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Abstract

Single-player contextual bandits are a well-studied problem in reinforcement learning that
has seen applications in various fields such as advertising, healthcare, and finance. In light
of the recent work on information asymmetric bandits ( );

( ), we propose a novel multiplayer information asymmetric contextual bandit framework
where there are multiple players each with their own set of actions. At every round, they
observe the same context vectors and simultaneously take an action from their own set
of actions, giving rise to a joint action. However, upon taking this action the players are
subjected to information asymmetry in (1) actions and/or (2) rewards. We designed an
algorithm LinUCB by modifying the classical single-player algorithm LinUCB in

( ) to achieve the optimal regret O(v/T) when only one kind of asymmetry is present.
We then propose a novel algorithm ETC that is built on explore-then-commit principles to
achieve the same optimal regret when both types of asymmetry are present.

1 Introduction

The problem of Multi-armed Bandits (MAB) is one of the most well-studied classic reinforcement learning
problems. The algorithms in the field are designed to find an optimal balance between the exploration-
exploitation tradeoff dilemma. In the traditional setting of this problem, a single agent chooses one action
(arm) from m available actions over numerous iterations, where each action gives off a reward sampled from
some unknown sub-Gaussian distribution. The primary objective is to minimize the agent’s regret, defined
as the difference between the expected reward of the agent’s chosen actions and that of the optimal actions.
Thus, the success of a policy can be measured by the regret as a function of time (number of actions taken).
Under this classical setting, ( ) showed that no policy can achieve better than O(v/T)
regret. The UCB algorithm first attains this lower bound.

Although single-player MABs are well-studied, they fail to model more complex real-world problems involving
multiple participants. Recently, there has been escalating interest in cooperative multiplayer MAB challenges,
wherein several agents aim to maximize their aggregate expected returns collaboratively

(2023); (2022); (2020); (2021); (2023). Although
these problem settings extend the MAB problems into multiple players, they still remain restrictive in real-
world applications in these three aspects:

(1) These settings do not model the agents’ access to information that might help agents predict the
reward quality of an action (i.e. no context vectors).

(2) These settings assume the rewards obtained by each player are independent of the actions taken by
other players (i.e. joint actions are not considered).

(3) These settings assume the agents can freely communicate their actions taken and rewards received
to one another (i.e. information is perfectly symmetric).
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To deal with restriction (1), prior works such as ( ) analyze the linear contextual bandit
framework. Linear contextual bandits generalize the classical finite-armed MAB by allowing players to
utilize side information to predict the quality of rewards. In each round of the contextual bandit problem,
the agent observes one random context vector x per action, where the expectation of the reward distribution
of that action is a zero-mean noise plus the inner product of the context vector x and an underlying parameter
6 that is unknown to the players.! This framework ( ) relaxes the aforementioned restriction
(1) by allowing agents to make use of the observed context 6 to predict the rewards.

In this paper, we address restriction (2) by extending the contextual bandit framework into a cooperative
multiplayer setting where the joint action of all players determines the reward distribution. Furthermore,
we add novel information asymmetry to make our setting even more general. At each round, each player
takes an action individually and simultaneously resulting in a joint action. This joint action generates the
rewards for all players. In every round, all agents observe the same context vectors (one context vector per
joint action). This multiplayer extension relaxes restriction (2).

To restrict communication between players and relax restrictions (3), we separately consider the following
two types of information asymmetries: (1) Action asymmetry — At each round, each player receives the same
reward but cannot observe other player’s actions (the joint actions remains hidden to the players). (2) Reward
asymmetry — at each round, each player receives an IID reward that can be only observed by themselves,
while they are allowed to observe the actions of other players. Although players cannot communicate during
the learning process, they are aware of the possible actions other players can take and can agree on a strategy
beforehand.

Our Contribution This is the first paper on multiplayer contextual bandits. We propose a multiplayer
information asymmetric environment that was originally from the multi-armed bandit setting

( ); ( ) and apply it to contextual bandits. We then propose two algorithms that are
based on the single agent linear contextual bandit setting in ( ) called LinUCB. Remarkably,
we show that by modifying LinUCB slightly, we obtain an algorithm that is able to take on both forms
of information asymmetry. More specifically, through a coordination scheme, we are able to recover the
same regret bound O(v/T) as in the single-agent setting when the players receive the same reward but can’t
observe the other player’s actions (Problem A). On the other hand, when the players receive their own IID
reward but can observe the other player’s actions (Problem B), we obtain the first sublinear regret bound
of O(V/T). Finally, when there are both types of information asymmetry (Problem C), we propose a new
algorithm that involves principles in the classical Explore and then commit algorithm that achieves the same
order regret bound.

Related Works The single-player contextual bandit with linear payoff functions is a well-studied problem

with efficient algorithmic solutions ( ) ( ). There are many variants
to the single-player linear contextual bandit setting such as ( ) and

( ) which consider bandits with constraints on resource allocations. Furthermore,

( ) studies the problem with restricted context vectors, ( ) analyzes contextual

bandits that do not need a hypothesis on stationary properties of contexts and rewards.

Linear contextual bandits have numerous real-world applications, encompassing healthcare, recommender

systems, information retrieval, and risk management. For example, ( ) employs the contex-
tual bandit framework to adaptively treat mice in the early stages of cancer. ( ) and

( ) leverage contextual information to enhance mobile and news article recommendation systems.

( ) applies contextual bandits to optimize context-based information retrieval. Further-

more, ( ) utilizes contextual bandits to adaptively distinguish between fraud and concept

drifts in credit card transactions. Within machine learning, ( ) employs contextual

bandits for algorithmic selection in off-policy reinforcement learning, while ( ) integrates

them to improve active learning.

19 is global and independent of the actions. Moreover, 6 is inherent to the contextual environment and does not change in
between rounds.
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We will now overview the literature on multiplayer bandits. Within the domain of multiplayer stochastic
bandits, numerous studies permit restricted communication, as observed in prior research such as

( ; ); ( ); ( ); ( ). Recent studies,
building upon the foundations laid by ( ), have delved into investigations of information
asymmetry in the context of multiplayer bandits, as explored in works such as ( );

(2022); (2021); (2022).

In cooperative multiplayer bandits, the objective is to determine the optimal arm from a set of shared arms
among players. The communication structure between players is represented by a graph. This concept was
first introduced by ( ). Since then, several strategies have been proposed, in-
cluding e-greedy ( ), gossip UCB ( ), accelerated gossip UCB
( ), and leader-based approaches ( ). The problem has also been explored
in an adversarial setting by ( ), who introduced a strategy where followers adopt
the EXP3 algorithm. Another line of research allows players to observe the rewards of their neighbors at
each time step, based on their relative positions in the graph ( ). Additionally, some
studies have considered asynchronous settings where only a subset of players is active in each round
( ); ( ). In the collision setting, when multiple players select the same arm,
a collision occurs, preventing them from collecting rewards. This setting does not account for joint arms.
An extension to the Lipschitz setting was explored in ( ), where they introduced
DPE (Decentralized Parsimonious Exploration), an algorithm designed to minimize communication while
enabling players to maximize their cumulative rewards.

The concept of competing bandits was introduced by ( ). This model resembles the collision
setting but incorporates player preferences. When multiple players select the same arm, only the highest-
ranked player receives the reward. In this framework, a centralized CUB algorithm was proposed, where
players communicate their UCB indices to a central agent. ( ) demonstrated that log-
arithmic optimal regret can be achieved if the platform also manages transfers between players and arms.
( ) further explored this by considering a stronger equilibrium notion, where agents
negotiate these transfers. ( ) also introduced an ETC algorithm that attains logarithmic op-
timal regret without requiring transfers, but assuming knowledge of the reward gaps.
( ) extended this approach by eliminating the need for such knowledge. Furthermore, ( )
proposed a decentralized UCB algorithm incorporating a collision avoidance mechanism.

2 Preliminary

We consider information asymmetric contextual bandits, which is a generalization of the single player setting
given in ( ). In particular, they propose a UCB-index based algorithm LinUCB, and we propose
a multiplayer version with joint arms of this algorithm.

In particular, we suppose there are m players, and each player 7 can pick from a set of arms A;. For simplicity,
we can assume that |A;| = K although the case where each player has a different number of arms is easily
generalizable (the coordination techniques still work as long as all the players know how many actions they
have access to prior to learning). At every round ¢, each player will pick an arm from their action set without
communication. This gives rise to a joint arm (which can be represented as a vector of actions from each
player) A:= Ay x --- x A,;, and can be denoted as a; which produces a stochastic reward r; o,. We will use
bold to denote any quantity that is a vector. Given a joint action a we define the term corresponding action
for player i to be the ith component in the vector a. We shall use T to denote the total number of rounds
in the learning process. The collective goal of all the players is to maximize the total expected rewards up
to horizon T

Furthermore, at the start of each round, every player is given the same K™ context vectors z;, € R?
corresponding to each joint arm a € A. Suppose that each contextual vector x; o satisfies ||zt ql| o S L
under the /5 norm. The reward that is produced from pulling joint arm a satisfies the linear realizability
assumption, that is,

E[rt,al®ta]l = (Tt,a0,0%) (1)
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for some 6* € R?. This means that in order to determine which arms have the best context it is desirable
to have an accurate estimate of 6*.

Let a; be the joint arm that is selected at round ¢. Furthermore, let af be the best arm at round ¢. That is
a; = argmaXqeA(Tt q,0"). To understand the success of a policy, we shall use the notion of regret Ry up
to horizon T', defined as

T T
Rr =7 (}.0%) — (%14,.0") = ) (@] — #14,.0") (2)

t=1 t=1
In ( ), they were able to prove that LinUCB attains O(v/T) regret, which matches the lower

bound for this problem. We can use the lower bound from the single agent setting but on the K™ joint
actions. We now state the information asymmetric problems we will be studying taken from

( ); ( ). They are as follows (recall that all players receive the same contexts for all
the joint actions each round).

Problem A: Information asymmetry in actions. At every round, after a joint action a is taken, the agents
cannot observe the actions of the other players but all players receive the same rewards.

Problem B: Information asymmetry in rewards. At every round, after a joint action a is taken, agents only
observe their own i.i.d. copy of the reward but they can observe the actions of other players.

Problem C: Information asymmetry in both actions and rewards. This combines the challenges in problem
A and problem B where every round the players get their own i.i.d. reward (without seeing other players’
rewards) and they cannot observe the actions taken by other players.

To be precise, in problems B and C, since each player obtains a different reward, we should use R to be the
regret for player i. However as the distributions of the rewards have the same mean, and regret is defined
under expectation, it follows that even in this setting each player experiences the same regret.

2.1 Challenges in the Contextual Bandit Setting

In this section we compare our work to that given in ( ). In their paper, they study
the information asymmetry bandit problem for the classical multi-armed bandit setting. For problem A,
information asymmetry in only actions, all the players receive the same reward feedback but are unable to
communicate as well as observe the other player’s actions at each round. However, because they receive the
same reward feedback, if they are to correctly infer the other player’s actions then they are able to maintain
the same UCB estimates of all the arms. Similarly, in the contextual bandit setting, they observe the same
rewards as well as the same contexts. Thus, they are able to maintain the same estimate for 8* as well as the
same confidence set. The novelty is constructing a way to break ties when two arms have the same LinUCB
index so that each player can accurately infer the correct action that is taken at the time step despite not
being able to observe the actions of the other players. This is where Definition 1 plays a role in Algorithm 1.

On the other hand, problem B, which is information asymmetry in rewards is a bit more challenging. Since
each player observes only their own IID copy of their reward, they will maintain different estimates of 6*
(and therefore have different confidence sets for this parameter as well). In the bandit’s case studied in
( ), this issue was addressed using a UCB-interval algorithm, where initially all the arms
were pulled in a predefined order. In that paper, each player maintains for each arm their own UCB-interval,
and when two UCB intervals are disjoint the suboptimal arm gets eliminated. However, such an elimination
method no longer applies to the contextual bandit case because at every round the distribution of each arm
changes in accordance with the context it receives. However, we make this problem easier by assuming the
context vectors are stochastically generated. This makes it easier for players to coordinate their actions by
simply improving their estimates of 8*, which can be done by pulling any joint arm. In comparison to the
standard MAB, the empirical mean of the joint action is only improved when that action is taken.
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3 Main Results

3.1 LinUCB

We describe how LinUCB works from ( ) using the multiagent environment. In particular,
this algorithm maintains an estimate of 8* by solving the following least squares estimator (for player 7).

d
OcR P

T
6} = arg min (Z(Ti,a —(0,%10,))* + >\|6’IIZ> (3)

which has solution

T
92 = Vtil Z Tt,alta (4)
t=1
where V; are d x d matrices
T
Vo=AandV, =V, + Zwtﬂth,—at (5)
t=1

This 6} gives an estimate of 6* in the contextual bandit setting.

For the estimate of 8%, we construct a confidence interval C;(6) which is the set of vectors in R? that are at
most a certain distance away from 6 under the norm ||v||%/271 = v V;_1v. More explicitly our confidence set
is,

Ci(6) = {v €R?: v —0ly,_, < br} (6)

For each arm, each player i can construct an Upper Confidence Bound by solving the following optimization
problem

max (0,x 7
eec,,(e;‘)< t.a) (7)

This optimization problem has the solution
<5L’t,a, 02> + \/E||33t,a||v:1 (8)

and each player will pick the arm with the highest index.

In the classical case, 3; can be chosen as

\/E = Vmg + \/210g (2) + dlog (d)\:ir)\tl}?) (9)

where X is used to initialize V; and is in this setting can be any positive number.

In the following subsections, we will generalize the LinUCB algorithm from ( ) to account for
the information asymmetries namely action asymmetry (Problem A) and reward asymmetry (Problem B),
and state their regret bounds.
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3.2 Asymmetry in Actions

Algorithm 1 LinUCB-A for asymmetry in actions
1: Input: a >0, K,;m,d €N

2: Vi« Iy,

3: b+ 04

4: fort=1,2,3,....,7T do
0; < V~1b

5

6:  Observe K™ arm contexts x; o for each joint arm a € A.
7. for each joint arm a € A do
8

9

T [T v—
Pta < 0 Tra+ay/T, VT a

:  end for
10:  All players take their corresponding action for a; € arg maxgq pr o, where joint action a; is chosen so
that it’s smallest by Definition 1. 2
11:  Observe reward r; € {0,1}
12:  Update V <=V + x4 q, :B;':at.
13:  Update b <= b+ x1 4,74
14: end for

In this section, we generalize the LinUCB algorithm action asymmetry (Problem A) and call it LinUCB-A.
This is the setting where each player receives the same reward but is unable to observe the other player’s
actions at every round. Since the feedback from all the players is the same, the only challenge comes in
inferring the other player’s actions. In particular, when two joint actions have the same UCB index, there
needs to be a way to break ties. Therefore, we define the following ordering on the joint arm space.

Definition 1. Number the players 1,...,m and the K individual actions, and consider each set of joint
action a as an m digit number with each digit corresponding to the joint action. Call this base K number
Ng. For joint action a,b € A, we say that a < b if Ng < Np.

This is similar to what is done in ( ). The idea is that even though the players cannot
observe, the other player’s actions, because they obtain the same feedback, they can infer what the other
players are doing as long as they have a way to break ties should two joint actions have the same index.
Because of this coordination, the players are behaving as if they were single agent in a larger joint action
space. From this, we can deduce the following regret bound.

Theorem 2. In the action asymmetric (Problem A) contextual bandit setting where the context vectors, the
frequentist regret bound of Algorithm 1 is

Ry = CdVTlog(TL) (10)
Proof. See Corollary 19.3 of ( ). O

We note that this bound truly reduces to the single agent setting case as it doesn’t even grow with the
number of arms. This is because the success of the algorithm only depends on the accuracy in the estimate
of 8*. In comparison, in the multiarmed bandit problem, the regret grows with action space because every
arm needs to be estimated.

3.3 Asymmetry in Rewards

In this section, we generalize the LinUCB algorithm reward asymmetry (Problem B) and call it LinUCB-B.
This is the setting where each player receives an i.i.d copy of the reward but is able to observe the other
player’s actions at every round. This algorithm is similar to LinUCB-A but takes into account that the reward
feedback is different for different players.
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Algorithm 2 LinUCB-B for asymmetry in rewards

1: Input: a >0, K;m,d € N a; < Az, where A = T3 b 0g

2: fort=1,2,3,....,T do

3:  Each player i updates 6} < V ~1b’

Each player Observe K™ arm contexts x; o for each joint arm a € A.
for each joint arm a € A do

Each player i updates p} , < (0}) @1q + /2 V'@ q

end for

Each player i chooses their corresponding action for their observed a; = arg max, p;a.
Each player observes the other player’s actions.

10:  Each players observes an I.LD. reward r{ € {0,1}

11:  Each player updates V =V + wt,athat

12:  Each player i updates b’ + b" + @ q,7}

13: end for

The central idea is to modify A and v/f3; so that each player’s confidence set is small enough so that for some
distribution of context vectors there is a very high probability that all the players agree on the optimal arm
for each particular round. In doing so, we allow the players to implicitly coordinate their actions without
any need for the players to communicate during the learning process. More specifically we set,

VBr =0 (T]6%],) (11)

with ¢ = % and our initialization for V) = A is

A=Te. (12)

Compare this to equation 9. In particular, the ratio of S7/A is much smaller for this setting than it is for
the setting in problem A. This is because BTT (as we show in Lemma 7) is the lower bound for the radius
of the confidence interval for our estimate of 8*, and we need these to be sufficiently small in order for the
aforementioned coordination to occur.

We shall show that remarkably, even using the same algorithm as Algorithm 1 (with just modifying A = v/T')
we can obtain a regret bound that is still sublinear. Note in this algorithm that the rewards ri at time ¢
are indexed by i, since each player observes their own copy of an IID reward, without seeing the other
players’ copy. Therefore each player has their own estimate of b* as well. This also causes their estimate of
the parameter 8™ to be different from each other, resulting in different confidence sets for 8* as well. The
explicit algorithm is stated in Algorithm 2, where the quantities that are now different for each player have
a superscript ¢ attached to them. For this algorithm to work we have to assume that the context vectors are
generated by some fixed (but unknown) distribution in the unit ball of radius L.

To see that it is impossible to obtain sublinear regret using adversarial contexts consider the 2 player
environment, and suppose each player has two arms {1,2}. Then we consider the following 2 x 2 matrix
where the row labels are the actions of one player and the column labels are the actions for the other player.
Furthermore, each entry corresponds to a context vector for that joint action.

12
1 v, O
2 | 0 v

where either v is the best contex vector, and v ~ v’ in that (v,0*) and (v’,0*) are really close to each
other. When they are sufficiently close since the players have IID rewards, their estimates 0! will also be
slightly different. If two players disagree on which context vector is the best, they will obtain 0 reward.
For the appropriate context vectors, this happens with constant probability, and thus we obtain constant
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regret. Note that we refrained from setting v = v’ because when two context vectors are the same the
players can still coordinate by ordering the arms as in Definition 1 which was done while studying Problem
A. Furthermore, this is not an issue that shows up in the single-agent setting because even if the player is
unable to decide which of v or v’ is better, it doesn’t matter because pulling either incurs little regret. In
the multiplayer settings, the issues show up when two players disagree on which arm to select for many of
the rounds.

Therefore, let 1(x) be a Lebesgue integrable probability distribution density of this ball that contains the
context vectors and suppose that ||1)]|; - < co. Note that it does not need to be continuous. Letting u be
the Lebesgue measure over (R%, M) (with M is the o-algebra of Borel sets), it follows that for any subset
U, we have

Po(z € U) = /U B(e)dp(z) < |l uO)

It follows that as u(U) — 0, we have P, (x € U) — 0 as well. This also means that as the players refine their
estimate of 8%, the chances that the players will disagree on which arm to pull will decrease in probability.
This intuition is formalized in Lemma 7 and Lemma 8.

We can now state the regret bound of Algorithm 2 under reward asymmetry (Problem B).

Theorem 3. In the reward asymmetric (Problem B) contextual bandit setting where the context vectors are
distributed with fixved distribution the frequentist regret bound of Algorithm 2 is,

Ry = O(mK*" L4/Tog(T)) (13)

The proof of this is given in the supplementary materials.

Note that this result depends on the number of actions. That’s because in order for the players to be
coordinated the context vectors of the joint action to have be sufficiently far. This is formalized in Lemma 7

3.4 Asymmetry in Both Rewards and Actions

In this section, we propose ETC which will be applied to Problem C. In the previous section, we showed that
LinUCB does well even when the rewards are IID (problem B). This is because in this setting the players are
still able to observe the other player’s actions and therefore they can make the correct updates. However, in
this setting, as they cannot observe the other player’s actions, we cannot guarantee each player will attempt
to pull the same joint arm. In particular, at the beginning of the learning process, when the estimate of 6
isn’t very accurate for any player, this increases the probability of mis-coordination.

We circumvent this by giving an exploration sequence of time T'* where it will be shown in the proof that
o= % is optimal. During the exploration sequence, all the players will pull arm 1 (or any other fixed arm(s))
as long as they agree on which ones to pull at each round. In this time they will update their V3 and b;
parameters. After the exploration phase they will run regular Lin UCB, but they will not update their V; and
b; values. The idea is that after sufficient exploration they will each have (different) but accurate estimates
of 6. Since the context vectors are generated at random (rather than adversarial), there is a high probability

that they will be able to successfully coordinate pulling the best action at every round.

Similar to Algorithm 2, our choice of A = v/T is important. By selecting a large enough A we ensure that
the confidence ball for 8 is sufficiently small. However, we cannot choose A too big, or else our confidence
ball for 8 will not contain @ with sufficiently high probability.

We have the following regret bound for this algorithm

Theorem 4. In the reward and action asymmetric (problem C) contextual bandit setting where the context
vectors are distributed with fized distribution the frequentist regret bound of the algorithm is

Ry = O(mK*" LT log(T)) (14)

The proof of this is given in the supplementary materials.
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Algorithm 3 ETC for asymmetry in rewards and actions

1: Input: By > 0, K,m,d € N, exploration parameter 7.
2: a; < Ay, with A =T where o = %
3: b; — Od

4: fort=1,2,3,...., 7% do

5. All players will pull the corresponding arm to the joint action 1.
6:  Update Vig1 < Vi + @y a, 2 ,,

7. Update b « b’ + x4 4,7}

8: end for

9: 0} «+ V-1lpt

10: fort=T*+1,...,T do

11:  Observe K™ arm contexts x; o for each joint arm a € A.

12:  for each joint arm a € A do

13: Pha < (0) "zt 6+ Br a:;',—aV*la:t@
14:  end for

15:  Each player chooses their corresponding action for their observed a; = arg maxq ps 4.
16: end for
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Figure 1: Regret plots comparing different algorithms to different information asymmetry. Red is the regret
of LinUCB-A on Problem A (asymmetry in actions). Brown is the regret for ETC on Problem B (asymmetry
in rewards). Green is the regret plot for LinUCB-B on Problem B. Finally black is the regret for ETC on
Problem C (asymmetry in both rewards and actions).

Similar to the regret bound of Algorithm 2 provided by Theorem 3, this depends on the number of actions
due to the fact that every round the players are miscoordinated (i.e. when the context vectors are too close
to each other), we incur linear regret.

4 Experiments

In this section, we execute simulations to corroborate the empirical efficacy of the proposed algorithms in
this paper. In Figure 1, we plot the regret versus time for both algorithms LinUCB-A and LinUCB-B. It should
be emphasized these algorithms assume different types of asymmetry: LinUCB-A assumes action asymmetry
while LinUCB-B assumes reward asymmetry.
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4.1 Experiment Details

We conduct the simulations using @ and context vectors z uniformly sampled from the unit cube [0, ﬁ]

This parametrization ensures that |||, and [|z||,,, measured using the £ norm, does not exceed L = Vd, in
line with the constraints of our problem setting. Furthermore, it’s clear this uniform distribution is bounded
over our space for z. Each reward is set to be Gaussian, and the standard deviation of them is randomly
uniformly pre-selected to be from the range [0, 1]. For each environment, the simulations were executed over
T = 10,000 rounds. We repeat these simulations 5 times to compute the median regret and report the 95%
confidence interval. The hyperparameter 37 is set to v/T for all algorithms analyzed.

In the proceeding section, we perform the experiment on environments with m and K equal to 2,3,4
respectively, with d = 5,10. Moreover, we use LinUCB-B_ETC to denote the ETC algorithm run on problem
B. Similarly, LinUCB-C_ETC is used to denote the ETC algorithm run on problem C.?

4.2 Analysis

We note that since LinUCB-A is the same algorithm as the single-player setting but with an added ordering,
it serves as the baseline to compare with our other algorithms. LinUCB performs relatively well as compared
to LinUCB-A but LinUCB-A tends to perform better. This is because while LinUCB-A has the more favorable
feedback, LinUCB-B has a larger A parameter which encourages less exploration. In the analysis, this affects
the probability of the "good event" that the 8 will stay within the confidence ball. However, in our simulations,
due to the small environment, it’s unlikely that the ‘bad’ events will occur. Therefore, in this case, it’s more
favorable to do less exploration.

We note that ETC appears to be piecewise linear. In particular, the first piece which only occurs for v/T rounds
is steeper as this is the exploration phase. In the second piece, the algorithm takes the parameters taken
from the periods of exploration and then runs LinUCB without updating these parameters. Philosophically,
the slope of the regret curve reflects an algorithm’s learning. Because the parameters don’t update, ETC does
not perform better as the rounds continue (which is different than the standard LinUCB, the slope of the
regret curve remains constant. Despite being piecewise linear, however, asymptotically the regret will still
grow in the same order as LinUCB-B.

In comparing ETC and LinUCB-B on the asymmetry in the rewards environment (Problem B), we note that,
LinUCB-B performs superior. However, ETC is more robust as it achieves around the same level of performance
in both Problem B And Problem C settings. This makes sense because ETC is a fully coordinated algorithm
so it does not need to rely on observing actions to achieve its performance.

5 Conclusions and Future Work

In this paper, we adapted LinUCB from ( ) to the multiagent setting with different types of
information asymmetry. Namely, we studied action asymmetry (Problem A) where each player receives the
same reward but cannot observe other player’s actions. Using a coordination scheme we were able to reduce
this to the single agent setting and obtain an O(\/T ) regret bound. On the other hand, we also studied
reward asymmetry (Problem B) where each player receives an iid copy of the reward but can observe the
other player’s actions. In this setting, we can prove that if the context vectors are distributed with a fixed
distribution (rather than adversarial), then we obtain a O(v/T) regret bound. We were able to achieve this
using the same algorithm as that in Problem A but modifying A to be v/T'. Both of these regret bounds are
the first for this setting. For asymmetry in both (Problem C), we proposed a fully coordinated ETC algorithm
which did exploration for the first v/T rounds and then ran LinUCB for the remaining time, which achieved
the same regret as the multiplayer LinUCB. Finally, we corroborated our results with some simulations.

In our regret bound, we have a dependence on K™, the number of joint actions. This occurs because we
assumed the contextual vectors are randomly generated and so we need these to be "well behaved" enough so

3All the source code that has been used to generate the results presented in this paper can be found via http://tinyurl.
com/yty68wcp.
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that the players can coordinate. However, this takes away from the true power of linear reward models where
the regret bound doesn’t depend on the number of actions. For future work, we can perhaps show that this
is necessary via a lower bound, or propose a new setting (perhaps the players pull their arms successively
rather than simultaneously).
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6 Supplementary Material

6.1 Concentration Lemmas

The following is taken from Theorem 20.5 of ( ). It gives us the size of the
ball that contains @ with high probability.

Lemma 5. Let § € (0,1). Then, with probability at least 1 — 4, it holds that for all t € N,
0; — 0,

R 1 det V3 ()
‘ oy < \/X||9*||2+\/210g (5> + log (Ad>

Furthermore, if ||0.||y < L, then P ( exists t € NT : 0, ¢ C;) < § with

1 det Vi1 (M)

b, 1 79’

Ct{eeRd:’

6.2 Proofs of Main Theorems

In this section, we prove that the algorithm in 2 satisfies the regret bound given in Theorem 3 Consider the
‘'good’ event E defined as follows

m

E=()[){6i € C:(6")} (15)

t=14i=1

This event states that at every round ¢ € [T, every player i € [m] has an empirical estimate of 8* that is
within the confidence interval centered at 8*. This ensures that all of the player’s estimates of 8* are not
too far from each other. This also means that despite each player having a different empirical estimate of
0*, if the context vectors of each arm are not too close for most rounds, then the players will be able to
coordinate properly. This is formalized in lemma 7. To do that we first show that the eigenvalues of V; are
nondecreasing

Lemma 6. For any A > 0 and Br, we have the following inequality for each players estimate for 8% and 0*

loi — 0% < F

Proof. To prove this note that C} is an ellipsoid where the inverse of the eigenvalues of V;_; give the lengths
of the principle axes. We first note that based on the fact that Vj = AI, and therefore Cj is a circle with
radius BTT We will be done if we can show that V; has nondecreasing eigenvalues. Let J]f > 57]2“ >0 > Jf
be the eigenvalues of V;.

From the definition of V;, it’s clear that V; is symmetric. Thus, we can apply the Courant-Fischer min-max
Theorem to obtain

oF(A) = min{max{Ry,(v) | v € U and v # 0} | dim(U) = k}
where the Rayleigh Quotient Ry, (v) is defined as,

(Viv, v)

2
Il

Ry, (v) =

14
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Therefore, we have

of = min{max{Ry,, (z) | v € U,v # 0} | dim(U) = k}
T (z)|veUw+#0}|dimU) =k}

— min{maX{RVt +mt,at wt,at

= min { max { (Ve + mtvatmzat)va v)
lv]”

‘dim(U) - k;}

= min { max { <Vtv’ v> + <33t,at$;at’07 v)
= 2 2
[[v]l o]l

‘dim(U) = k}

> min {max { (Vtv,2v>
[[v]l

_ -k
=0y

where in the inequality we used the fact that (@y,q, %/ 4,v,v) = (@10, 7/ 4,v
0.

'UGU,U;«EO}
veU,v;éO}

vE U7v7$0} ’dim(U) :k}

)T

_ T T _ T
V=0V Tta; L6,V = ||wt7atv|| 2

Now we show that when all the players have their estimates inside the confidence ball around 8*, then they

can fully coordinate.

Lemma 7. Suppose 0 € C,(0) is an empirical estimate of @* for players i. Then under the good event E,

if T1q and xy o are context vectors such that

(0%, @t 0) — (0%, Tt q) > 26TTL

then (0,4 4) > (0%, T4 4') for all players i.

Proof. From the defintion of Cy(#), we know that
<0§7 Tiar) = (0", Trar) + <0; — 0%, a)
< (0%, @rar) + [|0] — 6*|||zt.a |
< (0" xra) + |0f - 07| L

Similarly,

<02,$t,a> = <0*a wt,a) + <02 - 0*7mt,a>
(0", @ta) — [|6; — 0°[|l|2e.al
(0%, z¢0) — ||6; — 6% L

AVARLY;

Therefore combining the two inequalities above yields

(0, x1,a) — (01, 21.ar)

*7 wt,a) - <9*3 wt,a’>
Joi— |z

15

> (0%, 304 — |01 — 6% L
— (6%, @00) + [|67 - 07| L)
> (6
-2

(16)
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Figure 2: The set of points x4, such that equation 23 is satisfied lies outside of the region bounded by
the blue and green hyperplanes determined by x; q,. The dotted vector is 6*, and these hyperplanes are a
distance of 4% apart.

Form Lemma 6, ||0; — 6*|| < B2 then equation equation 16 will show (8%, @, o) — (6%, T q)—2(0; — 6*||L >
0 and the desired result will follows

This proves the desired result. O

The next result tells us that the probability that the context vectors satisfy the hypothesis in Lemma 7 is
lower bounded by some constant that will grow to 1 as T'— oo. This will be used to define the good event
G that will allow the players to agree on which arm they want to pull.

Lemma 8. At any given round t, if all the context vectors x;q are generated at random with probability
density function Y (x) < M, with ||z 4| < L, Then let P, be the probability for the following event at a round
t: Any two joint actions a and a’ satisfies the following inequality

. prL
(6% i) — (6% )| > 2755 (23)
Then
M(ci L)
P>1- KQWM (24)
for universal constants c1,co € R.
Proof. Aribtrailiry order the joint actions as a1, as, ..., and suppose & q, has been placed so that the given

conditions are satisfied. Now let’s bound the volume where the next context vector can be placed. In
particular, the set of points x; 4, such that it satisfies equation 23 satisfies

L

(0% @0as) > (07,200} + 2725 o (25)
L

(0%, @t a,) < (0%, T1a,) — zf’% (26)

From the definition of the inner product, the set of x; 4, that satisfy the equation above lies outside of two
hyperplanes normal to 8* and at a distance of 4% apart. See Figure 2 for an example in d = 3. Call the
region between these two parallel hyperplanes contained within the sphere U. Then the volume of U can
be bounded by the volume of a cylinder whose base is an d — 1 dimensional sphere with radius L, and with
height 4Lzl SNl 9*H Thus the volume of each such region is upper bounded by

U T L—1<4ﬁTL): T Ld(4 Pr )
wU) = Framy Mew) =tz ™ e

Thus the probability that x; o, satisfies equation 23 is at least
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= /Uw(w)dac >1 - pU)M (27)
_ Met Br

=1 (1) =

>1- 7C2M(C;L)%T (29)

for some universal constants c1, co. Repeating inductively, the probability that all K™ context vectors satisfy
equation 23 is at least

KTYI d d K’VTL
1 kC2M(C1L) Br > (1 km coM(c1 L) Br (30)
A A
k=1
M(c L)
Z 1— KQWL% (31)
where in the last inequality we used (1 — )™ > 1 — nz for > 0. O

Theorem 4 In the reward and action asymmetric (problem C) contextual bandit setting where the context
vectors are distributed with fixed distribution the frequentist regret bound of the algorithm is

Rr = O(mK*" LT log(T)) (32)

Proof. Consider the 'good’ event at time ¢ defined as,

Gy = ﬂ {|<0*7ﬂ3t,a><0*,:13t7a/>|>2[1T}

a,a’ €A

and let
T
G=()G:
t=1

This is the event that at round T, the context vectors for any two joint actions a and a’ are not too close
in the sense that their inner product with 8* is sufficiently far.

We suppose there are T rounds of exploration for some a € (0,1) and then optimize over a. We can
decompose the regret as follows:
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T
Rr=E|> (0,2q, — z*) (33)
<E Z(O, Ta, —X*) + Z (0, x4, w*)] (34)
t=1 t=T
r T
<OT*)+E| > (0,24, - w*>] (35)
e
=0(T*)+E | > (0,20, — z*)(I[G: N E] +1[(G; N E)°] (36)
Lt=T"<
=O(T*)+E | ) (6,24, — «*)(I[G; N E] + 1[(G; N E)“] (37)
=O(T*)+E | Y (0,24, — )G NE]| + Y P(GNE)* (38)
:t:;’u t:;“a
<O(T*) +E| Y (0,2q, — )G NE]| + Y [P(G) + P(E)] (39)

After T rounds of exploration, we have A\ = T*. Furthermore, as in Lemma 5, the probability that for all
players i, € [M] their estimator is within the confidence interval (determined by fr) is at least 1 — §. Thus
the probability that everyone’s estimator is within this confidence interval is 1 — md. Picking § = % this
gives

m
P(E°) < = —
(B®) <mé =
Using our choices of § and A = T%, we have (by Theorem 19.2 of ( )
— det (Vp(N)) )2 d\+TL?

So that we can use lemma 8 to upper bound the probability of the complement of the good event happening,
we have

P(GY) < K*™

d det(Vr (X))
CQM(ClL)d/BT _ pom coM(c1 L) [2 log (T) + log (4Tad ’)] 0 (KQm e 10g(T)> (40)
A T T

According to Lemma 7, under the event I[G; N E|] the players are completely coordinated. This means that
we are reduced to a single agent setting with a K™ size action space. However, the bound for the single agent
LinUCB regret bound doesn’t depend on the size of the action space so we do not expect the exponentially
larger action space to affect the regret. The regret for this can be bounded as follows.

Let r; be the instantaneous regret in round ¢ (under the good event G; N E defined by,

Ty = <0*a$a;‘ - wat> .

where a} is the optimal arm for round ¢ based on the context vectors received. Let 0; € C; be the parameter
in the confidence set for which <§t, at> = UCBs (a). Then, using the fact that 6, € C; and the definition of
the algorithm leads to R

<9*, $a:> < UCBt (sr:a:) < UCBt (mat) = <9t, $at> .
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Using Cauchy-Schwarz inequality and the assumption that 6, € C; and facts that 6, € C; and C; C & leads
to

e = (0, Tz — Ta,) < (0; — 04, %a,) < ||Ta, [ 16: = 0., (41)
B 12\/Br
< 2||za,lly 1 VBr = 240, Vs ' ®a,\/Br < O (2 Ta T) (42)
1
Where use used the fact that ||V || = max,cpa ||V‘T‘$H2 I, is upper bounded by the largest eigenvalue = O(7x)

(given by %) since V;~! is positive semidefinite.

Therefore, picking a = % which gives us the tightest bound by AM-GM, we have

T T
Ry =Y [P(G§)+ P(E°) + Y 1 = O(mK*" LT log(T)) (43)

t=1 t=1

We can now prove the regret bound of Algorithm 2 under reward asymmetry (Problem B).

Theorem 3 In the reward asymmetric (Problem B) contextual bandit setting where the context vectors are
distributed with fixed distribution the frequentist regret bound of Algorithm 2 is

R = O(mK*™ L/T log(T)) (44)
Proof. Remarkably we can follow the same proof structure as in Theorem 4. In ETC we have two main phases

1. They pull a fixed arbitrary arm for T'* exploration rounds while updating their 0 estimate.

2. The remaining T — T rounds they will do regular Lin-UCB while not updating their parameters.

Even though in Algorithm LinUCB-B, they follow LinUCB for all T' rounds, however, we can decompose these
rounds into the set of first T'* rounds and the remaining 7' — 7T'* rounds to capitalize on the decomposition
given by equation 39. This is because in the first T rounds we are still updating our estimate for 6 which
is exactly what happens in phase 1 of ETC. Given that our initialization A = T is unchanged in LinUCB-B
from ETC this means that equation 40 still holds. While for the remaining T" — 6 rounds they will do regular
Lin-UCB while still sharpening the parameters which is essentially a better version of phase 2 of ETC. This
means that equation 42 still holds. In fact, this equation can be made slightly sharper by

LQ /
rtSO(Q tﬁT> (45)
Therefore we will obta ain sharper bound but of the same order as O(-) hides the constants. O
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