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Abstract

The do-calculus is a sound and complete tool for identifying causal effects in
acyclic directed mixed graphs (ADMGs) induced by structural causal models
(SCMs). However, in many real-world applications, especially in high-dimensional
settings, constructing a fully specified ADMG is often infeasible. This limitation
has led to growing interest in partially specified causal representations, particu-
larly through cluster-directed mixed graphs (C-DMGs), which group variables
into clusters and offer a more abstract yet practical view of causal dependencies.
While these representations can include cycles, recent work has shown that the
do-calculus remains sound and complete for identifying macro-level causal effects
in C-DMGs over ADMGs under the assumption that all clusters sizes are greater
than 1. Nevertheless, real-world systems often exhibit cyclic causal dynamics
at the structural level. To account for this, input-output structural causal models
(10SCMs) have been introduced as a generalization of SCMs that allow for cycles.
10SCMs induce another type of graph structure known as a directed mixed graph
(DMG). Analogous to the ADMG setting, one can define C-DMGs over DMGs
as high-level representations of causal relations among clusters of variables. In
this paper, we prove that, unlike in the ADMG setting, the do-calculus is uncondi-
tionally sound and complete for identifying macro causal effects in C-DMGs over
DMGs. Furthermore, we show that the graphical criteria for non-identifiability
of macro causal effects previously established C-DMGs over ADMGs naturally
extends to a subset of C-DMGs over DMGs.

1 Introduction

Understanding and identifying causal effects is a central goal in many scientific disciplines. In recent
years, structural causal models (SCMs) have emerged as a foundational framework for reasoning
about causality. These models encode causal assumptions through structural equations and are
typically represented by acyclic directed mixed graphs (ADMGs), which capture both causal and
confounding relationships. Within this framework, the do-calculus [Pearl,|1995]—based on the notion
of d-separation [Pearl, | 1988]—provides a complete and sound set of inference rules for identifying
causal effects from observational data, assuming the causal structure is fully specified. However,
SCMs do not fully capture systems with cyclic causal dependencies at the structural level, which are
common in public health, biology, economics, and engineering systems. For example, there can be
a cyclic relation between poor mental health (e.g., depression or anxiety) and substance use (e.g.,
alcohol, drugs). The worsening of mental health and increase in substance use can occur in tight
time-frames (daily or even hourly), especially in high-risk populations. Over time, they may reach
a cyclic equilibrium where both reinforce each other without a clear causal ordering. To address

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



this, the notion of input-output structural causal models (i0SCMs) has been proposed [Forré and
Mootij, [2020]]. These models generalize SCMs by allowing for cycles and induce a new class of
graphs known as directed mixed graphs (DMGs) [Richardson, |1997, |[Forré and Mooij} 2017, [2018|
Forré and Mooijl 2020, Boeken and Mooijl [2024], which provide a richer representation of causal
structures. Furthermore, |[Forré and Mooij|[2020] introduced an extension of d-separation to DMGs,
called o-separation, and showed that the do-calculus, when replacing d-separation by o-separation
becomes sound for identifying causal effects in DMGs [Forré and Mooij}, |2020]].

However, in many real-world applications—particularly those involving high-dimensional data or
limited domain knowledge—it is often unrealistic to assume a complete specification of the underlying
causal graph. This has motivated the development of partially specified graphical models [Maathuis
and Colombo, 2013} [Perkovic et al., 2016} |Perkovic| 2020}, Jaber et al., 2022, |Wang et al., 2023}
Assaad et al.,[2023, |Anand et al.,|2023| Wahl et al., 2024, Reiter et al.| 2024} [Boeken and Mooij}, 2024}
Ferreira and Assaad, 2024, [2025al], and in particular cluster graphs. Cluster graphs abstract away
some of the fine-grained details by grouping variables into clusters, thus offering a more flexible and
scalable representation of complex systems. Importantly, cluster graphs allow for cycles, which can
arise naturally in feedback systems or time-dependent processes, complicating the analysis compared
to traditional ADMGs. In these graphs, causal effects can be separated into two types: a micro causal
effect where the interest is the effect of variable within a cluster on another variable in another cluster;
and the macro causal effect where the interest in the effect of a set of an entire cluster on another
entire cluster. In this work, we focus on the latter. |Anand et al.|[2023]], Tikka et al.|[2023]] have shown
that do-calculus (the version using d-separation) remains both sound and complete for identifying
macro causal effects when the cluster graph representing ADMGs is acyclic. Ferreira and Assaad
[2025alb]] showed that the do-calculus (the version using d-separation) is also sound and complete
for identifying macro-level causal effects when the cluster graph representing an ADMG is cyclic,
denoted here as C-DMG over ADMGs, assuming either that the size of the clusters is unknown, or
that each cluster contains more than one variable [Ferreira and Assaadl, 2025b].

Motivated by these developments, we consider the problem of identifying macro-level causal effects
in cluster graphs representing DMGs, denoted as C-DMGs over DMGs, a natural generalization of
previous work. Our contributions are threefold:

* We prove that o-separation [Forré and Mooij, 2018]—a fundamental tool in causal reasoning
in DMGs—is sound and complete in C-DMGs over DMGs.

* We prove that do-calculus (the version using o-separation) [Forré and Mooijl [2020]
is sound and complete for identifying macro-level causal effects in C-DMGs over
DMGs—unconditionally, and without the constraints needed in the case of C-DMGs over
ADMGs [Ferreira and Assaad, [2025bl |Y vernes, [2025]].

* We show that the graphical characterization of non-identifiability previously developed
for C-DMGs over ADMGs [Ferreira and Assaad, [2025alb]] also applies for C-DMGs over
DMGs under an additional assumption.

The remainder of the paper is organized as follows: In Section 2} we formally presents C-DMGs
over DMGs. In Section 3] we show that o-separation and the do-calculus is sound and complete
for macro causal effects in C-DMGs over DMGs and present a graphical characterization for the
non-identifiability of these effects. Finally in Sectiond] we conclude the paper while showing its
limitations. All proofs are deferred to the appendix.

2 Preliminaries

To streamline the presentation and avoid repetitive explanations, we will adopt the unified notation
G* = (V*,E*) to refer to any type of graph. This notation allows us to generalize results and
discussions without redundancy across different graph types. In the remainder, for every vertex
V* € V* in a graph G* = (V*,E*), we will refer to its parents by Pa (V*,G*), its ancestors by
An (V*,G*), and its descendants by De (V*,G*). We consider that a vertex counts as its own
descendant and as its own ancestor. In addition, the strongly connected component of a vertex is
defined as Scc (V,G*) = An(V,G*) n De (V,G*).

In this section, we present the essential definitions and notations that will be used throughout the
paper, ensuring clarity and consistency in the exposition of our results. In this work, we assume



causal relations are modeled using an input/output structural causal model (ioSCM) [Forré and Mooij
2020]—which extends classical structural causal models (SCMs) [Pearl, |2009] by allowing for the
presence of cycles. Unlike classical SCMs, i0SCMs allow structural equations to mutually depend on
each other. For example, in the cyclic system:

X = fx(Y,Lx) ; Y= fy(X,Ly) ; (X,Y):= fixvy)(Lx,Ly),

X functionally depends on Y, and Y functionally depends on X, forming cycle. When cycles
exist, instead of computing variables in a top-down order as in SCMs, i0SCMs rely on fixed-point
solutions. That is, a joint assignment to the variables that simultaneously satisfies all equations. This
is analogous to finding an equilibrium in dynamic systems. Firstly, let us properly define the notion
of loops as it will be useful to guarantee the compatibility of the causal mechanisms in i0SCMs.

Definition 1 (Loops). In a directed graph G* = (V*,E*), a loop is a set of vertices S € V* such that
there exists a directed path between every pair of distinct vertices in the subgraph induced by S i.e.,
YU #V €S,V e De(U,G%s).

Note that every singleton S € {{V'} | V € V*} and every strongly connected components S €
{Scc(V,G*) |V e V*} are loops. We write the set of all loops of the graph G* as L (G*). We call
cycles the loops that are not singletons.

Next, we recall the definition of i0SCMs from |[Forré and Mooij| [2020]] with the omission of the
domains of the variables.

Definition 2 (input/output Structural Causal Model (i0SCM)). An input/output structural causal
model is a tuple M = (L,Vps,3,G*, F, Pr (1)), where

* L is a set of latent/exogenous variables, which cannot be observed but affect the rest of the
model.

* Vs is a set of observed/endogenous variables, which are observed and every V € V 5 is
Sfunctionally dependent on some subset of (LU V5 UJ)\{V}.

* J is a set of input/intervention variables which are not functionally dependent of any other
variable but rather are fixed to specific values.

o G* = (V*,E") is a graphical structure where:

- Vt=VgusuLud
- Vs =Ch(LUJ, G")
- Pa(Lud,G")=0

s Fis a set of functions such that for all S € L (G*v,,.), f° is a function taking as input the
values of Pa (S,G*)\S and outputting values for S and such that F satisfies the global
compatibility condition:

VS ¢SeL(GY,,.),VVvalues of Pa(S,G*)uS,
PP (Mpas.gns) =Vs = 1% (Mpa(sr.orpns) = Ms:

obs

ey

» Pr(l) is a joint probability distribution over L.

An i0SCM induces a directed graph, where every variable in V* corresponds to a vertex in the graph.
In this directed graph, a directed edge — is drawn from one variable to another if the former serves
as an input to the function that determines the latter. For simplicity, instead of working directly
with these directed graphs, we consider an alternative representation known as a directed mixed
graph (DMG). In a DMG, only the observed and intervened variables (i.e., Vs U J) correspond
to vertices, while hidden variables in L that share common outputs are represented by bidirected
edges «- between the corresponding observed variables, thereby implicitly accounting for the hidden
confounding. Formally, DMGs are defined as follows:

Definition 3 (Directed mixed graph (DMG)). Consider an ioSCM M. The directed mixed graph
G = (V,E=E_ UE..) induced by M is the DMG where:

e the vertices V =V s U J are the endogenous variables and the intervention variables of the
i0SCM; and
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(a) DMG1 (b) DMG 2. (c) C-DMG.

Figure 1: Two DMGs and their compatible C-DMG. Red vertices represent the exposures of interest
in and blue vertices represent the outcome of interest.

* the directed edges in G are E_, = E*ly,, ,3; and

* the bidirected edges in G are E., = {X<«»Y|X,YeV,3L €L suchthat
L->X L->YeE"}.

However, in many fields, constructing, analyzing, and validating a DMG remains a significant
challenge for researchers due to the inherent difficulty in accurately determining causal relationships
among individual variables. This complexity primarily stems from the uncertainty surrounding
causal relations, making it challenging to specify the precise structure of the graph. Nevertheless,
researchers can often provide a partially specified version of the DMG, which offers a more practical
and compact representation of the underlying causal structure. These simplified representations,
which we call Cluster-Directed Mixed Graphs over DMGs (C-DMGs over DMGs), group several
variables into clusters, allowing for the representation of causal relationships at a higher level of
abstraction while retaining essential structural properties of the system. In a C-DMG over DMG:s,
directed edges between clusters represent causal influences at the higher level, while bidirected edges
capture hidden confounding effects that exist between clusters. Formally, C-DMGs over DMGs are
defined as follows:

Definition 4 (Cluster directed mixed graph over DMGs (C-DMG over DMGs)). Let G = (V,E) be
a DMG induced from an ioSCM M and C = {C4, -+, Cy } a partition of V. A C-DMG over DMGs
compatible with G according to C is a graph G = (C,E®) where YC;,C; € C the edge C; - C;
(resp. C; < C;) is in E® if and only if there exists V; € C; and V; € C; such that V; - V; (resp.
Vi« V;)isinE.

Figure [T] presents a simple C-DMG over DMGs along with two of its compatible DMGs. Cycles in a
C-DMG over DMGs can arise for two distinct reasons. First, unlike in a C-DMG over ADMGs, a
C-DMG over DMGs can contain a cycle if there is a genuine cyclic relationship in the underlying
DMG between nodes belonging to different clusters. For example, in Figure|lalthe cycle between Xo
and W3 in the DMG induces a cycle between clusters C'x and Cyy in the corresponding C-DMG over
DMG:s in Figure[Ic} Secondly, even in the absence of an actual cycle in the underlying DMG, cycles
can appear in the C-DMG over DMGs due to its partial specification. This is illustrated in Figure [Tb]
where the edges Xo — W and W7 — X3 together create a cycle between clusters C'x and Cyy in the
C-DMG over DMGs in Figure|Ic] Lastly, cycles that are contained in a single cluster do not appear
in the C-DMG over DMGs. This is illustrated in Figure|lal with the cycle X5 2 X3 that does not
show in the C-DMG over DMGs in Figure

We distinguish between two types of causal effects in the context of C-DMGs, the macro causal
effect [Anand et al., 2023, [Ferreira and Assaad, 2025alb|| and the micro causal effect [[Assaad et al.|
2024, |Assaad, 2025]]. In this paper we focus on the former and we formally define it below:

Definition 5 (Macro causal effect). Consider a DMG G over variables \ induced from an ioSCM
and let G° = (C,E®) be a compatible C-DMG. A macro causal effect is a causal effect from a set
of macro-variables Cx on another set of macro-variables Cy where Cx and Cy are disjoint subsets



of C. It is written Pr (Cy = Cy | do (Cx = Cx)), where the do (-) operator represents an external
intervention.

The identification problem in causal inference aims to establish whether a causal effect of a set of
variables on another set of variables can be expressed exclusively in terms of observed variables and
standard probabilistic notions, such as conditional probabilities. Formally, the identification problem
in the context of macro causal effects and C-DMGs over DMGs is defined as follows:

Definition 6 (Identifiability in C-DMGs over DMGs). Let Cx and Cy be disjoint sets of ver-
tices in a C-DMGs over DMGs G°. The macro causal effect of Cx on Cy is identifiable in G°
if Pr (Cy = cy | do (Cx = Cx)) is uniquely computable from any observational positive distribution
compatible with G°.

In the following, we will abuse the notation by writing Pr(cy|do(cx)) instead of
Pr(Cy =cy | do(Cx = cx)) when the setting is clear. In addition, whenever the context is clear, we
will refer to C-DMGs over DMGs simply as C-DMGs.

3 Identification of Macro Causal Effects in C-DMGs over DMGs

In this section, we aim to establish that the do-calculus is both sound and complete for identifying
macro-level causal effects in a C-DMG over DMGs. We begin by showing, in the first subsection,
that o-separation—originally developed for DMGs as a tool for identifying conditional independen-
cies—remains sound and complete when extended to C-DMGs over DMGs for detecting macro-level
conditional independencies. In the second subsection, we present the core theoretical contribution of
this section: the soundness and completeness of do-calculus for macro causal effect identification in
this setting. Finally, we provide a graphical characterization of non-identifiability, shedding light on
cases where causal effects cannot be inferred from observational data alone.

3.1 The o-separation in C-DMGs over DMGs

The standard notion of d-separation [Pearll |1988]] was originally introduced for acyclic directed
mixed graphs (ADMGs). It was later shown to remain valid when extended to C-ADMGSs over
ADMGs [Anand et al., |2023]] and C-DMGs over ADMGs [Ferreira and Assaad, [2025albl]. However,
d-separation does not apply to DMGs, which may contain cyclic causal relations in the SCM. To
address this limitation, o-separation was introduced as a generalization suitable for DMGs [Forré
and Mooij} [2020]. In this subsection, we demonstrate that o-separation can be naturally applied to C-
DMGs over DMGs. We begin by formally defining o-blocked walks and the concept of o-separation
in this generalized setting.

Definition 7 (o-blocked walk [Forré and Mooij, 2020]). In a graph G* = (V*,E*), a walk 7 =
(Vi*, -+, V.*) is said to be o-blocked by a set of vertices W* ¢ V* if:

HVn

1. V" eW* or Vy e W*, or

2. 31 <i<nsuch that (VX =V <V ) S 7 and Vi ¢ W¥, or

3. A1 <i<nsuchthat (V* < V*<V3i) cTand V;* e W\Scc(V;*,,G%), or
4. 31 <i<nsuchthat (V=V} > Vi) cmand V;* e W\Sce(V3i,,G%), or
5. 31 <i< nsuchthat (VX < V* —>V- )Cﬁand

V*eW*\(Scc(V*l,Q )ﬂScc( 1,G6%)).

where > represents — or <, <« represents < or <-», and + represents any of the three arrow type
—, < or <. A walk which is not o-blocked is said to be o-active.

Definition 8 (o-separation [Forré and Mooij, [2020]). In a graph G* = (V*,E*), let X* ,Y*,W* be
distinct subsets of V*. W* is said to o-separate X* and Y™ if and only if W* o-blocks every walk from
a vertex in X* to a vertex in Y*. It is written (X*1,Y* | W*) ..

The following theorem shows that o-separation is applicable as is to C-DMGs over DMGs.
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Figure 2: C-DMGs with identifiable macro causal effects. Each pair of red and blue vertices represents
the causal effect we are interested in.

Theorem 1 (Soundness of o-separation in C-DMGs over DMGs). Let G¢ = (C,E®) be a C-DMG
and Cx, Cy, Cw be disjoint subsets of C. If Cx and Cy are o-separated by Cyy in G then, in any
compatible DMG G = (V,E), X = Ucecy, C and Y = Ugec, C are o-separated by W = Ucec,, C.

Theorem ] establishes that o-separation in C-DMGs over DMGs ensures the existence of a corre-
sponding macro-level o-separation across all compatible DMGs. According to [Forré and Mooij,
2020, Theorem 5.2], this implies that some conditional independencies in the underlying probability
distribution can be inferred directly from the C-DMG. By extending the applicability of o-separation
to C-DMGs over DMGs, this result enables the identification of macro-level conditional independen-
cies even when the underlying causal structure is only partially specified. To illustrate the practical
value of this result, we now present two examples demonstrating the application of o-separation in a
C-DMG over DMGs.

Example 1. Let G be the true unknown DMG and consider that its compatible C-DMG, denoted as
GC is one given in Figure Using Definition|8| we can directly deduce (CwiioCy | Cx)ge. Thus
according to Theorem(l|and [[Forré and Mooij, 2020, Theorem 5.2], C\y is conditionally independent
of Cy given Cx in every distribution compatible with the true ADMG.

Example 2. Let G be the true unknown DMG and consider that its compatible C-DMG, denoted as
G°€ is one given in Figure Using Definition|8| we can directly deduce that (Cz1,Cy | Cx, Cw)ge-
Thus according to Theorem [I| and [Forré and Mooij, 2020, Theorem 5.2], Cz is conditionally
independent of Cy given Cx and C\y in every distribution compatible with the true ADMG.

The following theorem shows that o-separation is also complete in C-DMGs over DMGs.

Theorem 2 (Completeness of o-separation in C-DMGs). Let G¢ = (C,E®) be a C-DMG, Cx, Cy, Cy
be disjoint subsets of C, X = Ucecy C, Y = Ucec, C and W = Ucec,, C. If Cx and Cy are not
o-separated by Cy in G°, then there exists a compatible DMG G = (V,E) such that X and Y are not
o-separated by W.

The findings of Theorems [I]and [2] establish that identifying a o-separation in C-DMGs over DMGs
ensures the recovery of all common macro-level o-separations across all compatible DMGs. This
result is particularly valuable for constraint-based causal discovery methods, especially when the
goal is to infer the structure of a C-DMG without needing to fully specify an underlying DMG.
Most importantly, these insights lay the theoretical groundwork for the results developed in the next
subsection.

3.2 The do-calculus in C-DMGs over DMGs

[Pearll [1995]] introduced an important tool in causal reasoning referred to as the do-calculus. This
do-calculus consists of three rules each relying on some d-separation in the ADMG to guarantee an
equality between different probabilities. Every one of these three rules can be interpreted differently:
the first one allows the insertion or deletion of an observation, the second one allows for the exchange
between actions and observations and the third one allows the insertion or deletion of actions. The
do-calculus in ADMGs is complete and thus allows, whenever it is possible, to identify causal effects.
In other words, it allows, whenever it is possible, to express a causal effect containing a do (+) operator
as a probabilistic expression without any do (-) operator and thus allows to compute it from a positive
observational distribution. Since the do-calculus was initially introduced for ADMG:s, it is not easily
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Figure 3: C-DMGs with not identifiable macro causal effects. Each pair of red and blue vertices
represents the total effect we are interested in.

extendable to cyclic graphs. However, |Forré and Mooij|[2020] showed that replacing d-separation by
o-separation in the three rules allows the do-calculus to be applicable on DMGs induced by ioSCMs.
In this subsection, we show that this version of the do-calculus is also readily applicable to C-DMGs
over DMGs.

There exists multiple equivalent ways of writing the do-calculus rules, for example [Pearl, 2009] uses
the notion of mutilated graph to define the three rules of do-calculus. In this paper, we will follow
the notation used in |Forré and Mooij| [2020]]. To do so, we will extend every graph G* = (V*, E*),
by adding an intervention vertex /x and the edge Ix — X for every vertex of the graph X € V*.
Moreover, we will use the o-separation notation with a do (-) operator (e.g., (A1, B | C,do(D))g.)
to place ourselves in the intervened graph i.e., where all arrows going in D are deleted and in which
D is conditioned o More formal definitions of extended graphs and intervened graphs can be
found in the appendix. Using these newly defined notations and o-separation we can now state the
rules of do-calculus and show their applicability to C-DMGs over DMGs.

Theorem 3 (do-calculus for C-DMGs over DMGs and macro causal effects). Let G¢ = (C,E®) be a
C-DMG over DMGs and Cx, Cy,Cz, Cy be disjoint subsets of C. The three following rules of the
do-calculus are sound.
Rule 1:Pr (cy | do(C;),Cx,Cw) = Pr(cy|do(c;),Cw)
l'f (CyngCx | CW7d0(Cz))gc
Rule 2:Pr (cy | do (C;) ,do(Cx),Cw) =Pr(cy |do(c;),Cx,Cw)
l:f (Cyﬂalcx | Cx,Cw,dO (Cz))gc
Rule 3:Pr (cy | do(C;) ,do(Cx),Cw) = Pr(cy|do(c;),Cw)
if (Cylyley | Cw,do(Cz))ge

Now that the rules of do-calculus have been stated for C-DMGs over DMGs and their soundness
proven, one can use them sequentially to identify the causal effect Pr (Cy | do (Cx)) in all C-DMGs
over DMGs in Figure [2] That is to say, to express the causal effect as a probabilistic expression
without any do (-) operator. This is done in the following examples.

Example 3. Both in Figureand one can verify that (Cyl,Icy | Cx)ge, thus Rule 2 of the
do-calculus is applicable and Pr (cy | do (cx)) = Pr (¢y | cx).

Example 4. Notice that Figure |2b| does not contain any cycle other than self-loops and is very
similar to Figure 1(b) of Anand et al.| [[2023|] which corresponds to the well-known front-door
criterion [|Pearl, [2009)]. [|[Forré and Mooij, |2018] have shown that in the acyclic case, o-separation
coincides with d-separation. Thus, using the corresponding sequence of classical rules of probability
and rules of do-calculus as the one given in [Pearl| 2009, p.83], one obtains Pr (cy | do(cx)) =
Yo Pr(cw | ex) Xe, Pr(cy | cw, ex) Pr(ex).

Example 5. Consider the C-DMG over DMGs in Figure [2d] containing a cycle between Cy, CRr, and
Cuy and a hidden confounding between Cy and Cyy. Let Pr (¢cy | do (¢x, c;)) be the causal effect of
interest. Using the rule of total probability we can rewrite Pr (cy | do (¢x, ¢;)) as

> Pr(ey|do(cx:cz),cw) Pr(cw | do(cx,cz)).

Cw

"In other words we write (Au, B | C,do (D))g~ to mean, in Pearl| [2009]’s notation, (A, B | C, D) s
D

where g% is obtained from G* by removing every edge going in D.



We first focus on Pr(cy | do (cx,cz),cw). Notice that (Cyl,Icy | Cx, Cw,do (Cz))gc and that
(Cviglc, | Cz,Cx,Cw)ge which means using two consecutive applications of Rule 2 we can
rewrite Pr (¢y | do (cx,cz) ,cw) as: Pr(cy| ¢z, cx,cw) -

Now we focus on Pr (cy | do (cx,cz)). Notice that (Cwlisloy | do(Cz))ge which means by Rule
3 of the do-calculus we can completely remove do (cx) from the expression. Furthermore, we
have (Cwi,lc, | Cz)ge which means by Rule 2 we can replace do (cz) by cz. So we can rewrite
Pr(cw | do(ex,¢z)) as Pr(cw | ¢z).

These three examples show how the rules of do-calculus in C-DMGs on DMGs can be used to write
macro causal effects as an expression of observed probabilities. Therefore, the macro causal effects
in these C-DMGs can be estimated from the observational data, provided there is no further issues in
the data (e.g., positivity violations).

In the following theorem, we show that not only is the do-calculus applicable in C-DMGs over DMGs,
but it is also complete.

Theorem 4 (Completeness of do-calculus for C-DMGs and macro causal effects). If one of the
do-calculus rules does not apply for a given C-DMG over DMGs, then there exists a compatible
DMG for which the corresponding rule does not apply.

The proof of Theorem []relies on a specific compatible DMG called the maximal compatible DMG
which is properly defined in the appendix, therefore it can be reformulated as: if one of the do-calculus
rules does not apply for a given C-DMG over DMGs, then this same rule does not apply for its
maximal compatible DMG.

Note that this completeness result links C-DMGs to the underlying compatible DMGs, however it
does not guarantee the absence of other rules to identify causal effects. While the do-calculus based
on d-separation in ADMGs introduced in [Pearl, [1995]] has been proven to be complete [Shpitser and
Pearl, 2006l [Huang and Valtortal 2006]], the do-calculus based on o-separation in DMGs is not yet
proven to be complete and thus our results suffer the same limitation. Using the completeness of
the do-calculus in C-DMGs (Theorem ), one can be convinced, by going through every possible
sequence of rules of the do-calculus, that the causal effects of interest in every C-DMGs depicted in
Figure T]and [3]is not identifiable. Unfortunately, going through every possible sequence of rules of
the do-calculus is time-consuming and can become impractical when considering larger graphs. In an
effort to solve this issue, the following subsection introduces a sub-graphical structure which allows
to recognize more efficiently when a causal effect is not identifiable using the do-calculus.

3.3 Non-Identifiability: a graphical characterization

In ADMG:s, there exists a sub-graphical structure, called a hedge [Shpitser and Pearl, [2006], which
is employed to graphically characterize non-identifiability as shown in [Shpitser and Pearl|2006|
Theorem 4. This graphical criterion is complete when considering ADMGs, that is to say, if the total
effect of X on Y is not identifiable in an ADMG then there exists a hedge for (X,Y") [Shpitser and
Pearl, [2006]]. However, it has been shown that this characterization is too weak to characterize all
non-identifiabilities in the case of C-DMGs over ADMGs [Ferreira and Assaad, [2025b]]. Thus, a
modified version of the hedge structure called the SC-hedge (strongly connected hedge) has been
introduced in Ferreira and Assaad|[2025a]. The presence of such SC-hedge in C-DMGs over ADMGs
guarantees non-identifiability [Ferreira and Assaad,2025alb].In this subsection, we will show that
SC-hedge can also be used to characterize non-identifiability in C-DMGs over DMGs in specific
conditions. First, let us recall some useful concepts to define a hedge.

Definition 9 (C-component, [Tian and Pearl| [2002]). Let G* = (V*,E*) be a graph. A subset of
vertices VI, € V* such that YV*, V,y e VG, AV, VX eV  with V1 <i<n, V" <> V1, is called
a C-component.

Definition 10 (C-forest, Shpitser and Pearl|[2006]). Let G* = (V*,E*) be a graph. If G* is acyclic,
G* is a forest (i.e., every of its vertices has at most one child), and G* is a C-component then G*

is called a C-forest. The vertices which have no children are called roots and we say a C-forest is
R*-rooted if it has roots R* € V*,

Definition 11 (Hedge, |Shpitser and Pearl|[2006, 2008]). Consider a graph G* = (V*,E*) and two
disjoint sets of vertices X*,Y* ¢ V*. Let F = (V,E}) and F' = (V%,,E}) be two R*-rooted
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Figure 4: SC-projections of the C-DMGs in Figures|[1} 2| and Figures 3] Each pair of red and blue
vertices represents the total effect we are interested in, and the red edges indicate those added through
the SC-projection.

C-forests subgraphs of G* such that X* N1V + &, X* NV, =@, F' ¢ F, and R* ¢ An (Y*,G*\X*).
Then F and F' form a hedge for the pair (X*,Y*) in G*.

As mentioned before, a hedge turned out to be too weak to cover non-identifiability in C-DMGs
[Ferreira and Assaad| 2025b]. For example, the C-DMG in Figure [3a] contains no hedge but the macro
causal effect is not identifiable due to the cycle between Cx and Cy. In the following, we formally
define SC-hedges in the context of C-DMGs over DMGs and demonstrate that this substructure serves
as a sound criterion for detecting non-identifiable macro causal effects if every cluster in a cycle is of
size strictly greater than 1.

Definition 12 (Strongly connected projection (SC-projection)). Consider a C-DMG G° = (C, E®).
The SC-projection HE of G© is the graph that includes all vertices and edges from G°, plus a dashed
bidirected edge between each pair Cx, Cy € C such that Scc (Cx,G®) = See (Cy,G®) and Cx + Cy.

Definition 13 (Strongly Connected Hedge (SC-Hedge)). Consider an C-DMG G¢ = (C,E°), its
SC-projection H® and two disjoint sets of vertices Cx,Cy € C. A hedge for (Cx,Cy) in HE is an
SC-hedge for (Cx,Cy) in G°.

The following theorem guarantees the soundness of the SC-hedge criterion in C-DMGs over DMGs
when every cluster in a cycle is of size strictly greater than 1. This assumption is useful as it allows
the existence of compatible ADMGs even when the C-DMG over DMGs contains cycles. Thus, one
can use |Ferreira and Assaad|2025b, Theorem 5 in the presence of an SC-hedge to show that for every
identifying sequence of do-calculus rules, there exists a compatible ADMG in which this sequence is
not applicable.

Theorem 5. Consider an C-DMG G° = (C,E®) such that every cluster which is in a cycle is of size
at least 2 and two disjoint sets of vertices Cx, Cy € C. If there exists an SC-hedge for (Cx,Cy) in G¢
then Pr (Cy | do (Cx)) is not identifiable.

The SC-projections of the C-DMGs illustrated in Figures 2] and 3] are given in Figure ] One can
notice that the SC-projections of the C-DMGs in Figure [3]all contain a hedge, thus the C-DMGs in
Figure|3|contain a SC-hedge and the causal effect of interest is therefore not identifiable according
to Theorem[5] In contrast, the projections of the C-DMGs in Figure [2]do not contain a hedge, this
highlights the usefulness of SC-hedges for causal effect identification.



4 Conclusion

In this paper, we established the soundness and completeness of o-separation and the do-calculus
using o-separation for identifying macro causal effects in C-DMGs over DMGs. There are two main
limitations to this work. The first limitation is that the completeness result in Theorem [4] does not
take into account that there might exist different sequences of rules of the do-calculus in different
DMGs that can give the same final identification of the causal effect. Moreover, the completeness
results only link the cluster graphs to the compatible underlying graphs, our results say nothing on
the completeness of o-separation and do-calculus in DMGs. A second related limitation is that we
provided a graphical characterization for the non-identifiability of macro causal effects, however this
characterization is not proven to be complete, even though we did not find any counter-example of its
completeness. Proving it to be complete remains an open problem.
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A Appendix

A.1 Additional Notations and Properties

Firstly, the proofs require the definitions of intervened graphs and extended graphs which are the
graphs induced respectively by intervened io0SCMs and extended i0SCM:s [Forré and Mooij| [2020]].
Definition 14 (Intervened graph). Let G = (V, E) be a DMG induced from an ioSCM M and A<V a
set of variables. The intervened graph (Q|d0(A)) is obtained by removing all edges going to A in G.

The intervened graph (g|d0( A)) is also written as G in [[Pearl, 2009].

Definition 15 (Extended graph). Let G = (V,E) be a DMG induced from an ioSCM M. The extended
graph [G] = ([V], [E]) is obtained by adding for each vertex V €\ an extended vertex Iy, € [V] and
the edge Iv - V € [E]. ie, [V]=VU{ly |V eV}and [E]=Eu{ly >V |V eV}.

In order to map the vertices in a C-DMG G° with the vertices in a compatible DMG G, we will use
the notion of corresponding cluster: VC' € C, VV € C, Cl1(V,G°) = C. Additionally, we will write
for every set of clusters Cao € C, A=Ugec, C.

Definition 16 (Maximal compatible DMG). Let G¢ = (C,E®) be a C-DMG. Let us define the

following sets:

Vi=JC

CeC
E”:={V->V'"|VVeC V' eC suchthat C - C' ¢ E®}
E7 ={V s V'|VV eC, V' e suchthat C «» C" € E°}

E:=E”UE"”
The graph GS, = (V,E) is compatible with G and for every compatible DMG G, we have G ¢ GS,,
thus G, is called the maximal compatible DMG of G°.
Property 1 (Compatibility of extended graphs). Let G be a C-DMG and G be a compatible DMG.
Let us consider [G®] and [G] the corresponding extended graphs. Take [V] =V u {Iy |V €V} the

extended micro variables and [C] = Cu{{Iy | V € C} | C € C} the extended partition. [G] is
compatible with [G®] according to partition [C].

Proof. Firstly, VV,.V' € V, V - V' € [G] (resp. «») <= V - V' e G(resp. «») +—
ClL(V,G%) - ClL(V',G%) € G%(resp. «») <= CI(V,G°) - CL(V',G°) € [G°] (resp. «=).
Secondly, YV eV, Iy - V € [G] and Iyv,gey = CL(V,G°) € [G°]. Lastly, VC' e C, Ic - C' €
[G®] and 3V € C, Iy - V € [G] because C is a partition so VC € C, C # @. O

Property 2 (Extended maximal compatible graphs). Let G¢ be a C-DMG, G, be the maximal
compatible graph of G, G, ] be the extended graph of G, and [G°], . be the maximal compatible
graph of [G®]. These graphs verify

.+ [65]<€[6°),,. and
L WV € [V], See(V.[G5]) = Sec (V.[6°],).

Therefore, any macro-level o-connection that holds in [G®),, also holds in [Gy,,].

Proof. Firstly, VV, V' e V, V. - V' € [GE ] (resp. «») <= V - V' e GS (resp. «») «—
ClL(V,G®) - CIL(V',G®) € G%(resp. «») <= ClL(V,G%) - CL(V',G°) € [G°] (resp. «») <=
V - V' e [G°],, (resp. «»). Secondly, VV eV, Iy - V €[G5 ] and Iy € Cl(Iy,[G°]), V
CL(V,[G°]), Cl(Iv,[G°]) = CL(V,[G°]) € [G°] thus Iy -V € [G°],.

Regarding the strongly connected components, YV € V, Scc(V,[GS,]) = Sce(V,GE,) ={V}u
(UCGSEc(Cl(V,QC),QC) C)= {Viv (UCeSEc(Cl(V{QC]),[gC]) C) = Sce(V,[G°],,,)- Moreover, ¥V ¢

*While the usual strongly connected component, Scc (V*,G"), always contains the vertex V" itself, this

tweaked version, Scc (V*,G*), contains the vertex V* if and only if there exists a self-loop on it i.e., V* —
V*eg*.
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V, the set of edges including Iy in [GS, ] is {Iiy — V'} and the set of edges including Iy in [G®], is
{Iy - V'"|V"eCl(V,G°)} thus Scc (Iy,[GS]) = {Iv} = Sce (Iv,[G°],,)-
In conclusion, using the Deﬁnition any macro-level o-connection that holds in [G€], , also holds in

(G ] O
Property 3 (Compatibility of intervened graphs). Let G¢ be a C-DMG and G be a compatible DMG.
Let Ca € C be a set of clusters. Let us consider (QC|dO(CA)) and (Q|d0(A)) the graphs obtained
respectively by intervening on Cp in G¢ and by intervening on A in G. (Q|d0(A)) is compatible with
(GClao(ca))-

Moreover, let GS, be the maximal compatible graph of G°, (ggz|d()(A)) its intervened graph and

(Q°|d0(CA))m be the maximal compatible graph of(g°|d(,(cA)). (gfn|d0(A)) and (Q°|d(,(cA))m are the
same graph.

Proof. YV,V' eV, V = V' € (Glao(a)) (tesp. <) <= V > V' eG(resp. «»)and V' ¢ A <
ClL(V,G%) - Cl(V',G%) € G°(resp. «~»)and CL(V',G%) ¢ Cp < CI(V,G°) - CL(V',G°) €
(G%lao(ca)) (resp. ). O

Property 4 (Intervened maximal compatible graphs). Let G¢ be a C-DMG, G, be the maximal

m

compatible graph of G°, (gfn|do(A)) be the intervened graph of GS, and (g°|d0(c ) )m be the maximal
compatible graph of(gc\do(cA)). (gfn\do(A)) and (gc|d0(CA))m are the same graph.

Proof. YV,V' eV, V > V' € (G% laoa)) (resp. <) <= V - V' e GE (resp. «-)and V' ¢
A < ClI(V,G° — CI(V',G°) € G%(resp. «»)and C1(V',G%) ¢ Cp <— CI(V,G°) -
CL(V',G%) € (G%ao(ca)) (resp. <) <=V > V"€ (G%u0(cy)),, (resp. «). O

A.2 Proof of Theorem/I]

Proof. Suppose Cx and Cy are o-separated by Cy in G and there exists a compatible DMG G =
(V,E) and awalk 7 = (V4,--+, V,,) in G from V] € X to V,, € Y which is not o-blocked by W. Consider
the walk 7 = (Cy, -+, Cy,) with V1 < i <n, C; = C1(V;,G%) and V1 < i < n, (C; - Cyyq) S 7 (resp.
«—,¢2) <= (V; > Viy1) € 7 (resp. <, ). 7 is a walk from Cx to Cy in G°. Since Cx and Cy are
o-separated by Cy, we know that Cyy o-blocks 7.

e If C; e Wor C,, € Cy, then V; € Wor V,, € W and thus 7 is o-blocked by W which
contradicts the initial assumption.

Otherwise, take 1 < ¢ < n such that (C;_1, C;, Ci11) is Cw-o-blocked.

o If (Oi—l > Oy i+1) c 7 and C; ¢ Cyy then, (‘/;_1 *—>V;‘<—k‘/i+1> cmand V; ¢ W. Thus 7 is
o-blocked by W which contradicts the initial assumption.

o If (Cio1 <« C;«=Ciyq) € 7 and C; € Cw\Sce(Cy-1,G°) then, (Vg « V;—=V;y) € 7.
Moreover, Scc(Vi—1,G) € Ucesce(ci_,,go) C and thus V; e W\See (V;_1,G). Therefore, 7
is o-blocked by W which contradicts the initial assumption.

o If <Ci_1>'—>Ci - Ci+1> c wand C; € Cw\SCC (Ci+17gc) then, (‘/;_1*—>V;‘ - Vle) c .
Moreover, Scc(Viy1,G) € Ucesce(cryy,g0) C and thus V; € W\See (Viy1,G). Therefore, 7
is o-blocked by W which contradicts the initial assumption.

o If (Ci—l « C; - Ci+1) ¢ «and C; € Cv\/\ (SCC(Ci_l,gC) al SCC(CHl, QC))
then, (V;_y <« V; — V1) © w Moreover, (Scc(Vie1,G)n Scc(Viy1,G)) ¢
Uce(See(Cir,0)nSee(Crrn,g0)) C and thus Vi e W\ (Sce (Vio1,G) nSce (Vii1,G)). There-
fore, 7 is o-blocked by W which contradicts the initial assumption.

In conclusion, the o-separation is sound in C-DMGs over DMGs.
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A.3 Proof of Theorem 2|

Proof. Suppose Cx and Cy are not o-separated by Cy in G°. There exists an Cy-o-active path
m={C1,-, Cy) with C; € Cx and C,, € Cy. Take GS, = (V, E) the maximal compatible DMG of G¢
as in Definition[I6] Take for every cluster C' € C a representative of this cluster Vi € C. The maximal
compatible graph G, contains the path 7,,, = (Vo , -+, Vo, ) and for every cluster C' € C and every
variable in that cluster V' € C, Scc(V, GF,) = Ucresce(c,ge) C'- Therefore, 7 being Cyw-o-active in
G° clearly implies that ,, is W-o-active in GZ,. In conclusion, the o-separation criterion in C-DMGs
over DMGs is complete.

Notice, that not only did we prove Theorem [2}—i.e.,if a o-separation does not hold in a C-DMG then
there exists a compatible DMG in which the corresponding o-separation does not hold—but we also
explicitly exhibited this compatible DMG as being the maximal compatible DMG. O

A.4 Proof of Theorem[3

Proof. Let G = (C,E®) be a C-DMG, G a compatible DMG and Cx, Cy,Cz,Cyw < C be disjoint
subsets of vertices. Suppose a rule of the do-calculus applies in G¢ then Theorem [I] Property [T]and
Property [3| guarantees that this rule applies in G. More explicitly:

* If rule 1 applies i.e., (CyL,Cx | Cw,do (Cz))ge, then using Theorem as well as Proper-
ties[1]and [3|one knows that (Y1, X | W, do (Z)), and thus rule 1 applies in G.

o If rule 2 applies i.e., (Cylylc, | Cx,Cw,do (Cz))gc, then using Theorem (1| as well as
Properties andone knows that (Y1, Ix | X, W,do (Z))g and thus rule 2 applies in G.

* If rule 3 applies i.e., (CyL,lc, | Cw,do(Cz))ge, then using Theoremas well as Proper-
ties[1] and 3| one knows that (Y1, Ix | W,do (Z))g and thus rule 3 applies in G.

Notice that because Cx and Cz are disjoint, the actions of taking the intervened graph and taking the
extended graph can be done in any order without any repercussion in the o-separations of interest.

In conclusion, the do-calculus using o-separation is sound in C-DMG over DMGs . O

A.5 Proof of Theorem

Proof. Let G° = (C,E®) be a C-DMG, G, be the maximal compatible DMG and Cx,Cy,Cz,Cyw cC

m
be disjoint subsets of vertices. Suppose a rule of the do-calculus does not applies in G°, then

Theorem 2} Property [T] and Property [3|show that this rule does not apply in G, . More explicitly:

* If rule 1 does not apply i.e., (Cy1/,Cx | Cw,do (Cz))ge, then using Theorem as well as
Properties|2|and EI one knows that (Y1, X | W,do (Z))g. and thus rule 1 does not apply in

G-

* If rule 2 does not apply i.e., (Cy;lc, | Cx,Cw,do (Cz))ge, then using Theorem as well
as Properties andone knows that (Yu/,1x | X,W,do(Z))gc and thus rule 2 does not
apply in GS,.

* If rule 3 does not apply i.e., (Cylcy | Cw,do (Cz))ge, then using Theoremas well as
Properties andone knows that (Yu/,Ix | W,do (Z))gc and thus rule 3 does not apply in
Gr,. "

Notice that because Cx and C7 are disjoint, considering the extended graph of the intervened graph
or considering the intervened graph of the extended graph does not have any repercussion in the
o-connections of interest.

In conclusion, the do-calculus using o-separation is complete in C-DMG over DMGs. O
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A.6  Proof of Theorem

Proof. Let G° = (C,E®) be a C-DMG and take disjoint subsets Cx, Cy € C. Additionally, suppose
that every cluster which is in a cycle in G€ is of size at least 2. More formally, VC € C, |Scc (C,G°) | >
1 = |C| > 1. Thanks to this assumption, one can view G¢ as a C-DMG over ADMGs and thus
use prior work[Ferreira and Assaad, 2025b]]. Suppose there exists a SC-hedge for the pair (Cx, Cy)
in G°. Then, according to Theorem 5 of [Ferreira and Assaad| [2025b], the effect of Cx on Cy is not
identifiable.

In conclusion, the SC-hedge criterion is sound in C-DMG over DMGs under the additional assumption
that every cluster which is in a cycle is of size at least 2. O
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and in the introduction we clearly state our contributions. Each
of them is formalized in a theorems in the main body of the paper.
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The main assumption lies in the problem setting i.e., the system we wish to
study is modeled by an io0SCM. However, another additional assumption which is clearly
stated is required for Theorem [5] Complete proofs are available in the supplementary
materiel, unfortunately, due to a lack of writing space, we were not capable of adding every
proof sketches in the main paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: These results are purely theoretical. We do not believe that any experiment is
needed nor would any experiment strengthen the claims of this work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: These results are purely theoretical. We do not believe that any experiment is
needed nor would any experiment strengthen the claims of this work.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: These results are purely theoretical. We do not believe that any experiment is
needed nor would any experiment strengthen the claims of this work.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: These results are purely theoretical. We do not believe that any experiment is
needed nor would any experiment strengthen the claims of this work.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: These results are purely theoretical. We do not believe that any experiment is
needed nor would any experiment strengthen the claims of this work.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work does not violate the NeurIPS Code of Ethics in anyway.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The work is very theoretical and does not have any clear societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This work does not use any existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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