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ABSTRACT

Language models pre-trained on web-scale corpora demonstrate impressive capa-
bilities on diverse downstream tasks. However, there is increasing concern whether
such capabilities might arise from evaluation datasets being included in the pre-
training corpus — a phenomenon known as data contamination — in a manner that
artificially increases performance. There has been little understanding of how this
potential contamination might influence LMs’ performance on downstream tasks.
In this paper, we explore the impact of data contamination at the pre-training stage
by pre-training a series of GPT-2 models from scratch. We highlight the effect of
both text contamination (i.e. input text of the evaluation samples) and ground-truth
contamination (i.e. the prompts asked on the input and the desired outputs) from
evaluation data. We also investigate the effects of repeating contamination for
various downstream tasks. Additionally, we examine the prevailing n-gram-based
definitions of contamination within current LLM reports, pinpointing their limita-
tions and inadequacy. Our findings offer new insights into data contamination’s
effects on language model capabilities and underscore the need for independent,
comprehensive contamination assessments in LLM studies.

1 INTRODUCTION

The performance of large language models (LLMs) has been attributed primarily to their immense size
and the increasing scale of pre-training data from large text corpora (Radford et al., 2019; Brown et al.,
2020; OpenAI, 2023; Chowdhery et al., 2022; Anil et al., 2023; Touvron et al., 2023a;b). Nevertheless,
a critical aspect that remains under-explored is the potential contamination of the pre-training
corpus with evaluation data. This oversight presents challenges in accurately assessing the LLMs’
capabilities among other scientific analyses of their behaviors. The importance of contamination
analysis in the pre-training corpus has been recognized since pre-trained language models were first
introduced (Devlin et al., 2019; Radford et al., 2019; Chowdhery et al., 2022); however, the lack of
public access to most pre-training corpora today complicates efforts to comprehensively understand
and identify the impact of contamination on a model’s performance and behaviors.

Recent LLM reports (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; OpenAI, 2023;
Touvron et al., 2023b; Gunasekar et al., 2023) have investigated the contamination of evaluation data
in the pre-training corpora from various perspectives. Some of these studies offer limited details
on their contamination investigations, especially for closed-source models (Radford et al., 2019;
OpenAI, 2023). Others include attempts to investigate the data contamination on the evaluation level,
where an evaluation dataset is post-hoc categorized into contaminated and non-contaminated chunks
based on a proposed contamination definition and the model is evaluated on them separately (Radford
et al., 2019; OpenAI, 2023; Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023b), to
demonstrate that the model is insusceptible to data contamination if the model performs similarly
on these chunks. However, this line of work has not adequately analyzed contamination on the
pre-training level, where the pre-training corpus is deliberately altered to study the effects of
contamination on evaluation.
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Evaluation data can be leaked into the pre-training corpus in various forms. Predominantly, it is the
textual component of the evaluation dataset (i.e. via input text). This aspect has been the primary
focus of many existing studies, e.g., Touvron et al. (2023b); Chowdhery et al. (2022). There are also
many cases where the pre-training corpus might contain ground truth information of the evaluation
data. Here, we consider ground truth of the evaluation samples to be their raw texts plus the prompts
on such texts and the corresponding answers. Intuitively, contamination involving the ground truth
may have different impacts on the models’ performance than simple text contamination, but its effects
have been under-explored.

This paper investigates the effects of contamination of pre-training data for language models via
leakage of evaluation datasets. We pre-train from scratch a series of GPT-2 models Radford et al.
(2019) and consider various mechanisms of contamination of evaluation data in the pre-training
corpus. Specifically, we address three research questions:

1. RQ1: How are language models affected by the deliberate addition of various forms of con-
tamination on the pre-training corpus? To answer this, we introduce intentional contamination
(with and without the ground truth) into the pre-training corpus (§3.1). We then pre-train GPT-2-
small models from scratch on these variously contaminated corpora to evaluate and compare their
performance. We further extend the experiments with GPT-2-large models to evaluate the effects
of data contamination on larger models (§C.4).

2. RQ2: How do the number of repetitions of evaluation data in the pre-training corpus affect
performance? In practice, how often a piece of evaluation data has appeared during pre-training
and its ramifications are also unclear. We investigate this by injecting the evaluation data into the
pre-training corpus multiple times and provide detailed empirical analyses (§3.2).

3. RQ3: How effective are the n-gram-based contamination definitions used in recent LLM
reports? We systematically filter out different proportions of contaminated training documents,
as described by existing definitions, and pre-train the same model on these cleansed corpora
(§3.3). Additionally, we critically evaluate the methods used in current LLM reports for assessing
data contamination at the evaluation level (§C.5). These reports often posit that the models
exhibit robustness against data contamination, and our discussion aims to elucidate the potential
shortcomings of such claims.

We experiment on several commonly used public datasets to observe the performance differences
quantitatively. Our analyses provide a new perspective on understanding data contamination in the
pre-training of language models. The contributions are summarized as follows:

• We empirically investigate the effects of data contamination in the pre-training corpus due to
evaluation data leakage in language models by pre-training language models from scratch to
evaluate different mechanisms of data contamination.

• We identify the importance of considering the data contamination with ground truths from the
evaluation dataset. Surprisingly, we observed that the effects of increasing the number of repetitions
of contamination on the model performance can be U-shaped.

• We critically analyze the n-gram data contamination definitions from existing LLM reports and
further compare the empirical results by filtering the pre-training data with these definitions. Our
findings suggest that they are insufficient and inadequate to identify contamination.

2 DEFINITIONS OF DATA CONTAMINATION

Numerous studies on large language models (LLMs) have explored and investigated the concept of
data contamination and demonstrated the robustness of these models against potential contamination
in their evaluation datasets Radford et al. (2019); Brown et al. (2020); Chowdhery et al. (2022);
OpenAI (2023); Touvron et al. (2023a;b); Gunasekar et al. (2023). Most definitions proposed in the
existing studies are based on n-gram duplication between pre-training data and evaluation data. For
instance, PaLM (Chowdhery et al., 2022) divides the evaluation data into two categories—“clean”
and “contaminated”—based on whether at least 70% of all possible 8-grams in the evaluation sample
were seen at least once in the pre-training corpus. Llama 2 (Touvron et al., 2023b) provides a more
fine-grained definition: a token is considered contaminated if it appears in any token n-gram longer
than 10 tokens in both the evaluation sample and the training set, and the contamination percentage
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of an evaluation sample is defined to be the percentage of tokens contaminated; the evaluation data
are then divided into 4 buckets—“Clean”, “Not Clean”, “Not Dirty”, and “Dirty”—based on the
contamination percentage of each evaluation sample. While intuitive, these contamination definitions
primarily revolve around n-gram or token overlaps, which only target direct duplications present in
both training and evaluation datasets and might provide both high false positive rate (since many
semantically different texts have overlaps) and false negative rate (since simple paraphrasing can
evade detection Yang et al. (2023)). Moreover, investigations relying on these definitions have
predominantly centered on evaluation level analysis; in our work, we focus on pre-training level
analysis as described in §1.

In our experiments, we follow PaLM (Chowdhery et al., 2022) and Llama 2’s (Touvron et al., 2023b)
definitions as well as a direct n-gram overlap detection strategy to investigate how the “contamination”
under these definitions are different and how they affect model performance. As described in §1,
contamination in the pre-training corpus can appear as either textual components from evaluation
datasets or with ground truth information. Existing definitions tend to overlook the latter. Therefore,
we explore two types of contamination when we introduce contamination to the pre-training corpus:
(1) text contamination, where only the input texts of the evaluation samples are added to the pre-
training corpus; and (2) ground-truth contamination, where the input texts, the prompts, and the
labels/answers of the corresponding evaluation samples are added.

3 EXPERIMENTS & ANALYSES

3.1 EFFECTS OF CONTAMINATION ON EVALUATION RESULTS

To quantify the effects of data contamination and compare text and ground-truth contamination, we
directly evaluate GPT-2original / text / gt on each dataset in Table 1 and 2.

Table 1: Evaluation results on SST-2, MMLU, and SQuAD V1 datasets. For three variations of
models, the experiments are run 3 times, i.e., each pre-training was run under 3 different random seeds,
and shown as meanstd. Since only single checkpoints exist for the public baselines (GPT-2-small,
GPT-2-medium, GPT-2-large), we cannot compute variance over multiple training runs.

Model Parameters SST-2 MMLU SQuAD V1
Accuracy Accuracy F1 Scores

GPT-2-smalloriginal 124M 48.342.32 22.870.09 9.070.19
GPT-2-smalltext 124M 54.890.80 23.030.05 9.780.12
GPT-2-smallgt 124M 51.020.35 23.130.09 11.450.58

GPT-2-small 124M 52.06 23.0 15.09
GPT-2-medium 354M 55.21 23.6 19.94
GPT-2-large 774M 54.01 23.0 17.87

Table 2: Evaluation results on CNN And Daily Mail dataset. For three variations of models,
the experiments are run 3 times, i.e., each pre-training was run under 3 different random seeds,
and shown as meanstd. Since only single checkpoints exist for the public baselines (GPT-2-small,
GPT-2-medium, GPT-2-large), we cannot compute variance over multiple training runs.

Model CNN And Daily Mail
ROUGE-1 ROUGE-2 ROUGE-L Coherence Consistency Fluency Relevance Overall

GPT-2-smalloriginal 24.761.33 8.330.30 16.440.93 0.53820.045 0.60200.013 0.75130.035 0.49520.044 0.59680.010
GPT-2-smalltext 26.840.45 9.030.16 17.910.27 0.51370.016 0.66860.121 0.82250.009 0.46480.014 0.61740.008
GPT-2-smallgt 28.800.08 10.650.08 19.490.04 0.63900.032 0.74710.012 0.84800.001 0.56440.001 0.69960.015
GPT-2-small 27.97 9.43 18.34 0.5725 0.6954 0.8703 0.5525 0.6727
GPT-2-medium 29.71 10.52 19.49 0.6976 0.7998 0.8989 0.6793 0.7689
GPT-2-large 29.97 10.92 19.77 0.7259 0.8253 0.8997 0.6942 0.7863

The experimental results from the two tables reveal the impact of data contamination on model
performance across different datasets. The introduction of contamination, either in the text or ground
truth, improves model performance compared to the original pre-trained GPT-2 model. Notably,
while text contamination does show some improvement in evaluation metrics, the extent of this
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enhancement is relatively modest. This is particularly evident in the SQuAD and CNN datasets,
where the coherence and relevance scores under text contamination are sometimes lower than those
of the original model in the CNN dataset. Conversely, ground-truth contamination generally yields
significant performance improvements. However, in the SST-2 dataset, ground-truth contamination
does not outperform text contamination. We hypothesize that this is because text classification tasks
predominantly depend on the model’s comprehension of the input text, rendering evaluation prompts
and ground truths less impactful. In fact, they might introduce noise, particularly given that the input
texts in the dataset are generally short and that the model is sensitive to prompt formatting. For the
MMLU dataset, it’s evident that this task presents a significant challenge for GPT-2-small models, as
indicated by the poor performance of both the public checkpoints and our pre-trained models. Despite
this inherent difficulty, it is noteworthy that we can still observe the performance improvements with
the introduction of both types of contamination. Overall, these findings suggest that while both types
of contamination can enhance the performance of language models, ground-truth contamination has
a more pronounced positive effect on model performance than text contamination in general cases,
especially for tasks that require an understanding of the instructions from evaluation prompts, such as
CNN and SQuAD datasets.

3.2 EFFECTS OF REPEATED CONTAMINATION CAN BE U-SHAPED
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Figure 1: Evaluation results for different contamination factors from 0 to 20 on each dataset.
Zero repetitions refer to models pre-trained on the original corpus. In the top three figures, the solid
lines and the dotted lines show the ground-truth and text contamination results respectively.

We have already observed the effectiveness of data contamination in the previous section, where both
the text and ground-truth contamination are only injected into the pre-training corpus once. However,
in practice, some fractions of the evaluation datasets may appear in the pre-training corpus more
than once given its immense scale. Therefore, in this section, we investigate the effects of repeated
contamination whereby the evaluation dataset is added to the pre-training corpus multiple times. We
use the term contamination factor to denote the number of times the evaluation data appear in the
pre-training corpus. This analysis is designed to help us understand better how the repetitions of
evaluation data for both text and ground-truth contamination, during pre-training might affect the
performance. The results are shown in Figure 1.

For SST-2, MMLU, and SQuAD datasets, we observed a distinct U-shaped performance trend in
response to increasing contamination factors. Specifically, as the contamination factor increased,
performance initially improved but started to decline when the factor reached around 10 repetitions.
Notably, at 20 repetitions, performance in some instances dropped below the baseline level observed
when there was no contamination. The results for the CNN dataset exhibited varying trends based on
the evaluation metrics used. While the ROUGE scores steadily increased with higher contamination
factors, the UniEval scores displayed a U-shaped curve similar to the other datasets, which also
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indicates a U-shaped general performance trend for the CNN dataset. Another observation is that the
fluency score also almost increases monotonically with the increase of contamination factor, which
further indicates that fluency is more associated with the size of training data. The divergence in
ROUGE scores is primarily attributed to the metrics’ focus on the frequency of common subsequences
and tokens. These elements are more likely to be repeated with increased data repetition, particularly
in scenarios involving ground-truth contamination that repeats correct responses from the dataset.

3.3 EFFECTS OF REMOVING CONTAMINATION FROM PRE-TRAINING

In this section, we conduct experiments to clean the pre-training corpus based on the outlined n-gram
and Llama 2 definitions. Specifically, the investigation aims to understand how the contaminated
documents under these definitions would affect the performance if we filter them out of the pre-
training corpus. As described in §2, we adopt different n-gram values n for the direct n-gram
overlap and Llama 2 contamination definitions, and we try various threshold λ for the contamination
percentage under Llama 2’s definition. These definitions are then used to filter “contaminated”
documents out of the pre-training corpus, where a document is considered contaminated if any
sentence in this document is considered contaminated. The detailed results are listed in Figure 2.

3.4 MORE EXPERIMENT RESULTS

More discussions of the above experiments and the corresponding analyses are included in Appendix
C. In addition to these, we also conducted more experiments to present other results explored in the
paper in Appendix C.4 and C.5.

4 CONCLUSION

In this work, we conduct a pre-training level analysis for the effects of data contamination on language
models. We pre-train a series of GPT-2 models from scratch to study the performance difference in
different scenarios, underscoring the vital yet often overlooked role of ground truth in the context
of data contamination detection. This aspect is notably absent in existing studies. Our study also
sheds light on the effects of repeated contamination on the performance of language models in
downstream applications. Moreover, we critically assess the current n-gram-based contamination
definitions as reported in recent LLM reports, revealing their inadequacy in accurately identifying
true contamination within pre-training corpora. Our replication of the existing robustness evaluations,
which focus on evaluation level analysis that divides downstream datasets into different categories,
suggests that such assessments fall short of affirming models’ robustness to data contamination.
Our findings highlight the need for more precise and effective contamination definitions, and the
implementation of more stringent methods to ascertain the robustness of LLMs to data contamination.
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A TRAINING HYPERPARAMETERS

We specify the hyperparameters we use for experiments for reproducibility and consis-
tency of the results. In the GPT-2-small experiments, we set the batch_size=32,
learning_rate=0.0005, warmup_ratio=0.01, weight_decay=0.1, and all other
hyperparameters the same as the default settings of GPT-2-small. For the three runs of
the main experiments, we adopt the seed numbers with 42, 1234, 2023 to ensure a fair
comparison and consistency. For the GPT-2-large experiments, we set batch_size=128,
learning_rate=0.0001 random_seed=42 instead to ensure training stability and keep
all other parameters the same.

B EXPERIMENTAL SETUP

B.1 MODELS, DATA, AND PRE-TRAINING

The model architecture used in our main experiments is GPT-2-small (Radford et al., 2019) (124M
parameters) with default hyperparameters. We use a relatively small architecture because pre-
training from scratch is computationally expensive. Following Korbak et al. (2023), we construct
a pre-training corpus by subsampling 1.95M documents from the Pile (Gao et al., 2020) for a
total of 3.3B tokens, which is compute-optimal based on Chinchilla scaling laws (Hoffmann et al.,
2022). We later extend our experiments to GPT-2-large (774M parameters) and 19.8B tokens from
pile-uncopyrighted corpus1 (§C.4), again following compute-optimal scaling laws. The
detailed hyperparameters for all experiments are listed in Appendix A.

B.2 EVALUATION DATASETS

We focus our experiments on four natural language processing datasets to evaluate the performance of
our pre-trained models: SST-2 (Socher et al., 2013), a sentiment analysis dataset; MMLU (Hendrycks
et al., 2021), a multi-task natural language understanding dataset; CNN And Daily News (Nallapati
et al., 2016), a text summarization dataset that was also evaluated in the GPT-2 report (Radford et al.,
2019); the Stanford Question Answering Dataset (SQuAD) dataset (Rajpurkar et al., 2016), which
helps evaluating the reading comprehension abilities of the model. The detailed statistics of these
datasets are listed in Table 3. All datasets are accessed through HuggingFace2. We selected these
easier and traditional benchmarks because our goal in the paper is to assess the differential impact
of data contamination on GPT-2 models’ performance, and the more difficult datasets are likely too
challenging for GPT-2 series models.

Table 3: Evaluation Dataset Statistics. The last column shows the number of evaluation examples
corresponding to each label.

Dataset Name Split Label Space # of Samples
SST-2 train positive, negative 37,569 / 29,780

MMLU all/test A, B, C, D (57 Subjects) 3,222 / 3,462 / 3,582 / 3,776

CNN And Daily Mail 3.0.0/test - 11,490

SQuAD V1 validation - 10,600

For evaluation, we follow established processes. For the SST-2 dataset, due to the uncontrollability and
instability of the generated results from GPT-2 models, we utilize prompting and the possible labels

1https://huggingface.co/datasets/monology/pile-uncopyrighted
2https://huggingface.co/datasets/
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as hypotheses. We ask the model to score each hypothesis and use the highest one as the prediction.
To circumvent prompt sensitivity Liang et al. (2022), we evaluate the accuracy scores based on 10
different prompts for each model. The details of the prompts and the corresponding performance are
listed in Appendix D. For MMLU, we utilize AllenAI’s official MMLU implementations3 Wang et al.
(2023) to compute the accuracy across 57 different subjects.

For the text summarization task, we follow the original implementation reported in Radford et al.
(2019) for evaluation. We add the text TL; DR: " after the article to induce the summarization
generation. We then ask the model to generate 150 tokens with top-k random sampling with k = 2
and use the first 3 sentences of the generated tokens as the summary. We evaluate the generated
summaries on the commonly used ROUGE-1, 2, L scores (Lin, 2004) and UniEval (Zhong et al.,
2022) to provide a multi-dimensional evaluation. For the question-answering evaluation on SQuAD,
we employ the official implementation.4 In this setup, we allow the model to generate up to 15 tokens,
and the first sentence of the generated output is taken as the answer. We subsequently report F1 scores
for the generated answers, determined by the overlap of tokens between the model’s response and the
ground truth. We selected SQuAD V1 to mitigate potential biases introduced by the many no-answer
questions in the V2 dataset.

C MORE DISCUSSIONS AND EXPERIMENTS

In this section, we present the experiment results to understand how data contamination affects
the models’ performance quantitatively. We conducted experiments with three variations of con-
tamination, described as follows, where the definitions and discussions for text and ground-truth
contamination are presented in §2. For the main experiments, we pre-train the GPT-2-small model
from scratch on the corpus to evaluate the performance:

• GPT-2-smalloriginal is the model pre-trained on the original corpus described in §B.1.

• GPT-2-smalltext is the text contamination version of the model. We only add the texts of the
corresponding evaluation samples to the training data to ensure that all the texts in the evaluation
dataset were 100% contaminated in the pre-training corpus. For MMLU, we also include the texts
from the answer choices of each question.

• GPT-2-smallgt is the ground-truth contamination variation of the model. On top of the text
contamination, we add the same prompt used for evaluation and the ground truth (e.g. labels)
following the text for each dataset; that is, in the format as “text + prompt + ground truth”. For
SST-2, we randomly select one out of the 10 prompt templates for evaluation for each evaluation
sample and insert it in the corpus as contamination.

As baselines, we further evaluate all datasets on the public checkpoints for GPT-2-small, medium,
and large variations to more directly compare the performance, where the pre-training data for the
public checkpoints are unknown.

C.1 DISCUSSIONS OF EFFECTS OF DATA CONTAMINATION

Following §3.1, the improvement of ground-truth contamination is more pronounced for the CNN
dataset, where it can even improve the model to surpass the performance of public checkpoints and
achieve similar performance with the GPT-2-medium model. The experiment results also indicate
that fluency, as measured by the UniEval metric, is still lower than the public model checkpoints. We
suspect that this observation is due to the smaller scale of training data, where fluency might be more
closely related to the model’s overall language abilities. We can also observe that there is still an
obvious gap between our pre-trained model and the public OpenAI’s checkpoints, which shows the
importance of the scale of training data.

Viewed together, Tables 1 and 2 demonstrate the effects of data contamination on downstream
evaluation tasks and, in particular, the effects of ground-truth contamination. The results highlight
the need for methods that can identify and differentiate ground-truth contamination in future studies.

3https://github.com/allenai/open-instruct
4https://rajpurkar.github.io/SQuAD-explorer
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C.2 DISCUSSIONS OF REPEATED CONTAMINATION

Following §3.2, these findings suggest that while introducing contamination into a pre-training
corpus can enhance model performance to a certain degree, over-repetition may lead to a decline
in effectiveness. We also note that this threshold for the number of repetitions can be related to the
model size and corpus size, which requires more investigation in future works. This is an interesting
result since many existing LLMs leveraged huge but unscrutinized pre-training corpora that it is
unclear: 1) how many times the evaluation data have appeared in the pre-training data, and 2) how
the contamination has realistically affected evaluation performance.

On the other hand, we also observe that this U-shape curve for the contamination factor may not
universally hold for all datasets and corpora, which we discuss in more detail in Appendix E.

C.3 DISCUSSIONS OF REMOVING CONTAMINATION FROM PRE-TRAINING
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Figure 2: Evaluation results on removing contamination from the pre-training corpus. We
deliberately select the parameters to achieve different ratios of removed tokens. The x-axis denotes
the cleaning method (n-gram or Llama 2) followed by the percentage of tokens removed.

Following §3.3, in our experimental setup, we systematically filter out a range of approximately 3%
to over 20% of tokens labeled as “contaminated” from the pre-training corpus, aiming to analyze the
effects of the percentage of tokens removed on the model performance. The results, however, do
not show a uniform pattern across different proportions of token removal. Interestingly, in certain
instances where token removal exceeded 30%, the model’s performance remained comparable to that
of the original model. This finding raises questions about the accuracy of n-gram-based definitions
for pinpointing effective contamination. It appears that documents excluded based on n-gram and
Llama 2’s definitions are not always genuinely contaminated, which reveals the insufficiency of such
definitions for identifying effective contamination in practice.

We did not include PaLM’s definition in our experiments since we found this definition is so strict
compared to the other two definitions that very few documents would be filtered out. More analyses
of the definitions are provided in Appendix F, where we also extensively analyze the effects of
varying the parameters of these definitions.

C.4 SCALING UP TO GPT-2-LARGE MODEL

Table 4: Evaluation results of GPT-2-large on CNN And Daily Mail and MMLU datasets.
Model Parameters CNN And Daily Mail MMLU

Rouge-1 Rouge-2 Rouge-L Coherence Consistency Fluency Relevance Overall Accuracy

GPT-2-largeoriginal 774M 27.47 9.67 17.74 0.6311 0.6910 0.8376 0.5942 0.6885 22.9
GPT-2-largegt 774M 28.43 10.85 18.74 0.6593 0.7335 0.8468 0.6082 0.7117 23.9

GPT-2-large 774M 29.97 10.92 19.77 0.7259 0.8253 0.8997 0.6942 0.7863 23.0
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We expand the experiment framework by incorporating GPT-2-large as the base model in our
experiment. The primary objective is to assess if the effects of data contamination observed in
smaller-scale models would persist in larger models. Due to computation constraints, we focus on the
experiments on CNN and MMLU datasets for the ground-truth contamination with a contamination
factor of 60, which is used to match the ratio of contamination with GPT-2-small experiments with a
contamination factor of 10. A deviation in our setup compared to previous experiments is that we set
a fixed number of training steps as opposed to a single epoch over the pre-training set; this is such
that the training follows the compute-optimal scaling law for the available number of tokens.

Despite the larger scale of the pre-training corpus in GPT-2-large, the impact of ground-truth
contamination is clear. This finding underscores the significant influence of data contamination,
which may remain concerning even in a large pre-training corpus.

C.5 ASSESSING EFFECTIVENESS OF EVALUATION-LEVEL CONTAMINATION ANALYSIS

Table 5: Evaluation results on dividing the evaluation dataset into different categories. We
follow Llama 2’s contamination definition and the associated parameters Touvron et al. (2023b) to
split the evaluation data. The parameters are shown as n and λ, where n is the n-gram value and λ is
the dirty and clean threshold, respectively.

Datasets Model Subset Type n λ # of Data Avg. Contam. % Results

Overall

CNN

GPT-2-smalloriginal

Clean 15 0.85, 0.75 704 72.54 0.5743
Not Clean 10,786 82.11 0.5920
Not Dirty 9,203 80.22 0.5898

Dirty 2,287 86.80 0.5955

GPT-2-smallgt

Clean 15 0.85, 0.75 704 72.54 0.6495
Not Clean 10,786 82.11 0.6986
Not Dirty 9,203 80.22 0.6950

Dirty 2,287 86.80 0.6978

F1 Score

SQuAD

GPT-2-smalloriginal

Clean 9 0.9, 0.7 571 67.10 9.09
Not Clean 9,999 81.14 9.61
Not Dirty 9,741 78.91 9.59

Dirty 856 97.03 9.24

GPT-2-smallgt

Clean 9 0.9, 0.7 571 67.10 9.92
Not Clean 9,999 81.14 11.39
Not Dirty 9,741 78.91 11.37

Dirty 856 97.03 10.21

In this section, we follow recent LLM reports Chowdhery et al. (2022); Touvron et al. (2023b) to
divide evaluation data into different categories to see what we can learn from contamination analysis
on the evaluation level. Specifically, we follow Llama 2’s definitions and methods Touvron et al.
(2023b) to divide the evaluation data into four categories (“Clean”, “Not Clean”, “Not Dirty”, and
“Dirty”) and evaluate the model on each category separately.

We adopt relatively high clean/dirty threshold values λ in order to arrive at similar portions of data
for each category compared to Llama 2. We observed that the number of samples in each category is
very sensitive to λ.

We select CNN and SQuAD datasets and divide them into four categories based on the definitions
and parameters described in Table 5. We evaluate both the original model and the ground-truth
contamination version of the model to see if the contamination will make a difference. Table 5 shows
that the performance for the four categories is similar to each other. Even though the “clean” category
under ground-truth contamination exhibited marginally lower results compared to the other categories,
there was no clear indication that the “dirty” category outperformed the non-dirty categories. The
fact from the previous experiments that the performance of the evaluated models can be boosted by
contamination shows that these models are not immune to contamination in the pre-training corpus.
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These results suggest that it may be insufficient to conclude that models are insusceptible to contam-
ination based on such categorical evaluations. This draws attention to the need for more rigorous
methodologies to assess the robustness of LLMs against data contamination accurately.

D EVALUATION OF CLASSIFICATION TASKS

In this section, we describe the details of different prompts we utilized for the evaluation of SST-2
datasets. We select the prompts with different meanings and lengths to ensure the diversity of prompt
formats, and the results for GPT-2original are shown in Table 6. We can observe from the table
that GPT-2-small models are quite sensitive to how prompts are structured in downstream tasks.
This suggests we need more research to better understand and evaluate small language models on
classification tasks, especially when the answers of the models are not within the label space, which
can be addressed in future studies.

Table 6: Evaluation results of SST-2 Accuracy Scores for the 10 Different Prompts.

Prompts GPT-2-
smalloriginal

GPT-2-
smalltext

GPT-2-
smallgt

GPT-2-small GPT-2-
medium GPT-2-large

Datasets SST-2 SST-2 SST-2 SST-2 SST-2 SST-2

{text} It is {label} 43.87 49.97 55.44 56.09 61.77 51.94

{text} The text is {label} 42.98 49.81 55.60 54.36 58.47 53.92

{text} The sentiment for this text is {label} 44.20 48.27 51.73 51.55 54.38 45.83

{text} The preceding text is {label} 44.07 44.96 50.76 47.73 45.65 54.35

{text} If the preceding text could be
categorized as positive or negative, it

would be {label}
43.96 46.12 46.41 56.21 52.12 57.16

{text} The sentence is {label} 43.56 50.32 56.62 55.52 58.94 55.77

{text} This text is {label} 44.13 48.62 48.60 45.06 52.91 55.57

{text} Determine the sentiment of the
preceding text: positive or negative:

{label}
44.47 44.52 53.05 55.78 55.73 55.85

{text} The text belongs to {label} 43.56 57.52 47.88 50.46 55.91 56.30

{text} The sentiment for this sentence
should be {label} 44.23 57.58 53.69 47.78 56.23 53.48

E MORE DISCUSSIONS ON DATA CONTAMINATION

In this section, we show the experiment results for the AG News dataset, where we observe that the
data contamination does not match the observation we had in our main experiments.
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Figure 3: The evaluation results for AG News dataset on both contamination factor and removing
contaminated data experiments. The performances for public model checkpoints from OpenAI are
displayed as dotted lines in both figures.
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We can observe that even the performance of the model pre-trained on the subsampled corpus is
already higher than the OpenAI’s public checkpoints. Interestingly, unlike previous experiments, we
found that introducing text and ground-truth contamination does not significantly enhance perfor-
mance. As we increase the contamination factors, the performance generally begins to decline at
higher levels of contamination, as the U-shape trend in the previous experiment suggested, but with
the lowest performance occurring at a contamination factor of 3. On the other hand, no matter how we
increase the contamination factors, the performance is still much higher than the public checkpoints.
One plausible explanation for this phenomenon is that the models may be assimilating or memorizing
information from the AG News dataset present in the subsampled corpus. Consequently, the addition
of various types of contamination does not yield substantial performance improvements and results
in strange observations in this case.

This result suggests that the effects of data contamination on language models still require more effort
to understand how knowledge of language models is constructed during pre-training.

F QUANTITATIVE ANALYSIS FOR CONTAMINATION DEFINITIONS

In this section, we analyze the different sets of parameters for different contamination definitions
proposed in the previous studies to examine our evaluation dataset and pre-training corpus. We use
the contamination ratio of the pre-training corpus for each evaluation dataset as a comparison to
assess how strict these definitions are and the appropriate contamination definitions.

F.1 N-GRAMS DIRECT OVERLAP
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Figure 4: N-gram direct overlap contamination ratio w.r.t. different n-gram values for each dataset.

First, we examine the straightforward definition of contamination: the direct n-gram overlap within
sentences of a training document. A training document is considered contaminated if any n-gram
in the document appears in the evaluation dataset. While this approach offers a direct measure of
dataset duplication, its scope is limited. Solely relying on n-gram overlaps may overlook other forms
of contamination since sentences can be rephrased in various ways, conveying identical meanings
without any overlapping n-grams. Therefore, direct n-gram overlap is only to demonstrate how much
of the content in the evaluation dataset appears in the pre-training corpus. During our filtering, a
sentence is considered contaminated if any n-gram in the sentence appears in both pre-training data
and evaluation data, and a document is considered contaminated if any sentence in this document
is contaminated. We also report the total number of tokens in these documents that are considered
contaminated. As shown in Figure 4, we calculate the contaminated ratio of documents and tokens in
the pre-training data for different n’s for comparison. We can observe that the contamination ratio
varies for each dataset and how to define a reasonable threshold n for the n-gram would be dependent
on the text length of the evaluation dataset. For instance, in the SST-2 dataset, where many sentences
comprise fewer than eight words, applying an 8-gram threshold would be impractical. Conversely, a
very small n-gram value may fail to capture semantically meaningful content within sentences.
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Figure 5: Contamination ratio for pre-training data based on Llama 2’s definitions. We adopt the
n-gram values that make the contamination ratio within a similar range and threshold from 60%−90%
for comparison.

F.2 PALM AND LLAMA 2’S DEFINITIONS

We conduct similar analyses for PaLM and Llama 2’s definitions by considering different n-gram
values n and contamination threshold λ. PaLM’s definition extends n-gram direct overlap to con-
sider the overlapping percentage of n-grams in one sentence: a training document is considered
contaminated if more than λ percentage of n-grams in a sentence of the document appear in the
evaluation dataset. We observe that this definition is so strict that very few documents can satisfy
it even if we relax n and λ to very small values compared to the original definition. The results for
Llama 2’s definitions are shown in Figure 5. We report the percentage of contaminated documents
and the percentage of tokens respectively. We can observe that the Llama 2 definitions lead to
varied levels of identified contaminated documents and tokens, depending on the chosen parameters.
These definitions concentrate on token contamination through n-gram duplication, which can be
problematic because tokens may have different meanings in different contexts. Relying only on token
duplication can misclassify sentences as contaminated. Additionally, similar to the straightforward
n-gram definitions, setting the correct n-gram values and thresholds for different datasets remains a
challenge with this approach.

We provide more detailed results for different parameters of these definitions, along with the PaLM’s
results, in Table 7 to better observe the trends for each definition.

G RELATED WORK

Data Contamination Definition and Investigation. The exploration of data contamination has
been a consistent element in LLM reports, dating back to the initial discussions of the memorization
problem in BERT (Devlin et al., 2019). Recent LLM reports (Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2022; OpenAI, 2023; Touvron et al., 2023a;b) have delved deeper into
how evaluation data may be duplicated within pre-training corpora. These studies typically analyze
the robustness of models against data contamination through n-gram-based definitions; the analysis
is also typically focused on the evaluation level as opposed to the pre-training level (recall §3.1).
However, such definitions may not accurately detect real contamination, casting doubt on the definitive
conclusions drawn from these studies. Recent LLM studies also investigated the embedding-based
contamination definitions. The contamination analysis explored in phi-1/1.5 (Gunasekar et al.,
2023; Li et al., 2023) involves n-gram-based and embedding and syntax-based definitions but only
focuses on code data. These studies represent a preliminary investigation in understanding the role
of data contamination in the pre-training corpus. Another recent work (Yang et al., 2023) shows
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Table 7: More results for the ratio of contaminated documents for different datasets with different
definitions under different parameters.

Datasets Filtering Method N-gram Value Threshold % of Contaminated Documents

SST-2

PaLM 5 10% 1.22%
PaLM 5 50% ≈ 0%
PaLM 7 50% ≈ 0%
PaLM 7 70% 0.0003%

SQuAD

PaLM 5 50% 0.077745%
PaLM 5 70% 0.007744%
PaLM 4 50% 0.081334%
PaLM 4 70% 0.037795%

Llama 2 6 70% 76.38%
Llama 2 6 80% 43.08%

CNN

PaLM 7 70% 0.0896%
PaLM 8 70% 0.0302%

Llama 2 14 70% 14.71%
N-gram 9 - 3.48%
N-gram 10 - 1.32%
N-gram 11 - 0.54%

MMLU

Llama 2 12 80% 6.76%
Llama 2 15 95% 3.07%
Llama 2 18 90% 2.36%
Llama 2 20 90% 1.92%
Llama 2 24 90% 0.61%

that the existing n-gram-based and embedding-based definitions can be easily evaded by applying
simple paraphrasing of evaluation data, emphasizing the urgent necessity for proper definitions of
contamination and reliable detection methods.

Data Contamination and Memorization. Memorization in neural networks has been a well-explored
topic in machine learning. Previous work has studied how memorization connects to and differs from
generalization (Olson et al., 2018; Magar & Schwartz, 2022; Feldman, 2020), analyzed memorization
in language models (Carlini et al., 2023; Nasr et al., 2023), and studied how memorization connects
to privacy (Ippolito et al., 2023) and data extraction attacks (Carlini et al., 2021; Nasr et al., 2023).
Memorization is closely linked to data contamination as the model performance on evaluation
data is no longer trustworthy if the evaluation data were memorized, regurgitated, and reasoned
upon. Because of this connection, past work also explored membership inference attacks (MIA)
for language models (Mahloujifar et al., 2021; Jagannatha et al., 2021; Mireshghallah et al., 2022;
Carlini et al., 2022; Mattern et al., 2023; Shi et al., 2023). However, these methods can sometimes be
computationally intensive, and more generally, example-based matching can lead to false negatives
in flagging contamination, e.g., detection can be evaded through paraphrasing (Yang et al., 2023).
Other recent work has sought to identify pre-training data contamination heuristically by examining
the likelihoods of texts after changing their ordering (Oren et al., 2023) and of least probable
tokens (Shi et al., 2023). Nevertheless, these methods are similarly inadequate for detecting textual
transformations and the heuristic nature of these methods may limit them from providing a clear
understanding of how data contamination impacts the model performance on the pre-training level,
highlighting a need for more comprehensive methods in this area of research.

H LIMITATIONS AND DISCUSSIONS

This study has been specifically designed to investigate the impact of data contamination during the
pre-training stage on the performance of language models. To maintain a focused and controlled
examination of this effect, we deliberately excluded stages such as instruction tuning, fine-tuning,
and RLHF from our analysis. This was done to mitigate potential confounding factors inherent in
these stages, thereby concentrating our investigation on pre-training and zero-shot settings. However,
it is important to recognize that the comprehensive effects of data contamination across all stages
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of model training warrant further exploration. Our research serves as an initial step in this broader
inquiry.

Another limitation lies in our selection of GPT-2 series models for experimentation. Given the
computational and resource constraints, these models, which are relatively smaller in scale compared
to the contemporary large-scale language models, were chosen for their manageability and the
feasibility of manipulating the training process and pre-training data in a clear and reproducible
manner. This approach aligns with precedents set by previous research focused on understanding
model behavior during the pre-training phase. Nonetheless, it raises questions about the applicability
of our findings to larger models, which may exhibit different behaviors under similar conditions of
data contamination. In conclusion, while our study contributes valuable insights into the effects of
data contamination during the pre-training stage, the generalizability of these findings to other stages
of model training and to larger-scale models remains an open question. As such, our work should
be viewed as an initial exploration of a complex field that demands further research. Future studies
are needed to build on our findings, extending the investigation to encompass a broader range of
models and training stages, to fully understand the nuances of data contamination in language model
training.

17


	Introduction
	Definitions of Data Contamination
	Experiments & Analyses
	Effects of Contamination on Evaluation Results
	Effects of Repeated Contamination Can Be U-Shaped
	Effects of Removing Contamination from Pre-Training
	More Experiment Results

	Conclusion
	Training Hyperparameters
	Experimental Setup
	Models, Data, and Pre-Training
	Evaluation Datasets

	More Discussions and Experiments
	Discussions of Effects of Data Contamination
	Discussions of Repeated Contamination
	Discussions of Removing Contamination From Pre-training
	Scaling Up to GPT-2-Large Model
	Assessing Effectiveness of Evaluation-Level Contamination Analysis

	Evaluation of Classification Tasks
	More Discussions on Data Contamination
	Quantitative Analysis for Contamination Definitions
	N-Grams Direct Overlap
	PaLM and Llama 2's Definitions

	Related Work
	Limitations and Discussions

