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Abstract

We address the computational challenges of solving parametric PDEs with non
parametrized geometric variations and non-reducible problems, such as those in-
volving shocks and discontinuities of variable positions. Traditional dimensionality
reduction methods like POD struggle with these scenarios due to slowly decaying
Kolmogorov widths. To overcome this, we propose a novel non-linear dimension-
ality reduction technique to reduce the required modes for representation. The
non-linear reduction is obtained through a POD after applying a transformation
on the fields, which we call optimal mappings, and is a solution to an optimiza-
tion problem in infinite dimension. The proposed learning framework combines
morphing techniques, non-linear dimensionality reduction, and Gaussian Process
Regression (GPR). The problem is reformulated on a reference geometry before
applying the dimensionality reduction. Our method learns both the optimal map-
ping, and the solution fields, using a series of GPR models, enabling efficient and
accurate modeling of complex parametric PDEs posed on varibale geometries that
share a common topology. The results obtained concur with current state-of-the-art
models. We mainly compare our method with the winning solution of the MLACFD
NeurIPS 2024 competition.

1 Introduction

1.1 Background

Many scientific and engineering challenges involve solving complex boundary value problems, often
formulated as parametric partial differential equations (PDEs). These problems require exploring
the influence of varying parameters such as material properties, boundary and initial conditions, or
geometric configurations. Traditional numerical methods like the finite element method and finite
difference methods, while accurate, are computationally expensive, particularly when repeated evalu-
ations are necessary across a large and high-dimensional parameter set. To address this computational
burden, techniques in model-order reduction and machine learning have been developed, offering
efficient approximations without compromising accuracy.

Model-order reduction techniques, such as the reduced-basis method [25| [14], construct low-
dimensional approximation vector spaces to represent the set of solutions of the parametric PDE,
enabling fast computation for new parameter values. These approaches typically involve an offline
phase, where high-fidelity models are used to generate a reduced basis, and an online phase, where
this basis is employed for efficient computations. However, when the physical domain varies with
the parameters, standard methods like Proper Orthogonal Decomposition (POD) face challenges
due to the need to reconcile solutions defined on different domains. This often requires morphing
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techniques to map variable domains to a common one, transforming the problem into a form suitable
for reduced-order modeling [21, 28]]. Linear reduced-order modeling techniques also face huge
difficulties when the solution set of interest has a slowly decaying Kolmogorov width. Such problems,
which we call herefafter non-reducible problems, are common for PDEs that involve shocks of
variable position, discontinuities, boundary layers an so on.

On the other hand, machine learning methods, particularly those relying on deep learning, have
shown promise in solving PDEs, learning solutions, and accelerating computations [[13}[19]. Ap-
proaches relying on graph neural networks (GNNs) [29] have been particularly effective in handling
unstructured meshes and varying geometric configurations. Despite their flexibility, these methods
require substantial computational resources and large training datasets, and they often lack robust
predictive uncertainty estimates.

1.2 Contribution

In this work, we propose a novel approach that integrates principles of morphing, non-linear dimen-
sionality reduction, and classical machine learning to address the challenges posed by parametric
PDEs with geometric variations for non-reducible problems. The main contribution is a novel algo-
rithm used to maximizes the energy in the first principal modes, which directly addresses the core
limitation of traditional dimensionality reduction techniques, and limits the number of modes needed
to approximate non-reducible problems in moderate dimension. Such approaches are commonly
called registration in the literature. Unlike most existing algorithms that aim at projecting the samples
on one single mode, our approach may involve an arbitrary number of modes » € N*. In addition,
another major advantage with respect to similar methods is that the procedure is done automatically
as we do use any feature tracking and detection method.

1.3 Related works

The challenges mentioned in this work have been extensively studied in the literature. Morphing
techniques have been used for various applications in reduced order modeling to recast the problem
on a reference domain [24} (1} [35]. Numerous approaches were also proposed to deal with non-
reducible problems by using non-linear dimensionality reduction such as registration [30, 32],
feature tracking [22]], optimal transport [9], neural networks [16} [12] 3| [5]], and so on. Machine
learning approaches leveraging neural networks have also demonstrated remarkable success in
solving numerical simulations, particularly in capturing complex patterns and dynamics. Methods
such as the Fourier Neural Operator (FNO) [[18] and its extension, Geo-FNO [17]], efficiently learn
mappings between function spaces by leveraging Fourier transforms for high-dimensional problems.
Physics-Informed Neural Networks (PINNs) [26] embed physical laws directly into the loss function,
enabling solutions that adhere to governing equations. Deep Operator Networks (DeepONets) [20]]
excel in learning operators with small data requirements, offering flexibility in various applications.
Mesh Graph Networks (MGNs) [23] use graph-based representations to model simulations on
irregular domains, preserving geometric and topological properties.

2 Preliminaries and notations

Letn € N*and 4, ...,Q, C R?to be a family of n distinct domains that share a common topology,
with d = 2, 3. We suppose the parametrization of the domains is unknown and that forall 1 < i < n,
each domain €2, is equipped with a (non-geometrical) parameter u; € P where P C RP? is a set of
parameter values (think of p; as being some material parameter value for instance). In addition, let
u; : £2; — R be the solution of a parametrized partial differential equation for the parameter value p;
defined on €2; (think about a temperature field for instance). We assume in the following that for all
1<1<n,u; € LQ(Qi). We assume that for all 1 < 7 < n a finite element mesh M; is chosen so
that M can be considered as an accurate enough approximation of the boundary of the domain
0%);. We also assume the field u; can be accurately approximated by its finite element interpolation
associated to the mesh M;. We fix a reference domain, denoted by €29, equipped with a mesh denoted
by My, that shares the same topology as the other domains. For all 0 < ¢ < n, M; be the space of
bijective W1:° mappings from Qg onto €;, so that for all ¥ € M;, () = ;. We also introduce
M:=M; x My x --- xM,,.
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For any family of functions H = (h;)1<i<n € L*(Q0)", we define the correlation matrix application
Cy of H as the map
Cy: My — St
® — Op[®] == (Cﬂ,ij[q)])1gi,j§n7 (H

where S;F is the set of symmetric non-negative semi-definite matrices of dimension n X n, and for all
Q= (¢;)1<i<n € M andforall 1 <i,j <n,

Cy,ij [CI)] = <hz [¢] ¢i’ hj o ¢j>L2(Qo) = /Q hl o (ﬁz(l‘)hj o ¢j (x)dx

We denote by A\ [®] > AJ[®] > --- > A*[®] > 0 the eigenvalues of Oy, [®]. We also denote by
(CHH®@], ¢3¢ [®],- -~ ,¢*[®]) € R™ an orthonormal family of corresponding eigenvectors. Finally,
given a positive integer r € N\ {0}, we define the functional

JHJ- : Mg —-R

> xa)

" Tr(Cufal) ”

O Jy [P :
We now introduce the terminology of three different configurations that will be used throughout the
paper.

1. First, we refer to the physical configuration as the collection of pairs {(£2;, u;) }i<i<n.

2. Given a reference domain Qy and ®&° := ($F*)1<i<,, € M, we refer to the reference
configuration as the collection of pairs { (2o, u; 0 ¢§%)}1§i§n. In this configuration, all the
fields ut®f := wu; 0 #5°° belong to L%(Qp), and classical dimensionality reduction techniques
such as PCA can be applied on the family U/ := (u!*f);<;<, € L*(Q)".

7
3. Given the reference configuration and some r € N\ {0}, we refer to the r-optimal configura-
tion as the collection of pairs {(Q0, u}* 0 ") }1.<i<n, Where BP' := (¢77)1<i<n € My
is a solution to the following maximization problem:

find P € arg @rrel%} Ju (D] 3)
The maximization problem (3) is considered so that the family (u‘;pt)lgign = (u*fo ¢$Et)

can be accurately approximated by elements of a r-dimensional vector space.

3 Methodology

3.1 Training phase

In the training phase, we suppose that we have access to the dataset of triplets {(£2;, tti, %i) F1<i<n-
The domain €2; (or its mesh) and the parameter y; are the inputs to the physical solver, and the field
u; s its output. We chose a reference domain (which can be one from the dataset) that shares the
same topology.

3.1.1 Pretreatment
We perform these pretreatment steps in the training phase.

1. We pass from the physical configuration to the reference configuration @J) by computing
forall 1 < i < n, a mapping ¢$°° € M;. We apply POD on the family (¢7°° — Id)i<i<,
to obtain the POD modes {¢#°°}1<;<,, and the generalized coordinates {a'};<;<, where

ol = (o/» € R?, such that

J)1§j§s
V1< <s, o5 = (@ — Id.C5") 20y,

and s is the number of retained modes for the geometrical mappings. Each domain €Q; is
defined now by the vector o.
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2. We pass from the reference configuration to the optimal configuration (3)) by solving problem
Once we obtain the functions (qb;’pt —Id)i<i<n. we apply POD to obtain the POD modes
{C?pt}lgign and the generalized coordinates {3'}1<;<, where 3¢ = (,B;) <<t € R,
such that

V1<j<t, B = (¢ —Id,{5™) 12 (a0
and ¢ is the number of retained modes for the optimal mappings.

3. Finally, after evaluating {ufpt}lgign, we apply POD to obtain the POD modes {; }1<i<n

and the generalized coordinates {'}1<;<, where v = (7;) 1<j<r € R", such that

VI<j<r 7= <¢i,u§pt>L2(Qo)7

After applying these dimensionality reductions, we obtain the following three approximations:

s t T
¢ LA+ i o R Td+ Y BT and ul x Y a0
j=1

=1 j=1

Notice that the passing from the physical configuration to the reference configuration is decoupled
and purely geometrical, that is it does not depends on the fields {u; }1<i<,. For example, we show in
Figure two forms of airfoils. ¢*°° will transform one airfoil onto the other. On the other hand, the
transition to the optimal configuration is coupled between all the samples in the training dataset.

Figure 1: Two airfoils superimposed.

3.1.2 Training

After performing the dimensionality reduction step, we train two Gaussian processes regression
models [33] as follows.

1. The first model is to learn the optimal mapping that transforms the reference configuration
to the optimal configuration. This model takes as input the physical parameter p; and
the geometrical mapping POD coefficient «;, and as output the optimal mapping POD
coefficient /3;. We denote this model by R : RP x R? — R?.

2. The second model is to learn the field in the optimal configuration. This model takes as
input the physical parameter p; and the geometrical mapping POD coefficient «;, and as
output the field in the optimal configuration POD coefficient ;. We denote this model by
O:RP xR? — R".

3.2 Inference phase

In the inference phase, we are given a new unseen geometry () in the inference phase, with a physical
parameter zi. The goal is to predict the field of interest u, solution to the physical simulation. We
proceed in the following manner.

. . . ~geo = .
1. First, we compute the geometrical mapping ¢ that maps {2y onto €, then we project

~geo . co . o
¢ — Id on the POD basis {¢5°°}1<i<,, to obtain the coefficient a.
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2. We use the pair (3, i) o infer [ = R(@,i) and § = O(@, ). Then we have ¢ :=
Id+ ZBJ ¢ and TP ; Z%%
Jj=1

. . . ~. . ~ ~opt ~opt -1 ~geo -1
3. Finally, the quantity of interest u is obtained as u := u°?* o (qb ) o (qﬁ ) .

4 Geometrical mapping

Numerous techniques exists in the literature to construct a mapping between domains [2} 4} 31]]. In
this work, we use RBF morphing [10] to construct the mapping from the reference domain {2 to
each target domain €2;. When using this technique, we suppose that the deformation on a subset of
points in g, called the control points, is known. These points are usually on the boundary of €.
Then, we can leverage the knowledge of ¢;(9€2) = 02, to compute the deformation in the bulk of
the domain ¢,(€29). In this work, we suppose that the geometries are not parametrized and ¢, (0€)
is not given. Thus, we start by computing ¢, (9€), for all 1 < ¢ < n. When computing ¢,(9€) is
not feasible, methods proposed in [11} [15] provides solutions to automatically finds a mapping from
the reference onto the target domain.

S Optimal mapping

The second major building block we introduce is the optimal mapping algorithm to compute $°Pt =
(") 1<i<, that maximize the energy in the first 7 modes.

In order to pass from the reference configuration to the optimal configuration, we solve (G):
find ®* € arg max Jy . [P].
& peny [P
The optimization problem presented here is non-convex with possibly infinitely many solutions. We

present here briefly the optimization strategy employed to solve this problem. Refer to the appendixes
for a detailed discussion.

5.1 Gradient algorithm in infinite dimension

We can show that the differential of Jy, , with respect to ® at a point ¥ has the following expression

(see appendix [A):
Dl Z / |- apyd.
Q0

with

n s 2Ck1[ ]CIZ;{[ ] 2>\%{[(1)] ref = ref
;;( Tr C’U[J]) _Tr(cu[q)])zéij u;™ o @, Vu;® o ¢ 4)

A standard gradient algorithm in infinite dimension consists of (i) choosing an appropriate inner
product, denoted here by a, (ii) computing the Riesz representation of each f;[®] with respect to a,

which will be denoted by w;[®] and finally (i) updating, at each iteration m, ¢\™ by

with € > 0 in the gradient step. The 51mplest example of a is the Ly (o) inner product which gives
the following iterative scheme:

¢ = o™+ ef[0(m)]. ©)
However, this may suffer from one of the following problems:

. ¢§m+1) might not be bijective.

« ¢\ might not map Q onto itself.

« If the function ®(™) is far from a maximum, the algorithm may fail to converge properly.

We address these issues in the following subsections.
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5.2 Bijectivity

To address bijectivity, we consider the following optimization statement:
n
find ®* € arg @Irel% Iy (@] == Jy[®] — 1 ;E[Q], (N

where F is an energy term to enforce bijectivity and ¢; > 0 is a penalization parameter. Ideally, the
term E should diverge to +-oo if the mapping ¢; becomes non-bijective. In this case, the objective
function I diverges to —oo. In this work, we use linear elastic energy for the term F, (we note that it
does not diverges to +oco for non-bijective mappings, however, it gives acceptable results). Finally,
we solve the problem [7] using the continuation method, which consists of iteratively decrease the
parameter ¢; in order to obtain a solution to problem 3] We give more details about the continuation
method and the term F in appendix

5.3 Mapping condition

A necessary condition to map €2 onto itself is that the boundary of €2 is mapped also onto itself. If
09 consists only of straight lines (faces in 3d), we impose that points on the boundary deform only
in the tangential direction, so that they stay on the boundary. When 0€2 presents also curves, we
can fix points that lies on the curved part of 9€2y. Thus, we partition the boundary of Qg to 9 :=
908 |J 025 with 9 is the union of all the straight lines (faces in 3d) of 9 and 92 is the curved
part of 9. We define the space H}: () := {u € H'(Q) : w-m = 00n 905, u = 0 on 905}

and the inner product a on H: () as

(u,v) — a(u,v) = / o(u) : e(v)dx, 8)

Qo
with ¢ and € are respectively the classical elasticity stress and strain tensors (we fix the Young

modulus £ = 1 and Poisson ratio ¢ = 0.3 in this work). We compute, for all 1 < ¢ < n, and for
(m)

each iteration m, the Riesz representation u, ~ of f; with respect to this inner product, which is the

unique solution to

Yo € HL(Q0;RY), a(ugm),v) :/ £,[0™)|vdx, )
Qo
to obtain the iterative scheme:

¢§m+1) _ d)gm) T eu; [(I)(m)] ) (10)
We can also obtain a similar expression when solving problem (7)) and using linear elastic energy (see
more in appendix [C)):

¢§7n+1) _ ¢Em) +e (ui[@(m)] — (d),(m) _ Id)) . (11)

By using the above procedure, we guarantee that, if ¢§m) + eu; [Q(m)] is bijective, then necessary
we have that the points on 92 stay on 9, thus, preserving the boundary of £25. We note however
that this is suboptimal as we do not allow 0€2§ to deform in this case. A full treatment of curved
boundaries is the subject of future work.

5.4 Uncorrelated samples

One major reason for the poor convergence of the gradient algorithm is when the samples are heavily
not correlated. This happens when the non-zero values of 1} are compactly supported in §2y. More

precisely, if, for some 1 < j < n, supp(u} o ¢;) supp(Vul®f o ¢;) = 0, then the contribution
of u;'-ef ) ¢j§u§'ef o ¢, in f; is null. To this end, we transform the fields {u; }1<;<y, to the family of
fields 24 (cy) := {@; }1<i<n, Where each is defined as the solution to

—AU; + ety = cauy, (12)
where A is the Laplacian operator and ¢z > 0. This equation has a unique solution. The transformed
fields will diffuse the value of u; throughout the domain {2 for small values gf ¢ (see Figures [3{4).

On the other hand, @; converges to u; as ¢y goes to +0o. We use the fields I/ (c2) in order to solve
B)-(7). The value of ¢5 is also changed throughout the iterations using the continuation method.
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6 Numerical example

In this section, we illustrate the method on two example of non-reducible problems.

6.1 Example 1: advection-reaction equation

This example is taken from [30], and it illustrates a non-reducible problem. Here, we show the effect
of the optimal mapping algorithm on a fixed geometry. Let the following advection-reaction equation:

V- (cpup) + opu, = f, inQ=(0,1)2,
Uy =UD,y only, , :=={z€d:c, -n <0},

where n denotes the outward normal to 052, and

cos( 1 P
w= [sin(m))} o= 1 pee™ T fy =14 s,

1
up,, = 4arctan (,ug <x2 — 5)) (xg — x%),
T
fo= [p, iz, pis) € P o= [_E’ E] % [0.3,0.7] x [60,100].

We consider n = 250 samples. In FigurelZl, we plot u,, for three different values of the parameter
before and after computing the optimal mappings that maximize Ji; .., for = 1. The purpose of
this first example is to demonstrate the effect of the optimal mapping algorithm on the fields. We
can clearly see how they are aligned and can be approximated using a low dimensional space. In
this scenario, the regression task becomes much easier. The optimal mappings algorithm can be

Figure 2: Top: three samples before the optimization. Bottom: three samples after the optimization.

seen as a multi-modal generalization to the registration methods, where the case » = 1 gives similar
results to aligning all the samples on one mode. However, the advantage of our method is that we can
go beyond a single mode. Furthermore, the alignment is automatic and does not any of the feature
detection and tracking methods.

6.2 MLA4CFD NeurlIPS 2024 competition

In the second example, we apply the method to the airfoil design case considered in the MLACFD
NeurlPS 2024 competition [34]], and we compare it with the winning solution. The dataset adopted
for the competition is the AirfRANS dataset from [6]. Each sample have two scaler inputs, the
inlet velocity and the angle of attack, and three output fields, the velocity, pressure and the turbulent
viscosity. The dataset is composed of three splits.

1. Training set: composed of 103 samples.

2. Testing set: composed of 200 samples.
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3. OOD testing set: composed of 496 samples, where the Reynold number considered for
samples in this split is taken out of distribution.

In this work, we focus on the turbulent viscosity field as it represents a non-reducible field. We
illustrate this field in Figure[3]

Figure 3: The turbulent viscosity field illustrated for two of the samples.

--

Figure 4: The diffused field u forcy = 1.

6.3 NeurlIPS solution: MMGP + wake line prediction

The winning solution to the ML4ACFD competition [7] relies on the application of the MMGP
method([8]] , with the addition of aligning the wake line behind the airfoil for all the samples at same
position. The latter step being necessary to obtain accurate prediction of the turbulent viscosity.
While this correction step gives accurate results, it remains case-dependent and needs to be done
manually. Moreover, it suffers from the same problem as any other registration technique, which is
the restriction to one mode.

6.4 O-MMGP: optimal mesh morphing Gaussian process

The method we present in this paper is founded on the MMGP method [8]]. The main differences
being:

1. First, in MMGP, the mapping ¢$°° is computed from each geometry onto the reference
domain €. In this case, the input to the GP model is the POD coefficients of the inverse
mapping (¢¢°°) ~1. Thus, evaluating (¢$°°)~! would introduce extra computations to the
procedure. In addition, when using RBF morphing, such as in this work, computing ¢

from the same geometry proves to be much efficient numerically, as the RBF interpolation

matrix K can be assembled and factorized once and for all (see appendix [E] for the definition

of K).

2. Secondly, the MMGP mappings are not field-optimized. This is equivalent to omitting the
transition to the optimal configuration. So, when it comes to non-reducible problems, even
if a large number of modes are retained, the error introduced by POD truncation and the
discretization error would remain large to obtain reliable predictions for new samples.

We run the optimal mapping algorithm in order to maximize the compression of the turbulent
viscosity field. We choose the reference geometry €2 to be one of the samples in the training set. We
then proceed to compute ¢$°° using RBF morphing. Once computed, we solve problem 7] for the

family u (c2). We choose r := 1, c§°) := 0.1 and céo) := 1. The last two parameters are changed
throughout the iterations as mentioned in appendix [C} In Figure[5a we show that the eigenvalues of

the correlation matrix of (qS?pt)lSign decay rapidly, proving numerically that this family is reducible,
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(b) Decay of the eigenvalues of the correlation
matrix for the turbulent viscosity fields.

(a) Decay of the eigenvalues of the correlation
matrix of the family (¢9"")1<i<n -

Figure 5: Decay of the eigenvalues.

and justifying the regression on the optimal mapping POD coordinates. The cost of the optimal
mapping computation is discussed is appendix D]

After computing the optimal mappings, we train two Gaussian process regression models, one to

learn the optimal mapping ¢, and the other to learn the field @, which is the turbulent viscosity in this
case.

In order to show the efficiency of the method, we compare the results of the following three tests:

1. First, we apply the method without solving the optimal mappings problem, similar to the
original MMGP method. Thus, we predict the turbulent viscosity field in the reference
configuration.

2. Second, we run the winning solution of the NeurIPS 2024 challenge, aligning the wake line
behind the airfoil manually.

3. Finally, we apply the full O-MMGP procedure described in this paper.

In table [I] we report the mean square error (MSE) of the three tests on the turbulent viscosity
field, for the testing and OOD splits. While the original MMGP performs poorly for this field,
the O-MMGP method produces very accurate predictions, slightly surpassing the NeurIPS 2024
competition solution. The major advantage of the method is that the alignment of the snapshot was
done automatically, without using the specificity of the case. In Figure [5b} we report the decay of the

MMGP | NeurIPS solution | O-MMGP
Test 0.143 0.025 0.024
OOD | 0.171 0.048 0.046

Table 1: MSE errors for the different tests.

eigenvalues of the correlation matrix for the three tests. For the MMGP solution, no aligning of the
solution was performed, which explains the slow decay of the eigenvalues for this case. As expected,
the eigenvalues decays the most rapidly when using the optimal mappings algorithm.

7 Conclusion

In this article, we have presented a new algorithm that aims to maximize the energy in the first
r principal modes of a family of functions. The novelty of the algorithm lies in the fact that it
automatically aligns the functions on an arbitrary number of modes, unlike other methods in the
literature which may require feature tracking of the solution or assume that the family of functions
can be compressed onto a single mode. We have shown how the proposed method can be integrated
into the MMGP workflow to learn and predict the solutions of PDEs with geometric variabilities.
The quality of the prediction was found to be on a par with state-of-the-art methods. Current work
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aims to solve the problem in the general case of curved boundaries and provide a more thorough
mathematical analysis of the method, as well as applying the method in the presence of multiple
shocks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the problem setting and challenges. In
addition, we have a contribution subsection in the introduction that summarize the method.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are mentioned in sections [5.2][5.3] the common topology
assumption multiple times in the paper. Some appendices discuss the computational cost
and the robustness of the method with respect to some parameters.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We give a rigorous description of the optimization problem, mainly for the
gradient algorithm in the infinite dimension settings and the use of continuation method.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we describe the equations to reproduce the first dataset, and reference the
second dataset in the references. The algorithm is described in all the necessary details,
including a derivation of the gradient. We also proved values for the multiple parameters
used.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: the datasets are reproducible/public. However, the code for the main method is
not readily available to be published at the moment.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper presents numerical values to all the required parameters to solve the
optimization problem.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper shows the effect of the optimal mappings presented on the decay of
the eigenvalues of the correlation matrix, which is the core element of the paper. In addition,
we provide an error comparison with respect to other methods.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This is discussed in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research respects every aspect of the NeurIPS code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper discuss a generic algorithm to solve partial differential equations
using data with no specific applications in consideration.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper mention the dataset used that was not generated by the authors.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new asset.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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699 * We recognize that the procedures for this may vary significantly between institutions

700 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
701 guidelines for their institution.

702 * For initial submissions, do not include any information that would break anonymity (if
703 applicable), such as the institution conducting the review.

704 16. Declaration of LLM usage

705 Question: Does the paper describe the usage of LLMs if it is an important, original, or
706 non-standard component of the core methods in this research? Note that if the LLM is used
707 only for writing, editing, or formatting purposes and does not impact the core methodology,
708 scientific rigorousness, or originality of the research, declaration is not required.

709 Answer: [NA]

710 Justification: The development of the methods in the paper did not make use of any LLM.
711 Guidelines:

712 * The answer NA means that the core method development in this research does not
713 involve LLMs as any important, original, or non-standard components.

714 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
715 for what should or should not be described.
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A Differential of J;, ,

Let ® = (¢;)1<i<n € M, ¥ = (¢,)1<i<n a "small" variation around ® and € € R,e << 1. To
evaluate the differential of J, , at a point ®, we evaluate Jy, ,» at ® := ® 4 ¢¥ and calculate:

D Jy - [®][¥] = lim Tt (P 4 €¥) = Jp,r (P)

e—0 €

(13)
We have:
Vi, hio(¢; +ep;)(x) = hi(¢;(z) + ep;(x))
~ hi(¢;(x)) + eVhi(d;(x)) - b, ()

where we neglect higher order terms. Next we evaluate :
C,ij [P + €V] = (h; o (¢; + €vp;), hj o (d; + €v;)) L2(q)
= [ hio (@t dlalhy o (¢ + ) o)
0
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with DCy 5] / hiog,(x)Vhj(¢;(x))-4;(x)da+ . Vhi(¢:(x)) - (x)hjop,;(x)dz

and DCy[®][¥ ] (DC.3 (@)W1 j<n-

Next we evaluate DA\ [®][¥]. We have Vi :
¢ [@]])* =1
Now taking the differential on both sides, we get
(D¢ [@[w], ¢T[@]) =0
Using the fact that Oy, [®]¢/*[®] = AJ¥[®]¢7¢[®], we get again by taking the differential on both sides
DCy[@][W]¢]'[@] + Cr[@] D¢ [@][W] = DT [@][¥]¢][@] + A [@] D [@][ ]
We multiply the last equation by (*[®] to get
(T [@)T DO [R][P]C[@] + 0 = DAT[@][¥] + 0

Thus we have finally
M@ + 0] = (@] + (¢J[@])" DOw[@][ V][] V1 <i<n (15)
Taking the sum over the first r eigenvalues, we obtain:
S ONHD 4 eW] = > A [W] + €Tr((Z7)" DCy[®][W]Z7) (16)
j=1 =
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with Z2 = (¢F,¢P,--- ,¢?)T. Now we can evaluate (T3) to obtain:

- H
Tr((22)7 DCy O] W]Z2) ;A’“ .
Tr(Cu[®]) Tr(Cy[®])?

D.Jyy [®][¥] = x Tr(DCy[®][¥])  (17)

which can be written explicitly as

T

Do O[] = e 3030 S GBI (@) [ 1y 6 @)Fh(@i(@) - (o)

i=1 j=1 k=1
2y AHa]
k=1
Tr(Cul2])? Z/ hy o ¢ (x)Vhi((2)) - () da
=>_ D@l

with

T H, iy 2 Y )
DA = 3 (o) ~ T ne) fy o #6004

- 2005 (@G (@]

Tr(Cy[®)) Q0 hj o ¢j (l‘)Vhl(qSl(x)) ) "pl(m)dx

k=
>
IS k=l
i v (2@“&[@]%[@] 277 @]
1

Tr(Cx[@]) Tr(OH[q)])?é”) /Q hy o ¢,(2)Vhi(b,(x) -, (x)d,

(18)

and §;; is the Kronecker delta. For simplicity, we note the term

2 H .
ZZ ( illirZ quk][) ] TrQ()c\iCH[g])ﬂZJ) hj o @;(x)Vhi(¢;(x)),  (19)

j=1k=1

F[®] := (f,[®],--- ,£,[®]), and we write
DTy o[ ® Z/ﬂ - pda.

B Differential of 5,

We define the objective function I, , on M as
IHV[ ] _']HT _Cle

As mentioned in section[5] the energy term used in this work in the linear elastic energy defined as

Blp) = ja(9, ~ Id. ¢, ~ Id),

where we recall the definition of @ in (). We can easily show that

DE[¢;][4h] = a(¢; — Id, ).
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Using the linearity of the differential, we obtain the differential of Iy, ,. as

DIy, [9][¥] = DJ[®|[¥] — ¢ ) DE[¢;][3;]
i=1

/Q £[] - ,dz — 1 > DE[o][,]

- Z /Q £;[®] - p;dx — ClDE[@H'%])
=) DIL[®][4,]

In order to obtain equation (IT]), we compute the Riesz representation of DI;[®], denoted as @, with
respect to the inner product a, the unique solution to

(s, ) = / 810] - pydo — cra(d; — Id, ),

for all test function . Since we also have w; as the Riesz representation of D.J;[®]
(a(u;, ¥) = DJ;[®][¢)]), we obtain

a(ﬁiyqvb) = a(ui7¢) - Cla(d)i - Id7¢)

which is true for all test function ). Thus, by the linearity of a, we obtain u; = u; — ¢1(¢p; — Id),
and hence equation (LT)).

C Continuation method

We give here a quick description on the continuation methods. Readers can refer to [} [27] and
references within for more details.

Continuation methods are a variety of methods used to solve equations of the type
G(x)=0

where G is a non-linear function, and z is the unknown. Continuation methods rely on solving a
succession of problems of the form

H(z,\)=0
where H is another non-linear function and H (x, \*) = G(x) for some \*. X is called the continua-
tion parameter. In the simplest form of a continuation method, we start by choosing a set a values
{9 AL A%} for \. We then solve H (2%, \!) = 0, and initialize H (2T, \¥*+1) = 0 with 2.

C.1 Continuation for c;
In order to solve equation (7)), we proceed by using the continuation method as follows:

1. We start by solving equation the optimization problem, using the gradient algorithm, for
c1 = Y, where ¢ should be sufficiently large in order to converge properly. This will
produce the function ®°,

k-1

2. Ateach iteration k, we set ¢} := ClT, and we resolve the problem for ®* by initializing

(I)(O),lc = k-1

3. We iterate over k as long as there are no elements of the morphed meshes are inverted.

We give a few comments about the above procedure. First, we note that there are two loops for the
algorithm: the outer loop over k that updates c;, and the inner loop that solves the non-linear equation
using the gradient algorithm. Second, ideally we want to solve (7)) for ¢; = 0. If, while iterating over
the outer loop, c¥ gets sufficiently small, we can set c’f“ = 0. Finally, we note that full convergence

for intermediate results of ®* is generally not necessary.
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C.2 Continuation for co

Applying continuation with two or more parameters proves to be more complicated for the case of
one parameter. To this end, we propose in this paper to alternate changing the values of the two
parameters c; and cs. We proceed in the same manner as above, expect that:

2k—1

1. Atiteration 2k, we set c¥ := “o—

2. We start with a small value for ¢3. At iteration 2k + 1, we set 2 := 10 x ¢3*.

C.3 Initialization and scheduling strategy

In our numerical examples, we find that the method is not sensitive for the initial choices for both
parameters as expected. In fact, choosing a large value for ¢; would force the mapping to be close to
the identity map. In this case, the mesh would not deform by much and the algorithm would converge
quickly, and in return we change the value of ¢;. On the other hand, choosing a small value of ¢y
would have a similar effect in terms of convergence. A small value would diffuse very much the
values of the field in the domain, and they approach a constant field allowing to converge rapidly and
to change the values of ¢, in return.

The scheduling strategy used to change to values of ¢; and c is a simple heuristic that we observed
to work well with the tests provided. Other strategies would be to change both values at the same
time, which also worked well for the same datasets. However, we do mention that other continuation
methods exists when dealing with more than one parameter as in the references provide. These
methods are developed for non linear problems in finite dimension and could be potentially harder to
implement in functional settings as in this work.

D Computational cost of the optimal mapping

The training phase of O-MMGP consists of i) computing ¢?°°, ii) computing ¢¢**, iii) performing
POD and iv) training of the gaussian processes to learn ¢°?* and u°P*. With respect to MMGP, this
would add step iii, and one GP training (for ¢°F %). For the AirfRANS dataset,steps i, iii, and iv take
about 40 seconds. Step ii consists also of multiples steps (remeshing the reference mesh to tackle
computational bottlenecks (see below), the optimization process, computing @(«) and Vu(a) ...). It
takes about 35 minutes (we do mention however that some of these steps could be implemented in
parallel which would greatly decrease the optimal mappings computational time).

Inference time: the inference takes about 81 seconds for 696 samples (200 test and 496 OOD). Both
MMGP and NeurIPS 2024 solutions are faster to train (no optimization problem in offline), however
they are both more expensive than O-MMGP in online. All the simulations are performed using
128 CPU cores and no GPU. In comparison, the full order solver takes about 25 min for each full
simulation.

Acceleration strategies

Solving the optimal mappings optimization problem requires evaluating F; [®] (thus u; and its gradi-
ent) at the integration points of the (deformed) reference mesh, the assembly of the stiffness matrix
(once and for all for all the iterations), and solving the linear systems for the Riesz representation.
Potential computational bottlenecks come from having a very fine reference mesh, which increases
the degrees of freedom and the number of integration points. In this paper, we used an acceleration
strategy consisting of using a coarse reference mesh to compute the optimal mappings, then the
mappings are evaluated on the fine mesh using interpolation. This greatly decrease optimization
time while giving accurate results. To further accelerate computation, when needed, other techniques
can be used like reduced quadrature formulae or randomized linear algebra. However, this was not
needed for the provided examples.

22



800

801
802

803

805
806

807

808
809
810

811
812
813
814

E RBF morphing

In radial basis function (RBF) interpolation, we aim to approximate a scalar-valued function g(z)
using a linear combination of radial basis functions as follows:

g(@) = 3 as&(llz — i), (20)
=1

where a; € R and £ is a radial basis function that depends only on the Euclidean distance between x
and a control point z;. The control points {z; | i = 1,...,n.} are specific locations where the exact
values of g(x), denoted g;, are known. To determine the coefficients a;, we enforce the interpolation
condition at all control points, yielding the system:

ne
Yoaillle; —zil)=g;, j=1-...n. 1)
i=1
This can be expressed in matrix form as:
Ka =g, (22)
where K is an n. x n.. interpolation matrix with entries K;; = &(||z; — 7)), @ = [a1, ..., a,.]T is
the vector of coefficients, and g = [g1, . .., gn,]” is the vector of known values. Solving this linear

system yields the coefficients a;, which can then be used to compute g(x) at any point .

In the context of radial basis function-based mesh morphing, RBF interpolation is applied separately
to each component of the morphing function ¢(z) = (¢1(x), ¢2(z), ¢3(z)) in 3D (or similarly in
2D). The control points are usually chosen as boundary points. The interpolated morphing function is
then used to smoothly deform the interior of the mesh according to the control point displacements.
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