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Abstract

Recent work has shown that distributed word
representations can encode abstract informa-
tion from child-directed speech. In this pa-
per, we use diachronic distributed word repre-
sentations to perform temporal modeling and
analysis of lexical development in children.
Unlike all previous work, we use temporally
sliced corpus to learn distributed word repre-
sentations of child-speech and child-directed
speech under a curriculum-learning setting. In
our experiments, we perform a lexical catego-
rization task to plot the semantic and syntac-
tic knowledge acquisition trajectories in chil-
dren. Next, we perform linear mixed-effects
modeling over the diachronic representational
changes to study the role of input word fre-
quencies in the rate of word acquisition in chil-
dren. We also perform a fine-grained analy-
sis of lexical knowledge transfer from adults
to children using Representational Similarity
Analysis. Finally, we perform a qualitative
analysis of the diachronic representations from
our model, which reveals the grounding and
word associations in the mental lexicon of chil-
dren. Our experiments demonstrate the ease
of usage and effectiveness of diachronic dis-
tributed word representations in modeling lex-
ical development.

1 Introduction

Human-like linguistic generalization plays a key
role in developing better models for natural lan-
guage processing (Linzen, 2020). Modeling the
lexical development in children is an important
aspect of demystifying the dynamics of human lan-
guage learning. Lexical development in children
is a holistic and complex phenomenon involving
noisy multimodal interactions and underlying vari-
ous psycholinguistic processes. Previous research
in child language acquisition has shown that in-
fants are capable of lexical processing of words
through their semantic and syntactic distributional
structures (Lany and Saffran, 2010; Syrett and Lidz,

2010). Recently, the paradigm of word embeddings
from deep-learning-based computational semantics
has pushed the frontiers in modeling such distribu-
tional structures of words (Mikolov et al., 2013a;
Wang et al., 2020). Consequently, word embed-
dings have been used to study various aspects of
child-speech and child-directed adult speech (Hueb-
ner and Willits, 2018b; Fourtassi et al., 2019; Four-
tassi, 2020).

Recent advances in computational modeling for
distributional semantics have made it possible to
study the diachronic semantic shifts in a given cor-
pus (Kutuzov et al., 2018). Using temporally-wide
large-scale corpora, diachronic word embeddings
can be used to study the underlying linguistic and
non-linguistic dynamics of change and develop-
ment in human language (Kutuzov et al., 2018).
Given the availability of such corpora for child-
speech and child-directed adult speech (MacWhin-
ney, 2000), a similar framework can be designed
to model the lexical development in children.

This paper explores the usability of diachronic
distributed word representations' in cognitive mod-
eling and analysis of the lexical development in
children. Unlike previous work, we use temporally
sliced data to learn distributed word representations
of child-speech and child-directed speech under a
curriculum-learning-like setting. Through our ex-
periments we show that diachronic word represen-
tations can be very effective in capturing various
empirical and qualitative aspects of lexical devel-
opment in children.

2 Background

The meanings of words change over time, owing
to a variety of linguistic and non-linguistic factors.
This phenomenon has been termed as semantic
shifts (Bloomfield, 1933) in historical linguistics.

'the terms “distributed word representations”, “word vec-
tors”, and “word embeddings” have been used interchangeably
in this paper.
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Figure 1: The architecture for the incremental diachronic compass-based word embedding model. In order to tem-
porally align the word embeddings from each of the corpus temporal slices, one of the layers (U}) is initialized
from the atemporal compass and frozen during the temporal fine-tuning. The representations for each time-step
C! are initialized with the fine-tuned representations for the previous time-step C!_,, and fine-tuned on its corre-

sponding corpus temporal slice D! (Section 3.2).

Due to an increasing availability of large corpora,
several data-driven methods have been proposed
to study such semantic shifts. Words can be repre-
sented as continuous vectors (Rumelhart and Mc-
Clelland, 1986; Elman, 1990). As the meaning and
context of a word changes, it’s vector changes ac-
cordingly (Kutuzov et al., 2018). Recent work has
shown that semantic shifts are not always closely
related to the changes in word frequencies (Kutu-
zov et al., 2018). Previous works have also shown
that distributed word representations (Turney and
Pantel, 2010; Baroni et al., 2014) outperform fre-
quency based methods in detecting semantic shifts
(Kulkarni et al., 2014). These models use deep-
learning based word-embedding vectors (Mikolov
et al., 2013b), produced from word co-occurrence
relationships.

Semantic shifts were first analyzed on year-wise
data by Kim et al. (2014) using a prediction-based
word embedding model. Kim et al. (2014) used
a distributional continuous skip-gram model with
negative sampling (Mikolov et al., 2013b), which
was later proven to be superior in semantic shift
analysis as compared to PPMI-based distributional
models (Hamilton et al., 2016). Most modern word
embedding models are inherently stochastic (Kutu-
zov et al., 2018), and produce word representations
in different vector spaces on each run. To overcome
this, the models need to be aligned to one common
vector space. This can be done by performing cer-

tain linear transformations on the diachronic word
embeddings (Kulkarni et al., 2014; Zhang et al.,
2015). More recently, Carlo et al. (2019) proposed
a relatively simple temporal compass based align-
ment, which showed significant improvements over
the previous approaches.

Diachronic embeddings have been used across
a variety of applications, ranging from linguis-
tic studies to cultural studies. They have been
successfully applied to tasks like event detection,
predicting civil turmoils, and tracing popularity
of entities (Kutuzov et al., 2018). Even though
there have been a significant number of studies
which use static distributed word representations
for analyzing child-directed speech (Huebner and
Willits, 2018a,b; Fourtassi et al., 2019; Fourtassi,
2020), the usability of diachronic embeddings as
models of lexical development has not been ex-
plored yet.> The closest work is presented by
Huebner and Willits (2018a), where they train
sequential deep-learning models on age-ordered
child-directed speech data. In this study, we use di-
achronic word embeddings trained on child-speech
data,’ to construct a temporal representational
model for the mental lexicon in children.

%A parallel study by Jiang et al. (2020) focuses on us-
ing diachronic word embeddings to study the child-directed
speech. Whereas, in this work we focus on directly modeling
the lexical development in children.

3This has not been explored before to the best of our knowl-
edge



3 Modeling

Given a corpus of child-speech, a diachronic word-
embedding model can be trained over its temporal
slices. The distributed-latent representations from
the model can then be probed for lexical knowledge
at any given point of time. Consequently, the lex-
ical development can be simply captured by com-
paring these distributed representations over some
interval of time. In this section, we describe our
cognitively motivated diachronic modeling method
(Section 3.2), and the required pre-processing of
the child-speech corpus (Section 3.1). We discuss
the usability of the trained diachronic distributed
representations for modeling lexical development
in Section 4.

3.1 Data

Similar to all the previous works, we use the
CHILDES corpus (MacWhinney, 2000) for our
experiments. The corpus consists of speech-
transcripts of first language acquisition by children.
It contains transcriptions in 26 languages, span-
ning across 130 corpora of children interacting in
different environments, including spontaneous in-
teractions, as well as controlled classroom learning.
For the current study, we use the data from the
American-English speaking children. Due to an
imbalance in the data distribution, we discard the
data beyond the first three years of age.

Unlike child-directed adult speech, child speech
is highly noisy in the early months. It is only af-
ter the age of 18 months, that children start com-
bining two words or single-word phrases in sit-
uations in which they both are relevant and hav-
ing roughly equivalent status (Bavin and Naigles,
2017). Hence, we consider the data after the age
of 18 months only. This results in a corpus that
is temporally spread across 19 months (age=18
months to age=36 months). It contains 2798 speech
transcripts; 1,321, 772 word tokens; 13, 812 word
types; and 405, 596 utterances, collected from 28
different studies involving 188 children (99F and
89M) and their guardians.

We tokenize the corpus with whitespace delim-
itation. We remove all the punctuation from the
corpus as they do not contribute lexically in any
way. Further, all the proper nouns are replaced
with a generalized token: [NVAME]. We set the
temporal granularity of our diachronic models to a
month. Hence, we split the corpus into 19 month-
wise temporal slices.

3.2 Model

A diachronic word embedding model usually
comprises two major components: a base word-
embedding model, and a mechanism to align
the representations across different temporal data
slices. We use word2vec as our base word-
embedding model (skip-gram with negative sam-
pling - SGNS variant) (Mikolov et al., 2013b).
For aligning the word-embeddings, we employ
a slightly modified version of the compass-based
alignment method proposed by Carlo et al. (2019).

word2vec is a shallow, two-layered neural-
network word-embedding model. It takes a large
corpus of words as input, and generates a multi-
dimensional distributed vector space, with each
word being assigned a vector. The word2vec —
SGNS model in particular takes a one-hot en-
coded word identity vector as input and predicts
its surrounding context words. Formally, given a
sequence of input words wy, wa, ws....wr, the ob-
jective of the model is to maximize the average log
probability:

1 T
72 > logp(wiglw) (1)

t=1 —c<j<c,j#0

where ¢ = 5 is the size of the training con-
text window. The skip-gram formula defines
p(witj|we) using a negative sampling method
(Mikolov et al., 2013b).

Some words are quite frequent in the corpus
while others are less frequent; to deal with this, a
sub-sampling strategy is used. Each word in the
training set w; is discarded with the probability:

P(w;) =1- )

f(w;)

where f(wj;) is the frequency of the word and
t is some selected threshold. This accelerates the
learning process and improves the accuracy of the
vector representations of rare words. We use a
word representation dimension of d = 100 for the
word2vec — SGN S model.

To work with diachronic word embeddings, the
embedding spaces generated by the models trained
at each time-step need to be aligned to a common
embedding space. This ensures that the embed-
dings across different time-steps can be compared
directly. We implement a temporal compass-based
model to align the embedding spaces (Carlo et al.,



2019). As the word2vec — SGN S model is a two-
layered neural network, the context embeddings
are encoded in the output layer parameters (U) and
target word embeddings are encoded in the input
layer parameters (C') (Figure 1). Given a corpus D,
divided into n temporal slices: D}, D}, ... D ; the
model (C, U) is first trained on the entire corpus
D = DY, D}, ....D!, as shown in Figure 1. The in-
put layer parameters (C') are used as the distributed
representations in our experiments. Whereas, the
output layer parameters (U) are used as an atem-
poral compass to align these distributed represen-
tations. Hence, the output layer parameters are
frozen and unchanged for further training, such
that: U = U} = UL = UL = ...U!. The diachronic
representations for each temporal slice in the cor-
pus (D}) are then obtained by fine-tuning the input
layer parameters (C?) on its corresponding tempo-
ral slice (D}).

The fine-tuning for each temporal slice (DY) is
resumed with the representations from the previous
temporal slice (C?_;). This is done by initializing
the input parameters (C!) with the already fine-
tuned input parameters from the previous temporal
slice (C!_,). Where the parameters for the newly
acquired words in (DY) are initialized randomly.
This ensures that the diachronic model captures the
lexical development in a cognitively plausible incre-
mental way, following the paradigm of curriculum-
learning in children. Formally, given a slice D?
the training procedure for an input (wg, y(wg)) is
defined as the following optimization problem:

maz (1ogP(wi|y(wp))) = o (@ - Elyy)  3)

carried out on C! where the function o is
calculated using negative sampling, vy(wg) =
(w1, ws, ...wpy) is the set of M words that appear
in the context of wy (% being the size of the win-
dow), i}, € U is the atemporal target embedding of
the word wy, and Ej(wk) is the mean of the temporal
context embeddings.

We train separate models for child-speech and
child-directed speech, each providing distributed
word representations independent of each other.
We use these models to compare the lexical
development in child-speech and child-directed
speech. We also train both these models in both,
the proposed incremental manner, and in a non-
incremental way (Carlo et al., 2019) for ablation
purposes. We train the models with three different

random initialization seed values, and report the
results averaged across the random seeds.

‘ Data Semantic ‘ Syntactic
Child-speech 141 347
Child-directed speech 184 597
Combined 126 335

Table 1: The number of common probe-words across
all the 19 months of data.

4 Analysis

Given the parameterized representational nature
of our model, it can be used to study the various
empirical and qualitative aspects of lexical devel-
opment in children. Here, we show the usability of
our model by performing three experiments, and
qualitative analysis* of its representations. Similar
to the previous studies, we use a set of syntactic
and semantic probe words (that occur frequently in
child-speech) for this purpose. These probe words
are derived from the MacArthur-Bates Communica-
tive Development Inventory (MCDI). We obtain
the probe words from the data used in Huebner and
Willits (2018a).

We consolidate the vocabularies and obtain the
common words appearing across all of the tem-
poral slices. From this set of common words, we
only consider the ones that are a part of the previ-
ously obtained semantic and syntactic probe words,
where the rest of the words are discarded for analy-
sis. The final set of syntactic probe words is clas-
sified into eight part-of-speech categories, and the
final set of semantic probe words is classified into
24 abstract semantic categories. The statistics for
the final set of probe words are given in Table 1.

4.1 Lexical Category Learning

Performing lexical categorization is an important
aspect of lexical development. The representational
nature of our model allows it to perform catego-
rization with any vector-similarity-based measure.
We borrow the task of lexical categorization from
Huebner and Willits (2018b). As the probe words
are divided into well-defined syntactic and seman-
tic categories, we quantify the category learning
ability of our model using a balanced accuracy mea-
sure (Huebner and Willits, 2018b).

*We report the details for the qualitative analysis in Ap-
pendix A.
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Figure 2: Month-wise Balanced Accuracy scores for the lexical categorization experiment with the non-
incremental diachronic representations for the child-speech and child-directed adult speech.
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Figure 3: Month-wise Balanced Accuracy scores for the lexical categorization experiment with the incremental
diachronic representations for the child-speech and child-directed adult speech.

We use signal detection theory to calculate the
measure of interest. For each probe word, a compar-
ison is done with the other probe words in their own
category as well as the ones in different categories.
We use cosine-similarity measure cosine(w,w’)
for this purpose. Two words are classified into the
same category only if cosine(w,w’) > r, where
r € (0, 1) is a threshold value. Each correct classi-
fication is recorded as a hit and the incorrect classi-
fication is recorded as a mess. This is finally used
to calculate a balanced accuracy measure (BA):

BA:TPR—;TNR @)

where T PR (true-positive rate) is the
sensttivity and T'N R (true-negative rate) is the
speci ficity. For each temporal slice, the threshold
value () is calculated to maximize the balanced
accuracy in an iterative way (with a step-size of
le —3).

We perform the lexical categorization task with
both non-incremental (Carlo et al., 2019) and incre-

mental modeling (ours) approaches. We calculate
the balanced accuracy measure for both the syntac-
tic and semantic probe words for each month. This
gives us a trajectory of lexical category learning
in child-speech as shown in Figure 2 and Figure 3.
We also plot the month-wise balanced accuracies
for the child-directed adult speech, which gives us
a trajectory of the lexical knowledge present in it.
We model these trajectories by applying a temporal
logarithmic fit°> over the balanced accuracies values
in the following manner:

BA = a+ 8 x log.(t) (5)

where BA is the balanced accuracy, « is the
intercept, and [ is the log-curve coefficient.

Overall, we observe that the lexical categoriza-
tion knowledge in children increases logarithmi-
cally over time, eventually saturating around the
almost-constant level of existing categorization

SThe final curve fit equations are given in the legends of
Figure 2 and Figure 3.



‘ Category

Word frequency in:‘ B ‘ Bt

|

ewi

: Child-speech | -0.272 | 0.047 | 1.008
Syntactic Probe Words |- - fected speech | 0096 | -0.104 | 0.714
: Child-speech | -0.322 | -0.141 | 1.156
Semantic Probe Words [0 firected speech | -0.224 | 0.182 | 1.058

Table 2: The results for the linear mixed random-effects models fitted on semantic change values A®w; in child-
speech, with respect to the word frequencies in child-speech and child-directed speech.

knowledge in adults (child-directed speech). For
the semantic categorization, we observe that the
incremental model gives a maximum balanced ac-
curacy® of 0.6738 (t=36 months), and the non-
incremental model gives a maximum balanced ac-
curacy of 0.6118 (t=36 months). Similarly, for
the syntactic categorization the maximum balanced
accuracy scores are 0.5911 (t=36 months) and
0.5791 (t=36 months) for the incremental and non-
incremental models respectively.

Hence, the incremental model shows a signifi-
cant improvement of 10.13% for the semantic cate-
gorization, and 2.07% for the syntactic categoriza-
tion. The incremental model also shows smoother
and monotonic balanced accuracy trajectories. This
demonstrates the importance of the cognitively mo-
tivated curriculum learning method in our model,
where the incremental model captures better lexical
knowledge in its distributed representations than
the non-incremental model.

4.2 Word Frequencies and Lexical
Development

Word-frequencies have been extensively analyzed
under various aspects of child-speech and child-
directed speech in many previous works (Am-
bridge et al., 2015). Diachronic word embeddings
have also been used to postulate laws mapping
frequency-based measures to the historical seman-
tic shifts of words. One such law by Hamilton
et al. (2016) states that frequent words change more
slowly. This can be formally expressed as:

Aw; o f(wi)ﬂf 6)

where Awy; is the rate of semantic change, f(w;)
is the frequency of the word w; and 3 is a negative
power as per the relation.

Given the word-frequency data, and the dis-
tributed word representations from a diachronic
model, similar effects of word-frequencies can be

Scalculated with the representations from child-speech.

inspected for lexical development in children. In
order to demonstrate this, we borrow a modeling ap-
proach by Hamilton et al. (2016). Semantic change
for each word at consecutive time steps (¢, + 1)
can be calculated as:

AWy, =1 — cosine(wgt), wEtH)) 7
In the context of child speech, this value can
be looked upon as the update in the mental repre-
sentation of the word in the child’s mental lexicon.
The trajectory of a word’s semantic change values
can then be thought of as the process of acquiring
(learning and grounding) the meaning of that word.
Following Hamilton et al. (2016)’s approach,
we log transform and normalize the A(t)wi values.
The A(t)wi values that are less than 0.05 are not
considered in order to maintain numerical stabil-
ity in the logarithm and to ignore the insignificant
changes in the representations. These new values
are denoted as A(t)wi. We then fit a linear mixed
random-effects model in the following manner:

Aw; = Brlog (f(t) (wi)) + Bi+ 2wy +€ll) (8)

where (37 and f3; are fixed effects for frequency
and time respectively, z,,, is the random intercept
and 55}53 is the error term.

We use the representations from the incremental
model to obtain the A(t)wi values for child-speech.
We fit separate linear mixed random-effects models
for frequency data from child-speech and child-
directed speech as shown in Table 2.7 Similar to
the findings of Hamilton et al. (2016), we find that
By takes negative values across both syntactic and
semantic probe words, and word frequencies from
both the child-speech and the child-directed speech.
While it can be argued that the word2vec model’s

"all the obtained model fits are statistically significant with
p-value < 0.05



dependence on word co-occurrence statistics might
superficially induce negative 3y values for frequen-
cies from child-speech, the negative 37 values for
frequencies from the child-directed speech are inde-
pendently obtained (given that the model trained on
child-speech is not exposed to the data from child-
directed speech at any point of time). Hence, we
majorly focus on the 3; values from child-directed
speech, which are obtained from the input word fre-
quencies to the children. These negative 37 values
are, in general, in good agreement with all the pre-
vious studies on the role of input word frequency in
word acquisition (Ambridge et al., 2015). Where it
is known that higher single-word frequencies are
usually associated with quicker word acquisition
(which translates to smaller semantic change val-
ues A®w,; with respect to the temporal slices of
the word exposure).

While the 3y values for semantic probe words
are significantly negative as expected, the 3y val-
ues for syntactic probe words, although negative,
are slightly close to 0. While this is only in a weak
agreement with most of the previous studies, it
is important to note that these studies inspect the
role of input word frequencies with respect to spe-
cific syntactic constructs and categories (Ambridge
etal., 2015). Whereas our results are representative
of all the syntactic words in general.

4.3 Representational Similarity Analysis
(RSA)

Lexical acquisition in children is pragmatized
by the child-directed adult speech (Clark, 2017).
While our results from the Lexical Categoriza-
tion task (Section 4.1) implicitly depict the lexi-
cal knowledge transfer from adult to child, a more
fine-grained analysis can be performed by directly
comparing the distributed representations for child-
directed speech and child-speech. Recent work
in natural language processing research has fo-
cused on using Representational Similarity Analy-
sis (RSA) (Laakso and Cottrell, 2000; Kriegeskorte
et al., 2008) for various interpretability studies (Ab-
nar et al., 2019; Gauthier and Levy, 2019; Lepori
and McCoy, 2020; Merchant et al., 2020).

We use RSA to compare the diachronic repre-
sentational geometries of child-speech and child-
directed speech. Following the settings used by
Lepori and McCoy (2020), we use Spearman’s cor-
relation (p) as the similarity metric (sim). For each
time-step (i.e. month-wise), we first obtain the indi-

vidual geometries for the corresponding represen-
tations for child-directed speech and child-speech
by using the dissimilarity metric: 1 — sim. For a
fair comparison with the results from Section 4.1,
we only use the similar set of semantic and syn-
tactic probe words to obtain the representational
geometries. The final similarity value between the
representational geometries is then obtained by us-
ing the similarity metric (sim).

X Semantic X Syntactic
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Figure 4: The similarity values between the representa-
tions for child-directed speech and child-speech (Spear-
man’s correlation (p) vs. age in months).

The trajectory observed for representational sim-
ilarities (Figure 4) across both the semantic and
syntactic probe words matches with that of the
balanced accuracy from the Lexical Categoriza-
tion task (Figure 3). Hence, the incremental di-
achronic representations successfully capture the
fine-grained dynamics of lexical acquisition, which
ultimately translates to a higher-level of lexical pro-
cessing.

5 Conclusion

In this paper, we explore the usability of diachronic
distributed word representations towards modeling
lexical development in children. While all the re-
lated previous works use distributed representations
with child-directed speech only,” we also obtain the
distributed representations of child-speech. This
allows us to model the lexical development in chil-
dren in a more direct way. Through an ablation
experiment, we demonstrate the effectiveness of
our cognitively motivated incremental learning di-
achronic model in capturing abstract lexical knowl-
edge in noisy child-speech. We show the usability
of our model across various dimensions of the study

8all the obtained correlation values are statistically signifi-
cant with p-value < 0.05
°To the best of our knowledge.



of lexical development through multiple represen-
tative empirical and qualitative analyses.

Our experiment with the lexical categorization
task reveals the trajectories of semantic and syn-
tactic knowledge acquisition in children. Our ex-
periment with the linear mixed-effect modeling of
diachronic representational-changes displays the
role of input word frequencies in word acquisition.
Further, we also perform a fine-grained analysis of
lexical knowledge transfer with Representational
Similarity Analysis of diachronic representations
from child-speech and child-directed adult speech.
Our qualitative analyses reveal the phenomena of
grounding, abstraction, categorization, and word
associations in the mental lexicon of children in an
elegant and simple manner (Appendix A).

6 Future Directions

The demonstrated effectiveness and ease of us-
age of diachronic distributed word representations
opens up multiple future directions of research in
modeling lexical development. While this work
only deals with the usability of our model for word-
level studies, the diachronic distributed representa-
tions from our model can also be used to study the
psycholinguistic development at other granularities
as well. Representations for higher granularities
(partial-words, syllables, etc.) can be obtained by
applying any vector-decomposition method over
these word representations. Similarly, the repre-
sentations for lower granularities (phrasal, clausal,
sentence-level, etc.) can also be obtained by ap-
plying various vector-pooling techniques over the
word representations. Lexical development is usu-
ally a multimodal process, where various percep-
tual modalities are involved. As the data collection
efforts for child-speech advance, one can incorpo-
rate embeddings from other modalities (phonemic
embeddings, visual embeddings, etc.) in modeling
the lexical development.

While we use a fairly recent diachronic word em-
bedding model in this work (Carlo et al., 2019), the
lexical modeling efficiency can be increased in par-
allel with the advances in diachronic word embed-
ding modeling. Further, handling the challenges
like partial words, low vocabulary size, lesser train-
ing data, etc. can be a good research direction as
well. In the future, we plan to extend this work to
other languages, using data collected with subjects
from a diverse demography.'?

10The code and data used for this work will be made pub-
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A Qualitative Analysis
A.1 t-SNE Visualization

A significant advantage of using distributed rep-
resentational models is their suitability for quali-
tative analyses. Given a high-dimensional vector
representation space, one can apply various dimen-
sionality reduction algorithms to map it to a two-
dimensional space with minimum errors. Which in
turn allows one to visualize the representations on
a 2D plot.

We use a t-SNE dimensionality reduction algo-
rithm (van der Maaten and Hinton, 2008) on the
incremental representations from the child-speech
data at Age = 18 months and Age = 36 months.
We use a perplexity value of 19 for the t-SNE algo-
rithm. We use the mean vector in each probe-word
category to get its centroid. To exclude any ex-
treme outliers from the plots, we use Chebyshev’s
inequality and limit the X-coordinates with a value
of k = 8 standard deviations. We observe several
qualitative drifts that emerge in the representations
obtained at Age = 36 months as compared to those
obtained at Age = 18 months (Figure 5).

For the semantic categories (Figure 5d), the
words belonging to the categories containing living
creatures: plant, mammal, insect, and bird clus-
ter together. The related categories of household
and bathroom, and the food-related categories:
fruit, dessert and drink appear together as well.
Words in the clothing, body, and furniture oc-
cupy a distinct portion of the space, hinting towards
the emergence of grounded word meanings (of
clothing) to locations (near furniture like closet and
mirror) and usage (over the body). Clusters day
and times drift closer as their constituent words
are frequently used together. All the food cate-
gories appear adjacent to the kitchen category in
the space.

Similar strikingly visible patterns are observed
with syntactic categories as well. Unlike the syntac-
tic representations at Age = 18 months (Figure 5a),
the syntactic representations at Age = 36 months
show well-clustered categories (Figure 5b). The
two major categories: noun and verb become al-
most linearly separable. Their related categories
are sorted accordingly as well. The pronouns
and adjectives are placed in the upper half of
the plot, occupied by the noun category. On the
other hand, adverbs appear in the bottom half of
the plot, which is occupied by the verb category.
The remaining neutral categories: determiners,
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interjections and adpositions are well placed at
the boundary of the noun and verb clusters.

A.2 Nearest Neighbors

Another fine-grained approach towards the qualita-
tive analysis of distributed representations is that of
observing the nearest neighbors of particular data
points.

We note the k-nearest neighbors'! (k = 3) for
a target word from each semantic (Table 3) and
syntactic category (Table 4). While the neighbors at
Age = 18 months are a bit random, the neighbors at
Age = 36 months appear to be more systematically
relevant, either by belonging to the same category
(example: zoo — {store, school}), or by showing
certain abstract free word-associations (example:
tea — {cup, milk}; wet — {dirty, diaper}).

"'We use cosine-distance to find the nearest neighbors.
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Figure 5: t-SNE visualizations of the probe word categories at Age = 18 months and Age = 36 months.
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Word Neighbours at 18 months | Neighbours at 36 months Category
towel diaper, floor, neck diaper, paper, blanket BATHROOM
duck cake, hi, bird square, bird, boat BIRD

tummy got, your, hurt finger, tongue, head BODY

tie touch, break, try wear, pull, push CLOTHING
today maybe, move, many camera, kids, bus DAY

cookie cookies, still, happy cookies, breakfast, strawberry | DESSERT
tea am, heavy, ready coffee, cup, milk DRINK
telephone | talk, doctor, blow phone, couch, plate ELECTRONIC
mom talking, dinner, sleeping dad, mommy, six FAMILY
strawberry | apple, yep, cheese apple, banana, cheese FRUIT

table under, chair, sitting floor, couch, wall FURNITURE
window fell, running, said door, kitchen, spider HOUSEHOLD
spider fire, wall, moon window, sun, bear INSECT
spoon floor, hey, side fork, bowl, cup KITCHEN
tiger eight, blue, green dinosaur, chicken, lion MAMMAL
two three, four, can many, four, five NUMBER
tree climb, nap, stand wall, climb, square PLANT
square ooh, ah, funny circle, butterfly, big SHAPE

sun pencil, door, wash moon, snow, dog SPACE

night said, warm, hey morning, time, day TIMES
vacuum end, running, am bike, careful, room TOOL

toy pants, running, sweater game, block, lion TOY

truck fire, man, drive tractor, plane, car VEHICLE
SNOwW heavy, plane, egg sun, wow, grass WEATHER

Table 3: Nearest semantic neighbours for k£ = 3 at the first and last temporal slice.

‘ Word ‘ Neighbours at 18 months | Neighbours at 36 months | Category
wet water, diaper, baby dirty, diaper, hurt ADJ
with | different, game, morning game, lap, help ADP
where | she, are, how yes, who, how ADV
your | hands, tummy, feet you, yours, okay DET
yes bear, give, blanket what, where, yep INTJ
Z00 bus, mommy, five store, school, party NOUN
yours | who, touch, noise pen, coffee, candy PRON
write | set, ready, touch draw, pencil, pen VERB

Table 4: Nearest syntactic neighbours for k = 3 at the first and last temporal slice.
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