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Abstract

We address the computational challenges of solving parametric PDEs with non1

parametrized geometric variations and non-reducible problems, such as those in-2

volving shocks and discontinuities of variable positions. Traditional dimensionality3

reduction methods like POD struggle with these scenarios due to slowly decaying4

Kolmogorov widths. To overcome this, we propose a novel non-linear dimension-5

ality reduction technique to reduce the required modes for representation. The6

non-linear reduction is obtained through a POD after applying a transformation7

on the fields, which we call optimal mappings, and is a solution to an optimiza-8

tion problem in infinite dimension. The proposed learning framework combines9

morphing techniques, non-linear dimensionality reduction, and Gaussian Process10

Regression (GPR). The problem is reformulated on a reference geometry before11

applying the dimensionality reduction. Our method learns both the optimal map-12

ping, and the solution fields, using a series of GPR models, enabling efficient and13

accurate modeling of complex parametric PDEs posed on varibale geometries that14

share a common topology. The results obtained concur with current state-of-the-art15

models. We mainly compare our method with the winning solution of the ML4CFD16

NeurIPS 2024 competition.17

1 Introduction18

1.1 Background19

Many scientific and engineering challenges involve solving complex boundary value problems, often20

formulated as parametric partial differential equations (PDEs). These problems require exploring21

the influence of varying parameters such as material properties, boundary and initial conditions, or22

geometric configurations. Traditional numerical methods like the finite element method and finite23

difference methods, while accurate, are computationally expensive, particularly when repeated evalu-24

ations are necessary across a large and high-dimensional parameter set. To address this computational25

burden, techniques in model-order reduction and machine learning have been developed, offering26

efficient approximations without compromising accuracy.27

Model-order reduction techniques, such as the reduced-basis method [25, 14], construct low-28

dimensional approximation vector spaces to represent the set of solutions of the parametric PDE,29

enabling fast computation for new parameter values. These approaches typically involve an offline30

phase, where high-fidelity models are used to generate a reduced basis, and an online phase, where31

this basis is employed for efficient computations. However, when the physical domain varies with32

the parameters, standard methods like Proper Orthogonal Decomposition (POD) face challenges33

due to the need to reconcile solutions defined on different domains. This often requires morphing34
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techniques to map variable domains to a common one, transforming the problem into a form suitable35

for reduced-order modeling [21, 28]. Linear reduced-order modeling techniques also face huge36

difficulties when the solution set of interest has a slowly decaying Kolmogorov width. Such problems,37

which we call herefafter non-reducible problems, are common for PDEs that involve shocks of38

variable position, discontinuities, boundary layers an so on.39

On the other hand, machine learning methods, particularly those relying on deep learning, have40

shown promise in solving PDEs, learning solutions, and accelerating computations [13, 19]. Ap-41

proaches relying on graph neural networks (GNNs) [29] have been particularly effective in handling42

unstructured meshes and varying geometric configurations. Despite their flexibility, these methods43

require substantial computational resources and large training datasets, and they often lack robust44

predictive uncertainty estimates.45

1.2 Contribution46

In this work, we propose a novel approach that integrates principles of morphing, non-linear dimen-47

sionality reduction, and classical machine learning to address the challenges posed by parametric48

PDEs with geometric variations for non-reducible problems. The main contribution is a novel algo-49

rithm used to maximizes the energy in the first principal modes, which directly addresses the core50

limitation of traditional dimensionality reduction techniques, and limits the number of modes needed51

to approximate non-reducible problems in moderate dimension. Such approaches are commonly52

called registration in the literature. Unlike most existing algorithms that aim at projecting the samples53

on one single mode, our approach may involve an arbitrary number of modes r ∈ N∗. In addition,54

another major advantage with respect to similar methods is that the procedure is done automatically55

as we do use any feature tracking and detection method.56

1.3 Related works57

The challenges mentioned in this work have been extensively studied in the literature. Morphing58

techniques have been used for various applications in reduced order modeling to recast the problem59

on a reference domain [24, 1, 35]. Numerous approaches were also proposed to deal with non-60

reducible problems by using non-linear dimensionality reduction such as registration [30, 32],61

feature tracking [22], optimal transport [9], neural networks [16, 12, 3, 5], and so on. Machine62

learning approaches leveraging neural networks have also demonstrated remarkable success in63

solving numerical simulations, particularly in capturing complex patterns and dynamics. Methods64

such as the Fourier Neural Operator (FNO) [18] and its extension, Geo-FNO [17], efficiently learn65

mappings between function spaces by leveraging Fourier transforms for high-dimensional problems.66

Physics-Informed Neural Networks (PINNs) [26] embed physical laws directly into the loss function,67

enabling solutions that adhere to governing equations. Deep Operator Networks (DeepONets) [20]68

excel in learning operators with small data requirements, offering flexibility in various applications.69

Mesh Graph Networks (MGNs) [23] use graph-based representations to model simulations on70

irregular domains, preserving geometric and topological properties.71

2 Preliminaries and notations72

Let n ∈ N∗ and Ω1, . . . ,Ωn ⊂ Rd to be a family of n distinct domains that share a common topology,73

with d = 2, 3. We suppose the parametrization of the domains is unknown and that for all 1 ≤ i ≤ n,74

each domain Ωi is equipped with a (non-geometrical) parameter µi ∈ P where P ⊂ Rp is a set of75

parameter values (think of µi as being some material parameter value for instance). In addition, let76

ui : Ωi → R be the solution of a parametrized partial differential equation for the parameter value µi77

defined on Ωi (think about a temperature field for instance). We assume in the following that for all78

1 ≤ i ≤ n, ui ∈ L2(Ωi). We assume that for all 1 ≤ i ≤ n a finite element mesh Mi is chosen so79

that ∂Mi can be considered as an accurate enough approximation of the boundary of the domain80

∂Ωi. We also assume the field ui can be accurately approximated by its finite element interpolation81

associated to the mesh Mi. We fix a reference domain, denoted by Ω0, equipped with a mesh denoted82

by M0, that shares the same topology as the other domains. For all 0 ≤ i ≤ n, Mi be the space of83

bijective W 1,∞ mappings from Ω0 onto Ωi, so that for all ψ ∈ Mi,ψ(Ω0) = Ωi. We also introduce84

M := M1 ×M2 × · · · ×Mn.85
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For any family of functions H = (hi)1≤i≤n ∈ L2(Ω0)
n, we define the correlation matrix application86

CH of H as the map87

CH : Mn
0 → S+

n

Φ → CH[Φ] := (CH,ij [Φ])1≤i,j≤n , (1)

where S+
n is the set of symmetric non-negative semi-definite matrices of dimension n× n, and for all

Φ := (ϕi)1≤i≤n ∈ Mn
0 and for all 1 ≤ i, j ≤ n,

CH,ij [Φ] := ⟨hi ◦ ϕi, hj ◦ ϕj⟩L2(Ω0) =

∫
Ω0

hi ◦ ϕi(x)hj ◦ ϕj(x)dx.

We denote by λH1 [Φ] ≥ λH2 [Φ] ≥ · · · ≥ λHn [Φ] ≥ 0 the eigenvalues of CH[Φ]. We also denote by88

(ζH1 [Φ], ζH2 [Φ], · · · , ζHn [Φ]) ⊂ Rn an orthonormal family of corresponding eigenvectors. Finally,89

given a positive integer r ∈ N \ {0}, we define the functional90

JH,r : Mn
0 → R

Φ 7→ JH,r[Φ] :=

r∑
j=1

λHj [Φ]

Tr(CH[Φ])
. (2)

We now introduce the terminology of three different configurations that will be used throughout the91

paper.92

1. First, we refer to the physical configuration as the collection of pairs {(Ωi, ui)}1≤i≤n.93

2. Given a reference domain Ω0 and Φgeo := (ϕgeo
i )1≤i≤n ∈ M, we refer to the reference94

configuration as the collection of pairs {(Ω0, ui◦ϕgeo
i )}1≤i≤n. In this configuration, all the95

fields urefi := ui ◦ϕgeo
i belong to L2(Ω0), and classical dimensionality reduction techniques96

such as PCA can be applied on the family U := (urefi )1≤i≤n ∈ L2(Ω0)
n.97

3. Given the reference configuration and some r ∈ N\{0}, we refer to the r-optimal configura-98

tion as the collection of pairs {(Ω0, u
ref
i ◦ϕopt

i,r )}1≤i≤n, where Φopt
r := (ϕopt

i,r )1≤i≤n ∈ Mn
099

is a solution to the following maximization problem:100

find Φopt
r ∈ arg max

Φ∈Mn
0

JU,r[Φ]. (3)

The maximization problem (3) is considered so that the family (uopti )1≤i≤n := (urefi ◦ϕopt
r,i )101

can be accurately approximated by elements of a r-dimensional vector space.102

3 Methodology103

3.1 Training phase104

In the training phase, we suppose that we have access to the dataset of triplets {(Ωi, µi, ui)}1≤i≤n.105

The domain Ωi (or its mesh) and the parameter µi are the inputs to the physical solver, and the field106

ui is its output. We chose a reference domain (which can be one from the dataset) that shares the107

same topology.108

3.1.1 Pretreatment109

We perform these pretreatment steps in the training phase.110

1. We pass from the physical configuration to the reference configuration (4) by computing
for all 1 ≤ i ≤ n, a mapping ϕgeo

i ∈ Mi. We apply POD on the family (ϕgeo
i − Id)1≤i≤n

to obtain the POD modes {ζgeoi }1≤i≤n and the generalized coordinates {αi}1≤i≤n where
αi =

(
αi
j

)
1≤j≤s

∈ Rs, such that

∀1 ≤ j ≤ s, αi
j = ⟨ϕgeo

i − Id, ζgeoj ⟩L2(Ω0),

and s is the number of retained modes for the geometrical mappings. Each domain Ωi is111

defined now by the vector αi.112
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2. We pass from the reference configuration to the optimal configuration (5) by solving problem
3. Once we obtain the functions (ϕopt

i −Id)1≤i≤n, we apply POD to obtain the POD modes
{ζopti }1≤i≤n and the generalized coordinates {βi}1≤i≤n where βi =

(
βi
j

)
1≤j≤t

∈ Rt,
such that

∀1 ≤ j ≤ t, βi
j = ⟨ϕopt

i − Id, ζoptj ⟩L2(Ω0),

and t is the number of retained modes for the optimal mappings.113

3. Finally, after evaluating {uopti }1≤i≤n, we apply POD to obtain the POD modes {ψi}1≤i≤n

and the generalized coordinates {γi}1≤i≤n where γi =
(
γij
)
1≤j≤r

∈ Rr, such that

∀1 ≤ j ≤ r, γij = ⟨ψi, u
opt
j ⟩L2(Ω0),

After applying these dimensionality reductions, we obtain the following three approximations:114

ϕref
i ≈ Id+

s∑
j=1

αi
jζ

ref
j ,ϕopt

i ≈ Id+

t∑
j=1

βi
jζ

opt
j , and uopti ≈

r∑
j=1

γijψj .115

Notice that the passing from the physical configuration to the reference configuration is decoupled116

and purely geometrical, that is it does not depends on the fields {ui}1≤i≤n. For example, we show in117

Figure 1 two forms of airfoils. ϕgeo will transform one airfoil onto the other. On the other hand, the118

transition to the optimal configuration is coupled between all the samples in the training dataset.119

Figure 1: Two airfoils superimposed.

3.1.2 Training120

After performing the dimensionality reduction step, we train two Gaussian processes regression121

models [33] as follows.122

1. The first model is to learn the optimal mapping that transforms the reference configuration123

to the optimal configuration. This model takes as input the physical parameter µi and124

the geometrical mapping POD coefficient αi, and as output the optimal mapping POD125

coefficient βi. We denote this model by R : Rp × Rq → Rt.126

2. The second model is to learn the field in the optimal configuration. This model takes as127

input the physical parameter µi and the geometrical mapping POD coefficient αi, and as128

output the field in the optimal configuration POD coefficient γi. We denote this model by129

O : Rp × Rq → Rr.130

3.2 Inference phase131

In the inference phase, we are given a new unseen geometry Ω̃ in the inference phase, with a physical132

parameter µ̃. The goal is to predict the field of interest ũ, solution to the physical simulation. We133

proceed in the following manner.134

1. First, we compute the geometrical mapping ϕ̃
geo

that maps Ω0 onto Ω̃, then we project135

ϕ̃
geo

− Id on the POD basis {ζgeoi }1≤i≤n to obtain the coefficient α̃.136
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2. We use the pair (α̃, µ̃) to infer β̃ = R(α̃, µ̃) and γ̃ = O(α̃, µ̃). Then we have ϕ̃
opt

:=137

Id+

t∑
j=1

β̃jζ
opt
j and ũopt :=

r∑
j=1

γ̃jψj .138

3. Finally, the quantity of interest ũ is obtained as ũ := ũopt ◦
(
ϕ̃

opt
)−1

◦
(
ϕ̃

geo
)−1

.139

4 Geometrical mapping140

Numerous techniques exists in the literature to construct a mapping between domains [2, 4, 31]. In141

this work, we use RBF morphing [10] to construct the mapping from the reference domain Ω0 to142

each target domain Ωi. When using this technique, we suppose that the deformation on a subset of143

points in Ω0, called the control points, is known. These points are usually on the boundary of Ω0.144

Then, we can leverage the knowledge of ϕi(∂Ω0) = ∂Ωi to compute the deformation in the bulk of145

the domain ϕi(Ω0). In this work, we suppose that the geometries are not parametrized and ϕi(∂Ω0)146

is not given. Thus, we start by computing ϕi(∂Ω0), for all 1 ≤ i ≤ n. When computing ϕi(∂Ω0) is147

not feasible, methods proposed in [11, 15] provides solutions to automatically finds a mapping from148

the reference onto the target domain.149

5 Optimal mapping150

The second major building block we introduce is the optimal mapping algorithm to compute Φopt =151

(ϕopt
i )1≤i≤n that maximize the energy in the first r modes.152

In order to pass from the reference configuration to the optimal configuration, we solve (3):153

find Φ∗ ∈ arg max
Φ∈Mn

0

JU,r[Φ].

The optimization problem presented here is non-convex with possibly infinitely many solutions. We154

present here briefly the optimization strategy employed to solve this problem. Refer to the appendixes155

for a detailed discussion.156

5.1 Gradient algorithm in infinite dimension157

We can show that the differential of JU,r with respect to Φ at a point Ψ has the following expression
(see appendix A):

DJU,r[Φ][Ψ] =

n∑
i=1

∫
Ω0

fi[Φ] ·ψidx.

with158

fi[Φ] :=

n∑
j=1

r∑
k=1

(
2ζUk,i[Φ]ζ

U
k,j [Φ]

Tr(CU [Φ])
− 2λUk [Φ]

Tr(CU [Φ])2
δij

)
urefj ◦ ϕj∇⃗urefi ◦ ϕi. (4)

A standard gradient algorithm in infinite dimension consists of (i) choosing an appropriate inner159

product, denoted here by a, (ii) computing the Riesz representation of each fi[Φ] with respect to a,160

which will be denoted by ui[Φ] and finally (iii) updating, at each iteration m, ϕ(m)
i by161

ϕ
(m+1)
i = ϕ

(m)
i + ϵui[Φ

(m)] (5)
with ϵ > 0 in the gradient step. The simplest example of a is the L2(Ω0) inner product which gives162

the following iterative scheme:163

ϕ
(m+1)
i = ϕ

(m)
i + ϵfi[Φ

(m)]. (6)
However, this may suffer from one of the following problems:164

• ϕ(m+1)
i might not be bijective.165

• ϕ(m+1)
i might not map Ω0 onto itself.166

• If the function Φ(m) is far from a maximum, the algorithm may fail to converge properly.167

We address these issues in the following subsections.168
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5.2 Bijectivity169

To address bijectivity, we consider the following optimization statement:170

find Φ∗ ∈ arg max
Φ∈Mn

0

IU,r[Φ] := JU,r[Φ]− c1

n∑
i=1

E[ϕi], (7)

where E is an energy term to enforce bijectivity and c1 > 0 is a penalization parameter. Ideally, the171

term E should diverge to +∞ if the mapping ϕi becomes non-bijective. In this case, the objective172

function I diverges to −∞. In this work, we use linear elastic energy for the term E, (we note that it173

does not diverges to +∞ for non-bijective mappings, however, it gives acceptable results). Finally,174

we solve the problem 7 using the continuation method, which consists of iteratively decrease the175

parameter c1 in order to obtain a solution to problem 3. We give more details about the continuation176

method and the term E in appendix C.177

5.3 Mapping condition178

A necessary condition to map Ω0 onto itself is that the boundary of Ω0 is mapped also onto itself. If179

∂Ω0 consists only of straight lines (faces in 3d), we impose that points on the boundary deform only180

in the tangential direction, so that they stay on the boundary. When ∂Ω0 presents also curves, we181

can fix points that lies on the curved part of ∂Ω0. Thus, we partition the boundary of Ω0 to ∂Ω0 :=182

∂Ωp
0

⋃
∂Ωc

0 with ∂Ωp
0 is the union of all the straight lines (faces in 3d) of ∂Ω0 and ∂Ωc

0 is the curved183

part of ∂Ω0. We define the space H1
n(Ω0) := {u ∈ H1(Ω0) : u · n = 0 on ∂Ωp

0,u = 0 on ∂Ωc
0}184

and the inner product a on H1
n(Ω0) as185

(u,v) 7→ a(u,v) :=

∫
Ω0

σ(u) : ε(v)dx, (8)

with σ and ε are respectively the classical elasticity stress and strain tensors (we fix the Young186

modulus E = 1 and Poisson ratio µ = 0.3 in this work). We compute, for all 1 ≤ i ≤ n, and for187

each iteration m, the Riesz representation u(m)
i of fi with respect to this inner product, which is the188

unique solution to189

∀v ∈ H1
n(Ω0;Rd), a(u

(m)
i ,v) =

∫
Ω0

fi[Φ
(m)]vdx, (9)

to obtain the iterative scheme:190

ϕ
(m+1)
i = ϕ

(m)
i + ϵui[Φ

(m)]. (10)
We can also obtain a similar expression when solving problem (7) and using linear elastic energy (see191

more in appendix C):192

ϕ
(m+1)
i = ϕ

(m)
i + ϵ

(
ui[Φ

(m)]− c1

(
ϕ

(m)
i − Id

))
. (11)

By using the above procedure, we guarantee that, if ϕ(m)
i + ϵui[Φ

(m)] is bijective, then necessary193

we have that the points on ∂Ωp
0 stay on ∂Ωp

0, thus, preserving the boundary of Ω0. We note however194

that this is suboptimal as we do not allow ∂Ωc
0 to deform in this case. A full treatment of curved195

boundaries is the subject of future work.196

5.4 Uncorrelated samples197

One major reason for the poor convergence of the gradient algorithm is when the samples are heavily198

not correlated. This happens when the non-zero values of urefi are compactly supported in Ω0. More199

precisely, if, for some 1 ≤ j ≤ n, supp(urefj ◦ ϕj)
⋂
supp(∇⃗urefi ◦ ϕi) = ∅, then the contribution200

of urefj ◦ ϕj∇⃗urefi ◦ ϕi in fi is null. To this end, we transform the fields {ui}1≤i≤n to the family of201

fields Û(c2) := {ûi}1≤i≤n, where each is defined as the solution to202

−∆ûi + c2ûi = c2ui, (12)
∂nûi = 0

where ∆ is the Laplacian operator and c2 > 0. This equation has a unique solution. The transformed203

fields will diffuse the value of ui throughout the domain Ω0 for small values of c2 (see Figures 3-4).204

On the other hand, ûi converges to ui as c2 goes to +∞. We use the fields Û(c2) in order to solve205

(3)-(7). The value of c2 is also changed throughout the iterations using the continuation method.206
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6 Numerical example207

In this section, we illustrate the method on two example of non-reducible problems.208

6.1 Example 1: advection-reaction equation209

This example is taken from [30], and it illustrates a non-reducible problem. Here, we show the effect210

of the optimal mapping algorithm on a fixed geometry. Let the following advection-reaction equation:211 {
∇ · (cµuµ) + σµuµ = fµ in Ω = (0, 1)2,

uµ = uD,µ on Γin,µ := {x ∈ ∂Ω : cµ · n < 0},

where n denotes the outward normal to ∂Ω, and212

cµ =

[
cos(µ1)
sin(µ1)

]
, σµ = 1 + µ2e

x1+x2 , fµ = 1 + x1x2,

213

uD,µ = 4arctan

(
µ3

(
x2 −

1

2

))
(x2 − x22),

214

µ = [µ1, µ2, µ3] ∈ P :=
[
− π

10
,
π

10

]
× [0.3, 0.7]× [60, 100].

We consider n = 250 samples. In Figure 2, we plot uµ for three different values of the parameter215

before and after computing the optimal mappings that maximize JU,r, for r = 1. The purpose of216

this first example is to demonstrate the effect of the optimal mapping algorithm on the fields. We217

can clearly see how they are aligned and can be approximated using a low dimensional space. In218

this scenario, the regression task becomes much easier. The optimal mappings algorithm can be

Figure 2: Top: three samples before the optimization. Bottom: three samples after the optimization.

219
seen as a multi-modal generalization to the registration methods, where the case r = 1 gives similar220

results to aligning all the samples on one mode. However, the advantage of our method is that we can221

go beyond a single mode. Furthermore, the alignment is automatic and does not any of the feature222

detection and tracking methods.223

6.2 ML4CFD NeurIPS 2024 competition224

In the second example, we apply the method to the airfoil design case considered in the ML4CFD225

NeurIPS 2024 competition [34], and we compare it with the winning solution. The dataset adopted226

for the competition is the AirfRANS dataset from [6]. Each sample have two scaler inputs, the227

inlet velocity and the angle of attack, and three output fields, the velocity, pressure and the turbulent228

viscosity. The dataset is composed of three splits.229

1. Training set: composed of 103 samples.230

2. Testing set: composed of 200 samples.231
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3. OOD testing set: composed of 496 samples, where the Reynold number considered for232

samples in this split is taken out of distribution.233

In this work, we focus on the turbulent viscosity field as it represents a non-reducible field. We234

illustrate this field in Figure 3.

Figure 3: The turbulent viscosity field illustrated for two of the samples.

235

Figure 4: The diffused field û for c2 = 1 .

6.3 NeurIPS solution: MMGP + wake line prediction236

The winning solution to the ML4CFD competition [7] relies on the application of the MMGP237

method[8] , with the addition of aligning the wake line behind the airfoil for all the samples at same238

position. The latter step being necessary to obtain accurate prediction of the turbulent viscosity.239

While this correction step gives accurate results, it remains case-dependent and needs to be done240

manually. Moreover, it suffers from the same problem as any other registration technique, which is241

the restriction to one mode.242

6.4 O-MMGP: optimal mesh morphing Gaussian process243

The method we present in this paper is founded on the MMGP method [8]. The main differences244

being:245

1. First, in MMGP, the mapping ϕgeoi is computed from each geometry onto the reference246

domain Ω0. In this case, the input to the GP model is the POD coefficients of the inverse247

mapping (ϕgeoi )−1. Thus, evaluating (ϕgeoi )−1 would introduce extra computations to the248

procedure. In addition, when using RBF morphing, such as in this work, computing ϕgeoi249

from the same geometry proves to be much efficient numerically, as the RBF interpolation250

matrix K can be assembled and factorized once and for all (see appendix E for the definition251

of K).252

2. Secondly, the MMGP mappings are not field-optimized. This is equivalent to omitting the253

transition to the optimal configuration. So, when it comes to non-reducible problems, even254

if a large number of modes are retained, the error introduced by POD truncation and the255

discretization error would remain large to obtain reliable predictions for new samples.256

We run the optimal mapping algorithm in order to maximize the compression of the turbulent257

viscosity field. We choose the reference geometry Ω0 to be one of the samples in the training set. We258

then proceed to compute ϕgeoi using RBF morphing. Once computed, we solve problem 7 for the259

family Û(c2). We choose r := 1, c(0)1 := 0.1 and c(0)2 := 1. The last two parameters are changed260

throughout the iterations as mentioned in appendix C. In Figure 5a, we show that the eigenvalues of261

the correlation matrix of (ϕopt
i )1≤i≤n decay rapidly, proving numerically that this family is reducible,262
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(a) Decay of the eigenvalues of the correlation
matrix of the family (ϕopt

i )1≤i≤n .
(b) Decay of the eigenvalues of the correlation
matrix for the turbulent viscosity fields.

Figure 5: Decay of the eigenvalues.

and justifying the regression on the optimal mapping POD coordinates. The cost of the optimal263

mapping computation is discussed is appendix D264

After computing the optimal mappings, we train two Gaussian process regression models, one to265

learn the optimal mapping ϕ̃, and the other to learn the field ũ, which is the turbulent viscosity in this266

case.267

In order to show the efficiency of the method, we compare the results of the following three tests:268

1. First, we apply the method without solving the optimal mappings problem, similar to the269

original MMGP method. Thus, we predict the turbulent viscosity field in the reference270

configuration.271

2. Second, we run the winning solution of the NeurIPS 2024 challenge, aligning the wake line272

behind the airfoil manually.273

3. Finally, we apply the full O-MMGP procedure described in this paper.274

In table 1, we report the mean square error (MSE) of the three tests on the turbulent viscosity275

field, for the testing and OOD splits. While the original MMGP performs poorly for this field,276

the O-MMGP method produces very accurate predictions, slightly surpassing the NeurIPS 2024277

competition solution. The major advantage of the method is that the alignment of the snapshot was278

done automatically, without using the specificity of the case. In Figure 5b, we report the decay of the

MMGP NeurIPS solution O-MMGP
Test 0.143 0.025 0.024

OOD 0.171 0.048 0.046
Table 1: MSE errors for the different tests.

279
eigenvalues of the correlation matrix for the three tests. For the MMGP solution, no aligning of the280

solution was performed, which explains the slow decay of the eigenvalues for this case. As expected,281

the eigenvalues decays the most rapidly when using the optimal mappings algorithm.282

7 Conclusion283

In this article, we have presented a new algorithm that aims to maximize the energy in the first284

r principal modes of a family of functions. The novelty of the algorithm lies in the fact that it285

automatically aligns the functions on an arbitrary number of modes, unlike other methods in the286

literature which may require feature tracking of the solution or assume that the family of functions287

can be compressed onto a single mode. We have shown how the proposed method can be integrated288

into the MMGP workflow to learn and predict the solutions of PDEs with geometric variabilities.289

The quality of the prediction was found to be on a par with state-of-the-art methods. Current work290

9



aims to solve the problem in the general case of curved boundaries and provide a more thorough291

mathematical analysis of the method, as well as applying the method in the presence of multiple292

shocks.293
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Answer: [Yes]439
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instructions for how to replicate the results, access to a hosted model (e.g., in the case475
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In the case of closed-source models, it may be that access to the model is limited in491
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to have some path to reproducing or verifying the results.493
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.513

• The authors should provide scripts to reproduce all experimental results for the new514

proposed method and baselines. If only a subset of experiments are reproducible, they515

should state which ones are omitted from the script and why.516

• At submission time, to preserve anonymity, the authors should release anonymized517

versions (if applicable).518
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Justification: The paper presents numerical values to all the required parameters to solve the526
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8. Experiments compute resources562

Question: For each experiment, does the paper provide sufficient information on the com-563

puter resources (type of compute workers, memory, time of execution) needed to reproduce564

the experiments?565

Answer: [Yes]566

Justification: This is discussed in the appendix.567
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• The answer NA means that the paper does not include experiments.569
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-586

eration due to laws or regulations in their jurisdiction).587
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• If the authors answer NA or No, they should explain why their work has no societal596

impact or why the paper does not address societal impact.597

• Examples of negative societal impacts include potential malicious or unintended uses598
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from (intentional or unintentional) misuse of the technology.612
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11. Safeguards617
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• Released models that have a high risk for misuse or dual-use should be released with625
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safety filters.628

• Datasets that have been scraped from the Internet could pose safety risks. The authors629

should describe how they avoided releasing unsafe images.630

• We recognize that providing effective safeguards is challenging, and many papers do631

not require this, but we encourage authors to take this into account and make a best632

faith effort.633

12. Licenses for existing assets634

Question: Are the creators or original owners of assets (e.g., code, data, models), used in635
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service of that source should be provided.647
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• We recognize that the procedures for this may vary significantly between institutions699

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the700

guidelines for their institution.701

• For initial submissions, do not include any information that would break anonymity (if702

applicable), such as the institution conducting the review.703

16. Declaration of LLM usage704

Question: Does the paper describe the usage of LLMs if it is an important, original, or705

non-standard component of the core methods in this research? Note that if the LLM is used706
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A Differential of JH,r716

Let Φ = (ϕi)1≤i≤n ∈ M, Ψ = (ψi)1≤i≤n a "small" variation around Φ and ϵ ∈ R, ϵ << 1. To717

evaluate the differential of JH,r at a point Φ, we evaluate JH,r at Φ̄ := Φ + ϵΨ and calculate:718

DJH,r[Φ][Ψ] = lim
ϵ→0

JH,r(Φ + ϵΨ)− JH,r(Φ)

ϵ
(13)

We have:719

∀i, hi ◦ (ϕi + ϵψi)(x) = hi(ϕi(x) + ϵψi(x))

≃ hi(ϕi(x)) + ϵ∇⃗hi(ϕi(x)) ·ψi(x)

where we neglect higher order terms. Next we evaluate :720

CH,ij [Φ + ϵΨ] = ⟨hi ◦ (ϕi + ϵψi), hj ◦ (ϕj + ϵψj)⟩L2(Ω0)

=

∫
Ω0

hi ◦ (ϕi + ϵψi)(x)hj ◦ (ϕj + ϵψj)(x)dx

=

∫
Ω0

hi ◦ ϕi(x)hj ◦ ϕj(x)dx+ ϵ

∫
Ω0

hi ◦ ϕi(x)∇⃗hj(ϕj(x)) ·ψj(x)dx (14)

+ ϵ

∫
Ω0

∇⃗hi(ϕi(x)) ·ψi(x)hj ◦ ϕj(x)dx+ ϵ2
∫
Ω0

∇⃗hi(ϕi(x))ψi(x)∇⃗hj(ϕj(x))ψj(x)dx

:= CH,ij [Φ] + ϵDCH,ij [Φ][Ψ] + ϵ2D2CH,ij [Φ][Ψ]

and721

Tr(CH[Φ + ϵΨ]) =
∑

Cii[Φ + ϵΨ]

= Tr(CH[Φ]) + 2ϵ

n∑
i=1

∫
Ω0

hi ◦ ϕi(x)∇⃗hi(ϕi(x)) ·ψi(x)dx+ ϵ2
n∑

i=1

∫
Ω0

[∇⃗hi(ϕi(x)) ·ψi(x)]
2dx

= Tr(CH[Φ]) + ϵTr(DCH[Φ][Ψ]) + ϵ2D2CH[Φ][Ψ]

withDCH,ij [Φ][Ψ] :=

∫
Ω0

hi◦ϕi(x)∇⃗hj(ϕj(x))·ψj(x)dx+

∫
Ω0

∇⃗hi(ϕi(x))·ψi(x)hj ◦ϕj(x)dx722

and DCH[Φ][Ψ] = (DCH,ij [Φ][Ψ])1≤i,j≤n.723

724

Next we evaluate DλHi [Φ][Ψ]. We have ∀i :725

||ζHi [Φ]||2 = 1

Now taking the differential on both sides, we get726

⟨DζHi [Φ][Ψ], ζHi [Φ]⟩ = 0

Using the fact that CH[Φ]ζHi [Φ] = λHi [Φ]ζHi [Φ], we get again by taking the differential on both sides727

DCH[Φ][Ψ]ζHi [Φ] + CH[Φ]DζHi [Φ][Ψ] = DλHi [Φ][Ψ]ζHi [Φ] + λHi [Φ]DζHi [Φ][Ψ]

We multiply the last equation by ζHi [Φ] to get728

(ζHi [Φ])TDCH[Φ][Ψ]ζHi [Φ] + 0 = DλHi [Φ][Ψ] + 0

Thus we have finally729

λHi [Φ + ϵΨ] = λHi [Φ] + (ζHi [Φ])TDCH[Φ][Ψ]ζHi [Φ] ,∀1 ≤ i ≤ n (15)

Taking the sum over the first r eigenvalues, we obtain:730

r∑
j=1

λHj [Φ + ϵΨ] =

r∑
j=1

λHi [Φ][Ψ] + ϵTr((ZΦ
r )

TDCH[Φ][Ψ]ZΦ
r ) (16)
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with ZΦ
r = (ζΦ1 , ζ

Φ
2 , · · · , ζΦr )T . Now we can evaluate (13) to obtain:731

DJH,r[Φ][Ψ] =
Tr((ZΦ

r )
TDCH[Φ][Ψ]ZΦ

r )

Tr(CH[Φ])
−

r∑
k=1

λHk [Φ]

Tr(CH[Φ])2
× Tr(DCH[Φ][Ψ]) (17)

which can be written explicitly as732

DJH,r[Φ][Ψ] =
2

Tr(CH[Φ])

n∑
i=1

n∑
j=1

r∑
k=1

ζHk,i[Φ]ζ
H
k,j [Φ]

∫
Ω0

hj ◦ ϕj(x)∇⃗hi(ϕi(x)) ·ψi(x)dx

−
2

r∑
k=1

λHk [Φ]

Tr(CH[Φ])2

n∑
i=1

∫
Ω0

hj ◦ ϕj(x)∇⃗hi(ϕi(x)) ·ψi(x)dx

=

n∑
i=1

DJi[Φ][ψi]

with733

DJi[Φ][ψi] :=

r∑
k=1

( 2ζHk,i[Φ]
2

Tr(CH[Φ])
− 2λHk [Φ]

Tr(CH[Φ])2

)∫
Ω0

hi ◦ ϕi(x)∇⃗hi(ϕi(x)) ·ψi(x)dx

+

n∑
j=1
j ̸=i

r∑
k=1

2ζHk,i[Φ]ζ
H
k,j [Φ]

Tr(CH[Φ])

∫
Ω0

hj ◦ ϕj(x)∇⃗hi(ϕi(x)) ·ψi(x)dx

=

n∑
j=1

r∑
k=1

(
2ζHk,i[Φ]ζ

H
k,j [Φ]

Tr(CH[Φ])
− 2λHk [Φ]

Tr(CH[Φ])2
δij

)∫
Ω0

hj ◦ ϕj(x)∇⃗hi(ϕi(x)) ·ψi(x)dx,

(18)

and δij is the Kronecker delta. For simplicity, we note the term734

fi[Φ] :=

n∑
j=1

r∑
k=1

(
2ζHk,i[Φ]ζ

H
k,j [Φ]

Tr(CH[Φ])
− 2λHk [Φ]

Tr(CH[Φ])2
δij

)
hj ◦ ϕj(x)∇⃗hi(ϕi(x)), (19)

F[Φ] := (f1[Φ], · · · , fn[Φ]), and we write

DJH,r[Φ][Ψ] =

n∑
i=1

∫
Ω0

fi[Φ] ·ψidx.

B Differential of IH,r735

We define the objective function IH,r on Mn
0 as

IH,r[Φ] := JH,r[Φ]− c1

n∑
i=1

E[ϕi].

As mentioned in section 5, the energy term used in this work in the linear elastic energy defined as

E[ϕi] :=
1

2
a(ϕi − Id,ϕi − Id),

where we recall the definition of a in (8). We can easily show that

DE[ϕi][ψ] = a(ϕi − Id,ψ).
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Using the linearity of the differential, we obtain the differential of IH,r as736

DIH,r[Φ][Ψ] = DJ [Φ][Ψ]− c1

n∑
i=1

DE[ϕi][ψi]

=

n∑
i=1

∫
Ω0

fi[Φ] ·ψidx− c1

n∑
i=1

DE[ϕi][ψi]

=

n∑
i=1

(∫
Ω0

fi[Φ] ·ψidx− c1DE[ϕi][ψi]

)

:=

n∑
i=1

DIi[Φ][ψi].

In order to obtain equation (11), we compute the Riesz representation of DIi[Φ], denoted as ū, with
respect to the inner product a, the unique solution to

a(ūi,ψ) =

∫
Ω0

fi[Φ] ·ψidx− c1a(ϕi − Id,ψ),

for all test function ψ. Since we also have ui as the Riesz representation of DJi[Φ]
(a(ui,ψ) = DJi[Φ][ψ]), we obtain

a(ūi,ψ) = a(ui,ψ)− c1a(ϕi − Id,ψ).
which is true for all test function ψ. Thus, by the linearity of a, we obtain ūi = ui − c1(ϕi − Id),737

and hence equation (11).738

C Continuation method739

We give here a quick description on the continuation methods. Readers can refer to [1, 27] and
references within for more details.

Continuation methods are a variety of methods used to solve equations of the type

G(x) = 0

where G is a non-linear function, and x is the unknown. Continuation methods rely on solving a
succession of problems of the form

H(x, λ) = 0

where H is another non-linear function and H(x, λ∗) = G(x) for some λ∗. λ is called the continua-740

tion parameter. In the simplest form of a continuation method, we start by choosing a set a values741

{λ0, λ1 · · ·λ∗} for λ. We then solve H(xi, λi) = 0, and initialize H(xi+1, λi+1) = 0 with xi.742

C.1 Continuation for c1743

In order to solve equation (7), we proceed by using the continuation method as follows:744

1. We start by solving equation the optimization problem, using the gradient algorithm, for745

c1 = c01, where c01 should be sufficiently large in order to converge properly. This will746

produce the function Φ0.747

2. At each iteration k, we set ck1 :=
ck−1
1

2
, and we resolve the problem for Φk by initializing748

Φ(0),k = Φk−1 .749

3. We iterate over k as long as there are no elements of the morphed meshes are inverted.750

We give a few comments about the above procedure. First, we note that there are two loops for the751

algorithm: the outer loop over k that updates c1, and the inner loop that solves the non-linear equation752

using the gradient algorithm. Second, ideally we want to solve (7) for c1 = 0. If, while iterating over753

the outer loop, ck1 gets sufficiently small, we can set ck+1
1 = 0. Finally, we note that full convergence754

for intermediate results of Φk is generally not necessary.755
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C.2 Continuation for c2756

Applying continuation with two or more parameters proves to be more complicated for the case of757

one parameter. To this end, we propose in this paper to alternate changing the values of the two758

parameters c1 and c2. We proceed in the same manner as above, expect that:759

1. At iteration 2k, we set c2k1 :=
c2k−1
1

2 .760

2. We start with a small value for c02. At iteration 2k + 1, we set c2k+1
2 := 10× c2k2 .761

C.3 Initialization and scheduling strategy762

In our numerical examples, we find that the method is not sensitive for the initial choices for both763

parameters as expected. In fact, choosing a large value for c1 would force the mapping to be close to764

the identity map. In this case, the mesh would not deform by much and the algorithm would converge765

quickly, and in return we change the value of c1. On the other hand, choosing a small value of c2766

would have a similar effect in terms of convergence. A small value would diffuse very much the767

values of the field in the domain, and they approach a constant field allowing to converge rapidly and768

to change the values of c2 in return.769

The scheduling strategy used to change to values of c1 and c2 is a simple heuristic that we observed770

to work well with the tests provided. Other strategies would be to change both values at the same771

time, which also worked well for the same datasets. However, we do mention that other continuation772

methods exists when dealing with more than one parameter as in the references provide. These773

methods are developed for non linear problems in finite dimension and could be potentially harder to774

implement in functional settings as in this work.775

D Computational cost of the optimal mapping776

The training phase of O-MMGP consists of i) computing ϕgeo
i , ii) computing ϕopt

i , iii) performing777

POD and iv) training of the gaussian processes to learn ϕopt and uopt. With respect to MMGP, this778

would add step iii, and one GP training (for ϕopt). For the AirfRANS dataset,steps i, iii, and iv take779

about 40 seconds. Step ii consists also of multiples steps (remeshing the reference mesh to tackle780

computational bottlenecks (see below), the optimization process, computing ũ(α) and ∇ũ(α) ...). It781

takes about 35 minutes (we do mention however that some of these steps could be implemented in782

parallel which would greatly decrease the optimal mappings computational time).783

Inference time: the inference takes about 81 seconds for 696 samples (200 test and 496 OOD). Both784

MMGP and NeurIPS 2024 solutions are faster to train (no optimization problem in offline), however785

they are both more expensive than O-MMGP in online. All the simulations are performed using786

128 CPU cores and no GPU. In comparison, the full order solver takes about 25 min for each full787

simulation.788

Acceleration strategies789

Solving the optimal mappings optimization problem requires evaluating Fi[Φ] (thus ui and its gradi-790

ent) at the integration points of the (deformed) reference mesh, the assembly of the stiffness matrix791

(once and for all for all the iterations), and solving the linear systems for the Riesz representation.792

Potential computational bottlenecks come from having a very fine reference mesh, which increases793

the degrees of freedom and the number of integration points. In this paper, we used an acceleration794

strategy consisting of using a coarse reference mesh to compute the optimal mappings, then the795

mappings are evaluated on the fine mesh using interpolation. This greatly decrease optimization796

time while giving accurate results. To further accelerate computation, when needed, other techniques797

can be used like reduced quadrature formulae or randomized linear algebra. However, this was not798

needed for the provided examples.799
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E RBF morphing800

In radial basis function (RBF) interpolation, we aim to approximate a scalar-valued function g(x)801

using a linear combination of radial basis functions as follows:802

g(x) ≈
nc∑
i=1

ai ξ(∥x− xi∥), (20)

where ai ∈ R and ξ is a radial basis function that depends only on the Euclidean distance between x803

and a control point xi. The control points {xi | i = 1, . . . , nc} are specific locations where the exact804

values of g(x), denoted gi, are known. To determine the coefficients ai, we enforce the interpolation805

condition at all control points, yielding the system:806

nc∑
i=1

ai ξ(∥xj − xi∥) = gj , j = 1, . . . , nc. (21)

This can be expressed in matrix form as:807

Ka = g, (22)

where K is an nc × nc interpolation matrix with entries Kij = ξ(∥xj − xi∥), a = [a1, . . . , anc
]T is808

the vector of coefficients, and g = [g1, . . . , gnc
]T is the vector of known values. Solving this linear809

system yields the coefficients ai, which can then be used to compute g(x) at any point x.810

In the context of radial basis function-based mesh morphing, RBF interpolation is applied separately811

to each component of the morphing function ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) in 3D (or similarly in812

2D). The control points are usually chosen as boundary points. The interpolated morphing function is813

then used to smoothly deform the interior of the mesh according to the control point displacements.814
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