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Adversarial Distillation for
Learning with Privileged Provisions

Xiaojie Wang, Rui Zhang∗, Yu Sun, and Jianzhong Qi

Abstract—Knowledge distillation aims to train a student (model) for accurate inference in a resource-constrained environment.
Traditionally, the student is trained by a high-capacity teacher (model) whose training is resource-intensive. The student trained this way is
suboptimal because it is difficult to learn the real data distribution from the teacher. To address this issue, we propose to train the student
against a discriminator in a minimax game. Such a minimax game has an issue that it can take an excessively long time for the training to
converge. To address this issue, we propose adversarial distillation consisting of a student, a teacher, and a discriminator. The
discriminator is now a multi-class classifier that distinguishes among the real data, the student, and the teacher. The student and the
teacher aim to fool the discriminator via adversarial losses, while they learn from each other via distillation losses. By optimizing the
adversarial and the distillation losses simultaneously, the student and the teacher can learn the real data distribution. To speed up the
training, we propose to obtain low-variance gradient updates from the discriminator using a Gumbel-Softmax trick. We conduct extensive
experiments to demonstrate the superiority of the proposed adversarial distillation under both accuracy and training speed.

Index Terms—Adversarial distillation, generative adversarial network, knowledge distillation, privileged information
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1 INTRODUCTION

In many machine learning tasks, more resources are
available at training (e.g., using labeled data to estimate a
model’s parameters) than at inference (e.g., fixing a model’s
parameters to predict unseen data) [18]. We refer to such extra
resources available only at training as privileged provisions.
Privileged provisions are not available at inference due to
some requirement imposed by a specific task. An example
task is to recommend tags for users to label their images,
where extra textual features are privileged provisions [27],
[39]. At training, textual features (i.e., titles and comments
about images) are available in training data (see Fig. 1a).
We can use these textual features to train more accurate tag
recommendation models. However, such textual features
cannot be used at inference. This is because this task requires
a model to recommend tags even when users do not provide
any textual features (see Fig. 1b). Another example task is to
unlock mobile phones by face recognition, where intensive
computational resources are privileged provisions [20], [41].
At training, we can use powerful servers with intensive com-
putational resources (e.g., strong computation capability and
large memory space) to train high-capacity face recognition
models. Such computational resources are not available at
inference. This is because this task requires a model to run
on mobile phones with restricted computational resources,
so that legit users can unlock their mobile phones without
depending on remote services or internet connections. Here, a
widely-recognized problem is called learning with privileged
provisions, where the goal is to train an accurate model that
satisfies stringent inference requirements [28].

Knowledge distillation (KD), a typical approach to learn-
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ing with privileged provisions, consists of a student and a
teacher [7]. The student is meant for resource-constrained
inference and hence cannot rely on privileged provisions.
Compared with the student, the teacher makes use of
privileged provisions by having a larger model capacity
if intensive computational resources are available or by
exploiting more features for learning if extra input features
are available. KD first trains the teacher and then uses a
different type of training, named distillation, to transfer the
knowledge of the teacher into the student [9]. For example,
Hinton et al. [18] treat the label distributions produced by
the teacher as the “soft targets” and perform training by
minimizing the Cross-Entropy measure between the soft
targets and the label distributions produced by the student.
Since the teacher often provides limited extra supervision
signals on top of the real labels, it is difficult for the student
to learn the real data distribution from the teacher [28].

To guarantee that the student can perfectly model the real
data distribution in theory, we propose adapting generative
adversarial network to learning with privileged provisions,
where the student is trained against a discriminator in a
minimax game. The student, serving as a generator, aims to
generate fake labels that look like the real labels, whereas
the discriminator aims to distinguish between the real and
the fake labels. Such a naive adaptation provides theoretical
guarantee, but has the issue of slow training speed: it usually
requires a large number of training epochs for the training
to converge with a good accuracy [14]. The training speed is
slow because the gradients from the discriminator to update
the student often vanish or explode during the training
process [4]. Hence, it is challenging to theoretically guarantee
the equilibrium, while empirically reducing the number of
training instances and epochs required for training.

To tackle this challenge, we propose a novel training
framework, named adversarial distillation, where a student
and a teacher play a minimax game against a discriminator.
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At time t1, a user uploaded an image.

At time t2, the user added a tag.

lake

At time t3, the user added a title.

Lake mead.

At time t4, another user left a comment.

Nice lake!

(a) At training, we use historical data for training where extra texts, e.g., comments
and titles (besides labeled tags) were accumulated over time t1 < t2 < t3 < t4.

New post

Please attach some tags...

Recommended: lake, sky

(b) At inference, we aim to recommend lake
and sky right after an image is uploaded.

Fig. 1: When we recommend tags, extra texts about images are available at training (a) but not available at inference (b).

We propose two variants of adversarial distillation: one uses
a binary-class discriminator for less costly training and the
other uses a multi-class discriminator for more accurate infer-
ence. We start with the one using a binary-class discriminator,
called adversarial distillation with a binary-class discriminator
(ADIB). The student and the teacher compete against the
discriminator via adversarial losses: the student and the
teacher aim to generate fake labels that resemble the real
labels, whereas the discriminator is a binary-class classifier
that aims to distinguish between the real and the fake labels.
Meanwhile, the student and the teacher learn from each other
via distillation losses to reach an agreement on generating
what fake labels. By optimizing both the adversarial and the
distillation losses, the student and the teacher can learn the
real data distribution with less training epochs and instances.
However, a limitation of ADIB is that the adversarial losses
drive a mixture distribution of the student and the teacher,
rather than each of the student and the teacher, towards
the real data distribution. The adversarial losses may even
nudge the teacher away from the real data distribution if
the student is still far from the real data distribution, which
leads to less accurate inference. To overcome this limitation,
we further propose adversarial distillation with a multi-class
discriminator (ADIM), where the discriminator is a multi-class
classifier that distinguishes whether a label is generated by
the real data, the student, or the teacher. The multi-class
discriminator has more parameters and operations than the
binary-class discriminator does, which results in more costly
training. The adversarial losses associated with the multi-
class discriminator drive each of the student and the teacher
towards the real data distribution. The adversarial losses are
general in the sense that the distillation losses for training the
student and the teacher are special cases of the adversarial
losses under certain conditions.

We further consider reducing the variance of the gra-
dients from the discriminator to accelerate the training of
adversarial distillation. The gradients from the discriminator
may have high variance when obtained through the widely
used policy gradient methods [40], [45]. It is non-trivial to
obtain low-variance gradients from the discriminator because
the student and the teacher generate discrete samples, which
are not differentiable. We propose to relax the discrete
distributions learned by the student and the teacher into
concrete distributions by applying the Gumbel-Softmax
trick [22], [29]. We use the concrete distributions for generat-
ing continuous samples to enable end-to-end differentiability
and sufficient control over the variance of gradients. Given
the continuous samples, we obtain low-variance gradients
from the discriminator to accelerate the training.

The main contributions of this paper are listed as follows.

C1: To our knowledge, we are the first to adapt gen-
erative adversarial network to addressing the issue of
knowledge distillation in learning with privileged provisions.

C2: We propose a training framework, named ADIB, for
using privileged provisions available only at training to learn
a student suitable for resource-constrained inference.

C3: We propose a training framework, named ADIM, to
overcome the limitation that the binary-class discriminator
of ADIB cannot guarantee the equilibrium (Section 4.2).

C4: We propose a Gumbel-Softmax trick to train ADIB,
which yields low-variance gradient updates and reduces the
training epochs required for a good convergence accuracy.

C5: We also apply the proposed Gumbel-Softmax trick to
speeding up the training of ADIM by deriving the formulas
for computing low-variance gradients (Section 4.3).

C6: We prove that the adversarial losses of ADIM can ap-
proximate the distillation losses, which shows the generality
of the adversarial losses for distillation (Section 4.4).

C7: We empirically investigate the superiority of ADIM,
the benefits of the Gumbel-Softmax trick, the effects of the
teacher learning from the student, and the gradient variance
of the adversarial and the distillation losses (Section 5).

We have presented the contributions C1, C2 and C4 in
our previous conference paper [42]. In this journal extension,
we make new contributions C3 and C5 to C7. The main
challenges of the journal extension include: (1) Imposing
several distributions (i.e., the distributions underlying the
real data, the student, and the teacher) to be identical with a
single discriminator, which is tackled by C3. (2) Obtaining
low-variance gradients of the adversarial losses associated
with the multi-class discriminator to update the student
and the teacher, which is tackled by C5. The rest of the
paper is organized as follows. Section 2 provides a review
of the related work. Section 3 introduces the problem of
learning with privileged provisions. Section 4 proposes the
adversarial distillation and describes the theoretical results
in detail. Section 5 presents experiments in two real-world
tasks. Section 6 concludes the paper.

2 RELATED WORK

Our work is closely related to existing work on knowledge
distillation (KD) and generative adversarial network (GAN).

The goal of KD is to train a lightweight student that
satisfies the requirements of low memory use and fast
running time at inference [9]. Early studies on KD adopt
two-phase training, where training a high-capacity teacher is
followed by training a student to match soft targets or feature
representations produced by the teacher. For example, Ba
and Caruana [7] train a shallow student network to mimic a
pretrained teacher network by matching logits via a L2 loss.
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Hinton et al. [18] generalize this work by training a student
to predict soft targets produced by a teacher. To simplify the
complex procedure of the two-phase training, recent studies
on KD develop one-phase training. For example, Zhang et
al. [49] simultaneously train a student and a teacher to match
soft targets produced by each other [50]. Lopez-Paz et al.
unify KD and learning using privileged information (LUPI)
as generalized distillation where a teacher can be trained
by taking privileged information as input [28]. Compared
with KD, we introduce a discriminator to guarantee that the
student can learn the real data distribution in theory.

Previous studies mostly formulate GAN as a two-player
framework with a generator and a discriminator. Initially,
GAN is proposed to generate continuous data by training
a generator and a discriminator adversarially in a minimax
game [16]. Since discrete data makes it difficult to obtain
gradients from a discriminator, GAN has only recently been
introduced to generate discrete data [47], [48]. For example,
sequence GAN (SeqGAN) [45] models token sequence gener-
ation as a stochastic policy and updates a generator by Monte
Carlo search. Recently, several multi-player frameworks
have been proposed to enhance the learning capacity of
the two-player frameworks [15]. For example, Pu et al.
propose JointGAN which uses multiple generators and a
discriminator to learn a joint distribution of multiple random
variables [32]. Our framework also has multiple players
including two generators and a discriminator, but differs
from existing work [12] in that both generators learn a
conditional distribution over labels given features and hence
can learn from each other to improve their accuracy through
KD. There is also a rich body of studies on improving
the training of GAN by, e.g., feature matching [34]. These
studies focus on generating continuous data and avoiding the
problem of mode collapse [5], whereas we aim at generating
discrete data and reducing the number of training epochs.

We explore the idea of retaining advantages and avoiding
disadvantages of KD and GAN in a single framework. Similar
ideas have been explored in recent studies. For example, Xu
et al. introduce a discriminator to distinguish logits produced
by the student and the teacher [44], whereas Chen et al.
introduce a discriminator to distinguish shared embeddings
in the student and the teacher [11]. Our work differs from
these studies mainly in that we introduce a discriminator to
distinguish among the real data, the student, and the teacher.
This way, the optimal student and the optimal teacher are
guaranteed to fit the real data distribution perfectly.

3 PRELIMINARIES

We focus on multi-label classification [25], [43], [46], although
the same ideas can be applied to other problems with a
discrete output space, e.g., webpage ranking [40]. We study
the problem of learning with privileged provisions: it makes
use of privileged provisions %, available only at training and
not available at inference, to learn a student S (a multi-label
classifier) that satisfies stringent inference requirements [28].
The inference requirements can be running in real time with
restricted computational resources where privileged provi-
sions are intensive computational resources [18], or lacking
a certain type of input features where privileged provisions
are extra input features, a.k.a, privileged information [39].

Let x be a random vector in a feature (input) space X and y
be a random variable in a label (output) space Y . Let pr(y∣x)

be the real data distribution from which a real label y is
sampled given a feature vector x. Let ps(y∣x) parameterized
by θs be the categorical distribution defined by the student.
The goal is to learn the optimal student S∗ that fits the real
data distribution perfectly ps(y∣x) = pr(y∣x) and does not
require privileged provisions to perform inference.

A typical approach to learning with privileged provisions
is knowledge distillation (KD), which consists of a student
S and a teacher T . The teacher is a multi-label classifier that
makes use of privileged provisions by having a larger model
capacity or by taking more features as input. Let pt(y∣x)

parameterized by θt be the categorical distribution defined
by the teacher. Here, with a slight abuse of notation, we
also use x to denote a feature vector including privileged
information, which should be clear from context. First, the
teacher is typically trained by minimizing the Kullback-
Leibler divergence, which is equivalent to minimizing the
Cross-Entropy measure between the distributions of the real
data and the teacher

min
θt
LKL(pr ∥pt) = ∑

y∈Y

pr(y∣x) log
pr(y∣x)

pt(y∣x)
. (1)

Once the teacher has been trained, the student is typically
trained by learning from both the teacher and the real data,
which are balanced by a hyper-parameter υ > 0

min
θs
LKD(pt ∥ps) = LKL(pt ∥ps) + υLKL(pr ∥ps) . (2)

We refer to such losses used to characterize a distillation
training process, e.g., in Eqn. (2) as the distillation losses.

An alternative approach naively adapts generative ad-
versarial network (NGAN) to learning with privileged
provisions, where a student S and a discriminator D play a
minimax game. The discriminator is a binary-class classifier
and also makes use of privileged provisions in the same way
as the teacher. Given a feature vector x, the discriminator
parameterized by θd computes the probability D(x, y) of a
label y being real. The student aims to generate fake labels
that look like the real labels by sampling from its categorical
distribution, whereas the discriminator aims to draw a clear
distinction between the real and the fake labels. We define
the value function for the minimax game of NGAN as

min
θs

max
θd
VNGAN = Ey∼pr [logD(x, y)]

+ Ey∼ps[log(1 −D(x, y))] .
(3)

We refer to such losses used to characterize an adversarial
training process, e.g., in Eqn. (3) as adversarial losses. The
adversarial losses differ from the distillation losses in that
the former are related to a certain discriminator but the latter
are not. The minimax game of NGAN has an equilibrium,
where the student perfectly fits the real data distribution
while the discriminator does no better than random guesses
at deciding whether a label is real or fake [6]. Adversarial
training often proceeds by updating the student and the
discriminator alternately until convergence [40].

Our key observation is that the advantages and the
disadvantages of KD and NGAN are complementary: (1)
KD usually requires a small number of training instances
and epochs for a good convergence accuracy, but does not
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Data D (+%) S T (+%)

⦶
⦶

real/fake

ADIB

Extend Data D (+%) S T (+%)

⦶
⦶

(optional)

real/student/teacher

ADIM

Fig. 2: Difference between ADIB and ADIM. The student S does not use privileged provisions, whereas the teacher T
and the discriminator D do (+%). Adversarial and distillation losses are denoted by lines with single and double arrows,
respectively. The equilibrium remains the same if the optional line is removed. Sampling with the GS trick is denoted by ⦶.

guarantee the student to learn the real data distribution [24].
(2) NGAN guarantees the student to learn the real data
distribution, but normally requires a large number of training
instances and epochs which may be difficult to satisfy in
practice [4]. We aim to retain the advantages and avoid the
disadvantages of the two approaches in a single framework.

4 PROPOSED FRAMEWORKS

To speed up the training while preserving the equilibrium,
we first propose adversarial distillation with a binary-class
discriminator (ADIB), a three-player framework with a stu-
dent, a teacher, and a binary-class discriminator [42]. The
student and the teacher are trained against the discriminator
via adversarial losses, which is regularized by distillation
losses between the student and the teacher. The distillation-
regularized adversarial training can theoretically guarantee
the equilibrium where both the student and the teacher
perfectly fit the real data distribution. A limitation of ADIB
is that by optimizing the adversarial losses, the binary-class
discriminator pushes a mixture distribution of the student
and the teacher towards the real data distribution. This is
not ideal because as the equilibrium suggests, we aim to
push each of the student and the teacher (rather than their
mixture) towards the real data distribution. To overcome this
limitation, we further propose adversarial distillation with a
multi-class discriminator (ADIM). Our key idea is to design
a multi-class discriminator that can distinguish not only
whether a label is real or fake, but also whether a fake label
comes from the student or the teacher. Following this idea,
we formulate the adversarial losses by training a multi-class
discriminator to distinguish among the real data, the student,
and the teacher. Moreover, we provide a rigorous theoretical
interpretation that builds up the connection between the
adversarial and the distillation losses of ADIM.

4.1 Binary-class Adversarial Distillation (ADIB)
We formulate ADIB as a minimax game with a student S,
a teacher T , and a binary-class discriminator D, which is
illustrated by the left half of Fig. 2. Given a feature vector x,
the student and the teacher generate fake labels by sampling
from the categorical distributions ps(y∣x) and pt(y∣x), while
the discriminator is a binary-class classifier that computes the
probability D(x, y) of a label y being real. The discriminator
aims to maximize the probability of correctly distinguishing
the real and the fake labels, whereas the student and the
teacher aim to minimize the probability that the discriminator
rejects their fake labels. Meanwhile, the student and the
teacher learn from each other by mimicking the categorical

distributions learned by each other. Such mutual learning
helps the student and the teacher avoid generating different
fake labels to fool the discriminator. Formally, we define the
value function for the minimax game of ADIB as

min
θs,θt

max
θd
VADIB = Ey∼pr [logD(x, y)]

+ ωsEy∼ps[log(1 −D(x, y))] + νLKD(pt ∥ps)

+ ωtEy∼pt[log(1 −D(x, y))] + µLKD(ps ∥pt) ,

(4)

where hyper-parameters ωs, ωt, ν, µ > 0 and ωs + ωt = 1.
On the right hand side of Eqn. (4), we denote by LBA the
expectation terms (the adversarial losses) and by LBD the
other two terms (the distillation losses). LKD(pt ∥ps) and
LKD(ps ∥pt) are the distillation losses for training the student
and the teacher, respectively. The distillation losses can be
defined in several ways, e.g., the L2 loss between logits [7].

We show that the student and the teacher perfectly fit the
real data distribution at the equilibrium of ADIB. To see this,
we first derive the optimal discriminator D∗ as follows.

Lemma 4.1. For any fixed student and teacher, the optimal
discriminator that maximizes the value function of ADIB is

D∗
(x, y) =

pr(y∣x)

pr(y∣x) + pω(y∣x)
, (5)

where pω(y∣x) = ωsps(y∣x)+ωtpt(y∣x) is a mixture distribution
of the student and the teacher.

Proof. Since the distillation losses LBD do not contain the
parameters of the discriminator, we can maximize the
adversarial losses LBA to obtain the optimal discriminator

V
∗
ADIB = max

θd
LBA ,

= ∑
y∈Y

pr(y∣x) logD(x, y) + ωs ∑
y∈Y

ps(y∣x) log(1 −D(x, y))

+ ωt ∑
y∈Y

pt(y∣x) log(1 −D(x, y)) ,

= ∑
y∈Y

pr(y∣x) logD(x, y) + ∑
y∈Y

pω(y∣x) log(1 −D(x, y)) .

Hence, the optimal discriminator is given by Eqn. (5) because
a function h(z) = a log z + b log(1− z) (0 < z < 1) achieves the
maximum at z = a

a+b . This completes the proof.

Given the optimal discriminator, we show that both the
student and the teacher fit the real data distribution perfectly
when ADIB achieves its equilibrium in the minimax game.

Theorem 4.2. In the minimax game of ADIB, the equilibrium
is achieved if and only if ps(y∣x) = pt(y∣x) = pr(y∣x). At that
point, the value function is equal to − log(4).
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Proof. Given the optimal discriminator in Lemma 4.1, the
minimax game of ADIB can be reformulated as

min
θs,θt

{V
∗
ADIB + νLKD(pt ∥ps) + µLKD(ps ∥pt)}

= ∑
y∈Y

pr(y∣x) log
pr(y∣x)

pr(y∣x) + pω(y∣x)
+ νLKD(pt ∥ps)

+ ∑
y∈Y

pω(y∣x) log
pω(y∣x)

pr(y∣x) + pω(y∣x)
+ µLKD(ps ∥pt) ,

= 2LJS(pr ∥pω) − log(4) + νLKD(pt ∥ps) + µLKD(ps ∥pt) ,

where the Jensen-Shannon divergence is given by

2LJS(pr ∥pω) = LKL(pr ∥
pr + pω

2
) + LKL(pω ∥

pr + pω
2

) .

Note that the Jensen-Shannon divergence achieves zero
(the minimum) if and only if pω(y∣x) = pr(y∣x) while the
distillation losses achieve zero (the minimum) if and only if
ps(y∣x) = pt(y∣x) [12]. Therefore, the equilibrium is reached
if and only if ps(y∣x) = pt(y∣x) = pr(y∣x), where the value
function is equal to − log(4), which completes the proof.

4.2 Multi-class Adversarial Distillation (ADIM)
A limitation of ADIB is that the adversarial losses alone, i.e.,
setting ν = µ = 0 in Eqn. (6), cannot guarantee the student and
the teacher to learn the real data distribution. This is because
when ν = µ = 0, the equilibrium is reached if and only if
pω(y∣x) = pr(y∣x) (see Theorem 4.2), which is not equivalent
to ps(y∣x) = pt(y∣x) = pr(y∣x). This limitation results from
the fact that the binary-class discriminator of ADIB does not
distinguish whether a fake label comes from the student or
the teacher. Therefore, the binary-class discriminator cannot
force the student and the teacher to move towards each other.
We overcome this limitation by designing the discriminator
as a multi-class classifier.

Specifically, we formulate ADIM as a minimax game with
a student S, a teacher T , and a multi-class discriminator D,
which is illustrated by the right half of Fig. 2. The discrimi-
nator is a multi-class classifier that computes the probability
of label y coming from the real data Dr(x, y), the student
Ds(x, y), or the teacher Dt(x, y). To simplify notation, let
I = {r, s, t} be the set of subscripts corresponding to the
real data, the student, and the teacher. We define the value
function for the minimax game of ADIM as

min
θs,θt

max
θd
VADIM = ∑

i∈I

ωiEy∼pi[logDi(x, y)] (6)

+ νLKD(pt ∥ps) + µLKD(ps ∥pt) , s.t., ∑
i∈I

Di(x, y) = 1 ,

where hyper-parameters ωr, ωs, ωt > 0 satisfy ωr +ωs +ωt = 1
and ν,µ ≥ 0. On the right hand side of Eqn. (6), we denote
by LMA the expectation terms (the adversarial losses) and by
LMD the other two terms (the distillation losses).

We show that the student and the teacher perfectly fit the
real data distribution at the equilibrium of ADIM by first
deriving the optimal discriminator D∗ as follows.

Lemma 4.3. For any fixed student and teacher, the optimal
discriminator that maximizes the value function of ADIM is

D∗
i (x, y) =

ωipi(y∣x)

p̄a(y∣x)
, i ∈ I , (7)

where p̄a(y∣x) = ωrpr(y∣x) + ωsps(y∣x) + ωtpt(y∣x).

Proof. Since the distillation losses LMD do not contain the
parameters of the discriminator, we can maximize the
adversarial losses LMA to obtain the optimal discriminator

V
∗
ADIM = max

θd
LMA = ∑

i∈I

ωi ∑
y∈Y

pi(y∣x) logDi(x, y) .

After introducing a Lagrange multiplier λy for each y ∈ Y ,
we compute a Lagrange function as

LADIM = LMA + ∑
y∈Y

λy(∑
i∈I

Di(x, y) − 1) ,

= ∑
y∈Y
∑
i∈I

ωipi(y∣x) logDi(x, y) + ∑
y∈Y

λy(∑
i∈I

Di(x, y) − 1) ,

= ∑
y∈Y

(∑
i∈I

ωipi(y∣x) logDi(x, y) + λy(∑
i∈I

Di(x, y) − 1)) .

We set gradients of the Lagrange function w.r.t. the discrimi-
nator’s distribution and the Lagrange multipliers to zero

∂LADIM

∂Di(x, y)
=
ωipi(y∣x)

Di(x, y)
− λy = 0 , y ∈ Y, i ∈ I,

∂LADIM

∂λy
= ∑
i∈I

Di(x, y) − 1 = 0 , y ∈ Y .

Solving these equations yields the optimal discriminator
given by Eqn. (7), which completes the proof.

Given the optimal discriminator, we show that both the
student and the teacher fit the real data distribution perfectly
when ADIM achieves its equilibrium in the minimax game.

Theorem 4.4. In the minimax game of ADIM, the equilibrium
is achieved if and only if ps(y∣x) = pt(y∣x) = pr(y∣x). At that
point, the value function is equal to log(ωωr

r ωωs
s ωωt

t ).

Proof. Given the optimal discriminator in Lemma 4.3, the
minimax game of ADIM can be reformulated as

min
θs,θt

{V
∗
ADIM + νLKD(pt ∥ps) + µLKD(ps ∥pt)}

= ∑
i∈I

ωi ∑
y∈Y

pi(y∣x) log
ωipi(y∣x)

p̄a(y∣x)
+ νLKD(pt ∥ps)

+ µLKD(ps ∥pt) ,

= ∑
i∈I

ωi ∑
y∈Y

pi(y∣x)( logωi + log
pi(y∣x)

p̄a(y∣x)
) + νLKD(pt ∥ps)

+ µLKD(ps ∥pt) ,

= log(ωωr
r ωωs

s ωωt
t ) + ∑

i∈I

ωiLKL(pi ∥ p̄a) + νLKD(pt ∥ps)

+ µLKD(ps ∥pt) .

The second term, i.e., the summation over three Kullback-
Leibler divergences, achieves zero (the minimum) if and
only if ps(y∣x) = pt(y∣x) = pr(y∣x) = p̄a(y∣x) [32]. Therefore,
even when the distillation losses are not used (ν = µ = 0),
the equilibrium is still achieved if and only if the student
and the teacher perfectly fit the real data distribution. The
distillation losses are usually defined as the Kullback-Leibler
divergences between the real data, the student, and the
teacher. These Kullback-Leibler divergences achieve zero
(the minimum) if and only if ps(y∣x) = pt(y∣x) = pr(y∣x).
Hence, adding the distillation losses does not change the
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equilibrium, at which point the value function is equal to
log(ωωr

r ωωs
s ωωt

t ). This completes the proof.

To achieve the equilibrium, we should be able to sample
sufficient training instances from the real data distribution,
but in practice we often have a finite set of training instances.
Besides, the equilibrium requires the student and the teacher
to have enough capability to represent the real data distribu-
tion, but these models are often implemented by a certain
family of distributions. Our empirical results suggest that
while the theoretical guarantee may not hold in practice, we
can achieve a reasonable approximation to the equilibrium
by training limited-capacity models on a finite training set.

4.3 Training Acceleration via the Gumbel-Softmax Trick
Next, we discuss how to accelerate the training speed of the
proposed frameworks in terms of reducing the number of
training epochs required to converge. The training speed is
closely related to the variance of gradients: high-variance
gradients usually make the training process oscillate and
slow down the training speed [8], [38]. Compared with the
two-player framework NGAN, the proposed three-player
frameworks ADIB and ADIM by design can already reduce
the variance of gradients. This is because the three-player
frameworks introduce the teacher, and the gradients from
the teacher often have lower variance than those from the
discriminator. Moreover, we propose to obtain gradients with
even lower-variance by smoothing the discrete samples (i.e.,
fake labels) propagated between the student (or teacher) and
the discriminator into continuous samples with a reparame-
terization trick [22], [29]. The reparameterization trick allows
us to attain sufficient control over the variance, and hence
reduces the variance of gradients from the discriminator. In
the section, we will focus on ADIM and the same techniques
can also be applied to ADIB [42].

We begin by showing that the high-variance of a random
variable can be reduced by a low-variance random variable.

Lemma 4.5. Random variables X and Y have finite variance and
satisfy an inequality Var(X) ≤ Var(Y ). For any random variable
Z = λX + (1 − λ)Y (0 ≤ λ ≤ 1), we have Var(Z) ≤ Var(Y ).

Proof. Given Var(X) ≤ Var(Y ), the covariance Cov(X,Y )

is no more than the variance Var(Y ) because

Cov(X,Y ) ≤ ∣Cov(X,Y )∣ ≤
√

Var(X)Var(Y ) ≤ Var(Y ) .

Since Z = λX + (1 − λ)Y , we rewrite the variance Var(Z) as

λ2 Var(X) + 2λ(1 − λ)Cov(X,Y ) + (1 − λ)2 Var(Y )

≤ λ2 Var(Y ) + 2λ(1 − λ)Var(Y ) + (1 − λ)2 Var(Y ) .

This right hand side is Var(Y ), completing the proof.

Given the above lemma, we show that ADIM by design
can reduce the variance of gradients by introducing the
teacher into NGAN. In NGAN, the student only receives
gradients ∇θsVNGAN from the discriminator, whereas in
ADIM the student receives gradients ∇θsVADIM from both
the discriminator and the teacher, i.e.,

∇θsVNGAN = ∇
D
θs , ∇θsVADIM = ω∇Tθs + (1 − ω)∇Dθs , (8)

where 0 ≤ ω ≤ 1, ∇Tθs and ∇
D
θs

are the gradients of the
distillation and the adversarial losses w.r.t. the parameters

of the student. In practice, we observe that the gradients of
the distillation loss usually have lower variance than those
of the adversarial loss (see Section 5 for more details), which
is also consistent with previous findings [18], [35], Therefore,
according to Lemma 4.5, it can be shown that the gradients
w.r.t. the parameters of the student in ADIM have lower
variance than those in NGAN, i.e.,

Var(∇Tθs) ≤ Var(∇Dθs)

⇒ Var(∇θsVADIM) ≤ Var(∇θsVNGAN) .
(9)

We further reduce the variance of gradients with a
reparameterization trick, in particular, the Gumbel-Softmax
(GS) trick [22], [29]. The essence of the GS trick is to repa-
rameterize generating discrete samples from the student into
a differentiable function of the original parameters and an
additional random variable that obeys a Gumbel distribution.
Since the student defines a categorical distribution, we adopt
a concrete distribution qs(y∣x) to perform the GS trick [22].
Specifically, we define the concrete distribution as

qs(y∣x) = softmax(
log ps(y∣x) + g

τ
) , (10)

where g ∼ Gumbel(0,1) is a sample from the Gumbel
distribution 1 and τ > 0 is a temperature hyper-parameter.
We apply the concrete distribution qs(y∣x) to generate
continuous samples and use the continuous samples to
compute the gradients via the REINFORCE algorithm [40]

∇θsVADIM = ∇θs(ωsEy∼ps[logDs(x, y)]) ,

= ωsEy∼ps[∇θs log ps(y∣x) logDs(x, y)] ,

≈ ωsEy∼qs[∇θs log qs(y∣x) logDs(x, y)] .

(11)

We leverage the temperature hyper-parameter τ to control
the variance of gradients. With a high temperature, the con-
tinuous samples from the concrete distribution are smooth,
which results in low-variance gradient estimates [29]. A
limitation of the concrete distribution is that with a high
temperature, it becomes a less accurate approximation to the
original categorical distribution, which leads to biased gradi-
ent estimates. We overcome this limitation by annealing the
concrete distribution into the original categorical distribution:
we use a high temperature at the beginning and anneal the
temperature to a small and non-zero value during training.

Besides improving the training of the student, we also
apply the GS trick to improve the training of the teacher. We
use the standard back-propagation to update the parameters
of the discriminator [33]. The overall logic of training ADIM
is summarized in Algorithm 1. The three players are first
initialized with random values and then trained alternatively
via minibatch stochastic gradient descent.

4.4 Correlating Adversarial and Distillation Losses
During the training of ADIM, we observe that the gradients
of the adversarial and the distillation losses have a larger
cosine similarity when the hyper-parameters vary across a
certain range (e.g., Fig. 7). This observation motivates us
to explore the correlation between the adversarial and the
distillation losses. In this section, we show that in theory

1. Samples from the Gumbel distribution can be obtained by first
drawing u ∼ Uniform(0,1) and then computing g = − log(− logu).
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Algorithm 1: Minibatch stochastic gradient descent training of ADIM using the Gumbel-Softmax trick.

1 Randomly initialize the parameters θs, θt, and θd of a student S, a teacher T , and a discriminator D, respectively.
2 for the number of epochs for training ADIM do
3 for the number of steps for training the discriminator do
4 Sample a batch {(xrj , y

r
j )}

nr

j=1 ∼ p(x)pr(y∣x), {(xsj , y
s
j )}

ns

j=1 ∼ p(x)qs(y∣x), and {(xtj , y
t
j)}

nt

j=1 ∼ p(x)qt(y∣x).
5 Update the discriminator by ascending along the gradients of the value function w.r.t. its parameters

∇θdVADIM =
ωr
nr
∑
nr

j=1
∇θd logDr(x

r
j , y

r
j ) +

ωs
ns
∑
ns

j=1
∇θd logDs(x

s
j , y

s
j ) +

ωt
nt
∑
nt

j=1
∇θd logDt(x

t
j , y

t
j) .

6 for the number of steps for training the teacher do
7 Sample a batch of feature-label pairs {(xtj , y

t
j)}

nt

j=1 ∼ p(x)qt(y∣x) and {(xrj , y
r
j )}

nr

j=1 ∼ p(x)pr(y∣x).
8 Update the teacher by descending along the gradients of the value function w.r.t. its parameters

∇θtVADIM =
ωt
nt
∑
nt

j=1
∇θt log qt(y

t
j ∣x

t
j) logDt(x

t
j , y

t
j) +

µ

nr
∑
nr

j=1
∇θtLKD(ps(y

r
j ∣x

r
j) ∥pt(y

r
j ∣x

r
j)) .

9 for the number of steps for training the student do
10 Sample a batch of feature-label pairs {(xsj , y

s
j )}

ns

j=1 ∼ p(x)qs(y∣x) and {(xrj , y
r
j )}

nr

j=1 ∼ p(x)pr(y∣x).
11 Update the student by descending along the gradients of the value function w.r.t. its parameters

∇θsVADIM =
ωs
ns
∑
ns

j=1
∇θs log qs(y

s
j ∣x

s
j) logDs(x

s
j , y

s
j ) +

ν

nr
∑
nr

j=1
∇θsLKD(pt(y

r
j ∣x

r
j) ∥ps(y

r
j ∣x

r
j)) .

the adversarial losses used in ADIM can be reduced to the
distillation losses under certain conditions.

We first show that given the optimal discriminator, the
adversarial losses used in ADIM can be reduced to the
distillation loss used to train the student.

Lemma 4.6. Let υ =
ωr

ωt
. As ωs approaches 1, suppose that the

discriminator is optimal, the adversarial losses are reduced to the
distillation loss used for training the student

lim
ωs→1

V
∗
ADIM

ωt
= LKL(pt ∥ps) + υLKL(pr ∥ps) . (12)

Proof. As ωs approaches 1, ωt approaches 0. Hence, we can
write the following Taylor expansion [21]

LKL(ps ∥ps +∆s) = ∆⊺
sHs∆s ,

where Hs is a positive definite Hessian matrix, ∆s = ωtδs is
a vector with infinitesimally small values, and δs is given by

δs = υ(pr(y∣x) − ps(y∣x)) + (pt(y∣x) − ps(y∣x)) .

Based on the Taylor expansion, we can compute the limit as

lim
ωs→1

V
∗
ADIM

ωt
= lim
ωs→1

∑
i∈I

ωiLKL(pi ∥ωrpr + ωsps + ωtpt)

ωt
,

=
ωr
ωt
LKL(pr ∥ps) + lim

ωs→1

ωs
ωt
LKL(ps ∥ps +∆s) + LKL(pt ∥ps) ,

= υLKL(pr ∥ps) + lim
ωs→1

ωtδ
⊺
sHsδs + LKL(pt ∥ps) ,

which is equal to the distillation loss used to train the student.
This is because as ωs goes to 1, ωt goes to 0 and hence the
second term vanishes. This completes the proof.

Since the student and the teacher are symmetric up to
privileged provisions in ADIM, we show that the same
adversarial losses can also be reduced to the distillation
loss used to train the teacher. Due to page limit, we omit
the proof which can essentially be obtained by switching the
student and the teacher in the proof of Lemma 4.6.

Lemma 4.7. Let υ =
ωr

ωs
. As ωt approaches 1, suppose that the

discriminator is optimal, the adversarial losses are reduced to the
distillation loss used for training the teacher

lim
ωt→1

V
∗
ADIM

ωs
= LKL(ps ∥pt) + υLKL(pr ∥pt) . (13)

Lemmas 4.6 and 4.7 show the generality of the adversarial
losses: the distillation losses are different limits of the adver-
sarial losses given the optimal discriminator. Note that the
conditions, under which Lemmas 4.6 and 4.7 hold, are often
hard to satisfy in practice: (1) The optimal discriminator is
difficult to obtain due to the dependence on the student and
the teacher, both of which keep changing during training. (2)
The limits of the adversarial losses cannot be reached because
the hyper-parameters are usually set within a reasonable
range for good empirical performance. However, finding
such a tight correlation between the adversarial and the
distillation losses can help us obtain more insights into the
behaviors of ADIM. We will use these theoretical results to
explain our observation in experiments (see Section 5).

5 EXPERIMENTS

The proposed three-player frameworks can be applied to a
wide range of multi-label learning tasks where privileged
provisions are available. We use the task of deep model
compression to illustrate the applicability of our frameworks
in Section 5.1, where intensive computation resources are
privileged provisions. We also apply our frameworks to the
task of image tag recommendation in Section 5.2, where extra
textual features are privileged provisions.

First, we briefly describe the common experimental
setup used across different tasks. We use Tensorflow [1]
to implement the proposed ADIB and ADIM frameworks.
We use two widely adopted formulations of distillation
losses: the L2 loss between logits [7] and the Kullback-Leibler
divergence between distributions [18]. The two formulations
exhibit comparable results and the results presented in this
paper are based on the Kullback-Leibler divergence. To

Authorized licensed use limited to: University of Melbourne. Downloaded on March 07,2020 at 12:24:57 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE 1: Accuracy in deep model compression (n is the number of training images). Our approaches are ADIB and ADIM.

MNIST CIFAR

n = 100 n = 1,000 n = 10,000 n = 50,000 n = 500 n = 5,000 n = 10,000 n = 50,000

CODIS 74.02 ± 0.13 95.77 ± 0.10 98.89 ± 0.08 99.31 ± 0.06 54.17 ± 0.20 77.82 ± 0.14 81.60 ± 0.13 85.12 ± 0.11
DISTN 68.34 ± 0.06 93.97 ± 0.08 98.79 ± 0.07 99.26 ± 0.05 50.92 ± 0.18 76.59 ± 0.15 80.03 ± 0.09 83.32 ± 0.08
NOISY 66.53 ± 0.18 93.45 ± 0.11 98.58 ± 0.11 99.05 ± 0.10 50.18 ± 0.28 75.42 ± 0.19 79.89 ± 0.17 82.99 ± 0.12
MIMIC 67.35 ± 0.15 93.78 ± 0.13 98.65 ± 0.05 98.99 ± 0.04 51.74 ± 0.23 75.66 ± 0.17 80.32 ± 0.14 84.33 ± 0.10
NGAN 64.90 ± 0.31 93.60 ± 0.22 98.95 ± 0.19 99.36 ± 0.16 46.29 ± 0.32 76.11 ± 0.24 81.11 ± 0.22 85.34 ± 0.27

ADIB 77.95 ± 0.08 96.42 ± 0.09 99.25 ± 0.06 99.54 ± 0.05 57.56 ± 0.18 79.36 ± 0.16 83.02 ± 0.11 86.50 ± 0.10
ADIM 78.70 ± 0.11 97.20 ± 0.09 99.38 ± 0.08 99.61 ± 0.04 59.10 ± 0.20 80.53 ± 0.17 83.93 ± 0.10 87.03 ± 0.09

TABLE 2: Storage and runtime complexity of the student (S)
and the teacher (T ) in the task of deep model compression.

Dataset Model Implementation #Parameters #Flops

MNIST
S MLP 1.28M 2.55M
T LeNet 4.62M 9.23M

CIFAR
S LeNet 1.03M 2.06M
T DenseNet 15.58M 77.66M

compute the categorical distribution defined by the student,
we apply a softmax function to a scoring function f(x, y; θs)
that does not use privileged provisions

ps(y∣x) = softmax(f(x, y; θs)) , y ∈ Y . (14)

In contrast, to compute the categorical distribution defined
by the teacher, we apply a softmax function to a scoring
function g%(x, y; θt) that makes use of privileged provisions

pt(y∣x) = softmax(g%(x, y; θt)) , y ∈ Y . (15)

Like the teacher, the discriminator can also use privileged
provisions. Hence, we implement the binary-class discrim-
inator by applying a sigmoid function to the same scoring
function g%(x, y; θd) with a different set of parameters

D(x, y) = sigmoid(g%(x, y; θd)) . (16)

For simplicity, we implement the multi-class discriminator
with two binary-class discriminators: one decides whether
a label is real or fake, and the other decides whether a fake
label is generated by the student or the teacher. The scoring
functions are task-specific and are detailed in respective
sections. We search the hyper-parameters within 0 < ωs < 1,
0 < ωt < 1, 0.001 < ν < 1000, 0.0001 < µ < 100 based on
validation performance. We apply the GS trick when training
ADIB and ADIM in all experiments, unless otherwise stated.
We find that a reasonable annealing schedule for the temper-
ature hyper-parameter τ is to start with a large value (10.)
and exponentially decay it to a small value (0.1).

5.1 Deep Model Compression

Deep model compression aims at improving the deployabil-
ity of deep models on portable devices such as smart phones
by reducing the storage and the runtime complexity of such
models. Since we usually train deep models on powerful
servers, we treat extensive computational resources available
at training as privileged provisions in this task.

Experimental Setup. We experiment with the widely
adopted MNIST [26] and CIFAR [23] datasets. The MNIST

TABLE 3: Storage and training complexity in deep model
compression. The training time of ADIB is regarded as 1×.

Dataset Approach #Parameters #Flops Training (s)

MNIST
ADIB 10.51M 21.01M 1×
ADIM 15.13M 30.24M 1.23×

CIFAR
ADIB 32.30M 156.09M 1×
ADIM 47.78M 233.10M 1.17×

dataset has 60,000 grayscale images (50,000 for training and
10,000 for testing) with 10 different label classes. For fair
comparison with previous work [35], we do not preprocess
the images on MNIST. The CIFAR dataset has 60,000 colored
images (50,000 for training and 10,000 for testing) with
10 different label classes. We preprocess the images by
subtracting per-pixel mean and augment the training dataset
by mirrored images. On MNIST, we implement the scoring
functions f(x, y) and g%(x, y) based on an MLP and a LeNet.
On CIFAR, we implement the scoring functions f(x, y) and
g%(x, y) based on a LeNet and a DenseNet. We detail the
architectures of the MLP, the LeNets, and the DenseNet in
the appendix (see Section A). We summarize the storage and
the runtime complexity of the student and the teacher by the
number of parameters and floating point operations (flops)
in Table 2. We evaluate the approaches over 10 different runs
with random initializations and report the mean accuracy
and the standard deviation. Since the focus of this paper is to
achieve a better accuracy for a given architecture suitable for
inference, we defer to the appendix comparing the student
and the teacher in terms of ratio of compression and drop of
accuracy (see Section C).

Overall Results. First, we compare ADIB and ADIM with
NGAN and KD-based approaches including MIMIC [7],
DISTN [18], NOISY [35], and CODIS [2] in terms of accuracy.
We vary the number of training images from 100 to 50,000.
We show the results on MNIST and CIFAR in Table 1. The
proposed ADIM performs the best on both datasets, e.g.,
ADIM (78.70%) outperforms CODIS (74.02%) by 6.32% on
MNIST. Although the architectures of the student are the
same in ADIB and ADIM, we can see that ADIM is more
accurate than ADIB at the cost of increased storage and
training complexity, as shown in Table 3. We also find
that ADIM requires a smaller number of training instances
than NGAN does to reach the same level of accuracy. For
example, ADIM using fewer training samples (10,000) has a
higher accuracy (99.38% vs. 99.36%) than NGAN using more
training samples (50,000) on MNIST. This can be explained by
that the teacher of ADIM provides soft targets for training the
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Fig. 3: Effects of the hyper-parameters in ADIM using 100, 1,000, and 10,000 training images on the MNIST dataset.
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Fig. 4: Training curves of the student on MNIST.
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Fig. 5: Variance of the gradients w.r.t. the student on MNIST.

student. The soft targets have high entropy and reveal much
useful information about training instances. Hence, the soft
targets impose much more constraints on the training than
the real labels do, which reduces the number of instances
required to train the student. We further compare NGAN
with the KD-based approaches. We observe that NGAN
performs better when a large number of training instances
are available (e.g., 50,000 training images on CIFAR), while
KD-based approaches perform better when a small number
of training images are available (e.g., 500 training images
on CIFAR). This is consistent with our analyses in Section 3
that NGAN can learn the real data distribution better, which
however requires a large amount of training data.

Training Speed. Next, we investigate the training speed
of various approaches in terms of the number of training
epochs required for convergence. To examine the benefits
of using the GS trick for training, we refer to ADIM that
does not use the GS trick as ADIM-NGS. We present typical
training curves (i.e., accuracy against training epochs) of the
student using 100 training images on MNIST in Fig. 4 (the
training curves of using more training images are similar).
We can see that NGAN converges to a worse accuracy even
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Fig. 6: Accuracy of the teacher on MNIST with varying µ.

with a larger number of training epochs than the other
approaches (involving a teacher) do. We also find that the
training curve of NGAN is less stable than those of the other
approaches after convergence. This is largely because the
gradients that the student obtains from the discriminator (via
the adversarial losses) have higher variance than those from
the teacher (via the distillation losses), as shown in Fig. 5. By
comparing ADIM with ADIM-NGS, we can see that the GS
trick speeds up the training by around 50% and improves
the accuracy by around 2% (from 77.20% to 78.70%). One
possible reason is that the GS trick can effectively reduce the
variance of the gradients from the discriminator as discussed
in Section 4.3. This is also observed in our experiments by
comparing the gradient variance of the adversarial loss in
ADIM-NGS (see Fig. 5a) with that in ADIM (see Fig. 5b).

Ablation Study. Next, we study how the proposed ADIM
achieves the highest accuracy. We present the accuracy
of ADIM against the hyper-parameters using 100, 1,000,
and 10,000 training images on MNIST in Fig. 3 (note the
logarithmic scale of the x-axis). We find that ωr, ωs, and
ωt have a relatively small effect on the accuracy, which
suggests that ADIM is a robust framework. We can see
that the teacher is important in improving the accuracy of
the student especially when the number of training images
is small. For example, if we set ν to a very small value
(0.001), we get more than 2% drop in accuracy (from 78.70%
to 76.46%) when using 100 training images. We also find
that a large value of µ causes the accuracy of the student
to deteriorate rapidly. Such accuracy deterioration occurs
because the soft targets provided by the student are usually
noisy. Emphasizing on training the teacher to predict the
noisy targets decreases the accuracy of the teacher, as shown
in Fig. 6. The decrease in the accuracy of the teacher in turn
decreases the accuracy of the student via the distillation
process. However, the teacher achieves a higher accuracy
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TABLE 4: Accuracy in image tag recommendation on YFCC. The proposed approaches are ADIB and ADIM.

Most Popular Tags Randomly Sampled Tags

MAP MRR P@3 R@3 F@3 NDCG@3 MAP MRR P@3 R@3 F@3 NDCG@3

KVOTE 0.5755 0.5852 0.2320 0.4400 0.2339 0.5592 0.3970 0.4092 0.1623 0.2790 0.1575 0.3607
TPROP 0.6177 0.6270 0.2420 0.5281 0.2811 0.6103 0.4512 0.4636 0.1883 0.3244 0.1810 0.4225
TFEAT 0.6417 0.6503 0.2560 0.5420 0.2871 0.6371 0.5149 0.5309 0.2002 0.4132 0.2195 0.4990
REXMP 0.7015 0.7122 0.2720 0.6285 0.3324 0.6999 0.5205 0.5331 0.2228 0.4450 0.2427 0.5377
NGAN 0.7432 0.7555 0.2892 0.6676 0.3516 0.7465 0.5791 0.5911 0.2415 0.4904 0.2693 0.5834

ADIB 0.7787 0.7905 0.3047 0.6971 0.3678 0.7846 0.6302 0.6452 0.2572 0.5403 0.2946 0.6255
ADIM 0.7862 0.7980 0.3060 0.7032 0.3687 0.7914 0.6480 0.6623 0.2620 0.5462 0.2950 0.6416
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Fig. 7: Cosine similarity between the gradients of adversarial
and distillation losses w.r.t. the student (a) or the teacher (b).

when learning from the student, e.g., the accuracy of setting
µ = 0.001 is higher than that of setting µ = 0, as shown
in Fig. 6. To study the correlation between the adversarial
and the distillation losses, we compute the cosine similarity
between their gradients during training. We average the
cosine similarity over training epochs when training ADIM
using 100 training images on MNIST and present the results
in Fig. 7. Fig. 7a shows that the gradients of the adversarial
and the distillation losses w.r.t. the student become more
similar as ωs goes to 1. Fig. 7b shows that the gradients of
the adversarial and the distillation losses w.r.t. the teacher
become more similar as ωt goes to 1. We do not observe such
trend if we set ωs (ωt) to a very small value (< 2−3) or to
a very large value (> 26). This is because when we set the
hyper-parameters outside a reasonable range, ADIM does
not perform well and the discriminator can be far from the
optimality. These results are consistent with our theoretical
results in Lemmas 4.6 and 4.7. We obtain similar results about
the effects of the hyper-parameters on CIFAR.

5.2 Image Tag Recommendation

Next, we experiment with the task of image tag recommen-
dation, which aims to recommend relevant tags for users to
label their images uploaded to image-hosting websites such
as Flickr. Specifically, the goal is to recommend relevant tags
right after a user uploads an image. This way, the user can
just select from the recommended tags instead of inputting
tags, which is inconvenient. Users may continue to add
extra texts, e.g., titles and descriptions about the uploaded
image. We only use such extra texts for training as privileged
provisions. The student, once trained, only takes an uploaded
image as input to recommend tags at inference.

Experimental Setup. We use the Yahoo Flickr Creative
Commons 100 Million (YFCC) dataset [37]. To simulate
the case where extra texts about images are available at
training, we randomly sample 20,000 images with titles or
descriptions for training and sample another 2,000 images
for testing. We create a dataset of images labeled with the
200 most popular tags and create another one labeled with
200 randomly sampled tags. Following an earlier study [3],
we use a VGGNet [36] pretrained on ImageNet [13] to extract
visual features and use a LSTM [19] with pretrained word
embeddings [31] to learn textual features. We implement the
scoring function f(x, y) as an MLP taking visual features as
input and g%(x, y) as an MLP taking element-wise product of
the visual and the textual features as input. The architectures
of the MLPs are detailed in the appendix (see Section B).
We use precision (P@3), recall (R@3), F-measure (F@3),
normalized discounted cumulative gain (NDCG@3), mean
average precision (MAP), and mean reciprocal ranking (MRR)
to evaluate the accuracy of the student and the teacher.

Overall Results. First, we compare the students of ADIB
and ADIM with KNN [30], TPROP [17], TFEAT [10], and
REXMP [27] in terms of accuracy. The results using the
most popular and using the randomly sampled tags are
presented in Table 4. We can see that ADIM achieves
consistent improvements over the other approaches under all
the evaluation metrics. Although ADIM does not explicitly
model the semantic similarity between two tags like what
REXMP does, it still makes better recommendations than
REXMP does. The reason is that in ADIM, the teacher
provides the student with soft targets at training. The soft
targets contain a rich similarity structure over tags which
cannot be modeled well by any pairwise similarities between
tags in REXMP. For example, an image labeled with a
tag volleyball is provided with a soft target assigning
probabilities of 10−2 to basketball, 10−4 to baseball, and
10−8 to dragonfly. The reason why the teacher generalizes
is reflected in the relative probabilities over tags, which can
be used for guiding the student to generalize better.

Training Speed. We also examine the training speed of
the approaches. We use P@3 to evaluate the accuracy of
the student and present the training curves using the most
popular tags in Fig. 9. We can see that: (1) ADIM learns a
more accurate student with a smaller number of training
epochs than the other approaches; (2) NGAN is unstable
largely due to high variance of the gradients from the
adversarial losses, as shown in Fig. 10. We observe a similar
trend when using the other metrics to evaluate the accuracy.

Ablation Study. Last, we explore how the accuracy of
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Fig. 8: Effects of the hyper-parameters in ADIM using the most popular tags on the YFCC dataset.
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Fig. 10: Variance of the gradients w.r.t. the student on YFCC.

ADIM varies against the hyper-parameters. The results using
the most popular tags are presented in Fig. 8. We can
see that the effects of the hyper-parameters in image tag
recommendation are consistent with those in deep model
compression. We also study the benefits of the teacher
learning from the student by varying µ. We use MAP and
P@3 to evaluate the accuracy of the teacher and present the
results using the most popular tags in Fig. 11. We can see
that the teacher achieves the highest accuracy when learning
from the student with µ = 0.001. We further compute the
cosine similarity, averaged over training epochs, between the
gradients of the adversarial and the distillation losses. Fig. 7
shows the results using the most popular tags, which are
similar to those in deep model compression.

6 CONCLUSION

We proposed a novel training framework, adversarial distilla-
tion, for learning with privileged provisions. We formulated
adversarial distillation as a minimax game where a student
and a teacher compete against a discriminator via adversarial
losses while learning from each other via distillation losses.
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Fig. 11: Accuracy of the teacher on YFCC with varying µ.

We proposed two variants of adversarial distillation: one uses
a binary-class discriminator for more efficient training and
the other uses a multi-class discriminator for more accurate
inference. We proved that both of the variants guarantee the
equilibrium where the student and the teacher fit the real data
distribution perfectly. We proposed a Gumbel-Softmax trick
to control the variance of gradients and hence obtain low-
variance gradient updates during training. We proved that
the adversarial losses can be reduced to the distillation losses
used to train the student and the teacher. We showed that
adversarial distillation significantly outperforms the state-
of-the-art in the tasks of image tag recommendation and
deep model compression. We also showed that the Gumbel-
Softmax trick speeds up the training by reducing the variance
of the gradients from the discriminator.
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