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Hyperbolic partial differential equations (PDEs), especially scalar conservation laws, are fundamental tools for 
modeling wave propagation and transport phenomena in physics and engineering. Unlike parabolic or elliptic PDEs, 
hyperbolic PDEs often develop discontinuities such as shocks, which makes their numerical solution particularly 
challenging. While machine learning methods have recently shown success in solving parabolic and elliptic PDEs, 
their extension to hyperbolic equations remains less developed. This motivates our work: to design learning-based 
solvers that retain the stability and conservation guarantees of classical numerical methods, while offering the 
flexibility and efficiency of modern neural networks. 
 To address this gap, we propose a Neural Finite Volume (NFV) framework that integrates classical 
numerical methods with trainable neural networks. In NFV, the traditional numerical flux function in finite volume 
schemes is replaced by a learned neural flux. This design preserves key properties of conservation and stability 
while introducing data-driven flexibility. We develop both supervised and unsupervised training schemes: 
supervised learning directly from PDE entropy solution data, and unsupervised learning via weak-form residual 
loss.  
 We conduct an extensive numerical study across 7 hyperbolic PDE variants, covering scalar conservation 
laws with different flux functions. Our approach is benchmarked against 6 classical numerical schemes, including 
both finite volume and finite element 
methods. NFV consistently outperforms 
baselines in terms of accuracy and 
adaptability, while remaining 
computationally efficient. It achieves up 
to 10x lower error than Godunov’s 
method, outperforms ENO/WENO, and 
rivals discontinuous Galerkin solvers 
with far less complexity. Beyond 
synthetic PDE data, we validate the 
method on real-world traffic datasets, 
where NFV demonstrates strong 
predictive performance despite noise 
and partial conservation. These results 
highlight the potential of combining physics-preserving architectures with the expressive power of neural networks. 
 Looking forward, our ongoing work extends this framework along two key directions: 1) Velocity-based 
PDEs (V-PDEs). In many applied domains such as traffic, velocity is far easier to measure than density or flow. 
Reformulating conservation laws into V-PDEs makes the learning problem more directly aligned with observable 
data, increasing real-world applicability. 2) Higher-dimensional PDEs. Realistic systems often evolve over space 
and time in multiple dimensions. Extending NFV to two- and three-dimensional hyperbolic PDEs requires new 
architectures and stability guarantees, but offers the opportunity to scale to richer scientific domains. 
 This research contributes to the growing effort to merge machine learning with scientific computing, 
emphasizing models that are both physically principled and data-informed. By focusing on the most challenging 
PDE class, hyperbolic PDEs, we aim to broaden the scope of learning-based solvers, with applications ranging from 
traffic flow modeling to fluid dynamics and beyond. 
 


