Y = X ∗G (10)

Glass blur is achieved by combining gaussian blur and ran-
dom pixel swap. Given an input tensor X ∈ RB×3×H×W ,

we first conduct gaussian blur to it to get a blurred version
X′. Then a set of pixel C is selected according to:

C = {(b, x, y)|b ∈ [1, B], x ∈ [r,W − r], y ∈ [r,H − r]}
(11)

where b is the index in batch and (x, y) is pixel coordinate.
r is the radius for selecting pixels. Then we do T times
pixel value swaps. For each trial t = 1, 2, ..., T , generate
random offset for every (b, x, y) ∈ C:

(∆x,∆y) ∼ Uniform(−r, r) (12)

the new coordinate is:

(x′, y′) = (x+∆x, y +∆y) (13)

then swap pixel values for new coordinates and old coordi-
nates:

X′[b, :, x′, y′]↔ X′[b, :, x, y] (14)

After T times pixel value swaps we can get a corrupted
tensor X′′. Finally do gaussian blur to X′′ again and the
output can be seen as the glass blur version of X. For
severity ranging from 1 to 5, the values of gaussian kernel’s
standard deviation σ, the radius r and trial number T are
(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2) and (1.5, 4, 2),
respectively.

A.5. Defocus Blur

Given a radius r, we establish an initial grid coordinate
system G first:

G = {(x, y)|x ∈ [−R,R], y ∈ [−R,R]} (15)

where R = max(8, r). Then we construct a circular blur
kernel K based on this grid coordinate system:

K(x, y) =

{
1 if x2 + y2 ≤ r2,

0 otherwise
(16)

The kernel should be normalized so that
∑

(x,y) K(x, y) =
1. Then conduct gaussian blur on this kernel to get an anti-
aliasing smoothing kernel K ′. Then do 2D convolution on
the input tensor by using blur kenel K ′:

Y = X ∗K ′ (17)

For severity ranging from 1 to 5, the radius r and standard
deviation σ are set to (3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5) and
(10, 0.5), respectively.

A.6. Motion Blur

Given an offset angle θoffset, we first generate a random angle
θ = θoffset + Uniform(−45◦, 45◦) for input tensor X. Then
calculate the blur offset in horizontal and vertical direction:

cliph = ⌊rk · cos(θ)⌉, clipv = ⌊rk · sin(θ)⌉ (18)
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A motion blur kernel K ∈ R(2rk+1)×(2rk+1) with radius
rk and standard deviation σk can be created by stretching a
gaussian kernel in direction θ. The motion blurred output
Y can be obtained by doing 2D convolution on input tensor
X using K and clamping:

Y = clamp
(
K ∗X, 0, 1

)
(19)

In our setting the θoffset is set to 0. For severity ranging from
1 to 5, the values of rk and σk are set to (10, 3), (15, 5), (15,
8), (15, 12) and (20, 15), respectively.

A.7. Zoom Blur

Given the number of scaling factors K, we first generate a
set of scaling factors zk:

{zk}Kk=1, zk = 1 + k · s, zk < max zoom (20)

where s is the size of zoom step. For each scaling factor
zk, rescale the input tensor X so that Xk = Scale(X, zk).
Then crop the central region with the same size of X from
the rescaled tensor Xk:

Xtrim
k = Xk[:, :,∆h : ∆h+H,∆w : ∆w +W ], (21)

where

∆h = ∆w =
size(Xk)− size(X)

2
(22)

The output Y is calculated by:

Y = clamp
(X+

∑K
k=1 X

trim
k

K + 1
, 0, 1

)
(23)

For severity ranging from 1 to 5, the values of max zoom
and zoom step s are set to (1.11, 0.01), (1.16, 0.01), (1.21,
0.02), (1.26, 0.02) and (1.31, 0.03), respectively.

A.8. Fog

To add fog corruption on the original image, we should
first generate a heightmap by using Diamond-Square al-
gorithm. Given a mapsize and a factor wd that con-
trolling random wave decay, we initialize a square grid
M ∈ Rmapsize×mapsize with M [0, 0] = 0. First do square
step:

M
[
i+ s

2 , j +
s
2

]
= M [i,j]+M [i+s,j]+M [i,j+s]+M [i+s,j+s]

4 + wibble(s)

(24)
where wibble(s) ∼ U(−wibble,wibble). The value of wib-
ble is set to 100 at the beginning and decreases with step
size s. Then do diamond step:

M [i, j + s
2 ] =

M [i,j]+M [i,j+s]+M [i− s
2 ,j+

s
2 ]+M [i+ s

2 ,j+
s
2 ]

4 + wibble(s)
(25)

After each Square and Diamond operation, the step size s
is halved, and the the amplitude of random wave is reduced

wibble ← wibble/wd. Finally the heightmap is normal-
ized to [0, 1] and output. We defined this whole process as
diamond square. For an input tensor X, we can generate
fractal noise for it:

F = diamond square(X,mapsize, wd) (26)

where the mapsize = 2⌈log2(max(H,W ))⌉. Then add the frac-
tal noise F to input tensor X to get X′ = X+ fog mixin ·F .
Finally do normalization and clamp:

Y = clamp
(
X′ · max(X′)

max(X′) + fog mixin
, 0, 1

)
(27)

For severity ranging from 1 to 5, the values of fog mixin
and wibble decay wd are set to (1.6, 2), (2.1, 2), (2.6, 1.7),
(2.5, 1.5) and (3., 1.4), respectively.

A.9. Frost

To add frost corruption to the original input tensor, we ran-
domly selected B samples from a set that containing several
frost images and add them with X directly:

Y = clamp
(
ci ·X+ cf · F, 0, 1

)
(28)

where ci, cf and F represent the coefficient of input, the
coefficient of frost images and the batch of frost images,
respectively. For severity ranging from 1 to 5, the values of
ci and cf are set to (1, 0.4), (0.8, 0.6), (0.7, 0.7), (0.65, 0.7)
and (0.6, 0.75), respectively.

A.10. Snow

To add snow corruption on an input tensor, we first randomly
generate a noise layer:

S = N (µ, σ), S ∈ RB×1×H×W (29)

Then do rescale and crop to S:

S′ = Rescale(S, zoom), S′ ∈ RB×1×H′×W ′
, (30)

Sc = S′[:, :, t : t+H, t : t+W ] (31)

where zoom is a zooming factor and t = (H ′ − H)/2 is
the crop location. Then do threshold operation to Sc:

Sτ (x) =

{
0, if Sc(x) < τ,

Sc(x), otherwise
(32)

Then apply Motion Blur to Sτ to get Sblur =
MotionBlur(Sτ , r, s, θ = −90◦). For input tensor X, con-
vert it to gray scale image and do augmentation:

G = GrayScale(X), G ∈ RB×1×H×W , (33)

G′ = max(X, 1.5 ·G+ 0.5) (34)
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Finally, mix up the augmented gray scale image and original
image and add snow layer Sblur:

Xmix = m ·X+ (1−m) ·G′ (35)

Y = clamp
(
Xmix + Sblur + Rotate(Sblur, 180

◦), 0, 1
)

(36)
For severity ranging from 1 to 5, the values of µ, σ, zoom,
τ , r, s and m are set to (0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3,
2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4, 0.9, 12, 8, 0.7), (0.55, 0.3,
4.5, 0.85, 12, 8, 0.65) and (0.55, 0.3, 2.5, 0.85, 12, 12, 0.55),
respectively.

A.11. Contrast

For each sample Xb in input tensor X, calculate the mean
value µc for each channel:

µc =
1

H ·W

H∑
i=1

W∑
j=1

Xb,c,i,j (37)

And Y is the result of stretching or shrinking the pixel value
based on the mean value:

Y = clamp((X− µ) · α+ µ, 0, 1) (38)

For severity ranging from 1 to 5, the value of µ is set to 0.4,
0.3, 0.2 0.1 and 0.05, respectively.

A.12. Brightness

We first introduce two algorithm rgb2hsv and hsv2rgb that
used for converting color space between RGB and HSV.
Then the output Y with brightness corruption can be ob-
tained by adding a perturbation to the V channel:

Xhsv = rgb2hsv(X) (39)

Xhsv[:, 2, :, :] = clamp(Xhsv[:, 2, :, :] + δ, 0, 1) (40)

Y = clamp(hsv2rgb(Xhsv), 0, 1) (41)

For severity ranging from 1 to 5, the value of δ is set to 0.1,
0.2, 0.3, 0.4 and 0.5, respectively.

A.13. JPEG Compression

We give an example algorithm to explain the process of
JPEG compression.

A.14. Pixelate

Given an input tensor X, the pixelate corruption are
achieved by reducing and enlarging X:

Xreduced = Interpolate(X, (s·H, s·W ),mode = ’bilinear’)
(42)

Algorithm 1 RGB to HSV Conversion
Require: R,G,B ∈ [0, 1] ▷ Input RGB values
Ensure: H ∈ [0, 360), S ∈ [0, 1], V ∈ [0, 1] ▷ Output

HSV values
1: Cmax ← max(R,G,B)
2: Cmin ← min(R,G,B)
3: ∆← Cmax − Cmin

4: if ∆ = 0 then
5: H ← 0
6: else
7: if Cmax = R then
8: H ← 60 · G−B

∆ mod 360
9: else if Cmax = G then

10: H ← 60 · B−R
∆ + 120

11: else
12: H ← 60 · R−G

∆ + 240
13: end if
14: end if
15: if Cmax = 0 then
16: S ← 0
17: else
18: S ← ∆

Cmax

19: end if
20: V ← Cmax return H,S, V

Algorithm 2 HSV to RGB Conversion
Require: H ∈ [0, 360), S ∈ [0, 1], V ∈ [0, 1] ▷ Input

HSV values
Ensure: R,G,B ∈ [0, 1] ▷ Output RGB values

1: C ← V · S
2: X ← C · (1− |(H/60) mod 2− 1|)
3: m← V − C
4: if 0 ≤ H < 60 then
5: (R′, G′, B′)← (C,X, 0)
6: else if 60 ≤ H < 120 then
7: (R′, G′, B′)← (X,C, 0)
8: else if 120 ≤ H < 180 then
9: (R′, G′, B′)← (0, C,X)

10: else if 180 ≤ H < 240 then
11: (R′, G′, B′)← (0, X,C)
12: else if 240 ≤ H < 300 then
13: (R′, G′, B′)← (X, 0, C)
14: else
15: (R′, G′, B′)← (C, 0, X)
16: end if
17: R← R′ +m
18: G← G′ +m
19: B ← B′ +m return R,G,B

Y = Interpolate(Xreduced, (H,W ),mode = ’nearest’)
(43)
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Algorithm 3 JPEG Compression Algorithm
Require: X: Input tensor
Ensure: C: Compressed JPEG data

1: Step 1: Convert to YCbCr (if RGB)
2: if X is in RGB format then
3: Convert X to YCbCr color space
4: end if
5: Step 2: Divide image into 8x8 blocks
6: Divide each channel of X into non-overlapping 8× 8

blocks
7: Step 3: Apply Discrete Cosine Transform (DCT)
8: for each 8× 8 block B do
9: Compute DCT coefficients D ← DCT(B)

10: end for
11: Step 4: Quantize DCT coefficients
12: for each 8× 8 block D do
13: Q← D/Qtable ▷ Divide by quantization table
14: Round Q to nearest integer
15: end for
16: Step 5: Encode the quantized coefficients
17: for each block Q do
18: Perform zigzag scan to convert Q to 1D array
19: Apply Run-Length Encoding (RLE) to the zigzag

array
20: Use Huffman coding to encode the RLE data
21: end for
22: Step 6: Combine encoded data
23: Y ← Combine encoded data for all blocks with JPEG

headers
24: return Y

where s is a scaling factor. For severity ranging from 1
to 5, the value of s is set to 0.6, 0.5, 0.4, 0.32 and 0.29,
respectively.

A.15. Elastic Transform

We provide an example algorithm to explain the process of
Elastic Transform. For severity ranging from 1 to 5, the
values of parameters c are set to (244 * 2, 244 * 0.7, 244 *
0.1), (244 * 2, 244 * 0.08, 244 * 0.2), (244 * 0.05, 244 *
0.01, 244 * 0.02), (244 * 0.07, 244 * 0.01, 244 * 0.02) and
(244 * 0.12, 244 * 0.01, 244 * 0.02), respectively.

B. Details of Validation Metrics
In our experiment, we employed two metrics to assess model
performance on corrupted images: accuracy and Corruption
Error (CE). Accuracy is defined as the proportion of true
positive samples in all of samples:

Accuracy =
TP

TP + FP + TN + FN
(44)

Algorithm 4 Elastic Transformation
Require: Input image X ∈ RB×C×H×W , parameters c =

[c0, c1, c2]
Ensure: Transformed image Y

1: Normalize the input image: Xnorm ← X/255
2: Set shape shape ← (B,C,H,W ) and size

shape size← (H,W )
3: Step 1: Random Affine Transformation
4: Compute center: ccenter ←

[
H
2 ,

W
2

]
5: Compute square size: csquare ← min(H,W )

3
6: Define reference points:

p1 ←

 ccenter + csquare
ccenter + [ccenter,x + csquare, ccenter,y − csquare]

ccenter − csquare


7: Add random perturbation: p2 ← p1 +

Uniform(−c2, c2)
8: Compute affine transform matrix: Maffine ←

getAffineTransform(p1,p2)
9: Apply affine transformation: Xaffine ←

warpAffine(Xnorm,Maffine)
10: Step 2: Generate Pixel Displacement Fields
11: Compute random fields:

∆x ← Gaussian(Uniform(−1, 1), c1) · c0

∆y ← Gaussian(Uniform(−1, 1), c1) · c0
12: Reshape displacement fields: ∆x,∆y ∈ RH×W×1

13: Step 3: Apply Coordinate Mapping
14: Generate original grid: (x, y, z) ←

meshgrid([0,W ), [0, H), [0, C))
15: Add displacements: x′ ← x+∆x, y′ ← y +∆y

16: Map coordinates using interpolation:

Xelastic ← mapCoordinates(Xaffine, (x
′, y′, z), order = 1)

17: Step 4: Normalize and Return
18: Clip values: Y ← clip(Xelastic, 0, 1) · 255
19: return Y

For each of our experiments, since the images belong to
the same category, so TN = FN = 0. We defined the
accuracy under corruption C and severity i as AccuracyCi

,
thus the Average Accuracy (Ave.Acc) can be calculated by:

Average Accuracy =

5∑
i=1

AccuracyCi

5
(45)

Corruption Error (CE) is proposed to comprehensively eval-
uate a classifier’s robustness to a given type of corruption.
The first evaluation step is to take a trained classifier f ,
which has not been trained on IMAGENET-C, and com-
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Original
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Figure 5. More visualization results of our robust texture.

pute the clean dataset top-1 error rate. Denote this error
rate Ef

clean. The second step is to test the classifier on each
corruption type c at each level of severity s (1 ≤ s ≤ 5).
This top-1 error is written Ef

s,c. Before aggregating the clas-
sifier’s performance across severities and corruption types,
error rates should be made more comparable since different
corruptions pose different levels of difficulty. We adjust for
the varying difficulties by dividing by the errors of target
classifier (when using VGG16 for testing, we use VGG16’s
errors). So Corruption Error is computed with the formula:

CEf
c =

( 5∑
s=1

Ef
s,c

)
/
( 5∑

s=1

Etarget
s,c

)
(46)

The mean CE (or mCE for short) can be calculated by aver-
aging the 15 Corruption Error values. The authors further
proposed a metric to indicate the amount that a classifier
declines on corrupted inputs, which named Relative Corrup-
tion Error:

Relative CEf
c = (

5∑
s=1

Ef
s,c − Ef

clean)/(

5∑
s=1

Etarget
s,c − Etarget

clean )

(47)
Averaging these 15 Relative Corruption Errors results in the
RelativemCE. This measures the relative robustness or
the performance degradation when encountering corruption.

C. More Visualization Results
We present additional visualization results to illustrate the
differences between the textures generated by our method
under varying δ boundaries and the original textures. The

corresponding results are shown in Fig 5. All results were
generated using ResNet-18 as the proxy model.
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