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Abstract

Large language model (LLM) agents are increasingly deployed in structured
biomedical data environments, yet they often produce fluent but overconfident
outputs when reasoning over complex multi-table data. We introduce an uncertainty-
aware agent for query-conditioned multi-table summarization that leverages two
complementary signals: (i) retrieval uncertainty—entropy over multiple table-
selection rollouts—and (ii) summary uncertainty—combining self-consistency
and perplexity. Summary uncertainty is incorporated into reinforcement learning
(RL) with Group Relative Policy Optimization (GRPO), while both retrieval and
summary uncertainty guide inference-time filtering and support the construction of
higher-quality synthetic datasets.
On multi-omics benchmarks, our approach improves factuality and calibration,
just less than tripling correct and useful claims per summary (3.0→8.4 internal;
3.6→9.9 cancer multi-omics) and substantially improving downstream survival
prediction (C-index 0.32→0.63). These results demonstrate that uncertainty can
serve as a control signal—enabling agents to abstain, communicate confidence,
and become more reliable tools for complex structured-data environments.

1 Introduction

Imagine a biomedical researcher querying a large multi-omics database to identify candidate biomark-
ers for survival outcomes [24]. A standard LLM-based agent may confidently produce a fluent
statement such as “gene X is strongly associated with survival in patients”—even when the underly-
ing tables contain contradictory or insufficient evidence. To the end user, this confident but unqualified
claim is indistinguishable from a reliable finding [38, 34]. By contrast, an uncertainty-aware agent
could detect the inconsistency, flag its own low confidence, or abstain altogether[67, 68, 22, 19]. This
ability to communicate not only what is said but also how certain it is transforms raw text generation
into actionable, trustworthy scientific insight [2, 38, 18].

Most modern scientific knowledge is encoded not in natural language but in high-dimensional
tables such as genomic assays, proteomic screens, and electronic health records [7, 4, 25, 40].
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These resources contain invaluable information that could accelerate biomedical discovery, yet
they remain largely inaccessible to non-specialists. Extracting meaningful insights from such data,
i.e. generating summaries, demands not only computational power but also the ability to translate
complex numerical signals into coherent narratives—an area where LLMs are uniquely positioned
to contribute [28, 65, 35]. The novelty of our work lies in using uncertainty-aware signals to both
calibrate agents and filter summary outputs, enabling their use as synthetic data [27]. This approach
enhances the quality of training corpora, ultimately enabling more robust and reliable downstream
decision-making.

Recent work has begun adapting LLMs for tabular summarization and reasoning. Query-focused
methods such as QTSumm [69] generate targeted textual insights from structured inputs, while Struct-
Text [26] and eC-Tab2Text [16] introduce synthetic benchmarks across scientific and e-commerce
domains. Evaluation frameworks such as FineSurE [48] and multi-agent debate approaches [9] reveal
the challenges in measuring faithfulness and coverage in generated summaries, highlighting the
limitations of current single-pass generation methods [54].

An emerging paradigm involves designing table agents—LLM-driven systems that integrate structured
querying, strategic planning, and external tool use [1, 36, 51]. For example, [32] outline design
principles for real-world table agents capable of combining SQL execution with reasoning chains,
while demonstrate multi-agent orchestration for multi-document reasoning tasks [54]. Beyond
summarization, frameworks such as MAG-V [43] exemplify iterative generation and verification of
synthetic data, illustrating a blueprint for refinement over one-shot output.

However, these promising approaches share a critical blind spot: uncertainty. LLMs are known
to produce fluent yet unfaithful outputs [61, 39], a problem exacerbated when summarizing
high-dimensional data [12, 59]. We conceptualize uncertainty quantification (UQ) as a form of
agent–environment interaction [19], where the focus is not only on data quality but also on the
agent’s confidence and reliability in navigating complex tables. Recent efforts in UQ range from
confidence–consistency scoring methods such as CoCoA [57] to head-based uncertainty prediction
(RAUQ, UQLM [58, 3]). Other works explore faithfulness-aware UQ in retrieval-augmented genera-
tion [10] and structured tasks such as text-to-SQL [47], underscoring the necessity of calibration for
trustworthy table understanding.

In this paper, we propose an uncertainty-aware LLM agent for summarizing high-dimensional
tabular data. Our agent generates candidate summaries from multi-omics datasets, quantifies its
own uncertainty, and filters outputs with high uncertainty. We evaluate the approach on biomedical
multi-omics tasks, where multiple valid summaries exist—highlighting the critical role of calibration
beyond mere coverage.

Our contributions are threefold:

1. Uncertainty as control: We introduce the first LLM agent framework where uncertainty
is not just monitored but directly used as a reward signal during training, and as an absten-
tion/filtering signal at inference, moving beyond post-hoc diagnostics.

2. Robustness in structured environments: On biomedical multi-omics tasks, uncertainty-
aware agents achieve higher factuality, calibration, and downstream utility, with methods
applicable to any multi-table setting.

3. Uncertainty as data-quality signal: We show that filtering high-uncertainty samples
improves tabular text dataset quality, providing a practical tool for curating reliable corpora.

2 Background

2.1 Interactive agent frameworks for structured reasoning

Early table summarization methods primarily relied on rule-based or statistical approaches, producing
template-based outputs and lacking explicit uncertainty modeling. Recent advances employ neural
and LLM-based methods that shift from static, single-pass generation to interactive reasoning over
structured environments. For example, LLM agents can now issue SQL queries or dataframe
operations [50, 52], dynamically retrieving evidence before forming summaries. Surveys of table
agents [56] highlight how symbolic querying and neural reasoning can be combined to support
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Figure 1: The Uncertainty-Aware Agent Framework. This diagram shows the two phases of our
agent: (a) training with reinforcement learning, and (b) inference. In training, the agent’s policy
is refined using a reward signal informed by summary uncertainty (perplexity). During inference,
multiple rollouts generate candidate summaries, which are then filtered based on a combined score of
retrieval and summary uncertainty, leading to more reliable outputs.

exploratory analysis and hypothesis generation. More recently, multi-agent frameworks such as
MAG-V (generator–verifier) [43] and Multi2 (scalable multi-document reasoning)[5] demonstrate
how dividing labor among specialized agents can improve reliability and scalability. These works
suggest that interactive, tool-augmented agents are a promising direction for table understanding.

2.2 Uncertainty quantification in LLMs

Despite progress in interactivity, most agents remain prone to overconfidence and unfaithful outputs.
Traditional metrics such as BLEU or ROUGE fail to capture factual reliability in structured domains.
This has led to the development of uncertainty quantification approaches and libraries such as CoCoA
[57] and LM-Polygraph [11], which use probabilistic confidence and/or semantic self-consistency
to detect hallucinations. In structured tasks like text-to-SQL [45], confidence estimation has been
shown to prevent execution errors by flagging low-confidence predictions [33]. Similarly, in retrieval-
augmented generation, uncertainty-aware thresholds can trigger additional retrieval or abstention
[10, 49]. However, most of these methods treat uncertainty as a post-hoc diagnostic [20]. They are
not integrated into the agent’s decision-making process during interaction with tables, limiting their
effectiveness in dynamic environments[21].

2.3 Toward self-assessment in scalable agents

A growing body of work suggests that scalable and trustworthy agents must go beyond post-hoc
uncertainty estimation toward learned self-assessment [19, 15, 42]. Active learning studies [37, 63]
show that focusing on uncertain cases improves efficiency, while debate-style multi-agent systems
[64] demonstrate how structured disagreement enhances reliability. Recent explorations of self-
reflection in LLMs indicate that agents can improve reasoning by monitoring their own confidence
[30]. Yet, existing work has not combined these insights into a framework where uncertainty directly
controls both training optimization and inference-time behavior [8, 66]. Structured domains such as
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databases, where repeated querying and summarization are natural, provide fertile ground for such
uncertainty-aware self-assessment. This paper builds on these insights by proposing a framework
in which retrieval stability and output consistency are treated as first-class control signals, enabling
LLM agents to produce more reliable and trustworthy multi-table summaries.

3 Methods

We cast query-conditioned multi-table summarization as an episodic agent problem and make
uncertainty a control signal: We (i) measure retrieval instability and output inconsistency, (ii) shape
training rewards with those signals, and (iii) apply them during inference to filter summaries and
enrich them with a quality signal.

3.1 Problem formulation

Let D be a structured database and q a natural-language task. A policy πθ interacts with D via tools
and emits a summary s that encapsulates the information in the database relevant to the given task:

(q,D)
πθ−−→ s.

3.2 Environment and Episode Setup

Each episode takes place in an environment consisting of: (i) a structured database D containing
tables, columns, and descriptions, and (ii) a task q. At timestep t, the state xt includes the task q,
the schema snapshot of D, and the history of previous actions and results. The agent selects actions
at ∼ πθ(at | xt), which the environment executes deterministically. Available actions are:

• SQLExecutor(query) – Executes a SQL query to retrieve or join rows across tables in D.
• Schema(table) – Returns the structure, column names, and types of a specified table.
• PythonTool(code) – Runs Python code to process query results or perform computations

when SQL is insufficient.
• CommitSummary(summary) – Terminates the episode and outputs a final summary s.

Episode flow. An episode thus consists of a query, a sequence of tool calls, and a terminating
summary. Formally, invoking CommitSummary yields a trajectory

τ =
(
(x0, a0), (x1, a1), . . . , (xT , aT )

)
and a final output s. During training, trajectories are scored under GRPO with rewards combining (i)
code correctness, (ii) exploration coverage of D, and (iii) confidence in the summary (measured by
perplexity). During inference, we sample multiple trajectories per query. Uncertainty is estimated
via retrieval entropy and CoCoA; if uncertainty is high, the agent abstains. Otherwise, the lowest-
perplexity summary is returned, accompanied by confidence scores. Full algorithmic details are in
Algorithm A2 Appendix A.

3.3 Uncertainty Signals

Summary uncertainty (training: Perplexity, inference: CoCoA). We adopt perplexity-based
CoCoA from [57], which unifies two signals: token-level confidence (perplexity) and semantic
consistency across samples. The resulting Minimum-Bayes-Risk-derived score uCoCoA aligns more
strongly with true error rates than either component alone. At inference, we sample K candidate
summaries and compute CoCoA to accept or abstain. By construction, CoCoA already integrates
perplexity, so no separate perplexity term is calculated at inference; during training, we use perplexity
uPerp alone as a cheaper proxy. Full details are described in Appendix A.

Example (CoCoA). For a query on “biomarkers associated with survival in cancer patients”, one
episode yields “The upregulation of genes X, Y, and Z is associated with a significant decrease
in predicted survival time for patients with aggressive cancer types,” while another outputs “The
expression levels of genes X, Y, and Z show no correlation with survival outcomes across the patient
cohort.” Low cross-sample consistency raises the CoCoA score, signaling semantic inconsistency
and triggering abstention despite both trajectories being individually plausible.
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Retrieval uncertainty (inference-only). High-dimensional databases pose challenges in table
selection; we address this by quantifying retrieval uncertainty. For a fixed task q, run K retrieval
episodes. Let R(k) be the set of tables touched in episode k, and define the candidate set C =⋃K

k=1 R
(k). The empirical selection frequency for t ∈ C is p̂t = 1

K

∑K
k=1 1[t ∈ R(k)]. We compute

normalized binary entropy H(t) = − p̂t log p̂t+(1−p̂t) log(1−p̂t)
log 2 and aggregate

uret(q) =
1
|C|

∑
t∈C

H(t). (1)

High uret indicates inconsistent evidence acquisition. We compute uret during inference but omit it as
a training reward due to the high computational cost of sampling.

Example (Retrieval Uncertainty). For query “biomarkers associated with survival in cancer X”, the
agent first invokes SQLExecutor to retrieve candidate gene–expression tables. It then issues a second
targeted SQL to join clinical survival labels. If repeated episodes select different tables, retrieval
uncertainty uret is high, indicating unstable evidence and triggering abstention at inference.

3.4 Training rewards

We use three terminal reward components: (i) Code execution which rewards the agent for correctly
executing SQL queries and Python code, teaching it to effectively navigate the environment; (ii) an
LLM-judge score, which promotes broad, grounded factual coverage, encouraging exploration of the
dataset environment for information; and (iii) summary confidence, which favors low-uncertainty
summaries, promoting the exploitation of existing knowledge. The reward is a weighted sum
R(τ) = αcodeRcode + αjudgeRjudge + αconfRconf. Formulas and weights are given in Appendix A.

Schedules. To balance exploration (RJudge) and exploitation (Rconf) over the 100 training steps t, we
make αconf depend on t and introduce reward schedules. The Baseline schedule (R ≡ Rbase) applies
fixed weights throughout training but risks harming early exploration of the dataset. Two-Phase
(R ≡ Rphase) prioritizes exploration in early steps and adds exploitation midway through. Stepwise
Addition (R ≡ Rstep) periodically boosts Rconf at regular intervals, while retaining exploration
focus. Adaptive Exploitation (R ≡ Radapt) dynamically adjusts αconf based on intermediate RJudge
performance, integrating continuous exploitation that gradually tapers off as summaries stabilize. See
Table A4 in Appendix A for details.

3.5 Optimization with GRPO

We train with Group Relative Policy Optimization (GRPO), a PPO-style objective with a KL penalty
to a reference policy πref , effective for reasoning LLMs [44, 17, 31, 46]. With ratio rθ(τ) =
πθ(τ)/πold(τ), we maximize

L(θ) = Eτ

[
min

(
rθA, clip(rθ, 1− ϵ, 1 + ϵ)A

)]
− β DKL(πθ∥πref), (2)

where A ≡ A(τ) is the advatage of trajectory τ , derived from the reward R(τ).

3.6 Inference: Post-output filtering

At inference we sample K trajectories, compute uret and uCoCoA, and apply a conservative rule:
abstain if the sum exceeds a tuned threshold 2κ; otherwise emit the candidate with lowest uPerp and
use uret and uCoCoA as reliabilty scores. Threshold values are determined on a validation split through
human inspection. Details are described in algorithm A2 in Appendix A.

4 Experiments

4.1 Datasets

We evaluate our approach on two multi-omics databases: one public benchmark and one internal,
proprietary dataset. The MLOmics benchmark, which focuses on cancer research, has a flat structure
with only 45 tables, and consists mostly of raw measurements, while the internal dataset features a
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tree-like schema with over 2,000 tables and includes aggregated summary statistics. This diversity
allows us to assess whether our agent remains robust across (i) compact, unprocessed data scenarios,
and (ii) highly structured, large-scale environments, as the schema is shown in Appendix B.

For agents, evaluating across multiple environments is critical: policies often overfit to the dynamics
of a single environment schema and fail to generalize when the relational structure or data granularity
changes [53, 23]. Recent work on environment generalization in RL [14, 55] shows that agents trained
in one setting may exploit spurious regularities and collapse when exposed to even minor distributional
shifts. In line with these findings, we deliberately test on both a compact raw benchmark and a large
schema-rich dataset to probe whether our approach adapts robustly to environment variation.

MLOmics dataset. We also evaluate on the MLOmics benchmark [62], an open cancer multi-omics
dataset with 8,314 patient samples across 32 cancer types. It provides four modalities—mRNA,
microRNA, DNA methylation, and copy number variation. We use the Top feature version (ANOVA-
selected subsets), which offers a standardized and reproducible public testbed complementing our
internal dataset. Details and visuals of the dataset schemas are available in Appendix B.

Internal multi-omics dataset. Our internal dataset stems from layered biomedical omics. While
the contents are proprietary, it includes tens to thousands of tables across transcriptomics, proteomics,
and metabolomics. The schema combines a tree-like hierarchy from root entities with a broad
relational structure hinging on a central table—making it a compelling testbed for agent adaptability.

4.2 Implementation Details

The datasets are split into training and testing sets with a 70:30 ratio based on patient samples (Figure
1), ensuring consistent representation of all tables. We define 100 summary tasks per dataset, validated
by scientists (examples in Appendix C), evaluated by LLMs and domain experts, and designed to
capture the most relevant information comprehensively. Of these, 80 tasks are used for training and
20 for evaluation. During inference, each task is answered five times, and we report the mean and
standard deviation of the scores for robustness.

All experiments utilize the ART framework3, with Qwen2.5-14B-Instruct employed as the policy
backbone. Training is conducted on a single NVIDIA A100 GPU. Hyperparameters are discussed in
greater detail in Appendix D. Each training episode allows for up to six tool calls prior to committing
a summary. During inference, K = 5 episodes are sampled per task to estimate retrieval and summary
uncertainty.

4.3 Metrics

We evaluate the quality and uncertainty of summaries and the reliability of uncertainty measures as
follows:

Summary Quality. To quantify summary quality, we report three metrics: (Q1) the total number
of claims, reflecting the summary’s richness in terms of content; (Q2) the ratio of correct claims,
which measures factuality; and (Q3) the ratio of useful claims, which captures their relevance to the
task. We derive these metrics by decomposing the summary into claims that can be assessed by an
LLM fact-checking judge, following evidence that LLM judges provide reliable and fine-grained
evaluations [60, 70]. Specifically, given a summary s, a task q, and a database D, an o4 mini judge
decomposes s into atomic claims, validates them against D using a set of five task-specific workflows
(designed in collaboration with domain experts), and assigns correctness and utility labels to each
claim.

Uncertainty. To evaluate the model’s confidence in its generated summaries, we compute the average
values of uCoCoA (Q4) and uret (Q5). To ensure this confidence is meaningful, we assess whether
uncertainty estimates align with summary quality, measured by the proportion of correct claims.

Follow prior work [57], we quantify this alignment via the Prediction Rejection Ratio (PRR):

PRR =
AUCunc − AUCrnd

AUCoracle − AUCrnd
,

3https://art.openpipe.ai/
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Table 1: Cancer Multi-Omics dataset performance. Average claims (Q1), correct claims (Q2),
and useful claims (Q3) per summary, with correctness/usefulness ratios. We also report uncertainty
metrics uCoCoA (Q4) and uret (Q5); for each, the value outside parentheses is the uncertainty (↓), and
the value in parentheses is PRR (↑). Arrows in headers indicate the direction of better results. The
LangChain agent does not produce uncertainty metrics (shown as –).

System # Claims / summary ↑ # Correct / summary (ratio) ↑ # Useful / summary (ratio) ↑ uCoCoA ↓ (PRR ↑) uret ↓ (PRR ↑)
LangChain Agent 5.4± 0.7 3.6± 0.6 (0.67± 0.04) 2.0± 0.5 (0.37± 0.03) – –
Ours (Before Training) 2.4± 0.5 1.5± 0.4 (0.63± 0.03) 0.9± 0.3 (0.40± 0.04) 0.47± 0.05 (0.37± 0.09) 0.84± 0.06 (0.24± 0.07)
Ours (Radapt, before filtering) 10.2± 1.3 8.4± 1.1 (0.82± 0.03) 4.0± 0.8 (0.39± 0.04) 0.25± 0.04 (0.38± 0.09) 0.67± 0.05 (0.25± 0.06)
Ours (Radapt, after filtering) 10.5± 1.5 9.9± 1.2 (0.94± 0.02) 4.5± 0.9 (0.43± 0.03) 0.19± 0.03 (0.45± 0.08) 0.44± 0.04 (0.28± 0.08)

where AUCunc is obtained via uncertainty-based rejection, AUCrnd is a random baseline, and AUCoracle
is an ideal oracle. Higher PRR values reflect better alignment between uncertainty and factual
accuracy.

4.4 Baselines

We conduct a comparative analysis of (i) a LangChain SQL agent 4, augmented with Python-based
tools and leveraging the OpenAI-o4-mini model as its backbone, which executes database queries
and code and produces one-shot summaries without uncertainty modeling (ii) our agent before GRPO
training; (iii) our model after GRPO training, which incorporates uncertainty-aware reward shaping;
and (iv) our GRPO-trained agent with post-output filtering as described in section 3.6.

4.5 Results

Our uncertainty-aware agent advances multi-table summarization, delivering significant improve-
ments in summary quality and reliability across both test datasets, as evidenced in Tables 1 and 2. As
the first to tackle this task with the MLOmics dataset, our approach sets a new benchmark, producing
more claims with substantially higher correctness and usefulness ratios. Correctness increased from
1.5 to 9.9 average correct claims per summary in the cancer multi-omics dataset and from 0.9 to 8.4
in the internal dataset, a clear demonstration of the power of uncertainty-based rewards in curbing
spurious outputs. Usefulness ratios rose from 0.60 to 0.78 on the internal dataset, reflecting enhanced
schema navigation and evidence synthesis across diverse environments.

These gains generalize across a proprietary schema-rich multi-omics corpus and the MLOmics
benchmark, underscoring the agent’s adaptability. While the lack of prior work on this specific
task/dataset combination highlights the pioneering nature of our results, they also outstrip the
LangChain SQL-agent baseline (e.g., 3.6 vs. 9.9 correct claims in cancer, 3.0 vs. 8.4 internally),
which lacks uncertainty modeling. Our approach sharpens uncertainty estimates, with retrieval entropy
(uret) and summary uncertainty (uCoCoA) decreasing, signaling more stable evidence acquisition and
consistent outputs. The Prediction Rejection Ratio (PRR) improvements—rising to 0.45 (cancer) and
0.47 (internal) for CoCoA—validate that uncertainty signals serve as potent control mechanisms,
aligning confidence with factual reliability and enhancing trustworthiness.

Focusing on the filtering step during inference, this component improved performance metrics,
boosting correctness from 0.82 to 0.94 (cancer) and from 0.84 to 0.90 (internal), while usefulness
climbed from 0.39 to 0.43 and 0.71 to 0.78, respectively. This underscores the critical role of
inference-time refinement in producing reliable summaries across heterogeneous settings.

4.6 Ablation

We study four factors that could explain our improvements: reward schedules, uncertainty signals,
judge dependence, and inference thresholds. Tables and details can be found in Appendix E.

Reward schedules. Reward shaping substantially affects optimization trajectories. Table A5
compares Rzero, Rbase, Rphase, Rstep, and Radapt. Radapt yields the highest useful-claims ratio
(0.78 vs 0.30 for Rbase on Internal) and stronger PRR alignment. Learning curves (Fig. A5) show

4https://python.langchain.com/docs/integrations/tools/sql_database/
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Table 2: Internal dataset performance. Average claims (Q1), correct claims (Q2), and useful claims
(Q3) per summary, with correctness/usefulness ratios. We also report uncertainty metrics uCoCoA
(Q4) and uret (Q5); for each, the value outside parentheses is the uncertainty (↓), and the value in
parentheses is PRR (↑). Arrows in headers indicate the direction of better results. The LangChain
agent does not produce uncertainty metrics (shown as –).

System # Claims / summary ↑ # Correct / summary (ratio) ↑ # Useful / summary (ratio) ↑ uCoCoA ↓ (PRR ↑) uret ↓ (PRR ↑)
LangChain Agent 4.5± 0.8 3.0± 0.6 (0.67± 0.05) 3.0± 0.5 (0.65± 0.04) – –
Ours (Before Training) 1.5± 0.3 0.9± 0.2 (0.60± 0.03) 0.9± 0.2 (0.60± 0.02) 0.45± 0.05 (0.39± 0.09) 0.84± 0.04 (0.29± 0.07)
Ours (Radapt, before filtering) 9.3± 1.2 7.2± 1.0 (0.84± 0.03) 6.6± 0.7 (0.71± 0.04) 0.27± 0.04 (0.42± 0.08) 0.65± 0.07 (0.33± 0.07)
Ours (Radapt, after filtering) 9.3± 1.1 8.4± 0.9 (0.90± 0.02) 7.2± 0.8 (0.78± 0.03) 0.20± 0.04 (0.47± 0.08) 0.42± 0.06 (0.38± 0.08)

Table 3: Concordance index (C-index) scores on the held-out test set. Results compare a LangChain
baseline with our method under different refinement strategies (Rbase, Rphase, Rstep, Radapt).
Higher values indicate better predictive alignment.

Model LangChain Agent Ours (Before Training) Ours (Rbase) Ours (Rphase) Ours (Rstep) Ours (Radapt)
C-Index 0.22 0.32 0.55 0.60 0.64 0.63

Radapt avoids early collapse seen in Rbase, indicating that adaptive weighting of uncertainty stabilizes
training.

Uncertainty signals. We compared perplexity, CoCoA, entropy, and retrieval variance as reward
signals within the Rjudge schedule. Perplexity yields a baseline Useful Ratio of 0.78 with PRR 0.47.
CoCoA improves calibration slightly (Useful Ratio 0.72, PRR 0.50) but requires 2.6× more compute
and adapts more slowly. Entropy (0.76, PRR 0.46) and retrieval variance (0.76, PRR 0.39) achieve
stronger cost–benefit tradeoffs. The mechanism is straightforward: training purely for consistency
encourages rigidity, while lighter signals adapt more flexibly. Full results are in Appendix Table A6.

Judge robustness. Optimizing a single judge invites reward hacking [71, 13]. We compared Radapt

models scored by (i) our strong Rjudge, (ii) a weaker LLM judge (GPT-4.1 Nano and Gemini 2.5 Flash
Lite), and (iii) a 40-query human holdout. Correlations were moderate-to-strong (r = 0.62± 0.08 vs
weak; r = 0.64± 0.07 vs human). Importantly, system rankings were identical: Radapt > Rstep>
Rphase > Rbase. This indicates the gains are not artifacts of one evaluator.

Inference thresholds. Finally, we varied uncertainty thresholds κ ∈ {0.2, 0.5, 0.8} for post-hoc
filtering. Table A8 shows the trade-off: higher κ reduces coverage but improves precision. Radapt

models dominate at all thresholds.

4.7 Prediction Results

Beyond evaluating summary correctness and usefulness, it is important to test whether the agent’s
knowledge transfer produces meaningful downstream outcomes. Survival prediction provides such a
test, connecting textual reasoning with a clinically relevant endpoint. To perform this task, we prompt
the agent to estimate survival times for held-out patients by leveraging in-context knowledge from
summaries related to survival, rather than task-specific supervision. The predictions are evaluated
using the concordance index (C-index), which measures how well predicted survival times align with
ground-truth outcomes. As shown in Table 3, our framework consistently outperforms the LangChain
baseline, with the largest improvement from Rstep. The stable performance highlights the role of
uncertainty-aware refinement in producing reliable predictions.

Additionally, it is important to note that untrained agents performed worse than random chance. They
exhibited a tendency to systematically focus on incorrect features drawn from the literature, rather
than accurately interpreting the dataset. This underscores the necessity of training and appropriate
methodology to improve predictive performance.
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5 Discussion

This work introduces uncertainty-aware LLM agents that explicitly incorporate retrieval and summary
uncertainty into both training and inference, targeting the persistent challenge of reliable tabular
summarization. Our main contribution is the shift from treating uncertainty as a post-hoc diagnostic
to making it a first-class control signal that shapes optimization, guides agent behavior, and governs
inference-time filtering. Empirically, our framework achieves two notable outcomes. First, we observe
consistent gains in factuality: uncertainty-aware agents produce nearly twice as many useful claims
compared to baseline SQL agents, with improvements reflected in both automatic fact-checking and
downstream survival analysis tasks. Second, uncertainty estimates themselves prove informative: the
PRR roughly doubles, indicating that uncertainty correlates well with factual reliability. Together,
these findings suggest that uncertainty-aware signals are not just auxiliary diagnostics but actionable
levers for building more trustworthy agents.

Beyond raw performance, our study highlights an underexplored but critical design principle: agents
should know when not to answer. By abstaining on high-uncertainty outputs and filtering synthetic
data accordingly, our method aligns with a conservative, safety-first philosophy that is especially
vital in biomedical applications. This aligns our work with a broader trend toward self-reflective
and self-assessing agents, while providing concrete evidence that such mechanisms can enhance
reliability in structured data environments.

While our experiments are conducted on biomedical multi-omics datasets, the framework is domain-
agnostic and immediately applicable to other tabular contexts such as finance, e-commerce, or clinical
EHR systems. Importantly, our design choices—entropy-based retrieval uncertainty, self-consistency
signals, and GRPO-based training—are modular and can be integrated into existing table-agent
pipelines without architectural overhaul. Overall, the discussion we wish to emphasize is not that
uncertainty eliminates hallucinations—indeed, some degree of error is inevitable—but that embedding
uncertainty into the decision loop of an agent allows us to manage, calibrate, and ultimately trust
these systems in ways post-hoc filtering cannot. We see this as a principled step toward agents that
are transparent about their confidence and therefore safer for deployment in high-stakes settings.

6 Limitations

Our current evaluation is limited to biomedical multi-omics data. While this domain highlights the
need for reliability in high-stakes settings, testing across finance, e-commerce, and other structured
environments will demonstrate the broader generality of the framework.

We also rely on automated LLM-based judges for reward shaping and fact-checking. This enables
scalable experimentation but could potentially induce bias. Expanding systematic human validation
will be an important next step, and our uncertainty annotations can help guide such expert audits.

Finally, the method requires multiple rollouts (e.g., K=5) and CoCoA-based self-consistency, which
add inference cost. Preliminary results suggest smaller K retains most benefits, and leveraging a
lightweight uncertainty proxy eg. perplexity instead of CoCoA could make the approach more
efficient.

7 Conclusion

This work shows that uncertainty can be treated not just as a diagnostic signal, but as an active
control mechanism for agentic systems operating over structured data. By combining retrieval and
summary uncertainty during both training and inference, our agent learns when to proceed and when
to abstain, improving both correctness and safety in multi-table reasoning tasks. While early results
suggest benefits for downstream analysis, open challenges remain in calibration, evaluation beyond
proprietary datasets, and reducing inference costs. We see this as a step toward building agents that
scale responsibly, and we invite the community to explore stronger uncertainty estimation methods,
richer benchmarks, and ethical safeguards.
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8 Ethics

Compliance: The main results of this paper are supported by publicly available datasets (MLOmics
and other open cancer databases) under their original licenses. No patient-identifiable data was used.
MLOmics data is de-identified and released under standard open science protocols. Reproducibility:
Code, prompts, and configuration files will be made available to support replication. Hyperparameters
and training procedures are documented in Appendix D.

Validation methodology: Automated judge scores were validated against human expert assessment
on a subset of outputs (N=40 queries) to ensure reliability. Agreement metrics and audit protocols are
provided in supplementary materials.

Limitations disclosure: This system is designed for research exploration, not clinical decision-
making. Expert oversight is required for any biomedical applications, and outputs should not be used
as medical advice without appropriate validation.
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A Additional Methods Details

This section collects additional details about our setup that were omitted from the main text for clarity.

Summary Uncertainty. Perplexity. For a summary token sequence s1:T :

uPerp(s1:T ) = exp

(
− 1

T

T∑
t=1

log pθ(st | s<t, context)

)
, (3)

where pθ(st | s<t, context) represents the probability assigned by the model to token st given the
sequence of preceding tokens s<t and any task-specific contextual information. Lower perplexity
implies higher model confidence in the token-level generation process.

CoCoA. We use the COCOA metric [57], which enhances perplexity-based confidence – relying
solely on LLM probabilities and providing no information about the answer distribution – with
semantic self-consistency.
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Given an actual output sequence s∗ and K−1 sampled sequences s(k), k = 1, ...,K−1, we compute
a consistency-based uncertainty metric [57]

ucons(s
∗, {s(k)}) = 1− 1

K − 1

K−1∑
k=1

sim(s(k), s∗),

where, for the similarity metric sim we use the RoBERTa-large cross-encoder model, fine-tuned on
the Semantic Textual Similarity benchmark dataset [41, 29, 6]. Multiplying ucons(s

∗, {s(k)}) with
the perplexity of s∗ produces the CoCoA metric uCoCoA(s

∗, {s(k)}).

Reward Design. Code Execution Reward. To incentivize correct database interactions, the tra-
jectory receives a reward based on the number of correctly executed SQL queries or Python code
executions, with a stronger emphasis on rewarding initial successes to encourage learning. Let
x(τ) ∈ N be the number of correctly executed code actions in trajectory τ . The code execution
reward is:

Rcode(τ) = min

(
1,

log(10x(τ) + 1)

log(31)

)
,

where the reward is capped at a maximum value of 1 for three correctly executed actions. This design
aims to teach the model to produce correct executable code early in training. The reward cap ensures
the model saturates the benefit from code execution once it reliably achieves three successful actions,
encouraging it to focus on higher-level tasks, such as summary generation, as training progresses.

Exploration Judge Reward. An external o4-mini LLM counts the number c(τ) of grounded, non-
overlapping atomic facts in the trajectory τ that are relevant to the user’s topic. The reward is:

RJudge(τ) = min

(
c(τ)

20
, 1

)
,

promoting thorough database exploration to uncover relevant and diverse information. The nor-
malization factor 20 reflects our empirical observation that trajectories with around 20 grounded,
non-overlapping facts typically provide sufficient diversity and coverage for most queries.

Summary Confidence Reward. The inverse perplexity of the generated summary s(τ) corresponding
to the trajectory τ , serves as a measure of token-level confidence, normalized to (0, 1]:

Rconf(τ) =
1

uPerp(s(τ))
.

While RJudge promotes database exploration, Rconf incentivizes exploitation by rewarding low-
uncertainty summaries. Consistency-based uncertainty metrics, such as CoCoA, are omitted during
training to sidestep the high computational overhead of sampling.

Reward Schedules. We explore various reward schedules over the 100 training steps t to balance
exploration and exploitation. A summary of these schedules is provided in Table A4. Constants are
empirically chosen to balance the contributions of individual reward components, ensuring effective
training dynamics. Ablation studies of these constants are left for future work.

Episode algorithms. Figure A2 describes algorithms for full training and inference episodes.

B Datasets

This section describes the datasets used in our experiments.

B.1 Internal Multi-Omics Dataset

The internal dataset is built from multi-layered omics data. While the specific table contents cannot
be disclosed, its structure can be summarized as:
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Table A4: Summary of reward schedules, their formulas, and descriptions.
Schedule Formula Description
Zero Rzero(τ) = Rcode(τ) + 4RJudge(τ) Does not use the uncer-

tainty signal in reward.
Baseline Rbase(τ) = Rcode(τ) + 4RJudge(τ) +

1
3
Rconf(τ) Uses a fixed combina-

tion of all three reward
components.

Two-Phase Rphase(τ) =

{
Rcode(τ) + 4RJudge(τ), if t ≤ 50,

Rcode(τ) + 4RJudge(τ) +
1
3
Rconf(τ), if t > 50.

Focuses on exploration
during the first half, in-
corporates exploitation
in the second training
half.

Stepwise
Addition

Rstep(τ) =

{
Rcode(τ) + 4RJudge(τ), if t mod 10 ̸= 0,

Rcode(τ) + 4RJudge(τ) + 2Rconf(τ), if t mod 10 = 0.
Periodically emphasizes
exploitation every 10
steps.

Adaptive
Exploita-
tion

α = exp
(
− 50

(
RJudge(τ)−

1

2

)2)
,

Radapt(τ) = Rcode(τ) + 4RJudge(τ) + 2αRconf(τ).
Initially promotes explo-
ration, then gradually
integrates exploitation,
and tapers off to prevent
generic summaries.

• Architecture: Multi-layered, with each layer corresponding to a distinct omics modality
(e.g., transcriptomics, proteomics, metabolomics).

• Scale: Each layer consists of between tens and hundreds of relational tables.
• Topologies: Two primary schema structures are observed: (a) a tree-like hierarchy, in which

child tables branch recursively from root entities, and (b) a broad schema, in which many
tables connect directly to a central entity.

These schema variations provide structurally distinct environments that stress-test an agent’s ability
to adapt to different database organizations.

B.2 Dataset Schematic for Internal Multi-Omics Dataset

Figure A3 contains dataset Schematic for the Internal Multi-Omics Dataset.
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Algorithm 1 Episode Algorithms for Training and Inference
Function SINGLE_EPISODE(q,D, πθ , M)

Initialize empty trajectory τ ← {}
for t = 1, ..., M do

Sample action at ∼ πθ(· | xt)
if at is SQLExecutor(query) then

rt ← Execute SQL query on D
Append (at, rt) to τ

else if at is PythonTool(code) then
rt ← Execute Python code on relevant database parts
Append (at, rt) to τ

else if at is Schema(Table) then
rt ← Retrieve schema of the specified table
Append (at, rt) to τ

else if at is CommitSummary(summary) then
Extract summary s, including token logits
Append (at, s) to τ
break

end if
end for
return τ, s

end Function
Function TRAINING_EPISODE(q,D, πθ , M)

τ, s← SINGLE_EPISODE(q,D, πθ,M)
Compute token-level perplexity uPPL(s)
Compute rewards RJudge(τ), Rcode(τ), Rconf (τ)
Combine RJudge(τ), Rcode(τ), Rconf (τ) to compute terminal reward R(τ)
Store (τ,R(τ)) for GRPO update

end Function
Function INFERENCE_EPISODE(q,D, πθ , K)

Initialize S ← {} and T ← {}
for k = 1, ...,K do

τk, sk ← SINGLE_EPISODE(q,D, πθ,M)
Append sk to S, τk to T

end for
Compute summary uncertainty uCoCoA(S)
Compute retrieval uncertainty uret(T ) from SQL queries in trajectories
τ̃ , s̃← (trajectory, summary) pair with lowest-perplexity summary from zip(T ,S)
Store (τ̃ , s̃, uCoCoA(S), uret(T ))

end Function

Figure A2: Episode algorithms. Training uses a single episode to compute terminal reward based
on code execution, confidence and exploration. Inference samples multiple episodes to compute
summary and retrieval uncertainties.

B.3 MLOmics: Cancer Multi-Omics Database for Machine Learning

MLOmics [62] is an open multi-omics dataset comprising 8,314 patients across 32 cancer types. It
provides four standardized omics modalities:

• mRNA expression: Gene-level transcriptional profiles.
• microRNA expression: Small noncoding RNAs regulating gene expression.
• DNA methylation: CpG site methylation fractions representing epigenetic regulation.
• Copy number variation (CNV): Segment-level gene copy alterations.

Each modality is released in three feature versions:

• Original: full feature set,
• Aligned: subsets harmonized across modalities,
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(a) Internal dataset: tree-like schema structure.

Figure A3: Internal multi-omics dataset showing tree-like schema topology.

• Top: statistically filtered subsets (ANOVA-based).

MLOmics additionally includes baseline machine learning benchmarks (6–10 methods), clustering
and survival analyses, and external knowledge integration (STRING, KEGG). These resources make
it a reproducible benchmark for developing and evaluating uncertainty-aware agents.

B.4 Dataset Schematic for MLOmics

Figure A4 contains dataset Schematic for Cancer MLOmics Dataset.

(a) MLOmics dataset: four modalities (mRNA, microRNA, DNA methylation, CNV) with three
feature versions each.

Figure A4: Public MLOmics dataset, with standardized parallel modalities spanning 9 cancer types.

C Summary Tasks

This section provides examples task templates used in training and inference for the Cancer MLOmics
Dataset. Each task outlines specific objectives and details the steps required to obtain relevant
information about different cancer types using molecular data. The complete list of tasks will be
released on GitHub upon completion.
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Task 1: Basic Cancer-Survival Characterization

Objective: For a specified cancer type CANCER_TYPE, answer the following questions:
1. How many patients are in the training set?
2. What is the median survival time?
3. What is the event rate (percentage of deaths)?
4. Describe the survival distribution.
5. Compare this cancer’s survival patterns to other cancers in the database.

Task 2: Molecular Data Profile

Objective: For a specified cancer type CANCER_TYPE, analyze each omic layer:
1. Data distribution characteristics for each omic type.
2. Missing value analysis.
3. Create a molecular profile summary specific to this cancer type.

Task 3: Cancer-Specific Biomarkers

Objective: For a specified cancer type CANCER_TYPE, identify and analyze biomarkers:
1. Identify top survival-associated features from each omic type:

• Top 20 mRNA features
• Top 20 miRNA features
• Top 20 methylation sites
• Top 20 CNV regions

2. Analyze their biological relevance.
3. Compare with known markers for this cancer type.
4. Create a prioritized biomarker list.

Task 4: Multi-omic Integration

Objective: For a specified cancer type CANCER_TYPE, integrate various omic layers:
1. Find correlations between features across different omic types.
2. Identify multi-omic patterns associated with survival.
3. Create an integrated molecular profile.
4. Highlight unique molecular characteristics of this cancer type.
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Task 5: Clinical-Molecular Summary

Objective: Create a comprehensive summary for a specified cancer type CANCER_TYPE:
1. Key survival characteristics.
2. Most important molecular features.
3. Multi-omic patterns.
4. Clinical-molecular associations.
5. Comparison with other cancer types.
6. Potential clinical implications.

D Hyperparameters

The backbone of the model used in this work is Qwen2.5-14B-Instruct, implemented within the ART
framework. Training was conducted on 1×NVIDIA A100 80GB GPU, with a total computational
cost of approximately 22 GPU-hours per model. We use sampling defaults of M = K = 5.

The training process employs Grouped Relative Policy Optimization (GRPO) to optimize the sum-
marization agent. We set the clipping parameter ϵ = 0.2 and the KL penalty weight β = 0.01. The
learning rate is defined as 5e-5, selected after searching for optimal values in the range between
1e-7 and 1e-4. The model is allowed up to 6 tool calls per query for performing retrievals and
summary generation, determined through a search over 4–10 tool calls per query, where only marginal
improvements were observed beyond 6 tool calls.

Training is conducted in mini-batches consisting of 3 groups per step, with each group contain-
ing 4 rollouts, ensuring that every query is processed multiple times as part of GRPO optimization.
Each training run spans 4 epochs.

All code, prompts, and configuration files will be released to ensure reproducibility.

E Ablation Details

E.1 Reward schedules

We evaluate five reward schedules (Rzero, Rbase, Rphase, Rstep, and Radapt with definitions in Table A4)
to analyze the impact of uncertainty during training (Table A5). The Rzero schedule, which excludes
uncertainty rewards, has the worst correct claims ratio of 0.27 due to frequent hallucinated claims
with high uncertainty.

Rbase, applying uncertainty rewards from the start, improves the correct claims ratio to 0.64 but
achieves limited exploration (see Rcode and RJudge in Figure A5), leading to shallow summaries
with useful claims ratios of 0.30 for the Internal dataset and 0.25 for Cancer Multi-Omics.

To address these limitations, Rphase defers uncertainty rewards to encourage early exploration. It
raises the correct claims ratio to 0.67 and improves useful claims ratios to 0.50 on Internal and 0.41
on Cancer Multi-Omics, though outputs remain conservative and shallow due to excessive uncertainty
minimization, as reflected by summary uncertainty trends in Figure A5.

Rstep introduces rewards periodically, boosting useful claims ratios to 0.55 (Internal) and 0.44 (Cancer
Multi-Omics). However, abrupt uncertainty application every tenth step causes instability, reflected
in unsmooth training plots in Figure A5 and inconsistent PRR values such as 0.32 for uCoCoA on
Internal.

Finally, Radapt dynamically adjusts uncertainty rewards, integrating them smoothly throughout train-
ing. This yields the best performance: correct claims ratios of 0.90 and 0.94, and useful claims ratios
of 0.78 (Internal) and 0.43 (Cancer Multi-Omics), with strong uncertainty alignment (e.g., PRR of
0.47 for uCoCoA).
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Table A5: Reward schedule ablations on both the Internal and the Multi-Omics Cancer Dataset.
Average number of claims per summary, claim correctness and usefulness ratio, along with uncertainty
metrics uCoCoA and uret with PRR scores indicating alignment with correctness.

Schedule Internal Internal (UQ) Cancer Cancer (UQ)
# Claims Correct Ratio Useful Ratio uCoCoA/PRR uret/PRR # Claims Correct Ratio Useful Ratio uCoCoA/PRR uret/PRR

Rzero 5.2 ±0.3 0.27 ±0.05 0.27 ±0.02 0.51/0.35 0.86/0.25 5.5±0.4 0.33 ±0.06 0.29 ±0.03 0.49/0.36 0.87/0.24
Rbase 4.5 ±0.4 0.64 ±0.04 0.30 ±0.03 0.13/0.33 0.72/0.28 5.2 ±0.5 0.65 ±0.04 0.25 ±0.03 0.14/0.31 0.75/0.26
Rphase 6.0 ±0.5 0.67 ±0.03 0.50 ±0.03 0.15/0.39 0.65/0.33 6.8 ±0.6 0.66 ±0.03 0.41 ±0.03 0.17/0.34 0.68/0.28
Rstep 8.3 ±0.6 0.75 ±0.03 0.55 ±0.02 0.22/0.32 0.58/0.32 9.0 ±0.7 0.78 ±0.02 0.44 ±0.03 0.25/0.39 0.61/0.29
Radapt 9.3 ±1.1 0.90 ±0.02 0.78 ±0.03 0.20/0.47 0.42/0.38 10.5 ±1.5 0.94 ±0.01 0.43 ±0.03 0.19/0.45 0.44/0.28

Figure A5: Performance metrics (RCode, RJudge, and uncertainty) during 100 training steps under
different reward schedules (Rzero, Rbase, Rphase, Rstep, Radapt).

E.2 Uncertainty signals

Table A6 compares four uncertainty reward signals. CoCoA improves consistency but is compute-
inefficient.

Signal Useful Ratio PRR Relative Cost

Perplexity 0.78 ±0.03 0.47 1.0
CoCoA 0.72 ±0.03 0.50 2.6
Entropy 0.76 ±0.02 0.46 1.0
Retrieval variance 0.76 ±0.02 0.39 2.1

Table A6: Uncertainty signal ablations (internal dataset, Radapt schedule).

E.3 Judge robustness

Table A7 gives correlations between Rjudge, a weak LLM judge, and human labels. Preserved
ranking: Radapt > Rstep> Rphase > Rbase

E.4 Inference thresholds

Table A8 shows coverage–accuracy tradeoffs for different thresholds κ.
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Comparison Pearson r Ranking preserved?

Rjudge vs Weak Judge 0.62 ±0.08 Yes
Rjudge vs Human (40q) 0.64 ±0.07 Yes

Table A7: Judge robustness. Rankings were consistent across reward schedules (internal dataset).

Method Threshold κ Coverage (%) Useful Ratio PRR

Radapt 0.5 70 0.78 ±0.03 0.47
Radapt 0.2 95 0.72 ±0.03 0.43
Radapt 0.8 40 0.85 ±0.02 0.50

Table A8: Inference thresholds. Post-hoc filtering improves slightly but underperforms full
uncertainty-aware training (internal dataset).

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that the contribution is an uncertainty-aware
agent framework for multi-table summarization. The contributions (uncertainty as control,
robustness in structured environments, and uncertainty as a data-quality signal) are validated
empirically, with limitations acknowledged.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 (Limitations) discusses domain restriction to biomedical data, re-
liance on automated LLM judges (with validation against humans), and increased inference
cost due to multiple rollouts.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The work is primarily empirical and does not present new formal theorems or
proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper?

Answer: [Yes]

Justification: Experimental settings, datasets, training details, and evaluation protocols are
described in the main text and Appendices C–E. Hyperparameters and framework details
are included in Appendix D.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results?

Answer: [Yes]

Justification: Datasets (MLOmics, cancer benchmarks) are openly licensed. The paper states
that code, prompts, and configuration files will be released for reproducibility.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details necessary to understand the
results?
Answer: [Yes]
Justification: Details on data splits, hyperparameters, tool calls, rollouts, reward design, and
inference thresholds are given in the main text and Appendix D.

7. Experiment statistical significance
Question: Does the paper report error bars or other information about the statistical signifi-
cance of the experiments?
Answer: [Yes]
Justification: Results are reported with confidence intervals and error bars (e.g., Tables 1–5).
Ablation results show variability across seeds, and correlations with human evaluation are
discussed.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources needed to reproduce the experiments?
Answer: [Yes]
Justification: Training used a single NVIDIA A100 GPU with approx. 22 GPU-hours.
Rollout numbers (M=K=5) and inference costs are discussed, and scaling limitations are
noted in the Limitations section.

9. Code of ethics
Question: Does the research conform with the NeurIPS Code of Ethics?
Answer: [Yes]
Justification: Section 8 (Ethics) states that only de-identified, publicly licensed datasets were
used. No patient-identifiable data or non-compliant practices are included.

10. Broader impacts
Question: Does the paper discuss both potential positive and negative societal impacts of
the work?
Answer: [Yes]
Justification: Positive impacts include more reliable biomedical agents. Risks include bias
from automated judges and inappropriate clinical use. Mitigations such as abstention on
high-uncertainty outputs are discussed.

11. Safeguards
Question: Does the paper describe safeguards for responsible release of high-risk assets?
Answer: [NA]
Justification: The paper does not release high-risk pretrained models or sensitive datasets.
Released code and datasets are low-risk and under open licenses.

12. Licenses for existing assets
Question: Are the creators or original owners of assets properly credited and are licenses
respected?
Answer: [Yes]
Justification: All datasets (e.g., MLOmics) are cited with references to their original papers
and are used under their open-science licenses.

13. New assets
Question: Are new assets introduced in the paper well documented?
Answer: [NA]
Justification: The work does not introduce new datasets or pretrained models; it evaluates
agents on existing datasets.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing or human-subject experiments, are details and instructions
included?
Answer: [NA]
Justification: No crowdsourcing or human-subject studies were conducted.

15. Institutional review board (IRB) approvals
Question: Does the paper describe risks and IRB approvals for human-subject research?
Answer: [NA]
Justification: No human-subject experiments were conducted, so IRB approval was not
required.

16. Declaration of LLM usage
Question: Does the paper describe usage of LLMs if they are an important component of
the methods?
Answer: [Yes]
Justification: The method itself is based on large language models (Qwen2.5-14B-Instruct)
as the policy backbone, described in Section 4.2. Their role is central to the methodology
and is clearly stated.
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