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ABSTRACT

Batch Normalization (BN) as an important component assists Deep Neural Net-
works achieving promising performance for extensive learning tasks by scaling
distribution of feature representations within mini-batches. However, the applica-
tion of BN suffers from performance degradation under the scenario of Unsuper-
vised Domain Adaptation (UDA), since the estimated statistics fail to concurrently
describe two different domains. In this paper, we develop a novel normalization
technique, named Collaborative Normalization (CoN), for eliminating domain dis-
crepancy and accelerating the model training of neural networks for UDA. Unlike
typical strategies only exploiting domain-specific statistics during normalization,
our CoN excavates cross-domain knowledge and simultaneously scales features
from various domains by mimicking the merits of collaborative representation. Our
CoN can be easily plugged into popular neural network backbones for cross-domain
learning. One the one hand, theoretical analysis guarantees that models with CoN
promote discriminability of feature representations and accelerate convergence
rate; on the other hand, empirical study verifies that replacing BN with CoN in
popular network backbones effectively improves classification accuracy with 4%
in most learning tasks across three cross-domain visual benchmarks.

1 INTRODUCTION

The hierarchical structure of Deep Neural Networks (DNN) facilitates itself to achieve appealing
performances with prolific semantic representations in most learning tasks (Saito et al. (2019); Xu
et al. (2019)). As an indispensable component in DNN, batch normalization (BN) aims to scale
internal features to promote modeling ability of DNN (Ioffe & Szegedy (2015)). Concretely, typical
BN preserves the scale of distribution invariant among various network layers by normalizing features,
avoiding gradient vanishing and accelerating model convergence (Li et al. (2018)). To accurately
estimate property of distribution, the training of DNN thus requires abundant well-labeled instances,
which is unsuitable for real-life scenarios.

Unsupervised Domain Adaptation (UDA) casts a light on such a barren condition and explores
external source domain with sufficient annotation to build a model generalized to unlabeled target
domain. The primary challenge for UDA is to overcome domain shift that multi-domains belong to
various distributions (Zhang et al. (2019a); Ma et al. (2019)). Existing mainstream solutions attempt
to eliminate cross-domain discrepancy by learning domain-invariant representations with DNN
(Zhang et al. (2019b); Long et al. (2017)). Along this line, one successful strategy adopts adversarial
mechanism between feature extractor and domain discriminator to perform domain confusion (Liu
et al. (2019); Zhang et al. (2019b)). Other efforts (Long et al. (2017); Kang et al. (2019)) focusing
on the alignment of various distributions expect both domains to share the identical statistics (e.g.,
mean value and co-variance). For the convenient implementation, these works generally bind the
corresponding constraints with full-connection features following convolutional operations. However,
the effect of objective function flowing in stacked network architecture gradually becomes too weak
to align source and target features specially on shallow layers during back propagation.

To overcome such a problem, the variants of BN linking adjacent layers attract massive attentions
on domain adaptation. Traditional methods typically adopt domain-specific BNs to separately scale
source and target features (Kang et al. (2019); Long et al. (2018)), however, their major drawback
lies in the difficulty of capturing cross-domain association. From statistical perspective, adaptive
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batch normalization (AdaBN) (Li et al. (2018)) thus exploits the same BN module across various
domains by training normalization component on source domain and fixing parameters to identify
target samples for inference stage. However, significant domain discrepancy has negative influence
on the direct application of source statistics on target domain. To mitigate collision, the automatic
domain alignment layer (Cariucci et al. (2017)) considers the linear combination of source and
target statistics as indicator of BN. The primary challenge is accurately to select the combination
coefficient as the key to succeed. Another perspective delves into the learning of transferable feature
representations. Specifically, TransNorm (TN) claims that the similar convolutional channels across
both domains tend to record similar patterns intensified in BN operation to promote the transferability
of features (Chen et al. (2019)). For visual signals, theses attributions, however, are corresponding to
the same concepts such as blue sky, green grass et.al instead of our interested objects. Therefore, the
enhancement of them brings a little benefit for classification of target domain.

Different from their viewpoints, we explore cross-domain feature alignment during forward propa-
gation from manifold distribution perspective (Luo et al. (2020); Fernando et al. (2013)). Although
convolutional representations distribute in high-dimensional feature space, instances from the iden-
tical category lie in the same cluster within each domain. However, domain divergence results in
constituting various subspaces of source and target features with the same annotation. In this paper,
we have alternatively transformed domain adaptation task into subspace fusion problem. Thus, we
propose a novel collaborative normalization (CoN) to answer how to carry out cross-domain subspace
alignment in forward propagation of features. First, CoN module exploits domain-specific statistics
to normalize features to avoid destroying original data distribution. Second, CoN investigates cross-
domain structural information through the global pooling of convolutional features. Finally, CoN
attempts to estimate the location of source (target) features in target (source) subspace and gradually
align samples from its own subspace to the other. The main contributions of our work are summarized
in three folds:

e We advance traditional BN with a novel feature adjustment mechanism in forward propaga-
tion and easily plug our CoN module into convolutional layers without additional parameters.

o Our theoretical analysis further illustrates why our CoN effectively achieves domain align-
ment via translation between source and target samples and accelerates convergence speed.

e Experimental evaluations on several visual domain adaptation benchmarks demonstrate that
our CoN facilitates convolutional neural network to learn better domain-invariant feature
representations than other normalization techniques as traditional BN.

2 RELATED WORK

In this section, we mainly review unsupervised domain adaptation problem and batch normalization
strategies, and highlight the difference between our proposed method.

Unsupervised Domain Adaptation (UDA) aims to train a source-supervised model with high
generalization on target domain. The primary challenges for UDA are to learn transferable feature
and achieve the alignment of distribution. To overcome such issues, domain-adversarial manner is
adopted to train a neural network with generator and discriminator and learn domain-invariant features
(Chen et al. (2019); Zhang et al. (2019b)). Another solution claims that statistics of data reflect
the situation of distribution and forces source and target domains to share the identical indicators
such as MMD and its variants (Long et al. (2015; 2017); Kang et al. (2019)). Both schemes apply
back propagation to delivery the corresponding constraints by using objective function on top layers.
However, gradient vanishing as the increasing number of network layers gradually decrease the
effect of condition on bottom layers. Unlike them, this paper attempts to eliminate cross-domain
discrepancy during forward propagation by proposing a novel network normalization component.

Batch Normalization (BN) as an important component has been widely studied to demonstrate that
it effectively promotes the performance of DNN by scaling internal representations across network
layers (He et al. (2016)). There exist many variants of BN to satisfy specific requirement for other
applications (Cooijmans et al. (2016); Wang et al. (2018); Nam & Kim (2018)). To fight off domain
mismatch, a few works thus explore novel techniques based on domain-specific BN to address issue
of domain adaptation (Li et al. (2018); Wang et al. (2019b); Roy et al. (2019)). AutoDIAL attempts
to construct new statistics through the linear combination of indicators derived from source and
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target domains to concurrently normalize all features (Cariucci et al. (2017)). However, the optimal
parameters of combination are yet not simply accessible. DSBN Chang et al. (2019) adopts domain-
specific BN to scale source and target features to preserve more domain-specific knowledge, which
difficultly captures the cross-domain association to achieve distribution alignment. Furthermore,
TN points out several channels of convolutional features are more likely to record similar content
for both domains and intensifies representation of these channels to promote the transferability of
features (Wang et al. (2019a)). The sense of TN is that these similar contents are task-relevant
patterns such as objects instead of background, which is difficult to guarantee. Differently, the
proposed method considers the translation of sample from one domain to another and carries such
motivation into normalization. Such a strategy not only overcomes domain shift, but also promotes
the discriminability of features due to advantage of collaborative representation.

3 THE PROPOSED APPROACH

3.1 PRELIMINARIES AND MOTIVATION

Denote a well-labeled source domain Dy = {(X$,17)}7*; and a target domain D, = {X!}I'*,
without any annotation, where Xf/ ¢ represents visual signal from the corresponding domain and
15 € RO is the label for X¢, where C is the number of category. Unsupervised Domain Adaptation
(UDA) aims to borrow knowledge from D; to annotate the unlabeled target instances. Benefiting
from prolific semantic knowledge learned by hierarchical network architecture, existing explorations
for UDA apply DNN to generate domain-invariant features (Zhang et al. (2019b); Tang & Jia
(2020)). Without loss of generality, the convolutional features of the k-th hidden layer are defined as
Fs/t = {Fs/t REXWXH | — 12 ... 'm} for each mini-batch with m samples, where L, W and
H mean the length, width and channel number of feature tensor, respectively.

Domain-specific batch normalizations following convolutional operation are explored to scale rep-
resentations F* and F! as Figure 1 (a) in green background with the estimated mean value and

co-variance of Ff/)t for the j-th channel (5 € {1,2,--- , H}):
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To improve the modeling capacity of neural network, the transformed representation F?J/)t from F?J/)t
is further scaled and shifted into the following formulation:
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where ~(;) and ;) are learnable parameters. Actually, this operation for each domain effectively
scales the feature representations across various network layers to stabilize the model training and
accelerate the convergence rate. However, such a normalization strategy using different statistics
to scale source and target samples suffers from the difficulty of eliminating domain discrepancy.
To handle this bottleneck, TN (Wang et al. (2019a)) concerns on learning transferable features and
advances typical BN with dashed lines in Figure 1 (a) by sharing information of channel across both
domains during forward propagation stage. Concretely, for each channel, TN module computes
cross-domain difference d;) and evaluates the channel transferability via parameter c(;):

s t —1
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According to the above definition, ;) with large value indicates the j-th channels corresponding

to two domalns contain similar pattern. Promoting the importance of such channels with Yg/ k

1+a)o Y,L. * to some extent reduces domain shift (© denotes element-wise multiplication), where
o is a vector with a concatenation of the values {a;)|j=1,2,...,ir }. TN assumes that these enhanced
features include knowledge of our interested object. Unfortunately, the current version fails to



Under review as a conference paper at ICLR 2021

(a) BN & TN (b) Collaborative Normalization (CoN)

Figure 1: Normalization tools for UDA. (a) Typical Batch Normalization (BN) in green background firstly
estimates the mean ufj/)t and variance afj/; from the j-th feature map, and then normalize F¥/tinto Y/t TN
further extended BN by exploring c(;) (dash lines) to enhance the transferability of several channels. (b) Our
CoN advances the BN with dashed lines and borrows cross-domain knowledge derived from all feature maps
F(S;) " to implement collaborative normalization and eliminate domain shift.

guarantee such requirement. For example, even though we discover several similar cross-domain
channels extracting background content from visual signals, it is still meaningless to continue reducing
difference between them for classification task.

Different from them, we focus on the manifold distribution of features in forward propagation. For
each domain, similar feature representations with the same annotation lie in the identical subspace.
However, source and target features from the same category distribute in different subspaces due
to considerable domain shift. Alternatively, the reduction of domain discrepancy also means the
subspace alignment. Motivated by such a consideration, we expect to estimate the location of source
(target) features in target (source) domain and gradually align instances from its own subspace to the
other. Therefore, this paper proposes a novel collaborative normalization (CoN) strategy to implement
our purpose.

3.2 COLLABORATIVE NORMALIZATION (CON)

The CoN module mainly involves three operations: domain-specific normalization, collaborative
translation and excavation of cross-domain structural knowledge.

Domain Specific Normalization. Domain shift means that source and target instances come from
two completely-different distributions. Thus, the normalization of features across both domain with
the same statistic easily undermines the original distribution information. To avoid such problem, we
follow the usual solution (Ganin et al. (2017)) to scale features with domain-specific statistics and

shift them with the identical parameters (v(;, 8(;)) into Yf(/j .t).

Collaborative Translation. The core of CoN is to achieve the alignment of source and target
subspaces by moving instances from its own subspace to the other. Before the specific implementation,
we have to post two important questions: where is the location of samples in another subspace and
how to move it into the position. The solution to the first challenge is motivated by manifold
theory that each sample can be represented by the linear combination of others. Without losing
generality, we take source-to-target translation as an example and consider the linear combination
of target samples as the location of the given source instance in target subspace. For the clarity of
illustration, we firstly reshape hidden feature Yf(/jt) corresponding to each sample into vector form
y: /t ¢ R4 without (j), where d is the dimension of feature. Given source sample y;, target
samples Z* = [(y}) ", (y4) ", -+, (yh,)']" (v} € R"*%) are regarded as a set of basis vectors to
represent it, i.e., y§ ~ m!Z’, where m! € R'*™* denotes coefficient of linear combination for i-th
source instance and m; denotes batch size. Specifically, suppose that y; and y§- belong to the same

4
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category, we should emphasize the contribution of y§» for linear representation, which means that the

j-th element in m! tends to be larger value than others. Similarly, when these two domains change
their roles in linear combination, the formulation of collaborative translation will be maintained, i.e.,
y! ~ m{Z*, where m; has the same meaning with m?.

With respect to the second challenge, we are motivated by the explanation that m!Z* (m{Z*) serves
as projection of y? (y!) on subspace spanned by Z' (Z*) and attempt to adjust source feature to the
approximation to achieve subspace alignment. However, we further concern about another question
about the reliability of adjustment. Alternatively, when there exists small difference between them,
performing the corresponding adjustment tends to be confident, vice versa. Thus, we define adjustment
coefficient to evaluate the difference between y; and m!Z! to gradually conduct adjustment:
d d

i

S
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where n? (n!) with larger value means the higher credibility of this adjustment. Therefore, the

collaborative translations is formulated as: Y* =Y* +n* © (A*'Z! = Y*)and Y =Y! +n' ©
s7s s s/t s/t s/t s

(A=Z° = Y*), where /" = [/ 0" ll) T AT = [(m)T, (mb) T (i, )T and

ms

A =[(mj)", (m3)",--,(m3,,)"]". The final step is to reshape Y:/" into a 2-D feature map
s/t

by

Structural Knowledge Excavation: The next discussion is about the design of transfer coefficient
A*®t and A" in Figure 1 (b). Due to the accessibility of source and target features, we learn the
closed-form solution of coefficient via the optimization of the ordinary least square between source
and the combined features. However, the strategy with optimization operation postpones the forward
propagation of features and hardly captures sample-to-sample relationship without sufficient training
instances in each mini-batch. To fight off these drawbacks, we alternatively turn to the application of
cross-domain structural knowledge derived from F¢ and F¢. Concretely, when channel number of
feature H > 2, the global pooling operation calculates the average of all elements in each 2-D tensor

with the same size with Y

Ff(/j .t), and then compresses feature of each sample F:/* into G3/" € R'*H_ Thus, we formulate
s t\T

the element of A** as A$} = % and A" = (A*) . For full-connection (FC) layers, the
i J

cross-domain graph is directly computed from the cosine distance of source and target features. To
this end, we easily plug our CoN layer into any network layers without additional parameters.

3.3 WHY CAN CON WORK FOR UDA?

The subspace spanned by target samples Z!
is formulated as ® geometrically shown as a
plane in Figure 2. Since any source sample
y* can be linearly represented by Z¢, we
formulate the approximated error between
them as € = y* — y°, where y* = AS'Z¢,
Ast € R1*™t Meanwhile, we notice that
target samples of the i-th category construct
a subspace ®; € ¢ while others form other
subspace ®; = Uj—1g;2;®; € ®. In this
way, the estimated vector y* can be decom-
posed into two components: x; € ®; and
X; € ®;. Akin to such decomposition, one
component of the approximated error is for-
mulated as vector ¢;. In the following, we
firstly provide theoretical analysis about our CoN and then illustrate how it does work for UDA.

y$+n@°® —y*)

¢

Figure 2: Geometric illustration for the working mechanism
of Collaborative Normalization (CoN).

Theorem 3.1. Given target samples divided into C' categories and any source sample y*, we assume
each class has only one sample in target domain. For i, j € {1,2,...,C}, where i # j, the following
conclusion holds: Ae; such that ||¢;||2 < ||€; |2, while y*® belongs to the i-th category.

Proof. According to the design of CoN, it is straightforward to obtain that y; = cosf - y! and
Ixill2 = cosO|yt||2. In addition, we have to point out that € 1. ®. Due to the auxiliary line £ L x;,
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we have:

lly*ll2 cos®

[Vl = [ly*ll2 - cos @ = [|[¥°[|2 - cosp,  cosp= T (5)

*Il2

From Figure 2, the formulation ||7°||2 - sin p = ||, |2 - sin w holds under the law of sines. In terms
of these discussions, we further have the following formulation:

IXill2 = \/H?SHz F1Iyill2 - cos? 0 = 2[[y°[l2 - [[yill2 - cos 8 - cos p = V/[|[F°[]2 — cos? 6. (6)

To achieve the final result, we simultaneously shrink vector y* and y;? into the same scale, i.e.,
lly*ll2 = |lytll2 = 1. From another perspective, we achieve ||¢;||3 = ||€]|3 + ||, ||3 and rewrite it as:

leil3 = l1ell3 + 11513 — cos® . @

In terms of Eq. (7), the approximated error ||¢;||2 depends on three terms ¢, ¥° and cos§. From
manifold perspective, features from the same category lie in a very compact subspace. Thus, the
cosine 51m11ar1ty between y* and y! both from the i-th category becomes higher than the distance
between y*® and yJ from various classes. With the aid of manifold theory, the conclusion AHe;,
llejllz < l&ill2 holds. Next, we utilize Eq. (7) to illustrate why our CoN can achieve domain
alignment. According to CoN module y* = y* +n°(y° —y ) y*® is transformed into y* and the
component of approximated error ¢; tends to be é;, where ||é;|3 = ||e — 5H2 + [[¥°||3 — cos® 0 and
d = n(y® —y?®). Therefore, we have the following inequality over ¢; and é;:

1€:l13 = llellz + 18113 — 2llell2lI6ll2 + IF7°]13 — cos® 0 < llesl|3,  [Id]l2 < llell=. @)

The above formulation denotes the adjusted features y* is closer to its corresponding target category
when compared with the original feature y*. Therefore, our method utilizes such a reliable adjustment
to gradually achieve distribution alignment and improve the discriminative ability of features.

4 EXPERIMENTS

To verify the effectiveness of Collaborative Normalization (CoN), we apply the proposed method into
two well-known deep transfer learning backbones CDAN (Long et al. (2018)) and DANN (Ganin
et al. (2017)) and evaluate their performance on three popular benchmark datasets.

4.1 EXPERIMENTAL SETTING

Datasets: 1) Image-CLEF collects visual signals from three subsets: Caltech-256 (C), ImageNet
ILSVRC 2012 (I) and Pascal VOC 2012 (P) with the same number of samples. Concretely, arbitrary
subset includes 600 images evenly distributed in 12 categories. 2) Office-31 (Saenko et al. (2010)) as
a benchmark dataset of domain adaptation involves 4,652 images from 31 categories. These instances
are divided into three subsets: Amazon (A, 2,817 images), DSLR (D, 498 images) and Webcam (W,
795 images). 3) Office-Home (Venkateswara et al. (2017)) consists of four subsets: Artistic images
(Ar), Clip Art (Cl), Product images (Pr) and Real-World images (Rw). Four subsets with 15,500
images share the identical label space of 65 categories.

Competitive baselines: We not only explore the state-of-the-art domain adaptation methods includ-
ing DAN (Long et al. (2015)), JAN (Long et al. (2017)), MADA (Pei et al. (2018)), DSR (Cai et al.
(2019)), SymNets (Zhang et al. (2019b)), TADA (Wang et al. (2019b)), SAFN (Xu et al. (2019)),
DRMEA (Luo et al. (2020)), DADA (Tang et al. (2020)) but also combine network backbones
(CDAN and DANN) with multi-norm strategies: BN (Long et al. (2018)) and TN (Wang et al.
(2019a)) as baselines. We follow the standard protocols operated with CDAN and DANN to evaluate
the effectiveness of our proposed normalization technique. To make fair comparisons, results of all
above methods are directly copied from the corresponding literature under the exactly same protocols.

Experimental results on Image-CLEF, Office-31 and Office-Home datasets are summarized in
Tables 1, 2, and 3, respectively. From these results, we achieve three main conclusions. First,
the integration of CDAN and CoN surpasses all comparisons in most domain adaptation tasks.
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Table 1: Classification Accuracy (%) on Image-CLEF dataset (ResNet-50). The best results among all methods
are shown with underline while the highest accuracy of three normalization tools is in Red type. And BN, TN
and CoN are plugged into the same backbone CDAN.

Method  Res-Net JAN DAN MADA SAFN DRMEA BN TN CoN

I-P 748+£03 76.8£0.4 745+04 75.0+0.3 79.31+0.1 80.7 777 783 80.2
P—I  839+0.1 88.0£0.2 82.2+0.2 879402 93.3+0.4 92.5 90.7 90.8 933
I-C 915403 94.7+0.2 92.8+£0.2 96.0£0.3 96.3£0.4 97.2 97.7 96.7 975
C—I 78.0+02 89.5+03 86.3+04 88.8+0.3 91.7£0.0 90.5 913 923 943
C—P 655+03 742+03 69.2+04 752+£02 77.6%0.1 71.7 742 780 80.4
P—C 912403 91.7+£03 89.8+0.4 92.2+0.3 95.3£0.1 96.1 943 943 96.2
Avg 80.7 85.8 82.5 85.8 88.9 89.1 87.7 885 90.3

Table 2: Classification Accuracy (%) on Office-31 dataset (ResNet-50). The best results among all methods are
shown with underline while the highest accuracy of three normalization tools is in Red type. And BN, TN and
CoN are plugged into the same backbone CDAN.

Method  Res-Net JAN DADA SymNets TADA  SAFN BN TN CoN

A—W 684+£02 854+03 923£0.1 90.8+0.1 943£03 903 941 957 964
D—W 96.7£0.1 97.4402 99.24+0.1 98.8£0.3 98.7£0.1 98.7 98.6 98.7 984
W—D 993£0.1 99.8+£0.2 100£0.0 100.0£0.0 99.8+0.2 100.0 100.0 100.0 100.0
A—D 689+02 84.7+03 93.9+£0.2 93.9+05 91.6£03 90.7 929 94.0 96.0
D—A 625+03 68.6+£03 744+£0.1 74.6£06 729+02 734 710 734 773
W—A  60.7£03 70.0£04 7424+0.1 72.54+0.5 73.0+£03 712 693 742 757

Avg 76.1 84.3 89.0 88.4 88.4 87.6 877 893 90.6

Specifically, with respect to tasks D — A and W — A in Office-31, our proposed strategy sep-
arately exceeds the second highest classification accuracy by 2.9% and 1.5%. It demonstrates
that collaborative normalization effectively promotes the model generalization ability on target
domain. Second, compared with other normalization techniques (BN and TN), CoN successfully
scales latent features across various domains to achieve the alignment of different distributions.
For example, due to the assistance of CoN, 1qg

CDAN learns more transferable features DANN + BN
which dramatically eliminates domain shift 93 mE DANN + TN
and improves accuracy by 6% and 4.3% g B DANN + CoN

on tasks (Cl — Ar and Cl — Pr) when
making comparison with BN. Finally, net- 8>
work backbones associated with CoN be- g,
come more robust for several challenging
situations where there exists huge discrep- 73
ancy about the number of sample within 5,
source and target domains. Although DSLR
or Webcam domain has less samples than
Amazon domain in Office-31, the proposed
method still obtains comparable performance, which verifies that the application of collaborative
transfer in mini-batch tends to capture more cross-domain information and learn better domain-
invariant features. Moreover, CoN layers are also plugged into DANN architecture, which still
achieves promising performances in Figure 3. That means it is simple yet effective to deploy our
proposed normalization strategy to any frameworks used for domain adaptation.

1-P P-l I-C C-l C-»P P-C Avg
Figure 3: Evaluations of DANN with multiple normalization
strategies (BN, TN and CoN).

4.2 EMPIRICAL ANALYSIS

Convergence Speed: According to the aforementioned working mechanism, the proposed collabo-
rative normalization adaptively adjusts the direction of feature representations within a mini-batch.
Such operation explores cross-domain knowledge to gradually eliminate the discrepancy between
source and target domains. Importantly, our strategy effectively accelerates the convergence speed.
To clearly illustrate this point, the iterative procedures of CDAN with CoN on tasks P — I and
C — P are reported in Figure 5 (a). We easily find that compared to BN and TransNorm, our method
with CDAN rapidly achieves the optimal solution. Concretely, take task P — I as an example,
collaborative transfer strategy only costs 2,000 iterations to reach the highest classification accuracy,



Under review as a conference paper at ICLR 2021

Table 3: Classification Accuracy (%) on Office-Home dataset (ResNet-50). The best results among all methods
are shown with underline while the highest accuracy of three normalization tools is in Red type.

Method Ar:Cl ArPr ArrBRw CLAr Cl:Pr Cl:Rw Pr:Ar Pr:Cl Pr:Rw Rw:Ar Rw:Cl Rw:Pr Avg
Res-Net 349 500 58.0 374 419 462 385 312 604 539 412 599 46.1
JAN 459 612 689 504 59.7 610 458 434 703 639 524 76.8 583
DSR 534 716 774 571 668 693 567 492 757 680 540 795 649
SymNets  47.7 729 785 642 713 742 642 488 795 745 526 827 676
TADA 53.1 723 772 591 712 721 597 531 784 724 600 829 67.6
SAFN 520 717 763 642 699 719 637 514 771 709 571 815 673
CDAN+BN 50.7 706 76.0 576 700 700 574 509 773 709 567 81.6 65.8
CDAN+TN 502 714 774 593 727 731 61.0 531 795 719 590 829 67.6
CDAN+CoN 512 722 775 636 743 720 619 565 79.8 754 556 842 68.7
g s 4 .
- Swiee -
- e | o, e N0 - -
- <
Yo & ¥ R “ e -
.
¥ > & L

(a) CDAN+BN (b) CDAN+TN (c) CDAN+CoN

Figure 4: Visualization of features on task C' — P by using CDAN with multi-normalization tools.

while TN and BN require 3,500 and 4,500 iterations, respectively. The main reason results from
the application of cross-domain knowledge which guides features to quickly shrink to the correct
direction and makes features more discriminative.

Feature Visualization & Singular Values: To explicitly understand the situation of distribution
in abstract semantic space, the t-SNE technique is exploited to visualize feature representations in
2D-panel. The comparative experiments among BN, TN and CoN with CDAN are performed on task
C — P of Image-CLEF. Different from BN and TN, there exists tangible boundary among various
categories generated by CoN (Figure 4 (c)). And it is difficult to distinguish source samples from
target instances. These experimental performances demonstrate that replacing traditional BN with
CoN effectively scales feature representations and dramatically mitigates the influence of domain
shift. Moreover, we also explore SVD tool to obtain singular values from the learned features on
task C' — P. As shown in Figure 5 (b), CDAN+CoN has smaller difference between the largest
and the smallest singular values compared with CDAN+BN. According to the theory of BSP (Chen
et al. (2019), we achieve the conclusion that CoN can learn more discriminative features, which is
consistent with our theoretical analysis in Sec. 3.3.

Generalization Analysis: Under the adversarial scheme, domain discrepancy is approximated by
A-divergence (Ben-David et al. (2010)) with the formulation as:

1
m(zwu):o Hz eD,)+ Zm:D(a:):l Iz € Dt)))’ ©)

where D(-) means the domain classifier distinguishing source domain from target domain (D(x €
D;) = 1 and D(xz € D;) = 0). This indicator reflects the alignment of distribution in the latent
space. In addition, in terms of the learning bound theory in (Ben-David et al. (2010)) (e (h) <

A (S, T) = 2(1 -

— BN (P-I)
— TN (P-1)
—— CoN (P=1)

©
vl

w

-~ BN (C-P)
~ TN (C-P)
- CoN (C-P)
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@
=)
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Figure 5: Visualization of convergence speed, eigen-values, .A-distance and \-value.
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es(h) + 2dyan(S,T) + A), the expected error of hypothesis space h on target domain e7-(h) is
also determined by the error A of the ideal joint hypothesis 2* on two domains. We apply domain
classifier in CDAN with various normalization tools on task C' — P to evaluate A-divergence and A
in Figure 5 (c¢) and (d), where CoN with CDAN obtains lower values than BN and TN. It indicates that
scaling features with CoN easily learns domain-invariant features and achieve distribution alignment.

5 CONCLUSION

Unsupervised domain adaptation (UDA) aims to learn model with high generalization ability by
achieving domain adaptation. In this paper, we rethink UDA from manifold distribution perspective
and propose a novel collaborative normalization strategy suitable for the forward propagation of
features to achieve domain alignment. Theoretical and experimental studies fully illustrate that
the application of CoN in convolutional layers effectively improves classification performance and
accelerates model training convergence on solving UDA issue.
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