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Abstract

Recent work has shown that distributed word001
representations can encode abstract informa-002
tion from child-directed speech. In this pa-003
per, we use diachronic distributed word repre-004
sentations to perform temporal modeling and005
analysis of lexical development in children.006
Unlike all previous work, we use temporally007
sliced corpus to learn distributed word repre-008
sentations of child-speech and child-directed009
speech under a curriculum-learning setting. In010
our experiments, we perform a lexical catego-011
rization task to plot the semantic and syntac-012
tic knowledge acquisition trajectories in chil-013
dren. Next, we perform linear mixed-effects014
modeling over the diachronic representational015
changes to study the role of input word fre-016
quencies in the rate of word acquisition in chil-017
dren. We also perform a fine-grained analy-018
sis of lexical knowledge transfer from adults019
to children using Representational Similarity020
Analysis. Finally, we perform a qualitative021
analysis of the diachronic representations from022
our model, which reveals the grounding and023
word associations in the mental lexicon of chil-024
dren. Our experiments demonstrate the ease025
of usage and effectiveness of diachronic dis-026
tributed word representations in modeling lex-027
ical development.028

1 Introduction029

Human-like linguistic generalization plays a key030

role in developing better models for natural lan-031

guage processing (Linzen, 2020). Modeling the032

lexical development in children is an important033

aspect of demystifying the dynamics of human lan-034

guage learning. Lexical development in children035

is a holistic and complex phenomenon involving036

noisy multimodal interactions and underlying vari-037

ous psycholinguistic processes. Previous research038

in child language acquisition has shown that in-039

fants are capable of lexical processing of words040

through their semantic and syntactic distributional041

structures (Lany and Saffran, 2010; Syrett and Lidz,042

2010). Recently, the paradigm of word embeddings 043

from deep-learning-based computational semantics 044

has pushed the frontiers in modeling such distribu- 045

tional structures of words (Mikolov et al., 2013a; 046

Wang et al., 2020). Consequently, word embed- 047

dings have been used to study various aspects of 048

child-speech and child-directed adult speech (Hueb- 049

ner and Willits, 2018b; Fourtassi et al., 2019; Four- 050

tassi, 2020). 051

Recent advances in computational modeling for 052

distributional semantics have made it possible to 053

study the diachronic semantic shifts in a given cor- 054

pus (Kutuzov et al., 2018). Using temporally-wide 055

large-scale corpora, diachronic word embeddings 056

can be used to study the underlying linguistic and 057

non-linguistic dynamics of change and develop- 058

ment in human language (Kutuzov et al., 2018). 059

Given the availability of such corpora for child- 060

speech and child-directed adult speech (MacWhin- 061

ney, 2000), a similar framework can be designed 062

to model the lexical development in children. 063

This paper explores the usability of diachronic 064

distributed word representations1 in cognitive mod- 065

eling and analysis of the lexical development in 066

children. Unlike previous work, we use temporally 067

sliced data to learn distributed word representations 068

of child-speech and child-directed speech under a 069

curriculum-learning-like setting. Through our ex- 070

periments we show that diachronic word represen- 071

tations can be very effective in capturing various 072

empirical and qualitative aspects of lexical devel- 073

opment in children. 074

2 Background 075

The meanings of words change over time, owing 076

to a variety of linguistic and non-linguistic factors. 077

This phenomenon has been termed as semantic 078

shifts (Bloomfield, 1933) in historical linguistics. 079

1the terms “distributed word representations”, “word vec-
tors”, and “word embeddings” have been used interchangeably
in this paper.
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Figure 1: The architecture for the incremental diachronic compass-based word embedding model. In order to tem-
porally align the word embeddings from each of the corpus temporal slices, one of the layers (U t

i ) is initialized
from the atemporal compass and frozen during the temporal fine-tuning. The representations for each time-step
Ct

i are initialized with the fine-tuned representations for the previous time-step Ct
i−1, and fine-tuned on its corre-

sponding corpus temporal slice Dt
i (Section 3.2).

Due to an increasing availability of large corpora,080

several data-driven methods have been proposed081

to study such semantic shifts. Words can be repre-082

sented as continuous vectors (Rumelhart and Mc-083

Clelland, 1986; Elman, 1990). As the meaning and084

context of a word changes, it’s vector changes ac-085

cordingly (Kutuzov et al., 2018). Recent work has086

shown that semantic shifts are not always closely087

related to the changes in word frequencies (Kutu-088

zov et al., 2018). Previous works have also shown089

that distributed word representations (Turney and090

Pantel, 2010; Baroni et al., 2014) outperform fre-091

quency based methods in detecting semantic shifts092

(Kulkarni et al., 2014). These models use deep-093

learning based word-embedding vectors (Mikolov094

et al., 2013b), produced from word co-occurrence095

relationships.096

Semantic shifts were first analyzed on year-wise097

data by Kim et al. (2014) using a prediction-based098

word embedding model. Kim et al. (2014) used099

a distributional continuous skip-gram model with100

negative sampling (Mikolov et al., 2013b), which101

was later proven to be superior in semantic shift102

analysis as compared to PPMI-based distributional103

models (Hamilton et al., 2016). Most modern word104

embedding models are inherently stochastic (Kutu-105

zov et al., 2018), and produce word representations106

in different vector spaces on each run. To overcome107

this, the models need to be aligned to one common108

vector space. This can be done by performing cer-109

tain linear transformations on the diachronic word 110

embeddings (Kulkarni et al., 2014; Zhang et al., 111

2015). More recently, Carlo et al. (2019) proposed 112

a relatively simple temporal compass based align- 113

ment, which showed significant improvements over 114

the previous approaches. 115

Diachronic embeddings have been used across 116

a variety of applications, ranging from linguis- 117

tic studies to cultural studies. They have been 118

successfully applied to tasks like event detection, 119

predicting civil turmoils, and tracing popularity 120

of entities (Kutuzov et al., 2018). Even though 121

there have been a significant number of studies 122

which use static distributed word representations 123

for analyzing child-directed speech (Huebner and 124

Willits, 2018a,b; Fourtassi et al., 2019; Fourtassi, 125

2020), the usability of diachronic embeddings as 126

models of lexical development has not been ex- 127

plored yet.2 The closest work is presented by 128

Huebner and Willits (2018a), where they train 129

sequential deep-learning models on age-ordered 130

child-directed speech data. In this study, we use di- 131

achronic word embeddings trained on child-speech 132

data,3 to construct a temporal representational 133

model for the mental lexicon in children. 134

2A parallel study by Jiang et al. (2020) focuses on us-
ing diachronic word embeddings to study the child-directed
speech. Whereas, in this work we focus on directly modeling
the lexical development in children.

3This has not been explored before to the best of our knowl-
edge
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3 Modeling135

Given a corpus of child-speech, a diachronic word-136

embedding model can be trained over its temporal137

slices. The distributed-latent representations from138

the model can then be probed for lexical knowledge139

at any given point of time. Consequently, the lex-140

ical development can be simply captured by com-141

paring these distributed representations over some142

interval of time. In this section, we describe our143

cognitively motivated diachronic modeling method144

(Section 3.2), and the required pre-processing of145

the child-speech corpus (Section 3.1). We discuss146

the usability of the trained diachronic distributed147

representations for modeling lexical development148

in Section 4.149

3.1 Data150

Similar to all the previous works, we use the151

CHILDES corpus (MacWhinney, 2000) for our152

experiments. The corpus consists of speech-153

transcripts of first language acquisition by children.154

It contains transcriptions in 26 languages, span-155

ning across 130 corpora of children interacting in156

different environments, including spontaneous in-157

teractions, as well as controlled classroom learning.158

For the current study, we use the data from the159

American-English speaking children. Due to an160

imbalance in the data distribution, we discard the161

data beyond the first three years of age.162

Unlike child-directed adult speech, child speech163

is highly noisy in the early months. It is only af-164

ter the age of 18 months, that children start com-165

bining two words or single-word phrases in sit-166

uations in which they both are relevant and hav-167

ing roughly equivalent status (Bavin and Naigles,168

2017). Hence, we consider the data after the age169

of 18 months only. This results in a corpus that170

is temporally spread across 19 months (age=18171

months to age=36 months). It contains 2798 speech172

transcripts; 1, 321, 772 word tokens; 13, 812 word173

types; and 405, 596 utterances, collected from 28174

different studies involving 188 children (99F and175

89M) and their guardians.176

We tokenize the corpus with whitespace delim-177

itation. We remove all the punctuation from the178

corpus as they do not contribute lexically in any179

way. Further, all the proper nouns are replaced180

with a generalized token: [NAME]. We set the181

temporal granularity of our diachronic models to a182

month. Hence, we split the corpus into 19 month-183

wise temporal slices.184

3.2 Model 185

A diachronic word embedding model usually 186

comprises two major components: a base word- 187

embedding model, and a mechanism to align 188

the representations across different temporal data 189

slices. We use word2vec as our base word- 190

embedding model (skip-gram with negative sam- 191

pling - SGNS variant) (Mikolov et al., 2013b). 192

For aligning the word-embeddings, we employ 193

a slightly modified version of the compass-based 194

alignment method proposed by Carlo et al. (2019). 195

word2vec is a shallow, two-layered neural- 196

network word-embedding model. It takes a large 197

corpus of words as input, and generates a multi- 198

dimensional distributed vector space, with each 199

word being assigned a vector. The word2vec − 200

SGNS model in particular takes a one-hot en- 201

coded word identity vector as input and predicts 202

its surrounding context words. Formally, given a 203

sequence of input words w1, w2, w3....wT , the ob- 204

jective of the model is to maximize the average log 205

probability: 206

1

T

T∑
t=1

∑
−c<j<c,j 6=0

logp(wt+j |wt) (1) 207

where c = 5 is the size of the training con- 208

text window. The skip-gram formula defines 209

p(wt+j |wt) using a negative sampling method 210

(Mikolov et al., 2013b). 211

Some words are quite frequent in the corpus 212

while others are less frequent; to deal with this, a 213

sub-sampling strategy is used. Each word in the 214

training set wi is discarded with the probability: 215

P (wi) = 1−
√

t

f(wi)
(2) 216

where f(wi) is the frequency of the word and 217

t is some selected threshold. This accelerates the 218

learning process and improves the accuracy of the 219

vector representations of rare words. We use a 220

word representation dimension of d = 100 for the 221

word2vec− SGNS model. 222

To work with diachronic word embeddings, the 223

embedding spaces generated by the models trained 224

at each time-step need to be aligned to a common 225

embedding space. This ensures that the embed- 226

dings across different time-steps can be compared 227

directly. We implement a temporal compass-based 228

model to align the embedding spaces (Carlo et al., 229
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2019). As the word2vec−SGNS model is a two-230

layered neural network, the context embeddings231

are encoded in the output layer parameters (U) and232

target word embeddings are encoded in the input233

layer parameters (C) (Figure 1). Given a corpusD,234

divided into n temporal slices: Dt
1, D

t
2, ...D

t
n; the235

model (C,U) is first trained on the entire corpus236

D = Dt
1, D

t
2, ....D

t
n as shown in Figure 1. The in-237

put layer parameters (C) are used as the distributed238

representations in our experiments. Whereas, the239

output layer parameters (U) are used as an atem-240

poral compass to align these distributed represen-241

tations. Hence, the output layer parameters are242

frozen and unchanged for further training, such243

that: U = U t1 = U t2 = U t3 = ...U tn. The diachronic244

representations for each temporal slice in the cor-245

pus (Dt
i) are then obtained by fine-tuning the input246

layer parameters (Cti ) on its corresponding tempo-247

ral slice (Dt
i).248

The fine-tuning for each temporal slice (Dt
i) is249

resumed with the representations from the previous250

temporal slice (Cti−1). This is done by initializing251

the input parameters (Cti ) with the already fine-252

tuned input parameters from the previous temporal253

slice (Cti−1). Where the parameters for the newly254

acquired words in (Dt
i) are initialized randomly.255

This ensures that the diachronic model captures the256

lexical development in a cognitively plausible incre-257

mental way, following the paradigm of curriculum-258

learning in children. Formally, given a slice Dt259

the training procedure for an input (wk, γ(wk)) is260

defined as the following optimization problem:261

max
(

logP (wk|γ(wk))
)

= σ
(
~uk · ~c tγ(wk)

)
(3)262

carried out on Ct where the function σ is263

calculated using negative sampling, γ(wk) =264

(w1, w2, ...wM ) is the set of M words that appear265

in the context of wk (M2 being the size of the win-266

dow), ~uk ∈ U is the atemporal target embedding of267

the word wk and ~c tγ(wk)
is the mean of the temporal268

context embeddings.269

We train separate models for child-speech and270

child-directed speech, each providing distributed271

word representations independent of each other.272

We use these models to compare the lexical273

development in child-speech and child-directed274

speech. We also train both these models in both,275

the proposed incremental manner, and in a non-276

incremental way (Carlo et al., 2019) for ablation277

purposes. We train the models with three different278

random initialization seed values, and report the 279

results averaged across the random seeds. 280

Data Semantic Syntactic

Child-speech 141 347
Child-directed speech 184 597

Combined 126 335

Table 1: The number of common probe-words across
all the 19 months of data.

4 Analysis 281

Given the parameterized representational nature 282

of our model, it can be used to study the various 283

empirical and qualitative aspects of lexical devel- 284

opment in children. Here, we show the usability of 285

our model by performing three experiments, and 286

qualitative analysis4 of its representations. Similar 287

to the previous studies, we use a set of syntactic 288

and semantic probe words (that occur frequently in 289

child-speech) for this purpose. These probe words 290

are derived from the MacArthur-Bates Communica- 291

tive Development Inventory (MCDI). We obtain 292

the probe words from the data used in Huebner and 293

Willits (2018a). 294

We consolidate the vocabularies and obtain the 295

common words appearing across all of the tem- 296

poral slices. From this set of common words, we 297

only consider the ones that are a part of the previ- 298

ously obtained semantic and syntactic probe words, 299

where the rest of the words are discarded for analy- 300

sis. The final set of syntactic probe words is clas- 301

sified into eight part-of-speech categories, and the 302

final set of semantic probe words is classified into 303

24 abstract semantic categories. The statistics for 304

the final set of probe words are given in Table 1. 305

4.1 Lexical Category Learning 306

Performing lexical categorization is an important 307

aspect of lexical development. The representational 308

nature of our model allows it to perform catego- 309

rization with any vector-similarity-based measure. 310

We borrow the task of lexical categorization from 311

Huebner and Willits (2018b). As the probe words 312

are divided into well-defined syntactic and seman- 313

tic categories, we quantify the category learning 314

ability of our model using a balanced accuracy mea- 315

sure (Huebner and Willits, 2018b). 316

4We report the details for the qualitative analysis in Ap-
pendix A.
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Figure 2: Month-wise Balanced Accuracy scores for the lexical categorization experiment with the non-
incremental diachronic representations for the child-speech and child-directed adult speech.

Figure 3: Month-wise Balanced Accuracy scores for the lexical categorization experiment with the incremental
diachronic representations for the child-speech and child-directed adult speech.

We use signal detection theory to calculate the317

measure of interest. For each probe word, a compar-318

ison is done with the other probe words in their own319

category as well as the ones in different categories.320

We use cosine-similarity measure cosine(w,w′)321

for this purpose. Two words are classified into the322

same category only if cosine(w,w′) ≥ r, where323

r ∈ (0, 1) is a threshold value. Each correct classi-324

fication is recorded as a hit and the incorrect classi-325

fication is recorded as a miss. This is finally used326

to calculate a balanced accuracy measure (BA):327

BA =
TPR+ TNR

2
(4)328

where TPR (true-positive rate) is the329

sensitivity and TNR (true-negative rate) is the330

specificity. For each temporal slice, the threshold331

value (r) is calculated to maximize the balanced332

accuracy in an iterative way (with a step-size of333

1e− 3).334

We perform the lexical categorization task with335

both non-incremental (Carlo et al., 2019) and incre-336

mental modeling (ours) approaches. We calculate 337

the balanced accuracy measure for both the syntac- 338

tic and semantic probe words for each month. This 339

gives us a trajectory of lexical category learning 340

in child-speech as shown in Figure 2 and Figure 3. 341

We also plot the month-wise balanced accuracies 342

for the child-directed adult speech, which gives us 343

a trajectory of the lexical knowledge present in it. 344

We model these trajectories by applying a temporal 345

logarithmic fit5 over the balanced accuracies values 346

in the following manner: 347

BA = α+ β × loge(t) (5) 348

where BA is the balanced accuracy, α is the 349

intercept, and β is the log-curve coefficient. 350

Overall, we observe that the lexical categoriza- 351

tion knowledge in children increases logarithmi- 352

cally over time, eventually saturating around the 353

almost-constant level of existing categorization 354

5The final curve fit equations are given in the legends of
Figure 2 and Figure 3.
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Category Word frequency in: βf βt ε
(t)
wi

Syntactic Probe Words Child-speech -0.272 -0.047 1.008
Child-directed speech -0.096 -0.104 0.714

Semantic Probe Words Child-speech -0.322 -0.141 1.156
Child-directed speech -0.224 -0.182 1.058

Table 2: The results for the linear mixed random-effects models fitted on semantic change values ∆(t)wi in child-
speech, with respect to the word frequencies in child-speech and child-directed speech.

knowledge in adults (child-directed speech). For355

the semantic categorization, we observe that the356

incremental model gives a maximum balanced ac-357

curacy6 of 0.6738 (t=36 months), and the non-358

incremental model gives a maximum balanced ac-359

curacy of 0.6118 (t=36 months). Similarly, for360

the syntactic categorization the maximum balanced361

accuracy scores are 0.5911 (t=36 months) and362

0.5791 (t=36 months) for the incremental and non-363

incremental models respectively.364

Hence, the incremental model shows a signifi-365

cant improvement of 10.13% for the semantic cate-366

gorization, and 2.07% for the syntactic categoriza-367

tion. The incremental model also shows smoother368

and monotonic balanced accuracy trajectories. This369

demonstrates the importance of the cognitively mo-370

tivated curriculum learning method in our model,371

where the incremental model captures better lexical372

knowledge in its distributed representations than373

the non-incremental model.374

4.2 Word Frequencies and Lexical375

Development376

Word-frequencies have been extensively analyzed377

under various aspects of child-speech and child-378

directed speech in many previous works (Am-379

bridge et al., 2015). Diachronic word embeddings380

have also been used to postulate laws mapping381

frequency-based measures to the historical seman-382

tic shifts of words. One such law by Hamilton383

et al. (2016) states that frequent words change more384

slowly. This can be formally expressed as:385

∆wi ∝ f(wi)
βf (6)386

where ∆wi is the rate of semantic change, f(wi)387

is the frequency of the word wi and βf is a negative388

power as per the relation.389

Given the word-frequency data, and the dis-390

tributed word representations from a diachronic391

model, similar effects of word-frequencies can be392

6calculated with the representations from child-speech.

inspected for lexical development in children. In 393

order to demonstrate this, we borrow a modeling ap- 394

proach by Hamilton et al. (2016). Semantic change 395

for each word at consecutive time steps (t, t + 1) 396

can be calculated as: 397

∆(t)wi = 1− cosine(w(t)
i , w

(t+1)
i ) (7) 398

In the context of child speech, this value can 399

be looked upon as the update in the mental repre- 400

sentation of the word in the child’s mental lexicon. 401

The trajectory of a word’s semantic change values 402

can then be thought of as the process of acquiring 403

(learning and grounding) the meaning of that word. 404

Following Hamilton et al. (2016)’s approach, 405

we log transform and normalize the ∆(t)wi values. 406

The ∆(t)wi values that are less than 0.05 are not 407

considered in order to maintain numerical stabil- 408

ity in the logarithm and to ignore the insignificant 409

changes in the representations. These new values 410

are denoted as ∆̄(t)wi. We then fit a linear mixed 411

random-effects model in the following manner: 412

∆̄(t)wi = βf log
(
f (t)(wi)

)
+βt + zwi + ε(t)wi

(8) 413

where βf and βt are fixed effects for frequency 414

and time respectively, zwi is the random intercept 415

and ε(t)wi is the error term. 416

We use the representations from the incremental 417

model to obtain the ∆(t)wi values for child-speech. 418

We fit separate linear mixed random-effects models 419

for frequency data from child-speech and child- 420

directed speech as shown in Table 2.7 Similar to 421

the findings of Hamilton et al. (2016), we find that 422

βf takes negative values across both syntactic and 423

semantic probe words, and word frequencies from 424

both the child-speech and the child-directed speech. 425

While it can be argued that the word2vec model’s 426

7all the obtained model fits are statistically significant with
p-value < 0.05
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dependence on word co-occurrence statistics might427

superficially induce negative βf values for frequen-428

cies from child-speech, the negative βf values for429

frequencies from the child-directed speech are inde-430

pendently obtained (given that the model trained on431

child-speech is not exposed to the data from child-432

directed speech at any point of time). Hence, we433

majorly focus on the βf values from child-directed434

speech, which are obtained from the input word fre-435

quencies to the children. These negative βf values436

are, in general, in good agreement with all the pre-437

vious studies on the role of input word frequency in438

word acquisition (Ambridge et al., 2015). Where it439

is known that higher single-word frequencies are440

usually associated with quicker word acquisition441

(which translates to smaller semantic change val-442

ues ∆(t)wi with respect to the temporal slices of443

the word exposure).444

While the βf values for semantic probe words445

are significantly negative as expected, the βf val-446

ues for syntactic probe words, although negative,447

are slightly close to 0. While this is only in a weak448

agreement with most of the previous studies, it449

is important to note that these studies inspect the450

role of input word frequencies with respect to spe-451

cific syntactic constructs and categories (Ambridge452

et al., 2015). Whereas our results are representative453

of all the syntactic words in general.454

4.3 Representational Similarity Analysis455

(RSA)456

Lexical acquisition in children is pragmatized457

by the child-directed adult speech (Clark, 2017).458

While our results from the Lexical Categoriza-459

tion task (Section 4.1) implicitly depict the lexi-460

cal knowledge transfer from adult to child, a more461

fine-grained analysis can be performed by directly462

comparing the distributed representations for child-463

directed speech and child-speech. Recent work464

in natural language processing research has fo-465

cused on using Representational Similarity Analy-466

sis (RSA) (Laakso and Cottrell, 2000; Kriegeskorte467

et al., 2008) for various interpretability studies (Ab-468

nar et al., 2019; Gauthier and Levy, 2019; Lepori469

and McCoy, 2020; Merchant et al., 2020).470

We use RSA to compare the diachronic repre-471

sentational geometries of child-speech and child-472

directed speech. Following the settings used by473

Lepori and McCoy (2020), we use Spearman’s cor-474

relation (ρ) as the similarity metric (sim). For each475

time-step (i.e. month-wise), we first obtain the indi-476

vidual geometries for the corresponding represen- 477

tations for child-directed speech and child-speech 478

by using the dissimilarity metric: 1− sim. For a 479

fair comparison with the results from Section 4.1, 480

we only use the similar set of semantic and syn- 481

tactic probe words to obtain the representational 482

geometries. The final similarity value between the 483

representational geometries is then obtained by us- 484

ing the similarity metric (sim).8 485

Age (In Months)

0.0

0.2

0.4

0.6

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Semantic Syntactic

Figure 4: The similarity values between the representa-
tions for child-directed speech and child-speech (Spear-
man’s correlation (ρ) vs. age in months).

The trajectory observed for representational sim- 486

ilarities (Figure 4) across both the semantic and 487

syntactic probe words matches with that of the 488

balanced accuracy from the Lexical Categoriza- 489

tion task (Figure 3). Hence, the incremental di- 490

achronic representations successfully capture the 491

fine-grained dynamics of lexical acquisition, which 492

ultimately translates to a higher-level of lexical pro- 493

cessing. 494

5 Conclusion 495

In this paper, we explore the usability of diachronic 496

distributed word representations towards modeling 497

lexical development in children. While all the re- 498

lated previous works use distributed representations 499

with child-directed speech only,9 we also obtain the 500

distributed representations of child-speech. This 501

allows us to model the lexical development in chil- 502

dren in a more direct way. Through an ablation 503

experiment, we demonstrate the effectiveness of 504

our cognitively motivated incremental learning di- 505

achronic model in capturing abstract lexical knowl- 506

edge in noisy child-speech. We show the usability 507

of our model across various dimensions of the study 508

8all the obtained correlation values are statistically signifi-
cant with p-value < 0.05

9To the best of our knowledge.
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of lexical development through multiple represen-509

tative empirical and qualitative analyses.510

Our experiment with the lexical categorization511

task reveals the trajectories of semantic and syn-512

tactic knowledge acquisition in children. Our ex-513

periment with the linear mixed-effect modeling of514

diachronic representational-changes displays the515

role of input word frequencies in word acquisition.516

Further, we also perform a fine-grained analysis of517

lexical knowledge transfer with Representational518

Similarity Analysis of diachronic representations519

from child-speech and child-directed adult speech.520

Our qualitative analyses reveal the phenomena of521

grounding, abstraction, categorization, and word522

associations in the mental lexicon of children in an523

elegant and simple manner (Appendix A).524

6 Future Directions525

The demonstrated effectiveness and ease of us-526

age of diachronic distributed word representations527

opens up multiple future directions of research in528

modeling lexical development. While this work529

only deals with the usability of our model for word-530

level studies, the diachronic distributed representa-531

tions from our model can also be used to study the532

psycholinguistic development at other granularities533

as well. Representations for higher granularities534

(partial-words, syllables, etc.) can be obtained by535

applying any vector-decomposition method over536

these word representations. Similarly, the repre-537

sentations for lower granularities (phrasal, clausal,538

sentence-level, etc.) can also be obtained by ap-539

plying various vector-pooling techniques over the540

word representations. Lexical development is usu-541

ally a multimodal process, where various percep-542

tual modalities are involved. As the data collection543

efforts for child-speech advance, one can incorpo-544

rate embeddings from other modalities (phonemic545

embeddings, visual embeddings, etc.) in modeling546

the lexical development.547

While we use a fairly recent diachronic word em-548

bedding model in this work (Carlo et al., 2019), the549

lexical modeling efficiency can be increased in par-550

allel with the advances in diachronic word embed-551

ding modeling. Further, handling the challenges552

like partial words, low vocabulary size, lesser train-553

ing data, etc. can be a good research direction as554

well. In the future, we plan to extend this work to555

other languages, using data collected with subjects556

from a diverse demography.10557

10The code and data used for this work will be made pub-
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A Qualitative Analysis718

A.1 t-SNE Visualization719

A significant advantage of using distributed rep-720

resentational models is their suitability for quali-721

tative analyses. Given a high-dimensional vector722

representation space, one can apply various dimen-723

sionality reduction algorithms to map it to a two-724

dimensional space with minimum errors. Which in725

turn allows one to visualize the representations on726

a 2D plot.727

We use a t-SNE dimensionality reduction algo-728

rithm (van der Maaten and Hinton, 2008) on the729

incremental representations from the child-speech730

data at Age = 18 months and Age = 36 months.731

We use a perplexity value of 19 for the t-SNE algo-732

rithm. We use the mean vector in each probe-word733

category to get its centroid. To exclude any ex-734

treme outliers from the plots, we use Chebyshev’s735

inequality and limit the X-coordinates with a value736

of k = 8 standard deviations. We observe several737

qualitative drifts that emerge in the representations738

obtained at Age = 36 months as compared to those739

obtained at Age = 18 months (Figure 5).740

For the semantic categories (Figure 5d), the741

words belonging to the categories containing living742

creatures: plant, mammal, insect, and bird clus-743

ter together. The related categories of household744

and bathroom, and the food-related categories:745

fruit, dessert and drink appear together as well.746

Words in the clothing, body, and furniture oc-747

cupy a distinct portion of the space, hinting towards748

the emergence of grounded word meanings (of749

clothing) to locations (near furniture like closet and750

mirror) and usage (over the body). Clusters day751

and times drift closer as their constituent words752

are frequently used together. All the food cate-753

gories appear adjacent to the kitchen category in754

the space.755

Similar strikingly visible patterns are observed756

with syntactic categories as well. Unlike the syntac-757

tic representations at Age = 18 months (Figure 5a),758

the syntactic representations at Age = 36 months759

show well-clustered categories (Figure 5b). The760

two major categories: noun and verb become al-761

most linearly separable. Their related categories762

are sorted accordingly as well. The pronouns763

and adjectives are placed in the upper half of764

the plot, occupied by the noun category. On the765

other hand, adverbs appear in the bottom half of766

the plot, which is occupied by the verb category.767

The remaining neutral categories: determiners,768

interjections and adpositions are well placed at 769

the boundary of the noun and verb clusters. 770

A.2 Nearest Neighbors 771

Another fine-grained approach towards the qualita- 772

tive analysis of distributed representations is that of 773

observing the nearest neighbors of particular data 774

points. 775

We note the k-nearest neighbors11 (k = 3) for 776

a target word from each semantic (Table 3) and 777

syntactic category (Table 4). While the neighbors at 778

Age = 18 months are a bit random, the neighbors at 779

Age = 36 months appear to be more systematically 780

relevant, either by belonging to the same category 781

(example: zoo→ {store, school}), or by showing 782

certain abstract free word-associations (example: 783

tea→ {cup,milk}; wet→ {dirty, diaper}). 784

11We use cosine-distance to find the nearest neighbors.
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Figure 5: t-SNE visualizations of the probe word categories at Age = 18 months and Age = 36 months.
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Word Neighbours at 18 months Neighbours at 36 months Category

towel diaper, floor, neck diaper, paper, blanket BATHROOM
duck cake, hi, bird square, bird, boat BIRD
tummy got, your, hurt finger, tongue, head BODY
tie touch, break, try wear, pull, push CLOTHING
today maybe, move, many camera, kids, bus DAY
cookie cookies, still, happy cookies, breakfast, strawberry DESSERT
tea am, heavy, ready coffee, cup, milk DRINK
telephone talk, doctor, blow phone, couch, plate ELECTRONIC
mom talking, dinner, sleeping dad, mommy, six FAMILY
strawberry apple, yep, cheese apple, banana, cheese FRUIT
table under, chair, sitting floor, couch, wall FURNITURE
window fell, running, said door, kitchen, spider HOUSEHOLD
spider fire, wall, moon window, sun, bear INSECT
spoon floor, hey, side fork, bowl, cup KITCHEN
tiger eight, blue, green dinosaur, chicken, lion MAMMAL
two three, four, can many, four, five NUMBER
tree climb, nap, stand wall, climb, square PLANT
square ooh, ah, funny circle, butterfly, big SHAPE
sun pencil, door, wash moon, snow, dog SPACE
night said, warm, hey morning, time, day TIMES
vacuum end, running, am bike, careful, room TOOL
toy pants, running, sweater game, block, lion TOY
truck fire, man, drive tractor, plane, car VEHICLE
snow heavy, plane, egg sun, wow, grass WEATHER

Table 3: Nearest semantic neighbours for k = 3 at the first and last temporal slice.

Word Neighbours at 18 months Neighbours at 36 months Category

wet water, diaper, baby dirty, diaper, hurt ADJ
with different, game, morning game, lap, help ADP
where she, are, how yes, who, how ADV
your hands, tummy, feet you, yours, okay DET
yes bear, give, blanket what, where, yep INTJ
zoo bus, mommy, five store, school, party NOUN
yours who, touch, noise pen, coffee, candy PRON
write set, ready, touch draw, pencil, pen VERB

Table 4: Nearest syntactic neighbours for k = 3 at the first and last temporal slice.
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