

DECONSTRUCTING GUIDANCE: A SEMANTIC HIERARCHY FOR PRECISE DIFFUSION MODEL EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

Text-guided image editing requires more than prompt following—it demands a principled understanding of what to modify versus what to preserve. We investigate the internal guidance mechanism of diffusion models and reveal that the guidance signal follows a structured semantic hierarchy. We formalize this insight as the Semantic Scale Hypothesis: the magnitude of the guidance difference vector ($\Delta\epsilon$) directly encodes the semantic scale of edits. Crucially, this phenomenon is theoretically grounded in Tweedie’s formula, which links score prediction to the variance of the underlying data distribution. Low-variance regions, such as objects, yield large-magnitude differences corresponding to structural edits, whereas high-variance regions, such as backgrounds, yield small-magnitude differences corresponding to stylistic adjustments. Building on this principle, we introduce Prism-Edit, a training-free, plug-and-play module that decomposes the guidance signal into semantic layers, enabling selective and interpretable control. Extensive experiments—spanning direct visualization of the semantic hierarchy, generalization across foundation models, and integration with state-of-the-art editors—demonstrate that Prism-Edit achieves precise, robust, and controllable editing. Our findings establish semantic scale as a foundational axis for understanding and advancing diffusion-based image editing.

Figure 1: Prism-Edit achieves competitive precision across diverse editing tasks. By decomposing the guidance signal, our method prevents common failure modes like semantic leakage (a) and content degradation (b, c), while excelling at the challenging task of background modification (d).

1 INTRODUCTION

The ability to sculpt our visual world through natural language is a central ambition of artificial intelligence. Recent advancements in text-to-image diffusion models (Rombach et al., 2022; Esser et al., 2024; Labs, 2024) have brought this vision closer to reality, largely powered by Classifier-Free Guidance (CFG) (Ho & Salimans, 2021). Yet despite their remarkable success, current editing methods suffer from a persistent weakness: **background regions are notoriously difficult to modify.**

054 while object-centric edits succeed more reliably (Figure 1). For instance, a command to move an owl
 055 from “the wild” to “a school” often fails to convincingly alter the scene or inadvertently degrades the
 056 subject.

057 Prior approaches have mainly attacked this problem through heuristic spatial controls, asking where
 058 an edit should occur. These techniques often involve manipulating cross-attention maps (Hertz et al.,
 059 2023; Cao et al., 2023; Kim et al., 2025) or using the guidance difference vector to generate a spatial
 060 mask that separates the image into edit and preserve zones (Couairon et al., 2023).
 061

062 In contrast, we argue the true bottleneck lies in *how* the guidance signal itself is structured. We show
 063 that the guidance difference vector $\Delta\epsilon$, central to CFG, is not random noise but the *gradient of a*
 064 *log-likelihood ratio*, whose expected magnitude is governed by local Fisher information density. This
 065 framing reveals a fundamental statistical law: **objects, being information-dense, naturally yield**
 066 **strong guidance, whereas backgrounds, being information-sparse, yield weak guidance**. We call
 067 this principle the **Semantic Scale Hypothesis**, which reinterprets background editing failure as an
 068 information-theoretic inevitability rather than an incidental flaw of prior methods.
 069

070 Building on this insight, we propose **Prism-Edit**, a training-free, model-agnostic technique that de-
 071 composes the guidance signal into semantic layers and selectively amplifies the weak, low-information
 072 components corresponding to backgrounds. As previewed in Figure 1, this enables precise object
 073 edits while, for the first time, delivering robust and controllable background modifications. Our
 074 contributions are threefold:

- 075 1. **The Semantic Scale Hypothesis:** We formalize a new principle that connects guidance
 076 magnitude to Fisher information, providing the first theoretical explanation for the persistent
 077 difficulty of background editing.
- 078 2. **Prism-Edit:** A simple, training-free, and model-agnostic method that operationalizes this
 079 principle by amplifying low-information signals.
- 080 3. **Extensive Validation:** We validate our hypothesis and method across multiple foundation
 081 models, showing consistent gains over state-of-the-art editors, especially for challenging
 082 background edits.

083 2 RELATED WORK

084 Text-guided image editing with diffusion models (Ho et al., 2020; Song et al., 2021; Ramesh et al.,
 085 2022; Esser et al., 2024; Labs, 2024), initiated by methods like SDEdit (Meng et al., 2022), has
 086 predominantly focused on spatial control—determining “**WHERE**” to apply edits. This paradigm
 087 includes techniques like manipulating attention maps (Tumanyan et al., 2023; Hertz et al., 2023;
 088 Cao et al., 2023) or refining sampling trajectories (Brack et al., 2024) to localize changes. Notably,
 089 DiffEdit (Couairon et al., 2023) pioneered using the guidance difference vector, $\Delta\epsilon$, to automatically
 090 generate a spatial mask. However, this still interprets the signal spatially, partitioning the image
 091 into a binary “edit” versus “preserve” zone. We provide a detailed comparison highlighting the
 092 fundamental difference between DiffEdit’s masking strategy and our gradient modulation approach
 093 in Appendix C.7.

094 Our work poses a complementary question: “**HOW**” should an edit be applied? We shift the focus
 095 from the signal’s location to its intrinsic semantic nature. We posit that the magnitude of $\Delta\epsilon$ is not
 096 merely a spatial indicator, but a rich signal encoding a semantic hierarchy. Instead of creating a
 097 binary mask, our method decomposes this signal into distinct semantic layers (e.g., object structure,
 098 style/background). This enables a more expressive, disentangled form of control by modulating the
 099 guidance signal’s intrinsic semantic structure rather than just its spatial application.
 100

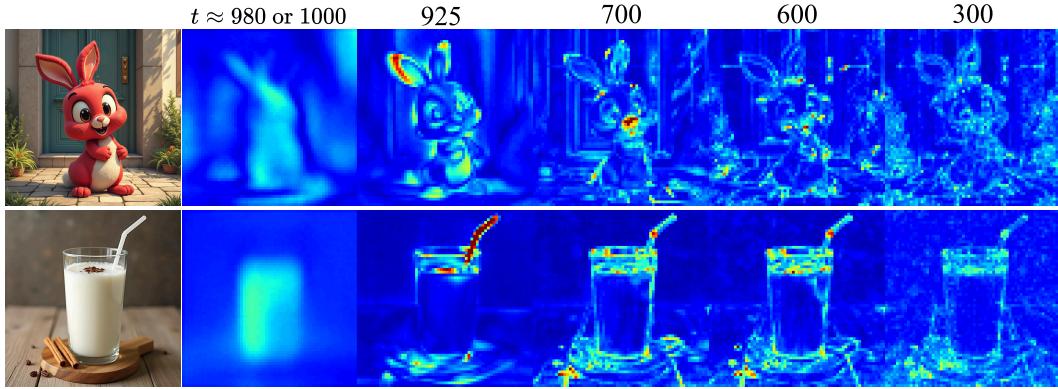
101 3 PRELIMINARY

102 Our work builds upon the standard framework of text-to-image diffusion models (Ho et al., 2020) and
 103 Classifier-Free Guidance (CFG) (Ho & Salimans, 2021). During sampling, CFG steers the generation
 104 process by extrapolating from an unconditional noise prediction $\epsilon_\theta(\mathbf{x}_t, \emptyset)$ towards a conditional
 105 prediction $\epsilon_\theta(\mathbf{x}_t, \mathbf{c})$. Our analysis focuses on the core of this mechanism: the **Guidance Difference**
 106 **Vector**, $\Delta\epsilon = \epsilon_\theta(\mathbf{x}_t, \mathbf{c}_{\text{target}}) - \epsilon_\theta(\mathbf{x}_t, \mathbf{c}_{\text{source}})$, which represents the model’s perceived direction to

108 transform a source concept into a target. We hypothesize that the magnitude of this vector, $\|\Delta\epsilon\|$, is a
 109 structured semantic signal.
 110

111 4 THEORETICAL FOUNDATION: GUIDANCE AS A GRADIENT FIELD

114 Our central claim, the Semantic Scale Hypothesis, is not merely an empirical observation but appears
 115 to be a direct consequence of the statistical principles governing diffusion models. This section
 116 provides a first-principles derivation, showing that the guidance difference vector $\Delta\epsilon$ acts as a gradient
 117 field of a log-likelihood ratio, whose magnitude is intrinsically linked to the local information density
 118 of the image. The temporal evolution in Figure 2 provides strong empirical support for this derived
 119 theory.



133 Figure 2: Temporal evolution of the guidance difference vector, $\|\Delta\epsilon\|$, during a standard generation
 134 trajectory. High-magnitude signals, encoding object structure, dominate in the early-to-mid timesteps
 135 before diminishing, while background regions remain consistently low-magnitude throughout. This
 136 provides strong empirical support for the Semantic Scale Hypothesis.
 137

139 4.1 THE GUIDANCE DIFFERENCE AS A LOG-LIKELIHOOD RATIO GRADIENT

141 The foundation of a diffusion model is its score function, $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t \mid c)$, which points in the
 142 direction of maximal increase in data likelihood. With the standard ϵ -parameterization, the predicted
 143 noise $\epsilon_\theta(\mathbf{x}_t, c)$ is proportional to this score. Classifier-Free Guidance steers the generation by taking
 144 the difference between a conditional and an unconditional prediction. The core of any edit, however, is
 145 the difference between two conditional predictions (source c_1 and target c_2). This guidance difference
 146 vector, $\Delta\epsilon$, is therefore proportional to the difference between two scores:

$$147 \Delta\epsilon(\mathbf{x}_t; c_1, c_2) \propto \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c_2) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c_1). \quad (1)$$

149 By the properties of logarithms, this simplifies to the gradient of a single scalar field: the log-likelihood
 150 ratio between the target and source conditions.

$$151 \Delta\epsilon(\mathbf{x}_t; c_1, c_2) \propto \nabla_{\mathbf{x}_t} \log \frac{p(\mathbf{x}_t | c_2)}{p(\mathbf{x}_t | c_1)}. \quad (2)$$

154 This reframes the guidance vector: it is not just a directional hint, but a vector field that points “uphill”
 155 on the surface of how much more likely the noisy image \mathbf{x}_t is under the target condition versus the
 156 source condition. The magnitude $\|\Delta\epsilon\|$ thus reflects the steepness of this likelihood ratio landscape.

158 4.2 INFORMATION DENSITY AND POSTERIOR CERTAINTY

160 The steepness of the landscape in Eq. 2 is determined by the model’s “certainty” about the underlying
 161 clean image \mathbf{x}_0 . This certainty is directly related to the local information density of the image content,
 a principle linked to the model’s posterior via Tweedie’s formula (Efron, 2011).

- **Structured Regions (e.g., objects):** These areas are characterized by high information density (edges, textures, recognizable forms). Given a noisy patch from an object, the model has strong priors, leading to a sharp posterior distribution $p(\mathbf{x}_0 | \mathbf{x}_t, c)$ with low variance. The model is “certain” about what should be there.
- **Smooth Regions (e.g., backgrounds):** These areas have low information density (smooth gradients, skies, walls). The model’s posterior is flat, with high variance, as many clean signals could have resulted in the same noisy patch. The model is “uncertain.”

A sharp, low-variance posterior means that a small change in the condition (from c_1 to c_2) can cause a dramatic shift in the posterior mean $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, c]$. Conversely, for a flat, high-variance posterior, the same conditional change results in a much smaller shift.

4.3 SYNTHESIS: SEMANTIC SCALE AS A CONSEQUENCE OF INFORMATION DENSITY

We can now connect these principles. The magnitude $\|\Delta\epsilon\|$ is proportional to the posterior mean shift $\|\Delta\mu_t\|$:

$$\|\Delta\epsilon(\mathbf{x}_t; c_1, c_2)\| \propto \frac{\|\Delta\mu_t\|}{\sigma_t}, \quad \Delta\mu_t := \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, c_2] - \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, c_1]. \quad (3)$$

This proportionality follows from the relationship between the ϵ -parameterization and the posterior mean derived from Tweedie’s formula (a brief proof sketch is provided in A for clarity). As established in Sec. 4.2, edits concerning high-information, low-variance regions (objects) induce large posterior shifts ($\|\Delta\mu_t\|$), resulting in a large-magnitude $\|\Delta\epsilon\|$. Edits concerning low-information, high-variance regions (backgrounds, styles) induce small shifts, resulting in a small-magnitude $\|\Delta\epsilon\|$. Therefore, we interpret the Semantic Scale Hypothesis as a natural consequence of applying information-theoretic principles to the score-matching objective. Large-magnitude guidance is not just correlated with objects; it appears to be the mathematical result of the model being more “certain” and “opinionated” about these information-dense regions. Prism-Edit is the first method to leverage this insight, reframing editing not as a masking problem, but as a principled signal processing challenge: separating and amplifying semantically crucial components based on their information-theoretic signature.

4.4 CLOSED-FORM BOUNDS UNDER GAUSSIAN POSTERIOR APPROXIMATION

The proportionality in Eq. equation 3 can be made quantitatively precise by adopting a local Gaussian approximation of the posterior:

$$p(\mathbf{x}_0 | \mathbf{x}_t, c_i) \approx \mathcal{N}(\boldsymbol{\mu}_{c_i}, \boldsymbol{\Sigma}_{c_i}) \quad (i \in \{1, 2\}).$$

Under this approximation, the mean shift is $\Delta\mu_t := \boldsymbol{\mu}_{c_2} - \boldsymbol{\mu}_{c_1}$ and Eq. equation 3 suggests $\|\Delta\epsilon\| \propto \|\Delta\mu_t\|/\sigma_t$. We now upper/lower bound $\|\Delta\epsilon\|^2$ in terms of closed-form divergences between Gaussians, which separates *mean-shift* and *covariance-mismatch* effects.

Theorem 1 (KL-based bound for guidance magnitude). *Let d be the dimensionality and define the Gaussian KL divergence*

$$D_{\text{KL}}(\mathcal{N}(\boldsymbol{\mu}_{c_1}, \boldsymbol{\Sigma}_{c_1}) \| \mathcal{N}(\boldsymbol{\mu}_{c_2}, \boldsymbol{\Sigma}_{c_2})) = \frac{1}{2} \left[\text{tr}(\boldsymbol{\Sigma}_{c_2}^{-1} \boldsymbol{\Sigma}_{c_1}) + (\Delta\mu_t)^\top \boldsymbol{\Sigma}_{c_2}^{-1} \Delta\mu_t - d + \log \frac{\det \boldsymbol{\Sigma}_{c_2}}{\det \boldsymbol{\Sigma}_{c_1}} \right].$$

Then, for any t ,

$$\|\Delta\epsilon\|^2 \leq \frac{\lambda_{\max}(\boldsymbol{\Sigma}_{c_2})}{\sigma_t^2} \left\{ 2 D_{\text{KL}}(\mathcal{N}(\boldsymbol{\mu}_{c_1}, \boldsymbol{\Sigma}_{c_1}) \| \mathcal{N}(\boldsymbol{\mu}_{c_2}, \boldsymbol{\Sigma}_{c_2})) - \underbrace{\left[\text{tr}(\boldsymbol{\Sigma}_{c_2}^{-1} \boldsymbol{\Sigma}_{c_1}) - d - \log \det(\boldsymbol{\Sigma}_{c_2}^{-1} \boldsymbol{\Sigma}_{c_1}) \right]}_{\Psi(\boldsymbol{\Sigma}_{c_1}, \boldsymbol{\Sigma}_{c_2})} \right\}, \quad (4)$$

and symmetrically with (c_1, c_2) swapped:

$$\|\Delta\epsilon\|^2 \leq \frac{\lambda_{\max}(\boldsymbol{\Sigma}_{c_1})}{\sigma_t^2} \left\{ 2 D_{\text{KL}}(\mathcal{N}(\boldsymbol{\mu}_{c_2}, \boldsymbol{\Sigma}_{c_2}) \| \mathcal{N}(\boldsymbol{\mu}_{c_1}, \boldsymbol{\Sigma}_{c_1})) - \Psi(\boldsymbol{\Sigma}_{c_2}, \boldsymbol{\Sigma}_{c_1}) \right\}. \quad (5)$$

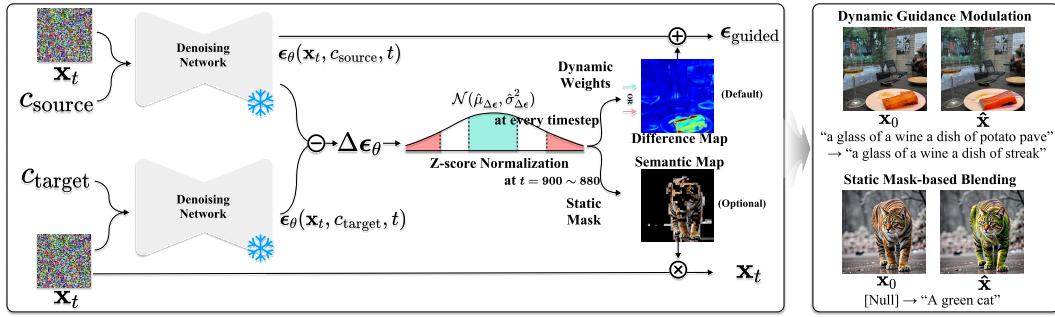


Figure 3: **Overall Prism-Edit framework.** The Semantic Map is extracted from early denoising (left), and applied during sampling via *dynamic guidance modulation* (default) or *static mask blending* (optional). Region-specific scaling enables strong background edits without destabilizing objects.

Moreover, the following lower bounds hold:

$$\|\Delta\epsilon\|^2 \geq \frac{\lambda_{\min}(\Sigma_{c_2})}{\sigma_t^2} \left\{ 2 D_{\text{KL}}(\mathcal{N}(\mu_{c_1}, \Sigma_{c_1}) \| \mathcal{N}(\mu_{c_2}, \Sigma_{c_2})) - \Psi(\Sigma_{c_1}, \Sigma_{c_2}) \right\}, \quad (6)$$

and analogously with (c_1, c_2) swapped.

Interpretation. The term $\Psi(\Sigma_{c_1}, \Sigma_{c_2}) = \text{tr}(\Sigma_{c_2}^{-1} \Sigma_{c_1}) - d - \log \det(\Sigma_{c_2}^{-1} \Sigma_{c_1}) \geq 0$ quantifies the *covariance mismatch* (it vanishes iff $\Sigma_{c_1} = \Sigma_{c_2}$). Hence the bound cleanly separates (i) the *mean-shift* captured by the KL divergence and (ii) the *uncertainty gap* captured by Ψ .

Corollary 1 (Equal-covariance simplification). *If $\Sigma_{c_1} = \Sigma_{c_2} = \Sigma$, then $\Psi = 0$ and*

$$\frac{2 \lambda_{\min}(\Sigma)}{\sigma_t^2} D_{\text{KL}}(\mathcal{N}(\mu_{c_1}, \Sigma) \| \mathcal{N}(\mu_{c_2}, \Sigma)) \leq \|\Delta\epsilon\|^2 \leq \frac{2 \lambda_{\max}(\Sigma)}{\sigma_t^2} D_{\text{KL}}(\mathcal{N}(\mu_{c_1}, \Sigma) \| \mathcal{N}(\mu_{c_2}, \Sigma)).$$

Thus larger guidance magnitude is driven either by a larger mean shift (object-level changes) or by smaller posterior variance (higher certainty), making the object/background gap visible in both mean and covariance channels.

Connection to Fisher divergence. From Eq. equation 11, taking an expectation w.r.t. any reference density $q(\mathbf{x}_t)$ gives

$$\mathbb{E}_q[\|\Delta\epsilon\|^2] = \sigma_t^2 \mathbb{E}_q \left[\|\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c_2) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c_1)\|^2 \right] = \sigma_t^2 \mathcal{F}_q(p(\cdot | c_2), p(\cdot | c_1)),$$

the (generalized) Fisher divergence between the two conditionals under q . When $q = p(\cdot | c_2)$ (or c_1), \mathcal{F}_q reduces to the standard Fisher divergence; for Gaussian pairs, \mathcal{F}_q admits a closed form, revealing the same mean/covariance decomposition as in Theorem 1.

4.5 SYNTHESIS: SEMANTIC SCALE AS INFORMATION-THEORETIC NECESSITY

In summary,

$$\|\Delta\epsilon\|^2 \propto \text{local Fisher information density}.$$

Objects, being information-dense, inevitably yield large guidance, while backgrounds, being information-sparse, yield vanishing signals. Thus the **Semantic Scale Hypothesis** is not an empirical artifact but a direct corollary of score matching and Fisher information theory, explaining background editing failure as a statistical necessity.

5 METHOD: A PRINCIPLED FRAMEWORK FOR DISENTANGLLED EDITING

Building on our theoretical foundation, we introduce **Prism-Edit**, a framework designed to operationalize the Semantic Scale Hypothesis for precise, disentangled image editing. Unlike methods that rely on external parsers or attention manipulation, Prism-Edit derives its control signals directly from the model’s internal generation dynamics. As illustrated in Figure 3, our approach is a two-stage process: (1) principled extraction of a multi-layered **Semantic Map**, and (2) disentangled application of edits via one of two complementary modalities.

270 5.1 STAGE 1: SEMANTIC MAP EXTRACTION
271

272 Section 4 established that the guidance magnitude $\|\Delta\epsilon\|$ scales with the posterior mean shift nor-
273 malized by the posterior variance, i.e., with the local Fisher information density. This implies that
274 absolute magnitudes are not directly comparable across timesteps or samples: regions with high
275 variance (backgrounds) systematically appear weak, even when the underlying semantic change is
276 substantial.

277 To compensate for this Fisher information imbalance, we adopt a σ -normalized thresholding scheme.
278 Specifically, we probe a narrow, high-noise window (e.g., $t \in [900, 800]$ for a 1000-step schedule).
279 As detailed in Appendix C.6, this specific interval was selected based on empirical analysis showing
280 it maximizes semantic coverage while retaining structural plasticity, unlike later timesteps, which
281 become overly rigid. We then compute an averaged guidance difference:

$$282 \quad \overline{\Delta\epsilon} = \frac{1}{N_{\text{probe}}} \sum_{i=1}^{N_{\text{probe}}} \Delta\epsilon_{t_i}, \quad M_{\text{sem}} = \frac{|\overline{\Delta\epsilon}| - \mu_{|\overline{\Delta\epsilon}|}}{\sigma_{|\overline{\Delta\epsilon}|}}. \quad (7)$$

285 As predicted in Section 4, the raw magnitude $\|\Delta\epsilon\|$ varies significantly across different editing
286 tasks and architectures due to posterior variance shifts (Information Imbalance). Therefore, absolute
287 thresholding is infeasible. We employ this z-score normalization to transform the raw gradients
288 into a scale-invariant semantic signal. This allows us to use fixed relative thresholds (σ -levels) that
289 generalize across prompts, seeds, and individual edits within a given baseline model. As a result,
290 weak background signals are restored to a comparable scale, while strong object signals are prevented
291 from overwhelming the map.

292 Based on empirical analysis (see Figure 10), the extreme tails of this semantic map correspond to the
293 cleanest semantic signals. Intermediate values often represent mixtures of object and background,
294 making them unsuitable for disentangled edits. We therefore define two primary semantic layers using
295 fixed thresholds that proved stable across models and prompts: a *background/style layer* ($M_{\text{sem}} < 0.6$)
296 and an *object-core layer* ($M_{\text{sem}} \geq 3.0$).
297

298 5.2 STAGE 2: DISENTANGLED APPLICATION MODALITIES
299

300 The extracted semantic map M_{sem} enables two distinct, training-free editing modalities.
301

302 **Static Mask Blending for Maximum Fidelity (Optional).** This static mask is optional and acts
303 as a loose, permissive spatial constraint determined by the editing intent. Specifically, we define
304 the active editing region using a coarse threshold: targeting **high-magnitude areas** ($M_{\text{sem}} \geq 0.6$)
305 **for object edits**, and **low-magnitude areas** ($M_{\text{sem}} < 0.6$) **for background edits**. Unlike methods
306 relying on strict hard boundaries, this mask is designed to be broad, preventing edits from drifting into
307 completely irrelevant regions while leaving the semantic boundaries flexible. Only for tasks requiring
308 strict identity preservation do we impose a tighter constraint by explicitly excluding high-magnitude
309 object cores ($M_{\text{sem}} \geq 3.0$). At each step t , the edited latent $\mathbf{x}_{t-1}^{\text{pred}}$ is blended with the corresponding
310 source latent $\mathbf{x}_{t-1}^{\text{src}}$, guaranteeing that unmasked regions remain unchanged:

$$311 \quad \mathbf{x}_{t-1} \leftarrow \mathbf{x}_{t-1}^{\text{pred}} \odot M_{\text{final}} + \mathbf{x}_{t-1}^{\text{src}} \odot (1 - M_{\text{final}}). \quad (8)$$

312 **Dynamic Guidance Modulation (Default).** Our default modality offers greater flexibility by
313 dynamically modulating guidance at each step. Although theoretically defined as a continuous map,
314 in practice, we binarize $W_{\text{sem},t}$ based on the z-score of the instantaneous $\|\Delta\epsilon_t\|$ (using $< 0.6\sigma$
315 for background edits and $\geq 3.0\sigma$ for object edits) to ensure stability and prevent boundary
316 artifacts. The guidance is then modulated element-wise:

$$317 \quad \tilde{\epsilon}_\theta(x_t, c) = \epsilon_\theta(x_t, c_{\text{src}}) + \gamma \cdot (\Delta\epsilon_t \odot W_{\text{sem},t}). \quad (9)$$

318 This enables *region-specific guidance scaling*: background edits (low-information, high-variance) can
319 be amplified with large γ (e.g., 20–40) without destabilizing object regions (already high-information).
320

321 Importantly, this dynamic modulation is a direct operationalization of the information-field per-
322 spective from Section 4: by locally scaling weak, high-uncertainty regions while leaving strong,
323 low-uncertainty regions untouched, we effectively re-balance the Fisher information disparity inherent
in diffusion guidance.

324 **Notes on stability, scale, and hyperparameters.** Because the binarized $W_{\text{sem},t}$ strictly isolates the
 325 target region, background edits remain stable even under large local scales, as the amplification is
 326 explicitly prevented from bleeding into the object core. Static masking serves as an optional secondary
 327 safety filter, but dynamic modulation alone suffices for most edits and is our default. **Regarding**
 328 **hyperparameters, while specific thresholds vary per baseline architecture (e.g., to account for**
 329 **distinct noise schedules), they remain invariant across diverse datasets and prompts. Once set**
 330 **for a baseline, no per-image tuning is required.** The complete procedure is detailed in Algorithm 1
 331 in the Appendix.

332 6 EXPERIMENTS

333 We conduct a comprehensive evaluation of **Prism-Edit** to validate our core claims: (1) the Semantic
 334 Scale Hypothesis is a general principle, and (2) our method enables state-of-the-art disentangled
 335 editing. Our evaluation spans multiple foundational models, including Stable Diffusion v1.5, v3, and
 336 FLUX . 1, to demonstrate model-agnosticism.

337 **Implementation Details.** Unless otherwise specified, all experiments are performed using the
 338 default schedulers and step counts for each model. Per our theoretical motivation in Section 5, we
 339 apply a large region-specific guidance scale ($\gamma \in [20, 40]$) on low-magnitude regions for background
 340 edits, while conventional scales are used for object edits. Our ablation studies (see Appendix,
 341 Figures 11 and 12) confirm that this targeted amplification effectively modifies low-energy regions
 342 without introducing artifacts or destabilizing high-energy object structures. Hyperparameters for our
 343 static masking modalities are detailed in Table 1. To ensure the reliability of our approach, we further
 344 verified that our Semantic Scale Hypothesis remains robust across different sampling conditions,
 345 including varying inversion techniques (e.g., DDIM vs. DPM-Solver Lu et al. (2022); Hong et al.
 346 (2024)) and target prompts, as detailed in **Appendix C.9**.

347 6.1 QUANTITATIVE EVALUATION

348 We evaluate on the standard **Wild-TI2I** and **ImageNet-R-TI2I** benchmarks. To specifically probe
 349 disentanglement, we partition Wild-TI2I into object-centric and background-centric subsets. We
 350 report standard metrics: DINOv2 (Oquab et al., 2024) for semantic alignment, SSIM (Wang et al.,
 351 2004) for structural preservation, and CLIP score (Radford et al., 2021) for text alignment.

352 **On the Trade-off between Disentanglement and Global Alignment.** While the CLIP score is a
 353 valuable metric for overall text-alignment, we observed that it does not always capture the nuances
 354 of disentangled editing. Since CLIP is known to bias towards global image modifications, baseline
 355 methods that alter the entire scene often achieve higher scores even when they fail to preserve identity.
 356 In contrast, Prism-Edit strictly preserves the unedited regions, which naturally limits this global
 357 drift. Consequently, while this may result in a slight CLIP decrease, it yields significantly higher
 358 semantic fidelity (DINO/SSIM), as intended. To provide a more complete picture, we introduce a
 359 supplementary metric:

$$360 \text{DINO/SSIM} = \frac{\text{DINO v2 (object similarity)}}{\text{SSIM (background preservation)}},$$

361 This ratio is designed to explicitly measure the success of preserving the primary object while altering
 362 the background. As shown in Figure 4, our method consistently outperforms baselines on this metric.
 363 This trade-off is further illustrated in Figure 5: while CLIP scores may plateau (Fig. 5b), our method
 364 maintains a high DINO/SSIM ratio (Fig. 5a), highlighting its effectiveness in disentangled editing.

365 6.2 QUALITATIVE EVALUATION

366 To validate the universality of our approach, we evaluate Prism-Edit’s performance as a plug-and-play
 367 enhancement for established editing methods on Stable Diffusion v1.5. Detailed descriptions of these
 368 baselines and the integration methodology are provided in Appendix B.3. As shown in Figure 6,
 369 Prism-Edit consistently corrects common failure modes of baselines like DDIM/DDPM Inversion,
 370 PnP, and LEDITS++. For instance, when editing “an origami of a hummingbird” to “a sketch of a

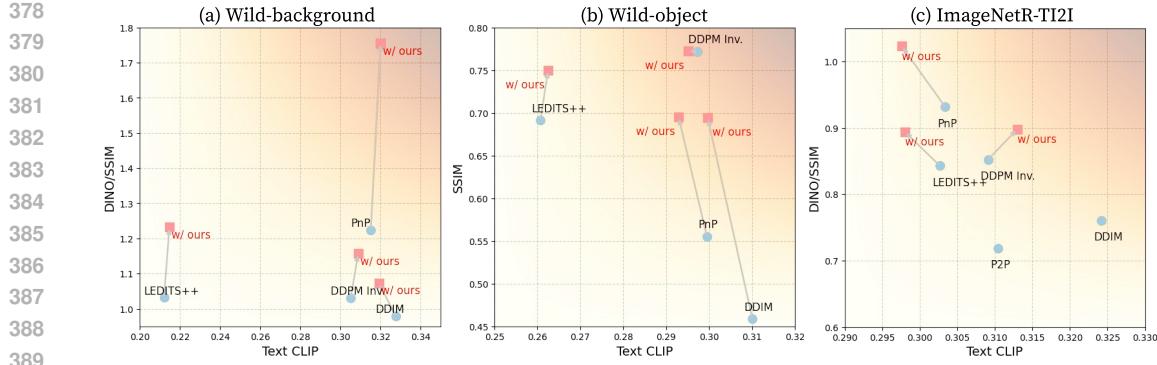


Figure 4: **Quantitative evaluation of Prism-Edit.** We report DINO v2, SSIM, and CLIP on Wild-TI2I (split into background/object subsets) and ImageNet-R-TI2I. Our method consistently improves DINO v2 similarity and maintains SSIM, validating disentangled editing performance.

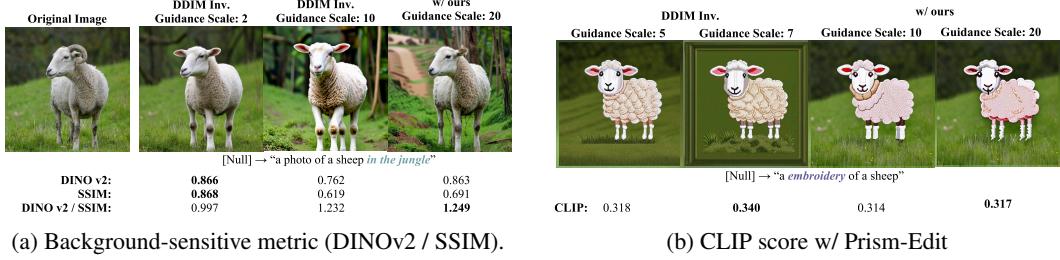


Figure 5: **Analysis of the Disentanglement Trade-off.** (a) Our method improves background-aware editing fidelity (DINOv2/SSIM). (b) This demonstrates that our edits prioritize disentanglement, which is not always captured by global text-alignment metrics like CLIP.

parrot,” Prism-Edit successfully disentangles the object’s identity (‘parrot’) from its style (‘sketch’), a task where baselines often fail. This demonstrates the broad utility of our principled guidance decomposition. Furthermore, we demonstrate that our Semantic Scale Hypothesis generalizes beyond object-centric images. Our analysis on object-scarce scenes (e.g., landscapes, textures) confirms that the guidance magnitude effectively disentangles implicit local structures from global atmosphere, as detailed in Appendix C.8. We demonstrate robust background and object edits on modern architectures like Stable Diffusion v3, and showcase Prism-Edit’s utility on FLUX.1 by integrating it as a plug-and-play enhancement for existing editors like RF-Inversion (Rout et al., 2025) and Stable-flow (Avrahami et al., 2025).

6.3 CAUSAL VALIDATION OF SEMANTIC DISENTANGLEMENT

A key prediction of our hypothesis is that distinct semantic layers can be edited independently. To provide causal evidence, we design prompts that require simultaneous object and background changes. We then apply Prism-Edit in two controlled settings: (i) editing only high-magnitude (object) signals, and (ii) editing only low-magnitude (background) signals. As shown in Figure 8, the results are cleanly disentangled. Modifying high-magnitude signals alters the object’s identity while preserving the background, and vice-versa. This experiment directly validates that guidance magnitude causally corresponds to the semantic scales we identified.

7 LIMITATIONS

Prism-Edit has several limitations. Our theoretical analysis assumes a Gaussian posterior, which simplifies derivations but does not perfectly reflect the true diffusion process. The framework also requires manual specification of editing intent and relies on fixed z-score thresholds to separate



Figure 6: **Prism-Edit as a Universal Enhancement Module.** Our method, integrated with various editing techniques on SD v1.5, consistently corrects common failure modes like semantic leakage (rows 3-4) and incomplete edits (rows 1-2).

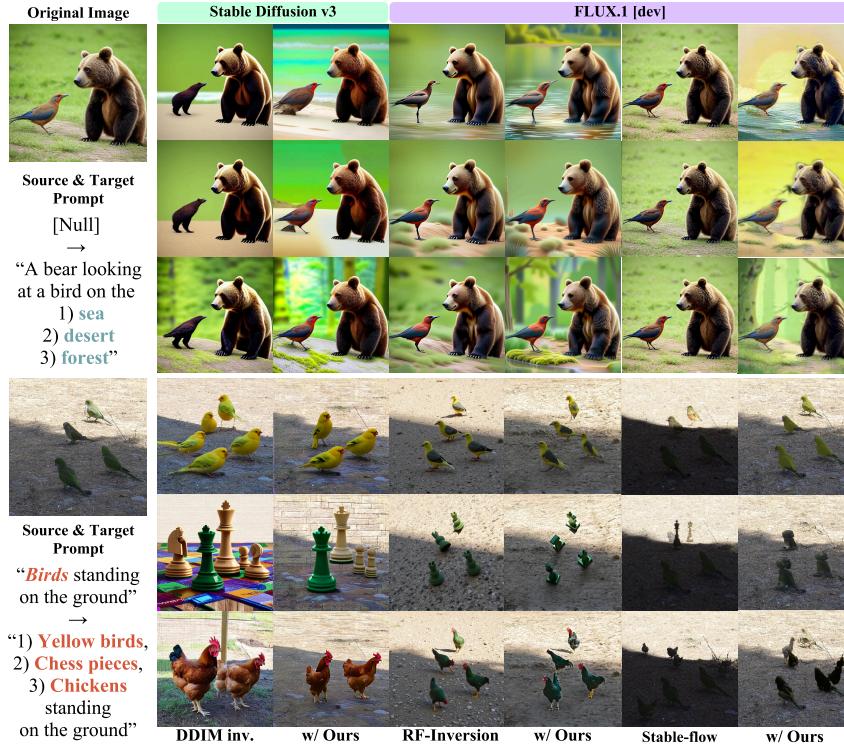


Figure 7: **Model-agnostic editing.** Results on SD v3 and FLUX.1. Prism-Edit enables faithful background modifications (rows 1-2) and robust object edits (rows 3-4).

semantic layers, introducing both user intervention and heuristic design choices. In addition, the effectiveness of our method is influenced by the baseline diffusion model into which it is plugged, meaning that gains may vary depending on the underlying architecture.

Figure 8: **Semantic layer disentanglement.** The results show a clear causal separation between **Local level** (high-magnitude) edits that alter object identity, and **Global level** (low-magnitude) edits that alter background and style.

8 CONCLUSION

We introduced the **Semantic Scale Hypothesis**, framing guidance magnitude ($\|\Delta\epsilon\|$) as an information-theoretic signal that reflects a semantic hierarchy. Based on this principle, our training-free method **Prism-Edit** adaptively decomposes the guidance field to enable more disentangled edits, particularly in challenging background regions. Rather than relying solely on spatial masks, this perspective highlights the role of signal-level structure within diffusion guidance. Future work may explore automatic detection of user intent and more adaptive layer selection, moving toward a practical zero-shot editing pipeline.

ETHICS STATEMENT

The authors adhere to the ICLR Code of Ethics. Our work introduces a method for text-guided image editing. We acknowledge that, like all generative models, this technology could potentially be misused for creating misleading or harmful content. However, the primary focus of our research is to provide a deeper understanding of the internal mechanisms of diffusion models and to offer controllable tools for creative and research purposes. We believe that by making the underlying principles of these models more transparent and controllable, our work contributes to a more responsible development path for generative AI.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, our source code is included in the supplementary material and will be made publicly available upon publication. The appendix provides comprehensive details for replication: the full algorithm for Prism-Edit is presented in Algorithm 1, all hyperparameters for our experiments and baselines are listed in Table 1, and the theoretical derivation of the Semantic Scale Hypothesis is available in Appendix A. The appendix also contains further details on our experimental setup, including additional results.

REFERENCES

Technical report.

Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 7877–7888, June 2025.

Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8861–8870, 2024.

540 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yingqiang Zheng. Masactr:
 541 Tuning-free mutual self-attention control for consistent image synthesis and editing. pp. 22503–
 542 22513, 2023. doi: 10.1109/ICCV51070.2023.02062.

543 Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-based
 544 semantic image editing with mask guidance. In *The Eleventh International Conference on Learning
 545 Representations*, 2023. URL <https://openreview.net/forum?id=3lge0p5o-M->.

546 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 547 106(496):1602–1614, 2011. doi: 10.1198/jasa.2011.tm11181.

548 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 549 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
 550 and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis.
 551 In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
 552 Scarlett, and Felix Berkenkamp (eds.), *ICML*, volume 235 of *Proceedings of Machine Learning
 553 Research*, pp. 12606–12633, 21–27 Jul 2024.

554 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or. Prompt-
 555 to-prompt image editing with cross-attention control. In *The Eleventh International Conference on
 556 Learning Representations*, 2023. URL https://openreview.net/forum?id=_CDixzkzeyb.

557 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on
 558 Deep Generative Models and Downstream Applications*, 2021. URL <https://openreview.net/forum?id=qw8AKxfYbI>.

559 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. volume 33, pp.
 560 6840–6851, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

561 Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On Exact
 562 Inversion of DPM-Solvers . In *2024 IEEE/CVF Conference on Computer Vision and Pattern
 563 Recognition (CVPR)*, pp. 7069–7078, Los Alamitos, CA, USA, June 2024. IEEE Computer Society.
 564 doi: 10.1109/CVPR52733.2024.00675. URL <https://doi.ieee.org/10.1109/CVPR52733.2024.00675>.

565 Jimyeong Kim, Jungwon Park, Yeji Song, Nojun Kwak, and Wonjong Rhee. Reflex: Text-guided
 566 editing of real images in rectified flow via mid-step feature extraction and attention adaptation,
 567 2025. URL <https://arxiv.org/abs/2507.01496>.

568 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

569 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 570 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
 571 Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision – ECCV 2014*, pp.
 572 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

573 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan LI, and Jun Zhu. Dpm-
 574 solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps.
 575 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Ad-
 576 vances in Neural Information Processing Systems*, volume 35, pp. 5775–5787. Curran Asso-
 577 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.

578 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 579 SDEdit: Guided image synthesis and editing with stochastic differential equations. 2022. URL
 580 https://openreview.net/forum?id=aBsCjcPu_tE.

581 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khaliv-
 582 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
 583 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
 584 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick

594 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
 595 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 596 <https://openreview.net/forum?id=a68SUT6zFt>. Featured Certification.
 597

598 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 599 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 600 Sutskever. Learning transferable visual models from natural language supervision. In Marina
 601 Meila and Tong Zhang (eds.), *ICML*, volume 139 of *Proceedings of Machine Learning Research*, pp.
 602 8748–8763. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/radford21a.html>.
 603

604 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 605 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.
 606

607 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 608 resolution image synthesis with latent diffusion models. pp. 10674–10685, 2022. doi: 10.1109/
 609 CVPR52688.2022.01042.
 610

611 Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
 612 Chu. Semantic image inversion and editing using rectified stochastic differential equations. In
 613 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=Hu0FSOSeys>.
 614

615 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. 2021. URL
 616 <https://openreview.net/forum?id=St1giarCHLP>.
 617

618 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for text-
 619 driven image-to-image translation. pp. 1921–1930, 2023. doi: 10.1109/CVPR52729.2023.00191.
 620

621 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
 622 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
 623 doi: 10.1109/TIP.2003.819861.
 624

625 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 626 effectiveness of deep features as a perceptual metric. pp. 586–595, 2018. doi: 10.1109/CVPR.
 627 2018.00068.
 628

629 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
 630 using cycle-consistent adversarial networks. pp. 2242–2251, 2017. doi: 10.1109/ICCV.2017.244.
 631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A DERIVATION OF THE SEMANTIC SCALE HYPOTHESIS

650 We provide here a more detailed derivation linking the magnitude of the guidance difference vector
 651 $\Delta\epsilon$ to posterior variance and information density, as introduced in Section 4.

653 **Step 1: Connection between Posterior Mean and Score Function via Tweedie’s Formula.** For a
 654 noisy observation \mathbf{x}_t obtained by corrupting a clean image \mathbf{x}_0 with Gaussian noise of variance σ_t^2 ,
 655 i.e., $\mathbf{x}_t \sim q(\mathbf{x}_t | \mathbf{x}_0)$, Tweedie’s formula (Efron, 2011) connects the posterior mean of the clean image
 656 to the score of the noisy data distribution:

$$657 \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, c] = \mathbf{x}_t + \sigma_t^2 \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c). \quad (10)$$

658 **Step 2: Guidance Difference as a Difference of Scores.** In standard diffusion models with
 659 ϵ -parameterization, the noise predictor ϵ_θ is trained to approximate the scaled score function:
 660 $\epsilon_\theta(\mathbf{x}_t, c) \propto -\sigma_t \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c)$. Therefore, the guidance difference vector $\Delta\epsilon$ between a source
 661 condition c_1 and a target condition c_2 is proportional to the difference in their respective score
 662 functions:

$$663 \Delta\epsilon(\mathbf{x}_t; c_1, c_2) \propto \sigma_t (\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c_1) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | c_2)). \quad (11)$$

665 **Step 3: Relating Guidance Magnitude to Posterior Mean Shift.** By rearranging Eq. 10 and
 666 combining it with Eq. 11, we establish a direct relationship between the magnitude of the guidance
 667 vector and the shift in the posterior mean estimate:

$$668 \|\Delta\epsilon(\mathbf{x}_t; c_1, c_2)\| \propto \frac{\|\Delta\mu_t\|}{\sigma_t}, \quad \text{where } \Delta\mu_t := \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, c_2] - \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t, c_1]. \quad (12)$$

670 This shows that a large guidance magnitude corresponds to a large shift in the model’s estimate of the
 671 clean image when the condition changes from c_1 to c_2 .

672 **Step 4: The Role of Posterior Variance and Information Density.** The magnitude of the posterior
 673 shift $\Delta\mu_t$ is determined by the “sharpness” or certainty of the posterior distribution $p(\mathbf{x}_0 | \mathbf{x}_t, c)$.

- 674 • **Low-Variance Posteriors (High Information Density):** In image regions with rich structure
 675 and detail (e.g., objects), the posterior distribution is sharply peaked (low variance).
 676 Here, the model is highly certain about the content. A change in condition ($c_1 \rightarrow c_2$) forces
 677 a significant shift in this sharp distribution, leading to a large $\Delta\mu_t$ and thus a large-magnitude
 678 $\|\Delta\epsilon\|$.
- 679 • **High-Variance Posteriors (Low Information Density):** In smooth, less structured regions
 680 (e.g., backgrounds), the posterior is diffuse and spread out (high variance). The model is
 681 uncertain about the precise content. The same conditional change results in a smaller adjustment
 682 to the broad distribution, yielding a small $\Delta\mu_t$ and consequently a small-magnitude
 683 $\|\Delta\epsilon\|$.

685 **Conclusion.** The Semantic Scale Hypothesis is a direct consequence of this relationship. The
 686 guidance magnitude $\|\Delta\epsilon\|$ acts as a proxy for the information-theoretic sharpness of the posterior.
 687 Structured objects correspond to high-information regions and yield large-magnitude guidance, while
 688 smooth backgrounds correspond to low-information regions and yield small-magnitude guidance.
 689 This theoretical relationship is formalized in Theorem 1, which provides closed-form bounds on the
 690 guidance magnitude. A sketch of the proof follows:

692 **Proof sketch of Theorem 1.** Start from Tweedie’s relation (App. A) implying $\|\Delta\epsilon\| \propto \|\Delta\mu_t\|/\sigma_t$.
 693 Under the Gaussian approximation,

$$694 (\Delta\mu_t)^\top \Sigma_{c_2}^{-1} \Delta\mu_t = 2 D_{\text{KL}}(\mathcal{N}(\mu_{c_1}, \Sigma_{c_1}) \| \mathcal{N}(\mu_{c_2}, \Sigma_{c_2})) - \Psi(\Sigma_{c_1}, \Sigma_{c_2}),$$

695 by rearranging the closed-form Gaussian KL. Using the Rayleigh quotient,

$$696 \lambda_{\min}(\Sigma_{c_2}^{-1}) \|\Delta\mu_t\|^2 \leq (\Delta\mu_t)^\top \Sigma_{c_2}^{-1} \Delta\mu_t \leq \lambda_{\max}(\Sigma_{c_2}^{-1}) \|\Delta\mu_t\|^2,$$

697 i.e.,

$$698 \frac{\|\Delta\mu_t\|^2}{\lambda_{\max}(\Sigma_{c_2})} \leq (\Delta\mu_t)^\top \Sigma_{c_2}^{-1} \Delta\mu_t \leq \frac{\|\Delta\mu_t\|^2}{\lambda_{\min}(\Sigma_{c_2})}.$$

701 Combining with the KL identity and rescaling by σ_t^{-2} yields the upper/lower bounds in Eqs. equation 4–equation 6. The symmetric versions follow by swapping (c_1, c_2) . \square

702 **B IMPLEMENTATION AND HYPERPARAMETERS**
703704 **B.1 ALGORITHM DETAILS**
705706 The complete algorithm for the Prism-Edit framework is detailed in **Algorithm 1**. It outlines the
707 two-stage process for semantic map extraction and disentangled application. **Algorithm 2** specifies
708 the morphological closing operation used to refine the binary mask, ensuring spatial contiguity.
709710 **Algorithm 1** Prism-Edit (Full Version with Optional Static Mask Refinement)
711

```

Require: Source prompt  $c_{\text{src}}$ , target prompt  $c_{\text{tgt}}$ , probe interval  $\{t_{900}, \dots, t_{800}\}$ 
1: Initialize latent  $\mathbf{x}_T \sim \mathcal{N}(0, I)$ 
2: // Stage 1: Semantic Map Extraction
3: for  $t_i$  in probe interval do
4:    $\Delta\epsilon_{t_i} \leftarrow \epsilon_{\theta}(\mathbf{x}_{t_i}, c_{\text{tgt}}) - \epsilon_{\theta}(\mathbf{x}_{t_i}, c_{\text{src}})$ 
5: end for
6:  $M_{\text{sem}} \leftarrow z\text{-score}\left(\frac{1}{N} \sum_i \|\Delta\epsilon_{t_i}\|\right)$ 
7: // Optional: Static Mask Generation
8: if target is object then
9:    $M_{\text{base}} \leftarrow (M_{\text{sem}} \geq 0.6)$ 
10: else ▷ target is background
11:    $M_{\text{base}} \leftarrow (M_{\text{sem}} < 0.6)$ 
12: end if
13:  $M_{\text{filled}} \leftarrow \text{Mask-Refinement}(M_{\text{base}})$  ▷ See Algorithm 2
14: if identity preservation mode then
15:    $M_{\text{exclude}} \leftarrow (M_{\text{sem}} \geq 3.0)$ 
16:    $M_{\text{final}} \leftarrow \text{clamp}(M_{\text{filled}} - M_{\text{exclude}}, 0, 1)$ 
17: else
18:    $M_{\text{final}} \leftarrow M_{\text{filled}}$ 
19: end if
20: for  $t = T, \dots, 1$  do ▷ Stage 2: Disentangled Application
21:   // Dynamic guidance modulation (always on)
22:    $\Delta\epsilon_t \leftarrow \epsilon_{\theta}(\mathbf{x}_t, c_{\text{tgt}}) - \epsilon_{\theta}(\mathbf{x}_t, c_{\text{src}})$ 
23:   // Binarize based on editing intent (e.g.,  $\geq 3.0\sigma$  for object,  $< 0.6\sigma$  for bg)
24:    $W_{\text{sem},t} \leftarrow \text{Binarize}(z\text{-score}(\|\Delta\epsilon_t\|) \text{ meets } \tau)$ 
25:    $\tilde{\epsilon}_{\theta} \leftarrow \epsilon_{\theta}(\mathbf{x}_t, c_{\text{src}}) + \gamma \cdot (\Delta\epsilon_t \odot W_{\text{sem},t})$ 
26:    $\mathbf{x}_{t-1}^{\text{pred}} \leftarrow \mathcal{S}(\mathbf{x}_t, \tilde{\epsilon}_{\theta}, t)$ 
27:   // Static blending (optional)
28:   if static mask mode then
29:      $\mathbf{x}_{t-1} \leftarrow \mathbf{x}_{t-1}^{\text{pred}} \odot M_{\text{final}} + \mathbf{x}_{t-1}^{\text{src}} \odot (1 - M_{\text{final}})$ 
30:   else
31:      $\mathbf{x}_{t-1} \leftarrow \mathbf{x}_{t-1}^{\text{pred}}$ 
32:   end if
33: end for
34: return Edited image  $\hat{\mathbf{x}}_0$ 

```

745 **Algorithm 2** Mask Refinement (Morphological Closing)
746

747 **Require:** Base mask $M_{\text{base}} \in \{0, 1\}^{H \times W}$, number of iterations K
748 We apply morphological closing (dilation followed by erosion) to ensure the semantic mask is
749 contiguous and free of small holes.

```

750 1:  $M \leftarrow M_{\text{base}}$ 
751 2: for  $k = 1$  to  $K$  do
752 3:    $M \leftarrow \text{Dilate}(M)$ 
753 4:    $M \leftarrow \text{Erode}(M)$ 
754 5: end for
755 6: return  $M_{\text{filled}} \leftarrow M$ 

```

756 B.2 EXPERIMENTAL SETUP AND HYPERPARAMETERS
757758 All experiments employ a null-text inversion approach to prioritize content preservation. In Stable
759 Diffusion v1.4/v1.5 (Rombach et al., 2022), we use 100 timesteps for DDIM inversion (Song et al.,
760 2021) with a guidance scale of 1, and 50 steps for editing. Table 1 lists the specific hyperparameters
761 used to enhance various baseline methods.762 Table 1: Hyperparameter settings for applying Prism-Edit to various baseline methods.
763

764 Baseline Method	765 Inv. Steps	766 Edit Steps	767 Base Str.	768 γ_{obj}	769 γ_{bg}	770 Thresholds (Obj / Bg)
766 DDIM inv.	767 100	768 100	769 7.5	770 7.5	771 30	772 $\geq 3.0 / < 0.4$
767 P2P	768 100	769 100	770 9	771 15	772 30	773 $\geq 3.0 / < 1.0$
768 PnP	769 1000	770 50	771 10	772 25	773 40	774 $\geq 3.0 / < 2.0$
769 DDPM inv.	770 100	771 100	772 15	773 25	774 40	775 $\geq 2.0 / < 1.0$
770 LEDITS++	771 50	772 50	773 10	774 20	775 30	776 $\geq 3.0 / < 0.6$

772 B.3 BASELINE INTEGRATION DETAILS
773774 To demonstrate the model-agnostic nature of Prism-Edit, we integrated it with several state-of-the-art
775 editing methods. Since Prism-Edit operates directly on the guidance vector $\Delta\epsilon$, it can be seamlessly
776 combined with methods that manipulate internal network features or attention maps.777 • **Prompt-to-Prompt (P2P) (Hertz et al., 2023) & Plug-and-Play (PnP) (Tumanyan et al.,
778 2023):** Both methods primarily control image structure by manipulating cross-attention
779 maps or injecting spatial features during the denoising process.780 **Integration:** We integrate Prism-Edit by strictly respecting the original pipeline for at-
781 tention/feature injection. However, at the guidance computation stage of each sampling
782 step, we replace the standard classifier-free guidance vector with our proposed Prism-Edit
783 modulation (**specifically, using the Dynamic Guidance Modulation mode only**). This
784 allows us to combine the structural stability of P2P/PnP with Prism-Edit’s semantic disen-
785 tanglement capability, enabling selective amplification or preservation of specific regions
786 without relying on hard masking.787 • **LEDITS++ (Brack et al., 2024):** The original LEDITS++ method employs a native
788 mechanism that identifies editing regions by thresholding the difference in guidance vectors
789 via quantiles (similar to DiffEdit’s masking strategy).790 **Integration:** We explicitly **bypass** this native quantile-based masking step. Instead, con-
791 sistent with our integration for P2P and PnP, we apply Prism-Edit by directly modulating
792 the classifier-free guidance term (**using Dynamic Guidance Modulation only**) during the
793 sampling process. This demonstrates that our gradient-based modulation offers a more
794 robust alternative to the hard-thresholding masks originally employed by LEDITS++.795 In all cases, Prism-Edit does not require retraining or modifying the internal architecture of the
796 baselines, confirming its plug-and-play capability.800 C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSES
801802 C.1 GLOBAL VS. LOCAL CHANGES
803804 To analyze the effectiveness of our proposed method on both global and local image modifications, we
805 consider two representative image-to-image translation scenarios: transitioning a Yosemite landscape
806 from summer to winter (a global change) and transforming a horse into a zebra (a local change).
807 We utilize the same Yosemite (summer↔winter) and Horse (horse↔zebra) datasets as employed
808 in the CycleGAN (Zhu et al., 2017) benchmark, enabling direct comparison with existing methods.
809 Experiments were conducted with both null-text and valid-text prompts. For valid-text prompts, we
810 used “a photo of Yosemite in summer” → “A photo of Yosemite in winter” and “A photo of a horse”
811 → “A photo of a zebra”. For null-text prompts, the source prompt was null (“”).

810	811	812	813	Summer → Winter								Horse → Zebra													
				814	815	816	817	Inversion		Guidance		LPIPS ($\times 100$) ↓		CLIP _{text} ↑		LPIPS ($\times 100$) ↓		CLIP _{text} ↑							
								818	819	820	821	822	823	824	825	826	827	828	829						
DDIM Inv.	CFG + Prism-Edit (Ours)	58.99	62.76	23.15	25.77	62.30	72.50	20.43	30.00	36.75	28.39	21.53	22.18	30.94	56.51	21.26	30.65	33.50	39.56	21.26	22.03	29.77	29.65	28.54	28.55
DDPM Inv.	CFG + Prism-Edit (Ours)	33.42	28.52	21.59	21.29	25.92	27.66	28.44	28.54	33.42	28.52	21.59	21.29	25.92	27.66	28.44	28.54	33.42	28.52	21.59	21.29	25.92	27.66	28.44	28.54

Table 2: **Quantitative Comparison of Image-to-Image Translation Results.** Comparison of our method with existing methods using null-text and valid-text sampling approaches, evaluated by LPIPS and CLIP scores to assess perceptual similarity and alignment with text prompts.

Table 2 and Figure 9 present the quantitative and qualitative findings. In all cases, our proposed method preserved structural information significantly better than the baselines, as evidenced by the lower LPIPS (Zhang et al., 2018) scores. While CLIP (Radford et al., 2021) scores were sometimes similar or slightly lower, this typically occurred when the baseline methods failed to maintain the original structure, causing a large deviation from the source image.

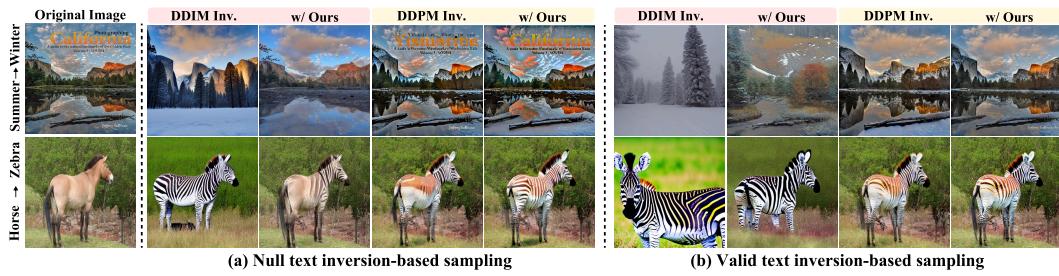


Figure 9: **Qualitative comparison for global and local changes on CycleGAN datasets.** Our method (w/ Ours) is applied to two I2I translation tasks: global style change (Summer → Winter) and local object change (Horse → Zebra). Compared to baselines, our method better preserves the structural integrity of the source image (e.g., mountain layout, horse’s pose) while successfully applying the target transformation.

C.2 RATIONALE FOR SEMANTIC LAYER SELECTION

As discussed in Section 5, our framework is designed to operate on the tails of the semantic map’s distribution. Figure 10 provides the empirical validation for this design choice. We conduct an experiment to visualize which image content is affected by edits restricted to different intervals of the M_{sem} map. The results clearly indicate that the intermediate intervals (e.g., $0.5 \leq \sigma \leq 2.0$) contain a mixture of object, background, and texture information. Edits applied to these regions often result in undesirable artifacts and semantic leakage. In contrast, the extreme low- and high-magnitude regions (tails) correspond to purer signals for background/style and object-core structure, respectively. Therefore, by selectively targeting these tails, Prism-Edit achieves cleaner, more disentangled manipulation.



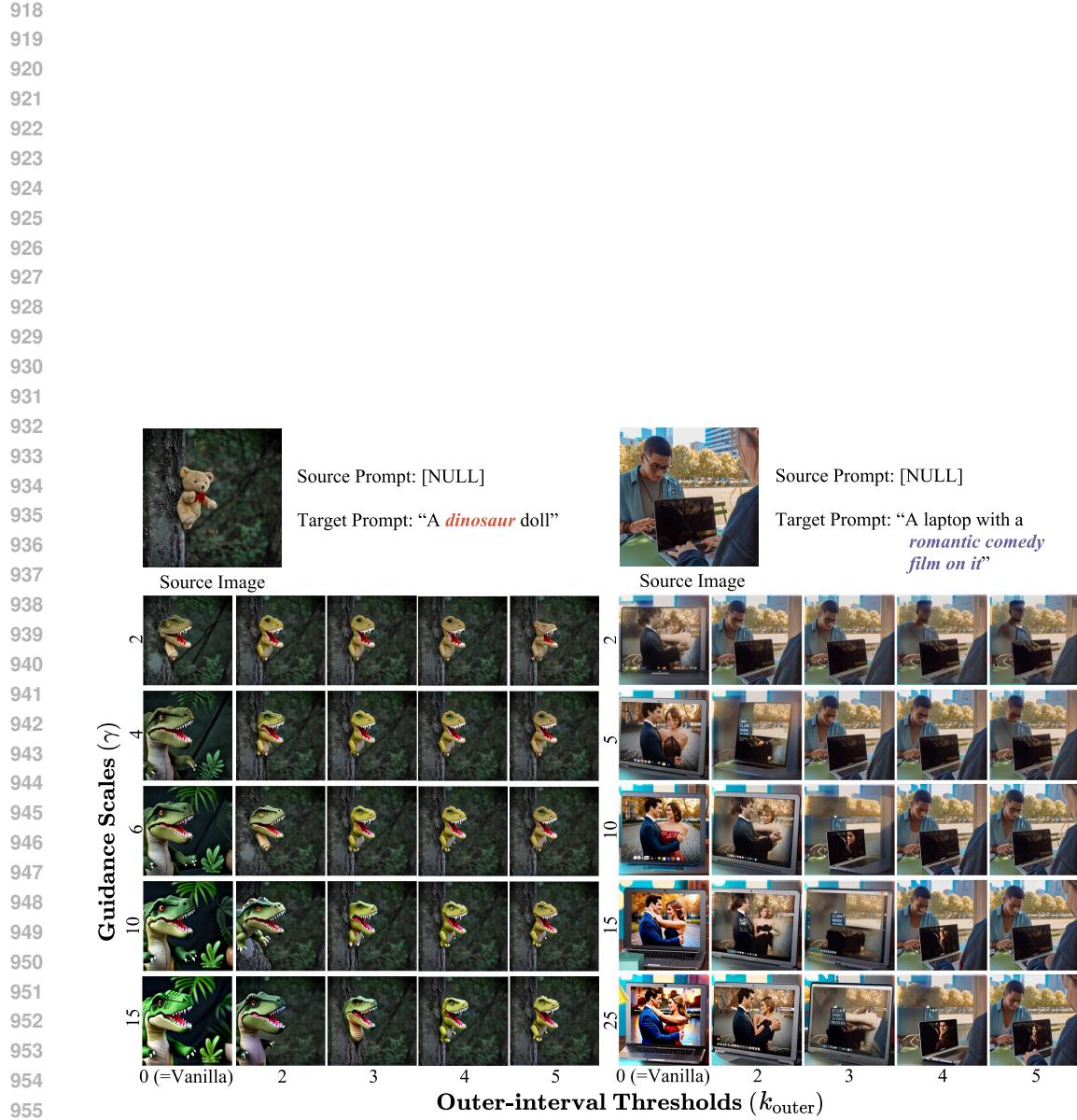
Figure 10: **Impact of varying standard deviation thresholds for layer selection.** Edits are applied only to pixels within the specified σ -interval of the semantic map. The intermediate intervals (2 and 3) show a clear mixture of semantics, validating our design choice to operate on the tails (intervals 1 and 4) for disentangled editing.

C.3 ABLATION STUDIES ON GUIDANCE SCALE γ

To validate our use of large, region-specific guidance scales (γ), we perform ablation studies on **two distinct editing modes** based on the targeted region of the semantic map (M_{sem}):

- **Outer-Interval Editing (Local Level):** This mode targets the tails of the distribution (e.g., $|M_{\text{sem}}| \geq k_{\text{outer}}$), corresponding to the highest- and lowest-magnitude signals. As these signals cleanly map to object cores and uniform backgrounds, this mode is primarily used for precise **object editing**.
- **Inner-Interval Editing (Global Level):** This mode targets the central part of the distribution (e.g., $|M_{\text{sem}}| < k_{\text{inner}}$), which contains the low-energy signals associated with overall style and texture. This mode is used for global **background and stylistic changes**.

Figures 11 and 12 show that Prism-Edit remains stable even with large γ values in both modes. Figure 11 shows that increasing γ in Outer-Interval mode correctly strengthens the target object concept without corrupting the background. Conversely, Figure 12 demonstrates that large γ values (up to 200) in Inner-Interval mode can achieve dramatic stylistic changes while the high-energy object regions remain structurally intact, protected by our dynamic modulation.



956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 11: **Ablation on guidance scale γ for Outer-Interval (Object) editing.** The left example demonstrates object replacement, while the right showcases object insertion.

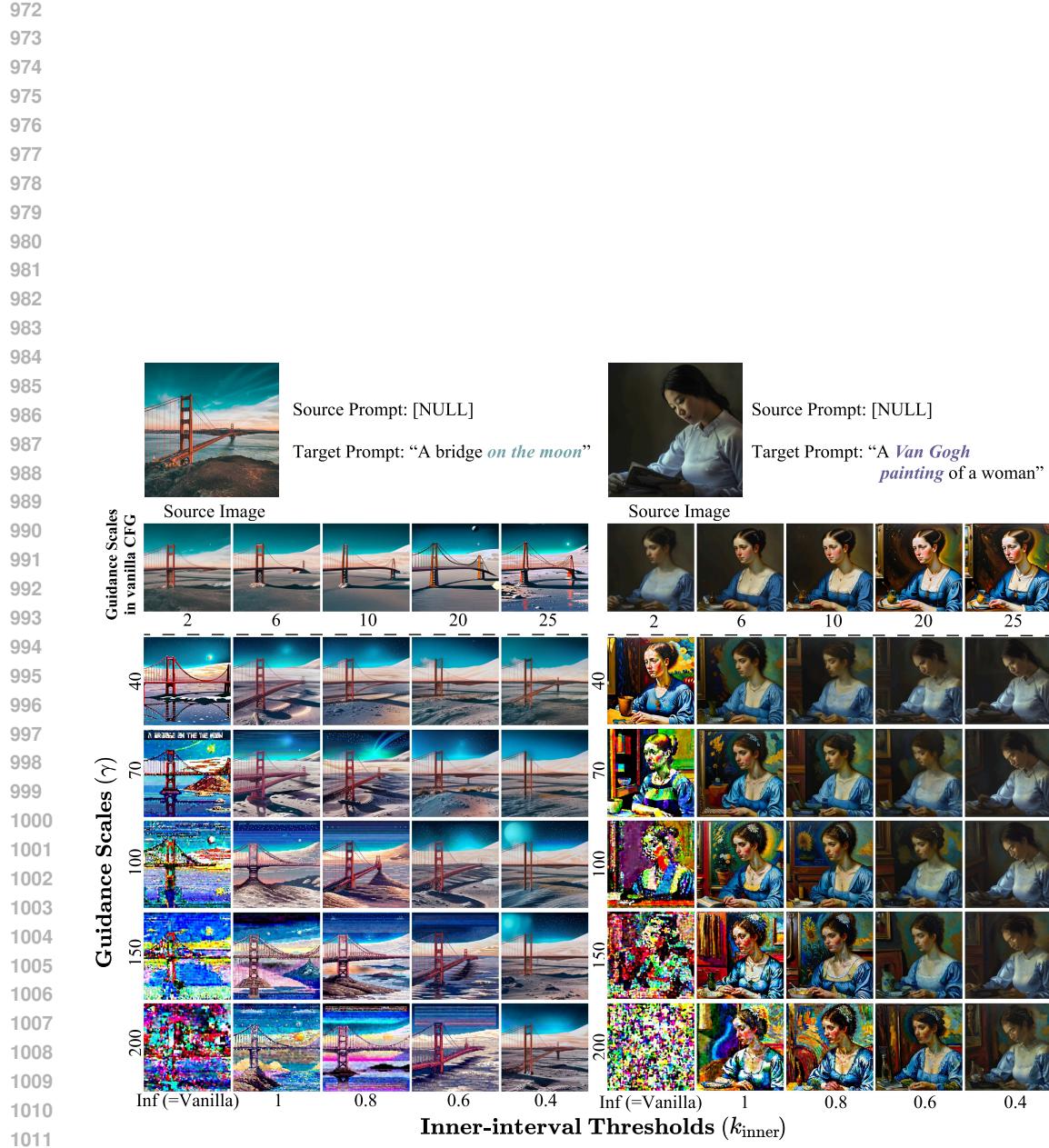
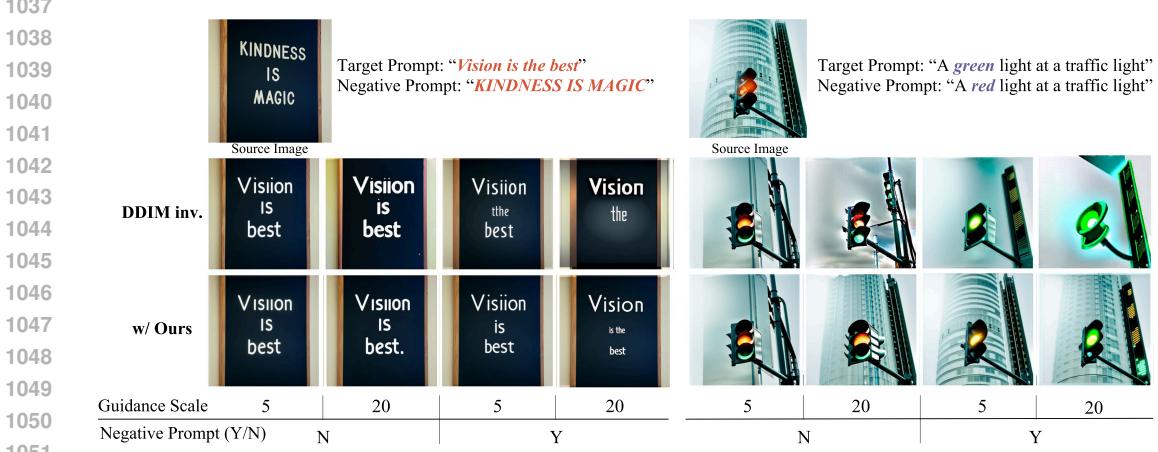


Figure 12: **Ablation on guidance scale γ for Inner-Interval (Background/Style) editing.** The left example demonstrates background replacement, while the right showcases texture replacement.

1026 C.4 THE ROLE OF NEGATIVE PROMPTS
1027

1028 **Implementation Strategy.** During the inversion phase, we set the negative prompt to an empty string
1029 (“”) to maximize reconstruction fidelity. During the editing (sampling) phase, we utilize the source
1030 prompt (p_{src}) as the negative prompt. This strategy effectively neutralizes the semantic features of the
1031 original concept, preventing them from leaking into the edited result.

1032 Our framework is fully compatible with negative prompts. As shown in Figure 13, negative prompts
1033 are crucial for overcoming the model’s prior and achieving clean object replacement or attribute
1034 editing. However, as analyzed in Figure 14, we found that for background-only edits, negative
1035 prompts can sometimes introduce subtle, undesirable changes to the foreground object. Therefore,
1036 we recommend using negative prompts primarily for object-focused manipulations.



1052 **Figure 13: Effectiveness of negative prompts with Prism-Edit.** Negative prompts are essential for
1053 clean text replacement (left) and precise attribute editing (right).

1066 **Figure 14: Interaction between negative prompts and background editing.** When modifying only
1067 the background, adding a negative prompt can cause minor semantic leakage into the foreground
1068 object (rightmost two images).

1070 C.5 ADDITIONAL QUALITATIVE AND QUANTITATIVE RESULTS
1071

1072 We provide further qualitative and quantitative results in Tables 3-5 and Figures 15-17.
1073

1074
1075
1076
1077
1078
1079

Table 3: Wild-background results.

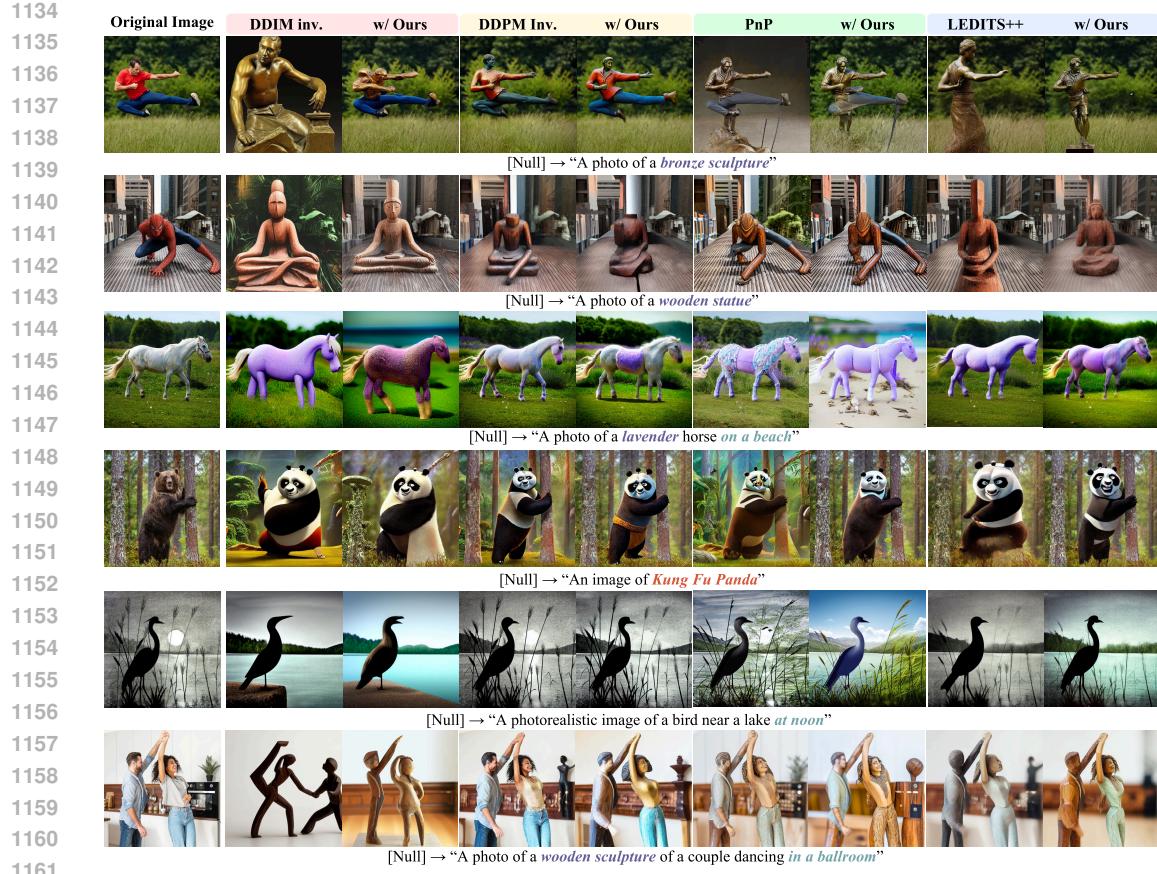
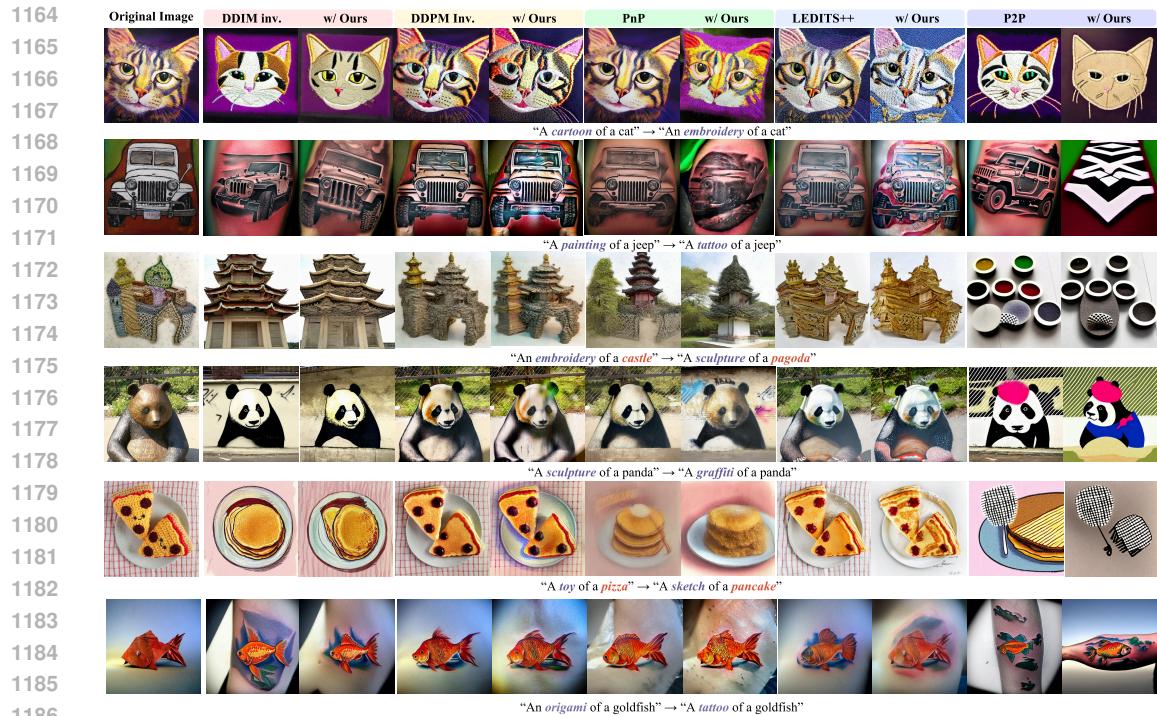
Method	PnP	DDIM	DDPM Inv.	LEDITS++
CLIP↑				
original	0.3151	0.3275	0.3051	0.2120
+ ours	0.3200	0.3192	0.3088	0.2147
DINO/SSIM ↑				
original	1.2240	0.9796	1.0310	1.0317
+ ours	1.7555	1.0731	1.1571	1.2328

Table 4: Wild-object results.

Method	PnP	DDIM	DDPM inv.	LEDIT++
CLIP↑				
original	0.2995	0.3101	0.2972	0.2607
+ ours	0.2929	0.2997	0.2901	0.2625
SSIM↑				
original	0.5554	0.4588	0.7721	0.6914
+ ours	0.6952	0.6942	0.7722	0.7499

Table 5: ImagenetR-TI2I results.

Method	PnP	DDIM	DDPM inv.	LEDIT++	P2P
CLIP↑					
original	0.3034	0.3242	0.3091	0.3027	0.3104
+ ours	0.2976	0.3199	0.3130	0.2980	0.3087
DINO/SSIM↑					
original	0.9312	0.7604	0.8523	0.8426	0.7187
+ ours	1.0228	0.8979	0.8939	0.9982	0.8812



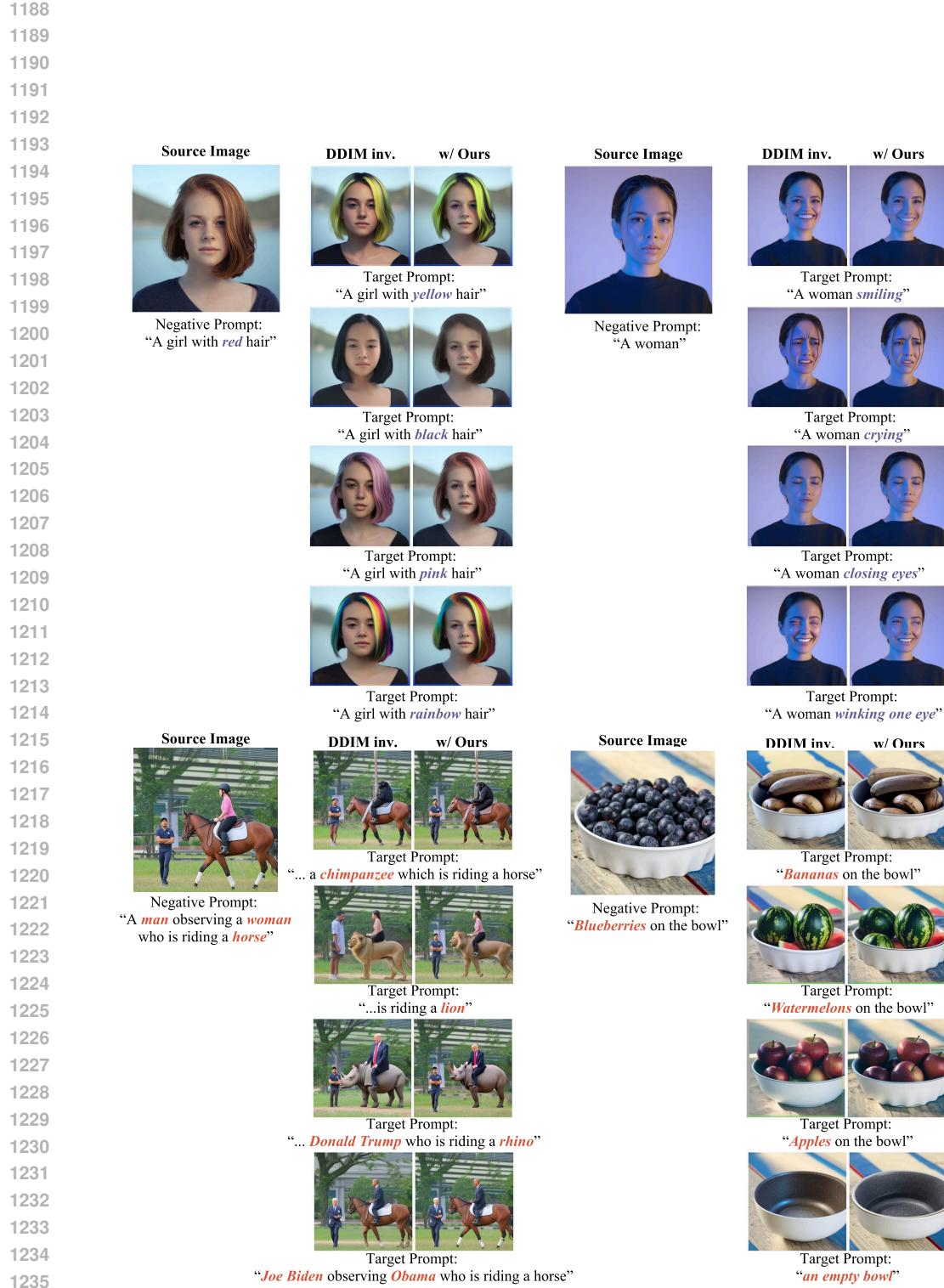


Figure 17: Additional attribute and object editing results with negative prompts.

1242
1243

C.6 ABLATION STUDY ON PROBE INTERVAL SELECTION

1244
1245
1246
1247

To determine the optimal timestep window for semantic map extraction, we conducted a quantitative ablation study using the COCO 2017 validation set (Lin et al., 2014). We focused on the ‘Person’ class (50 randomly selected images, seed=0), as human subjects represent highly deformable objects that require both robust localization and structural flexibility during editing.

1248
1249

We evaluated the quality of the extracted semantic map M_{sem} across different timestep intervals using two metrics:

1250
1251
1252
1253

- **Coverage (Recall):** Measures how well the semantic map covers the ground-truth object mask. High coverage indicates the map successfully captures the “semantic whole” of the object.
- **IoU (Intersection over Union):** Measures the spatial tightness of the map against the ground truth.

1254
1255
1256
1257
1258
1259

Table 6: **Quantitative Analysis of Probe Intervals.** The interval [900, 800] achieves the highest semantic coverage (0.9619), indicating it best captures the global object structure. Later steps (e.g., 500–400) show higher IoU but represent over-constraint to fine details.

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273

Timestep Window	Coverage (Recall) \uparrow	Avg. IoU
940–920	0.8839	0.2229
920–900	0.9206	0.2274
900–800 (Ours)	0.9619	0.2651
900–880	0.9109	0.2312
880–860	0.8818	0.2354
860–840	0.9254	0.2592
800–780	0.9026	0.2762
800–700	0.9302	0.2752
700–600	0.8768	0.2530
600–500	0.9021	0.2840
500–400	0.9123	0.2812
400–300	0.9478	0.2815
300–200	0.9568	0.2728

1274
1275
1276
1277
1278
1279
1280
1281
1282
1283

Analysis. As shown in Table 6, the interval [900, 800] yields the highest coverage score (**0.9619**).

- **Early Phase ($t \in [900, 800]$):** The diffusion model establishes the global layout and existence of the object. The high coverage with moderate IoU indicates a “semantic blob” that robustly localizes the subject without being rigidly tied to pixel-perfect boundaries. This *plasticity* is crucial for editing, as it allows the model to change the object’s pose or shape.
- **Mid-to-Late Phase (e.g., $t \approx 400$):** While IoU peaks around $t = 400$, coverage drops (0.9123). At this stage, the model focuses on fine-grained textures (separating clothes, face, etc.), leading to fragmented maps. High IoU here implies rigid spatial constraints, which would limit the edit to simple texture swapping rather than structural manipulation.

1284
1285
1286

Therefore, we select [900, 800] as the universal probe interval to maximize semantic capture while retaining sufficient flexibility for structural edits.

1287
1288

C.7 COMPARISON WITH DIFFEDIT: MODULATION VS. FILTERING

1289
1290
1291

Although both DiffEdit (Couairon et al., 2023) and Prism-Edit leverage guidance differences to identify semantically meaningful regions, the two methods belong to fundamentally different classes of mechanisms.

1292
1293
1294
1295

DiffEdit (Latent Filtering). DiffEdit constructs a binary spatial mask from the guidance magnitude and *overwrites the latent representation* inside the masked region. This latent replacement operation functions as a hard spatial *filter*: regions with weak guidance are entirely removed from the editing process, while strongly activated regions are preserved. Consequently, DiffEdit fails to edit background regions where the guidance signal is naturally weak. This limitation stems from a theoretical

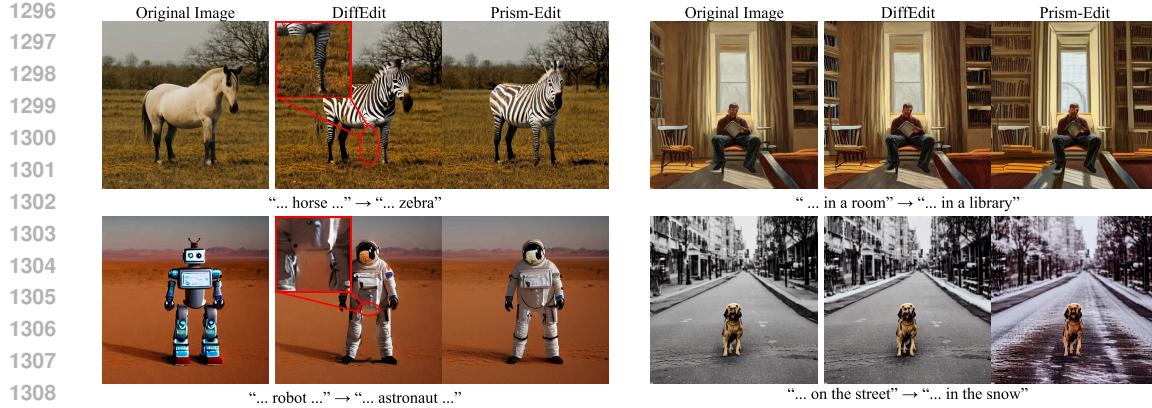


Figure 18: **Qualitative Comparison with DiffEdit.** We compare Prism-Edit against DiffEdit on both object and background editing tasks using Stable Diffusion v1.5. (**Left Columns - Object Edit:**) DiffEdit’s hard latent masking introduces severe artifacts and unnatural boundaries (highlighted in red zooms), as it forcibly pastes the edited content. Prism-Edit, using guidance modulation, blends the zebra and astronaut naturally. (**Right Columns - Background Edit:**) DiffEdit fails to alter the background (“room” and “street” remain unchanged) because the weak background guidance signals are filtered out by its masking threshold. Prism-Edit successfully amplifies these signals to generate the “library” and “snow” scenes.

oversight: DiffEdit assumes low-magnitude regions are irrelevant. However, as discussed in **Section 4 (Information Imbalance)**, these regions yield weak gradients not because they lack semantic meaning, but because they possess low Fisher information density. By filtering them out, DiffEdit inadvertently discards the valid semantic signals required for background editing.

Prism-Edit (Guidance Modulation). In contrast, Prism-Edit never masks or replaces latent variables. It operates exclusively in *guidance space*, applying a semantic weighting to the guidance update $\Delta\epsilon$. Weak but semantically relevant signals are not discarded; instead, they are selectively amplified through Z-score normalization. This effectively counteracts the Information Imbalance, allowing Prism-Edit to forcefully edit low-information regions (backgrounds) that DiffEdit theoretically discards as noise. This preserves structural continuity across the image and enables reliable background editing without introducing the hard spatial artifacts characteristic of latent filtering.

Quantitative Verification. We further validated this on a subset of 30 editing tasks using Stable Diffusion v1.5, covering both object and background modifications. Prism-Edit achieved a higher mean CLIP score (**0.2359**) compared to DiffEdit (0.2298), confirming that our modulation approach aligns better with the target prompts while maintaining image naturalness. A visual comparison is provided in Figure 18.

C.8 ANALYSIS ON OBJECT-SCARCE SCENES

To validate the universality of the Semantic Scale Hypothesis beyond object-centric images, we extend our analysis to object-scarce domains such as landscapes, fluid textures, and abstract gradients. We find that even in the absence of explicit foreground objects, the guidance magnitude ($||\Delta\epsilon||$) effectively adapts to the **local information density**, separating “implicit structure” from “global atmosphere.” As illustrated in Figure 19, we categorize the behaviors into four distinct patterns:

- **Pattern 1: Localized Color Structures (e.g., Cloudy Sky).** In scenes containing localized structures like cloud patterns or light reflections, these features act as high-information anchors. High-magnitude edits (γ_{high}) modify these local contrasts, while low-magnitude edits (γ_{low}) shift the ambient tone or lighting.
- **Pattern 2: Structure vs. Atmosphere (e.g., Ocean).** For scenes mixing smooth masses (e.g., water bodies) with sharp lines (e.g., horizon), the guidance magnitude naturally disentangles them. High-magnitude guidance isolates sharp features for structural edits, whereas low-magnitude guidance alters the global sea state or atmospheric mood.

- **Pattern 3: Implicit Object Hallucination (e.g., Marble).** Strong texture features, such as marble veins, capture high guidance magnitudes. Editing these regions with object-centric prompts often “hallucinates” 3D-like structural changes, treating the veins as pseudo-objects or anchors for new geometry.
- **Pattern 4: Frequency-Based Scaling (e.g., Abstract Gradients).** In edge-dominant images, high-magnitude signals concentrate on high-frequency boundaries, causing sharp transitions at edges. In contrast, low-magnitude signals induce smooth, global color drifts across the flat regions.

Failure Mode. In extremely smooth, uniform images (e.g., flat color fields) where high-frequency structure is virtually absent, the information density becomes uniform. In such cases, the semantic separation weakens, resulting in either negligible changes or global monotone shifts. This limitation is consistent with our hypothesis that guidance magnitude relies on information disparity.

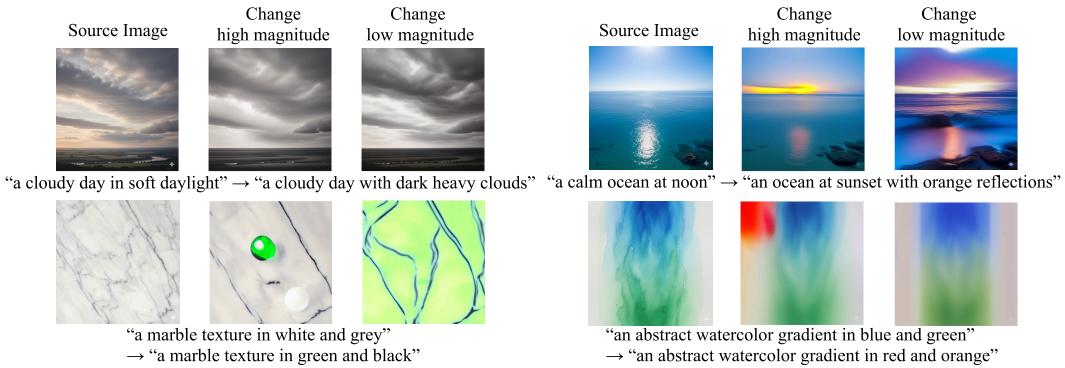


Figure 19: **Analysis of Semantic Scale in Object-Scarce Scenes.** Even without salient objects, the guidance magnitude separates local structures (e.g., veins, horizons) from the global atmosphere, supporting the universality of our hypothesis.

C.9 ROBUSTNESS ANALYSIS: INVERSION METHODS AND PROMPT VARIATIONS

To ensure the reliability of our proposed Semantic Scale Hypothesis, it is essential to verify whether the relationship between guidance magnitude and semantic scale holds consistently across different sampling conditions and prompts.

To address this, we conducted a comprehensive robustness analysis by varying two key factors on the same source images:

1. **Inversion Technique:** We compared the standard first-order **DDIM Inversion** with the high-order **DPM-Solver Inversion** (Lu et al., 2022; Hong et al., 2024), utilizing the exact inversion method for the latter.
2. **Target Prompts:** We applied distinct target prompts to the same source image (e.g., editing a “wooden house” into a “stone castle” vs. an “autumn forest”) to test how the semantic map responds to different editing intents.

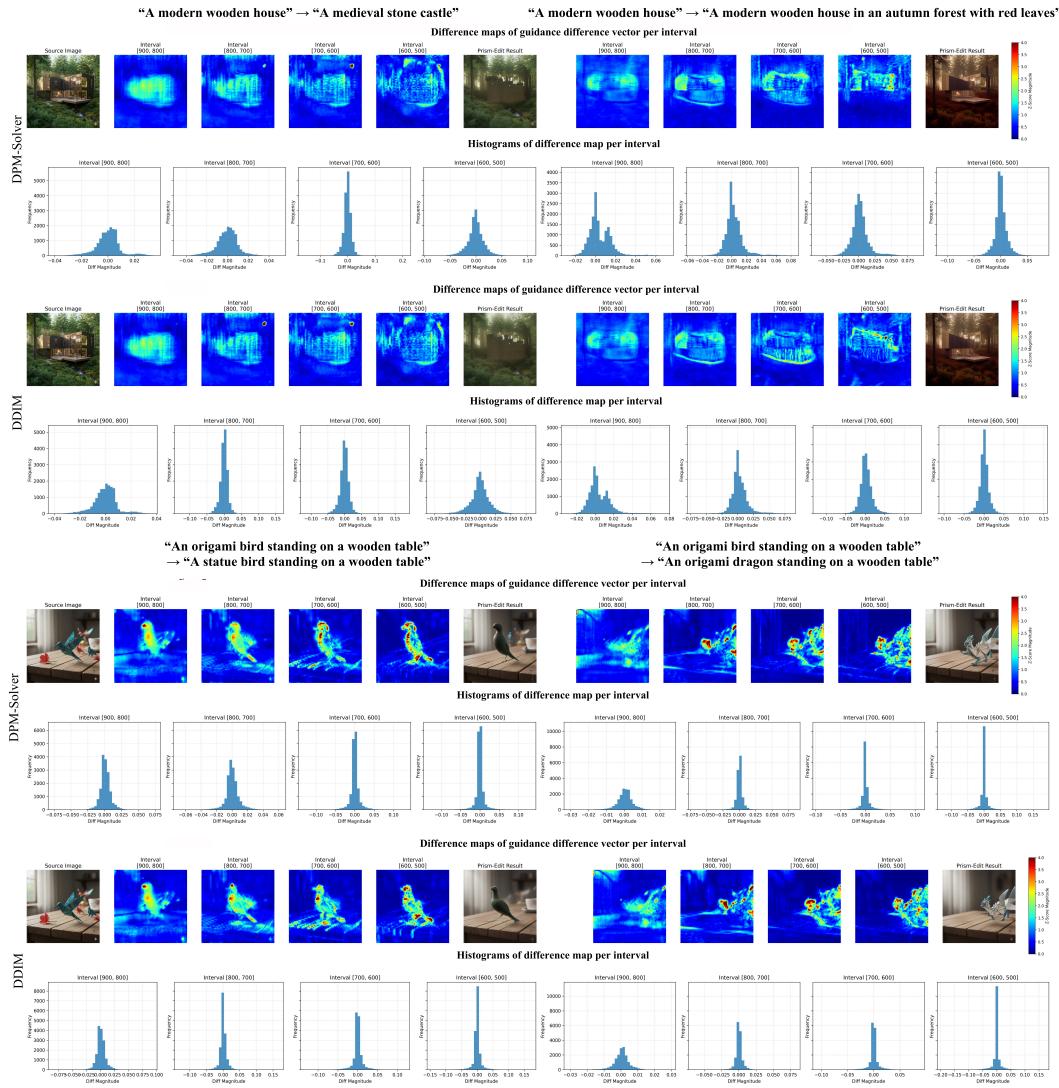
Figure 20 presents the comparative results.

Robustness and Adaptivity. As shown in the histograms and difference maps, we observe two distinct behaviors that validate our hypothesis:

- **Solver Consistency (Nearly Invariant):** Across different inversion solvers (DDIM vs. DPM-Solver), the magnitude distributions exhibit *striking similarity*. Although minor numerical fluctuations exist due to the solver order, the overall distributional shape and the heavy-tail characteristics remain nearly invariant, confirming that the guidance signal is robust to the choice of inversion algorithm.
- **Prompt Adaptivity with Preserved Scaling:** Across different prompts, the distribution *adapts* to the nature of the edit (e.g., structural edits induce a heavier tail than stylistic ones).

1404
 1405
 1406
 1407
 1408
 1409
 Crucially, however, the **spatial scaling principle remains intact**. As visualized in the difference maps, regardless of the prompt, the relative hierarchy is preserved: high-magnitude regions consistently localize the foreground object structure, while the background consistently falls into the low-magnitude range. This demonstrates that while the global energy may shift, the semantic separation logic ($\|\Delta\epsilon\|_{\text{obj}} \gg \|\Delta\epsilon\|_{\text{bg}}$) is never broken.

1410
 1411
 This confirms that the Semantic Scale Hypothesis is not only robust to solver variations but also
 1412 correctly reflects the semantic intensity of the text prompt without violating the core information-
 1413 theoretic scaling law.



1448
 1449
 Figure 20: **Robustness Analysis of the Guidance Difference Vector.** We visualize the histograms
 1450 and spatial maps of the guidance difference vector magnitudes ($\|\Delta\epsilon\|$). (1) **Across Inversion**
 1451 **Methods**, the distributions are nearly invariant. (2) **Across Target Prompts**, the distributions adapt
 1452 to the editing task magnitude. However, the spatial maps confirm that the **semantic scaling principle**
 1453 **holds**: object regions consistently yield higher magnitudes than backgrounds, regardless of the
 1454 prompt.

C.10 EFFECTIVENESS OF THE STATIC MASK MODULE

1455
 1456
 While our main experimental results demonstrate that the *Dynamic Guidance Modulation* alone
 1457 achieves strong empirical effectiveness in general scenarios, we included the *Static Mask* module

1458 as an optional safety net for corner cases requiring strict preservation. To empirically validate this
 1459 design choice, we conducted a controlled quantitative and qualitative ablation study.
 1460

1461 **Experimental Setup.** We utilized the **CUB-200-2011** dataset (CUB), which contains images with
 1462 high-frequency background textures (e.g., dense foliage, branches) that are prone to semantic leakage.
 1463 We randomly selected 100 images from the test set (seed=0) and performed the editing task of
 1464 transforming birds into “*Wooden Carvings*”. This specific prompt was chosen because it involves
 1465 significant texture and geometric changes that often bleed into the background in standard diffusion
 1466 editing.
 1467

1468 **Quantitative Analysis.** We compared three settings: (1) *Dynamic Only* (Default), (2) *Dynamic +*
 1469 *Static Mask* (Optional), and (3) a reference utilizing the Ground Truth (GT) bounding box mask. We
 1470 measured **CLIP Score** (text alignment) and **SSIM** (background structural similarity).
 1471

1472 **Table 7: Quantitative Ablation on CUB-200.** Comparison of editing modes on 100 samples (Bird
 1473 → Wooden Carving). The Static Mask mode achieves the highest background preservation (SSIM),
 surpassing even the GT mask baseline, while the Dynamic mode offers higher editability (CLIP).
 1474

Method	CLIP (Editability) \uparrow	SSIM (Preservation) \uparrow
Dynamic Only (Default)	0.2393	0.6792
Dynamic + Static Mask (Optional)	0.2132	0.6896
(Ref) Dynamic + GT Bbox Mask	0.2264	0.6859

1475 As shown in Table 7, a clear trade-off exists. The **Dynamic Mode** yields a higher CLIP score,
 1476 reflecting its flexibility in blending the target concept with the scene. Conversely, the **Static Mask**
 1477 **Mode** achieves the highest SSIM, slightly outperforming even the Ground Truth mask baseline.
 1478 This confirms that the static mask effectively acts as a “deterministic safety net” for pixel-perfect
 1479 background preservation.
 1480

1481 **Qualitative Analysis.** Figure 21 visualizes the distinct behaviors of the two modes:
 1482

- 1483 • **General Cases:** In scenes with clear separation or simple backgrounds, the Dynamic Mode
 achieves high-quality editing indistinguishable from the Static Mask mode.
 1484
- 1485 • **Structural Degradation:** In scenes with complex foliage, the Dynamic Mode occasionally
 struggles to separate the object from the texture, causing the target style (e.g., wood texture)
 to bleed into the surrounding leaves. The Static Mask fully prevents this leakage.
 1486
- 1487 • **Geometric Hallucination:** We observed that for prompts like “Wooden Carving,” the Dy-
 1488 namic Mode sometimes hallucinates contextual objects—for instance, creating a base under
 1489 a seagull due to the model’s prior that carvings typically sit on bases (see Figure 21, bottom
 1490 row). The Static Mask successfully suppresses this geometric hallucination, maintaining the
 1491 original flat terrain.
 1492

1493 **Summary.** Consequently, the Static Mask is not merely a redundant component but a strategic tool
 1494 for handling corner cases. While the Dynamic Mode offers superior flexibility and text alignment
 1495 for standard scenes, the Static Mask provides a deterministic guarantee for structural preservation.
 1496 This makes it an essential optional module for users who need to strictly isolate the edit target from
 1497 challenging, texture-rich backgrounds.
 1498

1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

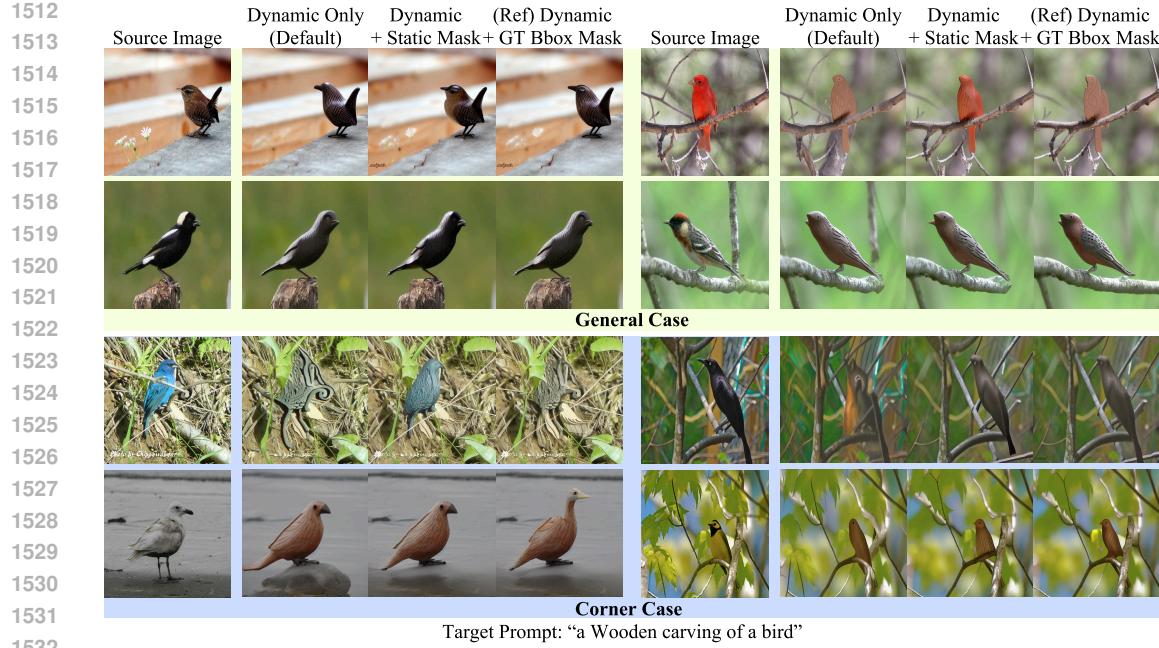


Figure 21: **Qualitative Ablation on the Static Mask.** **(Top) General Scenarios:** In scenes with simple backgrounds or clear object separation, the **Dynamic Mode** (Default) achieves high-fidelity editing comparable to the Static Mask mode. **(Bottom) Corner Cases:** In complex scenarios, the Dynamic Mode exhibits specific failure modes: (1) **Structural Degradation:** In the examples with dense foliage (blue, black, and yellow birds), the bird's silhouette is lost as the target texture bleeds into the complex background. (2) **Geometric Hallucination:** In the seagull example, the model hallucinates a new object (a base) under the bird. The **Static Mask** prevents these artifacts by enforcing a strict preservation constraint on non-edit regions.

D STATEMENT ON LLM USAGE

In line with the ICLR 2026 policy, we disclose that we used Large Language Models (LLMs) as an auxiliary tool during the preparation of this manuscript. LLM's role was primarily important in enhancing the clarity and readability of the manuscript. It was utilized to refine sentence structure, correct grammatical errors, and improve the overall logical flow of paragraphs, with particular emphasis on the introduction, relevant work, and appendix sections.