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Abstract—Black box neural networks are an indispensable
part of modern robots. Nevertheless, deploying such high-stakes
systems in real-world scenarios poses significant challenges when
the stakeholders, such as engineers and legislative bodies, lack
insights into the neural networks’ decision-making process.
Presently, explainable Al is primarily tailored to natural language
processing and computer vision, falling short in two critical as-
pects when applied in robots: grounding in decision-making tasks
and the ability to assess trustworthiness of their explanations.
In this paper, we introduce a frustworthy explainable robotics
technique based on human-interpretable, high-level concepts
that attribute to the decisions made by the neural network.
Our proposed technique provides explanations with associated
uncertainty scores for arbitrary concepts using variational infer-
ence on a concept classifier within an explainable manifold. To
validate our approach, we conducted a series of experiments with
various simulated and real-world robot decision-making models,
demonstrating the effectiveness of the proposed approach as a
post-hoc, human-friendly robot learning diagnostic tool.

I. INTRODUCTION

A significant number of models in robotics research are
now equipped with deep neural networks (DNNs), with an
increasing trend towards end-to-end models. Although we do
not fully understand these black box DNNs, due to their
remarkable accuracy in certain test cases we cannot simply
discard them. Waiting for them to achieve superior accuracy in
all cases is impractical as well, because failures are inevitable
regardless of our efforts to build robust models. Instead,
we advocate for developing new methods to explain how
they work. While there are many ways to build inherently
interpretable models [, 2], the increasing trend of developing
larger models and fine-tuning them rather than training from
scratch makes embedding interpretability or approximating
with simpler models challenging. Therefore, instead of focus-
ing on white-box or gray-box models, this paper focuses on
post-hoc explainable machine learning (ML) techniques.

While there are many post-hoc explainable techniques [1}
3l 4]], most do not focus on decision-making of a robot
or a physical system. For robot decision-making, we want
to explain how certain aspects of the input contribute to a
particular action or a set of actions. Such explanations help
engineers with debugging and legislative bodies with auditing.
Therefore, to make explanations human-centric, we consider
concepts, defined as high-level attributes that help humans
understand the black box [3]. As an example, the concept
of stripes explains why a DNN would classify an image as
a zebra. Unlike feature attribution methods [1, 6, 3} [7, 4],
concepts do not need to be a contiguous collection of pixels.

There could be instances where explanations can be wrong
or there could be multiple explanations for the same decision.
Since improving the trustworthiness of a robot explainer is
crucial, we propose a method named, Bayesian Testing with
Concept Activation Vectors (BaTCAVe), that assigns a score
and an associated uncertainty for concepts of interest. The
score indicates how well the concept explains the decision and
the uncertainty indicates how much to trust the concept. To
obtain these metrics, we consider a posterior distribution over
concept activation vectors, which, due to the non-exponential-
family likelihood, is approximated using variational inference.

II. RELATED WORK

Explainability in robotics: Majority of real-world robots
are designed to be interpretable by construction. They are
typically equipped with white-box planning [8]] and control [9]]
algorithms. This interpretability can be provided in two differ-
ent forms: parameters of an inherently interpretable model can
be estimated using a data-driven method [10], or an inherently
interpretable model can be used for the core decision-making
component of an algorithm [11, [12]. Unlike these methods,
when inherently black-box neural networks are used for both
perception and decision-making, whether in a modular or an
end-to-end fashion, we have to develop techniques to probe
and explain the network.

Explainable AI: The goal of explainable Al (XAI) is devel-
oping techniques to explain black-box models. Certain tech-
niques achieve this by isolately testing various components of
an input through perturbations [3|] or component removal [6],
while other models achieve this through local approximation
of the global decision boundary [6]. When explaining neural
networks, XAl techniques might use gradients [4], node level
information [[13]], or layer-wide information [5]. For image in-
puts, explanations can be provided in the form of highlighting
certain parts of an image [4], providing importance scores to
semantically meaningful segments or a cluster of pixels [} 6],
or samples [2, I5]. Typical XAI techniques do not provide
estimations of uncertainty about their explanations, making
them difficult to trust in high-stakes applications such as
robotics. Authors of [14] have also highlighted the importance
in trustworthiness of explanation in robotics settings.

Concepts: In machine learning, concepts are defined as
human-interpretable, high-level attributes. For instance, the
concept of stripes is important for a classifier to identify a
zebra [, 15]. While concept-based explanations have been
applied in domains such as biomedical imaging [[16], they are
still applied to typical discrete image classification settings. In
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Fig. 1: The explainability pipeline. The user obtains a score with uncertainty for each “concept.”
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this paper, we propose a method to provide explanations for
decisions and control commands using concepts.

III. METHOD

By building a relationship between activations and human
cognition, humans can obtain explanations on how the neural
networks work. To build this relationship, concept activation
vectors (CAVs) can be used. They measure how sensitive a
classifier’s output is to some activation’s in the direction of a
concept of interest [3]. However, this notion cannot be used
in robotic decision-making since robot actions contain contin-
uous control signals, for which CAVs are not defined. Also,
they do not provide uncertainty estimates of explanations, as
illustrated in Fig. [ We propose the following definitions
before presenting the method which offers a metric to assess
a concept’s explanation of robot decisions and its epistemic
uncertainty.

Action Concepts: An action concept, Cy, is a set of
conditions that defines a subset of the output space a user
is interested in analyzing.

Input Concepts: An input concept, Cy, is a high-level,
human interpretable attribute that the user believes is important
to explain an action concept. These can be textures, colors,
sizes, distances, directions, shapes, objects, etc.

While action concepts are defined as rules, an input con-
cept, Cp, is defined by a collection of representative inputs,
{x¢c,}M_,. For instance, M images of stripes can be used
to explain why an autonomous vehicle slowed down near

a crosswalk. Activations at any layer can be computed by
passing x¢, through the neural network.

A. Bayesian Testing with Concept Activation Vectors (BaT-
CAVe)

Given a collection of input concepts for an action concept,
we now derive a score to measure how well each concept
explains the action concept. As a simple example, this score
can tell if the skin tones black or white (input concepts) affect
the breaking action (action concept) of a DNN used in an
autonomous vehicle. To formally define, let the activations at
the I*® layer be f_;(-). If these activations are passed through
the network after the I*" layer, f+1(+), then we obtain the
output, y. In other words, y = f(x) = f4;(f-i(x)) for input
x. We can obtain the sensitivity of neural network decisions,
conditioned by Cy4, w.rt. layer activations as %. As
shown in Fig. 2] this sensitivity in the direction of a random
variable, V', with its realizations, v, is given by the stochastic
directional derivative,

Ca X v)) — FOA (f_,(x
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af“4(x)
I
(1)

If we define the random variable, V, in such a way that
represents C', then the sensitivity is measured with respect
to the input concepts. The probability density function of V is
estimated using an external dataset containing inputs from C7.
To this end, similar to [5], we collect X¢7 = {(xC7, 2+)I1M_|
and a different set of images X¢1 = {(x% 27 ) b=y With
the positive and negative classes labelled as z™ and z~,
respectively. The negative input concept, C';, can be just
another concept or a random collection of inputs, depending
on what the user is interested in comparing. More details on
BaTCAVe formalization is in Appendix [I}

IV. EXPERIMENTS

We consider three types of algorithms for learning
robot decision-making: binary supervised learning, behavioral
cloning (BC), and proximal policy optimization (PPO). Since
candidate concepts can be human defined [3]], extracted from
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Fig. 3: (a) Shows the distribution of input concepts C; selected by the participants for object avoidance task. (b) and (c) shows
the effects of fine-tuning and data augmentation, respectively. The higher the score, the better the explanation is. (d) shows
samples of dark and light concepts. (¢) shows while common XAI methods such as GradCam [4] and LIME [1]] can highlight

the orange box, they do not reveal what attributes (i.e.,

input concepts) of the box contribute to the decision of the DNN,

making it harder for the engineers to improve the DNN based on the explanations. In contrast, BaTCAVe provides semantically
meaningful explanations. (f) highlights the change in confidence over modifying darkness factor in input with models trained

with different data augmentation (C-Modification).

dataset [18]), or automatically generated through vision-
language models [19], we assume they are given. The exper-
imental setup and results are detailed in the Appendix [l We
have summarize our findings below.

A. Experiment 1: Mobile Robot Navigation Using Vision

With the objective of avoiding orange obstacles, we fine-
tuned an AlexNet model with images of an orange box, until
we achieve a validation accuracy of 100%. Details about the
experiment setup can be found in Appendix [[I-A]

As shown in Fig. Eka), BaTCAVe revealed that the model has
learned to distinguish dark from light objects (or the value or
brightness in HSV scale). The orange box is merely a shade of
the broader “dark” concept. As shown in Fig. Ekf), similar to C-
deletion in XAl literature [15} 17, (18], by gradually varying the
brightness of the orange object we verified that the darkness is
an important concept. Additionally, based on Fig.[3] BaTCAVe
made the following explanations: noitemsep, topsep=0pt

o The BaTCAVe score is proportional to the concept of
“distance between the robot and obstacle,” verifying that
the DNN has learned the distance, as an engineer would
expect.

o When the final layer is fine-tuned (LFT) instead of the
full DNN (FFT), the prominence of the orange concept
becomes higher compared to the dark concept, which
is what we originally intended, demonstrating how en-
gineers can use concepts to debug robots.

« As shown in Fig[3{b), the importance of the dark concept
remains consistent across different data augmentation
methods—adding color jitter (CJ) and/or image rotation
(R)—for LFT while it varies for FFT.

B. Experiment 2: Lift Cube, Pick & Place, and Nut Assembly
with Proprioceptive Sensors

In this setup, we obtain notably high BaTCAVe score with a
low uncertainty, corroborating that accurate object information
from proprioceptive sensors, unlike in vision-based settings,
helps with precisely performing the task. Table [I| shows scores
of Cy’s tested across different C}’s. Further, an analysis of
per time step explanations for the lifting cube task, depicted
in Fig @b, explains that only the object pose and EEF position
measurements matters when the EEF is moving down.

C. Experiment 3: Lifting a Cube with Vision-Language Inputs

In this experiment we evaluate image and language
concepts  (Cr [images={cube, gripper, table},
language={proper language commands, gibberish, verbs}|)
for robot-decision making. Interestingly, language concepts
reveals that the verb in the sentence matters more than the
rest of the sentence at the time it lifts the object, as shown
in Fig. Bh. More details about the experiment and results in

Appendix [I-C|

D. Experiment 4: Autonomous Driving with Vision

In this experiment we analyze how various input concepts
affect steering decisions (C'4 = steering angle > 2). Fig. [f]
shows how the input concept of “black shades,” which corre-
lates with roads, explains steering decisions. Around t = 35,
the car points out of the road, and when it steers back we
observe that its BaTCAVe for “black shades” increases around
t = 41, indicating that it was able to recover by focusing on
the road. To improve the policy, it is important to identify
what part of the neural network learns incorrect information.
By applying BaTCAVe on the last CNN layer (5 = 0) and last



TABLE I: BaTCAVe scores across different tasks along with uncertainty estimates. Each score measures the impact of C;. For
complete table refer Table El in Appendix.

Task Action Concept object eef_pos eef_quat gripper
Lift Cube 0.84 +£0.31 0424040 0.42+0.49 0.42+0.49
0.98+0.10 0.994+0.04 0.42+0.49 0.39+0.48
Pick & place 14+0.0 0.544+0.49 0.964+0.16 0.09+0.09
P 09+0.17 0.85+0.35 0.77£0.41 0.914+0.27
Nut Assembl 0.64+£0.47 0594049 0.44+049 0.87+£0.32
y 0.87+0.32 0.594+0.48 0.46+0.49 0.37+£0.48
Encoder X
0.00
object (1 0-14) .................................... i —0.05
eef pos (3) — MLP 7 0.5 W Proper Language
eef quat (4) 0.5 Gibberish
gripper (2) 0.5 Verbs
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Fig. 4: (a) Architecture (b) Task : Lift, Cy = AZ. The
colorbar indicates the A actions and the dots on them indicate
the actions we consider by following the rule C4 =top 25%
of moving down. The three bar plots indicate the BaTCAVe
scores with their uncertainties for three input concepts EEF
position, quaternion, and gripper status. (c) Lift-cube task
(more details in Appendix [[I-B).

MLP layer (5 = 0.822), we found that errors do not originate
in the CNN (image encoder), indicating that the policy needs
to be trained more.

V. CONCLUSION

We proposed a task-agnostic explainable robotics technique.
We demonstrated how our method can be used to explain
various robot actions and behaviors across a variety of domains
with different decision networks. The actionable insights pro-
vided by BaTCAVe helps engineers identify vulnerabilities
of various components of robot training—data augmentation,
fine-tuning, domain-shift analysis, verification, etc. We showed
how uncertainty, that BatCAVe provides, helps with trusting
explanations. Future work will focus on developing concept
dictionaries for different robotic tasks.

Social Impact Statement: Our work introduces BaTCAVe,
a novel technique that provides human-understandable expla-
nations for robot decisions using high-level concepts, along
with uncertainty scores to assess trustworthiness. By en-
hancing transparency, this approach empowers engineers to
debug systems more effectively and enables policymakers to
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Fig. 5: (a) Indicates verbs in a language command matter most
when it is lifting. (b) Indicates the images concepts are highly
uncertain.
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Fig. 6: (a) The relative importance of concepts indicates that
the agent relies on the black concept (~ road) than the orange
concept (~ cones). (b) Temporal change of scores.

audit Al-driven technologies, fostering safer and more reliable
deployment of robots in critical real-world applications.
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APPENDIX

I. BAYESIAN TESTING WITH CONCEPT ACTIVATION
VECTORS (BATCAVE)

To estimate the vector distribution, v, that separates the two
classes in the activation space (Fig. [2), we apply the Bayes
theorem,

q(v) p(v]z, X, X)) oc pla|v, XU, X)) x p(v)

~~~ ~—~

approx. posterior posterior likelihood prior
2

Given the positive and negative labels, the likelihood follows
a Bernoulli distribution, z|v ~ Bernoulli. The prior weight
distribution is considered to follow a normal distribution,
v ~ N. However, because of the non-conjugate prior, the
posterior distribution is not tractable. Hence, we resort to
approximate Bayesian inference. Because the activation space
of the neural network can be high dimensional, rather than
using an MCMC technique, we use variational inference,
where we minimize the KL divergence between the true
posterior and an approximate posterior distribution. However,
since the true posterior is not know, instead of minimizing
the KL divergence, we maximize an evidence lower bound
(ELBO),

ELBO + KL[g(Vv)||p(v]z, X7, X1 )] = const.  (3)

Following the locally linear approximation of the posterior in
[20], we learn ¢(v) in an expectation-maximization-fashion.
With the approximate posterior distribution, g(v), estimated
using variational inference, we can then use (Eq |I[) on a
collection of test inputs X' = {x!**}I" | to compute a

Ca.CrCr |
(255 o) o)

“4)
This score itself is a distribution. If we obtain samples from
p(v), each of them is a valid explanation. Since some samples
are more probable than others, those with high probability
are more likely concepts that explanations the decisions. The
empirical mean and standard deviation of the score can be

estimated easily. The mean score 594-C1:C1 by,

score s

1
o=, 2

xlestc X test

6fCA( test) .
8f (Xtest>

Xtest)

PSS

Ca (test
xluleX[L\lV cvCr <6f Xes)

where V1 = {v,}' | are R samples taken from ¢(v).
The higher the score, the better the concept C; explains the
test inputs X', Similarly, the empirical standard deviation
reflects the epistemic nature [21] of explanations—how much
the model knows that its explanation can be wrong.

‘Xlest| “Vp > O) ) (5)

A. Interpreting the Trustworthiness of Explanations
To assess the trustworthiness of explanations, relying on 1)

the held-out test accuracy of the estimation in eq. (Z) and 2)
the epistemic uncertainty of the score in eq. (@), we consider

(Fig. [7):

Fig. 7: Data with two classes (red and blue) are represented
in the activation space. If the uncertainty is high (case 2 vs.
3), then we can sample many lines (i.e., many explanations).

‘Though many lines can be sampled from case 1 as well, since

the accuracy is low, the explanations can be trusted.

Case 1 (Off-base explanations): If the accuracy is low, the
concepts are not good enough to delineate the CAVs, resulting
in an inaccurate explanation. Formally, in such cases, p©’ ~
pCr , where the distributions are defined as X7 ~ p©’ and
XC1r ~ pCr for the positive and negative classes, respectively.
Such explanations should not be trusted.

Case 2 (Imprecise explanations): If the accuracy is high but
the uncertainty is also high, multiple explanations are possible.
This can be due to, 1) the two supposedly opposite concepts
are not sufficiently different enough to be delineated with a low
uncertainty (i.e., some conflicting information) or, most likely,
2) the test samples lack diversity in the activation space. Un-
fortunately, Bayesian inference is not capable of differentiating
lack of information from conflicting information [22].

Case 3 (Precise explanations): If the accuracy is high and
the uncertainty is low, then the concepts we have chosen are
good and the explainer is able to provide consistently good
explanations. These explanations are of the highest level of
trustworthiness.

The thresholds for probability should be decided by the
practitioners depending on how much risk they are willing to
take. For instance, if an engineer is using BaTCAVe to debug
a manipulator used in an assembly line, the threshould can
be selected leniently as the stakes might be relatively low. In
such cases, we can obtain more valid explanations. In contrast,
if a legislative body is using BaTCAVe to approve a new
autonomous vehicle, then the thresholds should be strict. If
case 1 violates, we should try new concepts to obtain a better
accuracy. If case 2 violates, we can still use explanations but
they might not always be the best explanations. By obtaining
the mean score, we can obtain an average explanation.

II. EXPERIMENTAL SETUP

Fig. 8: a) JetBot b) Lift cube c) Pick-and-place d) Nut
assembly

A. Experiment 1: Mobile Robot Navigation Using Vision

We used a JetBot with a NVIDIA Jetson Nano (Fig @1).
It uses a pretrained AlexNet [23] with the last layer re-



placed with two nodes. Using 175 “obstacle” and 175 “free”
images, we fine-tune the DNN so that the robot can learn
to avoid obstacles. We analyze how the decision of the
network is affected by different data pre-processing and fine-
tuning techniques for Cy = {avoid obstacle} and C; =
{orangeness, darkness, distance}. Fig El shows the snapshots
of JetBot rollout.

We considered two distinct setups. In the initial setup
we trained the obstacle classifier specifically on an orange
box, varying in different orientation and distance. We then
compare the variation in importance of concepts caused by
the fine-tuning method used and the pre-processing steps
involved during training. In the second setup, we generalized
the classifier by introducing different objects as obstacles in
the training dataset. We test the model with color, darkness
and distance as a concept. These criteria were selected based
on a human study performed where we ask them to describe
important attributes the model might have learned given the
dataset. The dataset used to train the classifier model which
is used for decision making in the JetBot is collected from
the onboard camera attached on top the JetBot. In both the
setups, we have 350 images in training and 150 in testing,
split equally among both classes as shown in Fig

1) Model details: Architecture: AlexNet is the classi-
fier model we use for decision making in JetBot. AlexNet was
used due its high processing speed which is critical in robotics.
We change the architecture by replacing the final layer with a
layer with 2 nodes.

Jetbot configuration: The JetBot is a compact robot built
on the NVIDIA Jetson Nano platform, designed for Al and
robotics applications. Key components of the JetBot include:
The Jetson Nano board which has a 4GB LPDDR4 RAM,
a 128-core NVIDIA Maxwell GPU, and a quad-core ARM
Cortex-AS57 MPCore processor. An 8 MP wide-angle camera
is attached on top. It also includes two motors and a motor
driver for precise control of the robot’s wheel movement.

Obstacle

Not Obstacle

Fig. 10: Orange box Obstacle and Not obstacle dataset sample

Training: We finetuned the AlexNet model with orange
box obstacle dataset and general object obstacle dataset. We

finetuned the models with FFT and LFT for 100 epochs with
cross-entropy loss and SGD optimizer with learning rate of
0.001 and momentum 0.9, while applying color jitter (CJ)
and/or image rotation (R). The training loss across different
experiments are shown in Fig[12]

2) Concepts: Fig[I1] shows the concepts which were used
across different experiments. Random concepts were creating
by randomly picking a unique color for each pixel value in
the image. We evaluated the models with dark-light concept,
orange-random concept, distance 30-random concept, distance
45-random concept, and distance 60-random concept sets.
These concepts are based on the response we received from
the human survey described in later sub-section.

.

Dark Concept Light Concept

5

Distance 45cm Concept Distance 60cm Concept

Orange Concept

Distance 30cm Concept

Fig. 11: Different concepts sets used in BaTCAVe for Exper-
iment 1.
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Fig. 12: Training loss of FFT (left) and LFT (right) over
orange obstacle and general obstacle dataset and different
augmentations.

3) Additional Results: Fig[13|and Fig[14] shows the results
of general model, finetuned with all parameters and final layer
parameters, respectively. They are compared over different
concepts and augmentation techniques. We see that in both
the cases models were not able to understand dark difference
between dark and light concept.
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Fig. 13: Different concepts test on FFT model trained on general dataset over different augmentations. (BaTCAVe’s classifier

accuracy is shown near the bar graph for each augmentation.)
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Fig. 14: Different concepts test on LFT model trained on general dataset over different augmentations. (BaTCAVe’s classifier

accuracy is shown near the bar graph for each augmentation.)

4) Human survey: We surveyed 20 engineering students
who have at least 1 year of experience training DNNs to get
their opinion on what the DNN has learned just by reading our
description. As shown in Fig [I5(a), we first described them
the architecture and showed fine-tuning images without telling
them that our objective is avoiding orange obstacles. First, we
asked them to describe what attributes the DNN should have
learned and then we gave them a list of potential concepts to
narrow down their choices. Many human speculated that the
model will be fined-tuned to distinguish orange from the rest.

Fig[T5|(b) is the distribution of C; chosen by the participants
(20). Fig c) shows the word cloud representation of all the
replies gotten by the participants. These results helped us to
formulate candidate concepts while testing the models.

B. Experiment 2: Lift Cube, Pick & Place, and Nut Assembly
with Proprioceptive Sensors

We use a Panda, a 6-DOF robotic arm with a gripper,
to complete the three tasks shown in Fig [§[b,c.d) on Robo-
Suite [24]. The setup includes various proprioceptive sensors
to monitor the arm’s movements and positions. By using the
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Fig. 15: Human Survey: a) Survey screenshot b) Percentage
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DNN shown in Fig[d]and the training procedure, we developed
an agent based on behavioral cloning [25]. Robot’s actions
are A differences. Our objective is to explain which concepts
of the inputs, C';= object, EEF position measurement, EEF
quaternion measurement,gripper open width, is responsible
when the robot is taking a set of actions defined by C4 =
top 75% of each A action.

1) Model details: Architecture: The model architecture,
depicted in Fig [@fa), employs a low-dimensional observa-
tion modality that integrates multiple sensor inputs: gripper
position (2-vector), end-effector position (3-vector), object
characteristics (10-14 vector), and end-effector orientation (4-
vector). The network outputs a 7-dimensional action vector
which includes delta values for the robot’s movements: three
for end-effector position (X, y, z), three for orientation (roll,
pitch, yaw), and one for gripper force.

The model has 3 main components: Observation Encoding,
Multi-Layer Perceptron(MLP), Observation Decoding.

1) Observation Encoding: Prior to processing, observed
states undergo encoding through an Observation Group
Encoder. This encoder handles observation modalities,
which are object information, robot end effector position
and orientation, and gripper state. The encoded obser-
vations are concatenated into a single vector representa-
tion.

2) MLP: The concatenated vector is then fed into an MLP
comprising a single hidden layer with ReLU activation,
facilitating the extraction of high-level features from the
encoded observations. The output dimensionality of the
MLP is 1024.

3) Observation Decoding: Following feature extraction, the
output of the MLP is decoded to produce the desired
actions. This decoding process involves a linear trans-
formation, mapping the MLP output to the action space.

The actions consist of seven elements, corresponding to
the changes in position (X, y, z) and orientation (roll,
pitch, yaw) of the robot end effector, as well as the
gripper state.

Training: We train the model using the ph low_dim dataset
from robomimic [25] on task can,lift and sqare. The training
process begins with data normalization to ensure consistent
input scaling. The training loop spans 500 epochs, each
consisting of 100 gradient steps. During each step, the model
calculates the mean squared error (MSE) loss between pre-
dicted and ground truth actions. This loss is then used to
update the model parameters using the Adam optimizer. This
model was trained across three different task:

1) Pick Place Can (PPC): The primary goal of this task
is for the robot to accurately pick up a can from one
location using a gripping mechanism and then move it
to a specified area to place it down.

2) Nut Assembly (NA): This task requires the robot to pick
up a hollow object and accurately pick its handle and fit
it in the object which fits the hollow area.

3) Lift Cube (LC): In the LC task, the robot’s goal is to
lift a cube from the table.

Fig. [I6] shows training loss over epoch on all the different
tasks. Table [l shows BeTCAVe scores across all tasks and
CZA’S.

2) Concepts: Due to the nature of proprioceptive sensors
not using image inputs, we do not define C'; as images like
traditional methods. We use the inputs vectors as Cj the
vector input of the perticular concept would be taken from the
input and rest of the dimesnion would be randomly selected
for example C; =’ object’ would be the vector input of
object(size 10-14) + random vectors(size 9) to make up the
total dimension 19. Random concept were random vectors of
size 19-23.

3) Additional Results: For this experiment we test BaT-
CAVe on the final linear layer which is just after the MLP
layer in the architecture Fig [(a). The results across all the
different tasks are as follows:

1) Pick Place Can (PPC): Fig ﬂz] shows the state across dif-
ferent timesteps and Fig [I8] shows BaTCAVe performed
across multiple C'4 on PPC.

2) Nut Assembly (NA): Fig @ shows the state across dif-
ferent timesteps and Fig 20| shows BaTCAVe performed
across multiple C'4 on NA.

3) Lift Cube (LC): Fig |2;1'| shows the state across different
timesteps and Fig [22] shows BaTCAVe performed across
multiple C'4 on LC.

C. Experiment 3: Lifting a Cube with Vision-Language Inputs

This experiment replicates the setup and conditions of
Experiment but proprioceptive sensors are replaced by
a camera and the object information is not given to the model.

1) Model details: Architecture: The network outputs a
360-dimensional action vector via a final linear layer, mapping
the robot’s projected movements over the next 36 timesteps.
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Fig. 16: Training loss of model across tasks

TABLE II: BaTCAVe scores across different tasks, quantifying the relevance of each action concept to the task, along with
uncertainty estimates. Each score measures the impact of input concepts such as the object’s features, end-effector position
(eef_pos), end-effector orientation (eef_quat in quaternion format), and gripper on task performance. (*Not Applicable)

Task Action Concept object eef_pos eef_quat gripper
AX (1) 1£0.0 0.54£049 0.96+£0.16 0.09+£0.09
A Y (1) 0.0+0.0 0.7+ 0.41 0.24 £0.43 0.0+ 0.0

Z (1) 0.9+0.17 0.85+0.35 0.77£041 0.91+£0.27
Pick & place A Roll (1) 0.44 £ 0.49 0.53+0.49 0.43+£0.49 0.49+0.49
A Pitch (1) 0.86 +0.33 0.55+0.49 045£049 0.46=+0.49
A Yaw (1) 0.84 +0.35 0.51£0.49 0.50+£0.49 0.58£0.49

Grlpper (@) 0.1£0.0 0.64+0.46 0.56+0.48 N.A*
X (1) 0.64 +0.47 0.59+0.49 044+£049 0.87+0.32
Y (1) 0.87£0.32 0.59+0.48 0.46+0.49 0.37£0.48
Z (1) 0.005+0.07 0.54£049 0.51+£0.49 0.85£0.35
Nut assembly A Roll (1) 0.52 £+ 0.49 0.48+0.49 0.48+0.49 0.45+0.49
A Pitch (1) 0.66 +0.46 0.51+0.49 045+£0.49 0.56+0.49
A Yaw (1) 0.58 £ 0.49 0.44+£0.49 0.45+£0.49 0.52+£0.49

Grlpper @) 0.1£0.0 0.88+0.31 0.53+£047 N.A*
X (1) 0.84 £0.31 0.42+0.40 042+049 0.42+0.49
Y (1) 0.85+£0.32 0.99£0.07 0.56+£0.49 0.49+£0.40
Z (1) 0.98 £0.10 0.99+0.04 0.42+£0.49 0.39+£0.48
Lift A Roll (1) 0.46 4+ 0.49 0.41+0.49 048£048 0.51+0.49
A Pitch (1) 0.54 £ 0.49 0.28£0.73 0.43+£0.47 0.48£0.49
A Yaw (1) 0.73 £ 0.39 0.28+0.45 047£0.49 0.48+0.49

Gripper (1) 0.95+0.18 0.004£0.06 0.31+0.39 N.A*

(512 features) down to a lower-dimensional space (256
features).

3) Task ID Encoder (CLIP): Vision transformer for encod-
ing task IDs based on both textual

4) Controllers

Fig. 17: Snapshot of PPC task rollout

a) XYZ Controller: Controls the position in 3D space.

b) RPY Controller: Controls rotation around the roll,
pitch, and yaw axes.

¢) Grip Controller: Manages the actions related to
opening and closing a robotic gripper.

This output includes the first 108 nodes for end-effector
position (x, y, z), the subsequent 108 for orientation (roll,
pitch, yaw), and the final 36 for gripper. The main compo-
nents are Visual Encoder, Visual Narrower, Task ID Encoder,

Training: The Model is trained based on a behavior cloning
Controllers.

(BC) policy tailored to handle dual inputs: high-resolution
images (224 x 224 x 3) from the camera and verbal instructions
given to the robot. We train the model for 100, 000 epochs on
300 demonstrations with a batch size of 64 using a Huber loss
function and Adam optimizer.

1) Visual Encoder: This part of the model uses a ResNet
(Residual Network) architecture for visual encoding.

2) Visual Narrower: A linear transformation that reduces
the feature dimension from the output of the ResNet
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Fig. 19: Snapshot of NA task rollout

2) Concepts: The model used in experiment 3 takes in both
image and language input, We keep one input constant to test
concepts of the other input. Random concepts were samples
from ImageNet.

1) Image concept: We choose concepts from the input
image we blur out the rest of the concept in the input
to represent a concept as shown in Fig 23] BaTCAVe
shows high variance but consistent score across all C'4
when Cy =’ I'mage’.

2) Language concept: We use proper instructions, gibberish

instructions and just verbs as language concepts. Ta-
ble [[T] shows the chosen 3 concepts for the eperiment.
Fig [23] shows BaTCAVe tested across all C4 in LC task
with language used as C7.

TABLE III: Language concepts

Index Standard Instructions  Gibberish Verb
1 Lift the box skdfj 12asj 5893 2467* Lift
2 Grab the box fjdkl c33kd 3940 8175 Grab
3 Take the box gpwie b99fs 1295 375476 Take
4 Move the box zxcvb n66gh 5421 983613  Move
5 Collect the box plmok u55wr 7864 2319 Collect
6 Retrieve the box akyse 144qs 6572 048756 Retrieve
7 Hoist the box bvgfr t22vp 3187 7695%( Hoist
8 Handle the box nmjqw ol1lm 9538 65 Handle
9 Carry the box xswed k88ht 2409 186428  Carry
10 Raise the box ecrvt f77yr 4812 690391 Raise
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Fig. 21: Snapshot of LC task rollout

D. Experiment 4: Autonomous Driving with Vision

To simulate autonomous driving, we trained an end-to-
end deep reinforcement learning policy using proximal policy
optimization (PPO) [26] to steer and throttle a vehicle on
Donkey Simulator. The network is a CNN followed by an
MLP, trained end-to-end.

1) Model details: Architecture: The policy model archi-
tecture comprises a sequence of convolutional layers followed
by fully connected layers. The input to the model is an RGB
image, representing the current state of the environment. After

the convolutional layers, a flattening operation is applied,
transforming the 3D feature maps into a 1D feature vector.
This vector serves as the input to the fully connected layers.
The flattened vector is fed into a dense (fully connected)
layer comprising 512 units. This layer integrates the features
extracted by the convolutional layers to form a high-level
representation of the input.

Training: The policy network was trained on PPO algorithm
using Stable Baselines3 library. The parameters set for training
included a learning rate of 0.0003, a rollout of 2048 steps per
update, and a batch size of 64. Discount factor (gamma) was
set at 0.99 with a Generalized Advantage Estimation (GAE)
lambda of 0.95, which helps in balancing bias and variance.
The policy clipping range was set to 0.2, and advantages were
normalized to stabilize the training. Additionally, the value
function coefficient was set at 0.5, and the maximum gradient
norm was capped at 0.5 to prevent exploding gradients.
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Fig. 23: a) Input b) Red c) Table d) End effector

Orange Concept Black Concept Green Concept

2) Concepts: One of the limitations of BaTCAVe is when
the concepts are small, they might not provide a strong
enough signal to distinguish from a random concept class. For
instance, Cone Concept B and Random Concept in Fig. 24] are

largely Slmllar' Road Concept B Cones Concept A Cones Concept B Random Concept

Fig. 24: Different concepts used in BaTCAVe
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