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Abstract

Single-player contextual bandits are a well-studied problem in reinforcement learning that
has seen applications in various fields such as advertising, healthcare, and finance. In light
of the recent work on information asymmetric bandits Chang et al. (2022); Chang and Lu
(2023), we propose a novel multiplayer information asymmetric contextual bandit framework
where there are multiple players each with their own set of actions. At every round, they
observe the same context vectors and simultaneously take an action from their own set
of actions, giving rise to a joint action. However, upon taking this action the players are
subjected to information asymmetry in (1) actions and/or (2) rewards. We designed an
algorithm mLinUCB by modifying the classical single-player algorithm LinUCB in Chu et al.
(2011) to achieve the optimal regret O(

√
T ) when only one kind of asymmetry is present.

We then propose a novel algorithm ETC that is built on explore-then-commit principles to
achieve the same optimal regret when both types of asymmetry are present.

1 Introduction

The problem of Multi-armed Bandits (MAB) is one of the most well-studied classic reinforcement learning
problems. The algorithms in the field are designed to find an optimal balance between the exploration-
exploitation tradeoff dilemma. In the traditional setting of this problem, a single agent chooses one action
(arm) from m available actions over numerous iterations, where each action gives off a reward sampled from
some unknown sub-Gaussian distribution. The primary objective is to minimize the agent’s regret, defined
as the difference between the expected reward of the agent’s chosen actions and that of the optimal actions.
Thus, the success of a policy can be measured by the regret as a function of time (number of actions taken).
Under this classical setting, Lai and Robbins (1985) showed that no policy can achieve better than O(log T )
regret. The UCB algorithm first attains this lower bound.

Although single-player MABs are well-studied, they fail to model more complex real-world problems involving
multiple participants. Recently, there has been escalating interest in cooperative multiplayer MAB challenges,
wherein several agents aim to maximize their aggregate expected returns collaboratively Chang and Lu
(2023); Chang et al. (2022); Wang et al. (2020); Brânzei and Peres (2021); Pacchiano et al. (2023). Although
these problem settings extend the MAB problems into multiple players, they still remain restrictive in real-
world applications in these three aspects:

(1) These settings do not model the agents’ access to information that might help agents predict the
reward quality of an action (i.e. no context vectors).

(2) These settings assume the rewards obtained by each player are independent of the actions taken by
other players (i.e. joint actions are not considered).

(3) These settings assume the agents can freely communicate their actions taken and rewards received
to one another (i.e information is perfectly symmetric).

To deal with restriction (1), prior works such as Chu et al. (2011) analyze the linear contextual bandit
framework. Linear contextual bandits generalize the classical finite-armed MAB by allowing players to
utilize side information to predict the quality of rewards. In each round of the contextual bandit problem,
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the agent observes one random context vector x per action, where the expectation of the reward distribution
of that action is a zero-mean noise plus the inner product of the context vector x and an underlying parameter
θ that is unknown to the players.1 This framework Chu et al. (2011) relaxes the aforementioned restriction
(1) by allowing agents to make use of the observed context θ to predict the rewards.

In this paper, we address restriction (2) by extending the contextual bandit framework into a multiplayer
setting where the joint action of all players determines the reward distribution. Furthermore, we add infor-
mation asymmetric multiplayer linear contextual bandit framework to make our setting even more general,
which we are the first to do so. At each round, each player takes an action individually and simultaneously
resulting in a joint action. This joint action generates the rewards for all players. In every round, all agents
observe the same context vectors (one context vector per joint action). This multiplayer extension relaxes
restriction 2.

To restrict communication between players and relax restrictions 3, we separately consider the following two
types of information asymmetries: (1) Action asymmetry – At each round, each player receives the same
reward but cannot observe other player’s actions (the joint actions remains hidden). (2) Reward asymmetry
– at each round, each player receives an IID reward that can be only observed by themselves, while they are
allowed to observe the actions of other players. Although players cannot communicate during the learning
process, they are aware of the possible actions other players can take and can agree on a strategy beforehand.

Related Works The single-player contextual bandit with linear payoff functions is a well-studied problem
with efficient algorithmic solutions Agarwal et al. (2014); Agrawal and Goyal (2013). There are many variants
to the single-player linear contextual bandit setting such as Agrawal and Devanur (2016) and Badanidiyuru
et al. (2014) which consider bandits with constraints on resource allocations. Furthermore, Bouneffouf
et al. (2017) studies the problem with restricted context vectors, Allesiardo et al. (2014) analyzes contextual
bandits that do not need a hypothesis on stationary properties of contexts and rewards.

Linear contextual bandits have numerous real-world applications, encompassing healthcare, recommender
systems, information retrieval, and risk management. For example, Durand et al. (2018) employs the contex-
tual bandit framework to adaptively treat mice in the early stages of cancer. Li et al. (2010) and Bouneffouf
et al. (2012) leverage contextual information to enhance mobile and news article recommendation systems.
Bouneffouf et al. (2013) applies contextual bandits to optimize context-based information retrieval. Further-
more, Soemers et al. (2018) utilizes contextual bandits to adaptively distinguish between fraud and concept
drifts in credit card transactions. Within machine learning, Laroche and Féraud (2017) employs contextual
bandits for algorithmic selection in off-policy reinforcement learning, while Bouneffouf et al. (2014) integrates
them to improve active learning.

We will now overview the literature on multiplayer bandits. Within the domain of multiplayer stochastic
bandits, numerous studies permit restricted communication, as observed in prior research such as Martínez-
Rubio et al. (2018; 2019); Szorenyi et al. (2013); Karpov et al. (2020); Tao et al. (2019). Recent studies,
building upon the foundations laid by Chang et al. (2021), have delved into investigations of information
asymmetry in the context of multiplayer bandits, as explored in works such as Mao et al. (2022); Kao et al.
(2022); Mao et al. (2021); Kao (2022).

Our Contribution This is the first paper on multiplayer contextual bandits. We propose a multiplayer
information asymmetric environment that was originally from the multi-armed bandit setting Chang et al.
(2021); Chang and Lu (2023) and apply it to contextual bandits. We then propose two algorithms that are
based on the single agent linear contextual bandit setting in Chu et al. (2011) called LinUCB. Remarkably,
we show that by modifying LinUCB slightly, we obtain an algorithm that is able to take on both forms
of information asymmetry. More specifically, through a coordination scheme, we are able to recover the
same regret bound O(

√
T ) as in the single-agent setting when the players receive the same reward but can’t

observe the other player’s actions (Problem A). On the other hand, when the players receive their own IID
reward but can observe the other player’s actions (Problem B), we obtain the first sublinear regret bound
of O(

√
T ). Finally, when there are both types of information asymmetry (Problem C), we propose a new

1θ is global and independent of the actions. Moreover, θ is inherent to the contextual environment and does not change in
between rounds.
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algorithm that involves principles in the classical Explore and then commit algorithm that achieves the same
order regret bound.

2 Preliminary

We consider information asymmetric contextual bandits, which is a generalization of the single player setting
given in Chu et al. (2011). In particular, they propose a UCB-index based algorithm LinUCB, and we propose
a multiplayer version of this algorithm.

In particular, we suppose there are m players, and each player i can pick from a set of arms Ai. For simplicity,
we can assume that |Ai| = K although the case where each player has a different number of arms is easy.
At every round t, each player will pick an arm at the same time and without communicating from their
arm set. This gives rise to a joint arm (which can be represented as a vector of actions from each player)
A := A1×· · ·×Am which can be denoted at At which produces a stochastic reward rt,At

. We will use bold
to denote any quantity that is a vector. Given a joint action a we define the term corresponding action for
player i to be the ith component in the vector a. We shall use T to denote the total number of rounds in
the learning process. The collective goal of all the players is to maximize the total expected rewards up to
horizon T .

Furthermore, at the start of each round, every player is given the same Km context vectors xt,a ∈ Rd

corresponding to each joint arm a ∈ A. Let B(0, 1) be the d-dimensional unit ball centered at the origin.
Suppose that each contextual vector xt,a ∈ B(0, 1) so that ∥xt,a∥ℓ2

≤ L under the ℓ2 norm. The reward
that is produced from pulling joint arm a satisfies the linear realizability assumption, that is,

E[rt,a|xt,a] = ⟨xt,a,θ
∗⟩ (1)

for some θ∗ ∈ Rd. This means that in order to determine which arms have the best context. One must have
an accurate estimate of θ∗.

Let at be the joint arm that is selected at round t. Furthermore, let a∗
t be the best arm at round t. That is

a∗
t = arg maxa∈A⟨xa, θ

∗⟩. To understand the success of a policy, we shall use the notion of regret RT up to
horizon T , defined as

RT =
T∑

t=1
⟨x∗

t ,θ
∗⟩ − ⟨xt,at

,θ∗⟩ = ⟨x∗
t − xt,at

,θ∗⟩ (2)

In Chu et al. (2011), they were able to prove that LinUCB attains O(
√
T ) regret, which matches the lower

bound for this problem. We now state the information asymmetric problems we will be studying taken from
Chang et al. (2022); Chang and Lu (2023). They are as follows (recall that all players receive the same
contexts for all the joint actions each round).

Problem A: Information asymmetry in actions. At every round, after a joint action a is taken, all the
players receive the rewards, however, they cannot observe the actions of the other players.

Problem B: Information asymmetry in rewards. At every round, after a joint action a is taken, all the
players can observe the other player’s actions. However, they each receive their own i.i.d. copy of the reward.
To be precise, since each player obtains a different reward, we should use Ri

T to be the regret for player i.
However as the distributions of the rewards have the same mean, and regret is defined under expectation, it
follows that even in this setting each player experiences the same regret.

Problem C: Information asymmetry in both actions and rewards. This combines the challenges in problem
A and problem B where every round the players get their own i.i.d. reward (without seeing other player’s
reward) and they cannot observe the actions taken by other players.

2.1 Challenges in the contextual bandit setting

In this section we compare our work to that given in Chang et al. (2022). In their paper, they study
the information asymmetry bandit problem for the classical multi-armed bandit setting. For problem A,
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information asymmetry in only actions, all the players receive the same reward feedback but are unable to
communicate as well as observe the other player’s actions at each round. However, because they receive the
same reward feedback, if they are to correctly infer the other player’s actions then they are able to maintain
the same UCB estimates of all the arms. Similarly, in the contextual bandit setting, they observe the same
rewards as well as the same contexts. Thus, they are able to maintain the same estimate for θ∗ as well as the
same confidence set. The novelty is constructing a way to break ties when two arms have the same LinUCB
index so that each player can accurately infer the correct action that is taken at the time step despite not
being able to observe the actions of the other players. This is where definition 1 plays a role in algorithm 1.

On the other hand, problem B, which is information asymmetry in rewards is a bit more challenging. Since
each player is observes only their own IID copy of their reward, they will maintain different estimates of
θ∗ (and therefore have different confidence sets for this parameter as well). In the bandit’s case studied in
Chang and Lu (2023), this issue was addressed using an UCB-interval algorithm, where initially all the arms
were pulled in a predefined order. Each player maintains for each arm their own UCB-interval and when
two UCB-intervals are disjoint. However, such an elimination method no longer applies to the contextual
bandit case because at every round the distribution of each arm changes in accordance to the context it
receives. However, this problem is easier than the bandits’ case in the sense that we only have to estimate
one parameter θ∗, whereas in the bandits case, we had to estimate the mean of each arm.

3 Main Results

3.1 LinUCB

We describe how LinUCB works from Chu et al. (2011) using the multiagent environment. In particular,
this algorithm maintains an estimate of θ∗ by solving the following least squares estimator (for player i).

θi
t = arg min

θ∈Rd

(
T∑

t=1
⟨ri

t,a − θ, xt,at
)2 + λ∥θ∥2

ℓ2

)
(3)

which has solution

θi
t = V −1

t

T∑
t=1

xt,art,a (4)

where Vt are d× d matrices

V0 = λI and Vt = V0 +
T∑

t=1
xt,at

x⊤
t,at

(5)

This θi
t gives an estimate of θ∗ in the contextual bandit setting.

For the estimate of θ∗, we construct a confidence interval Ct(θ) which is the set of vectors in Rd that are at
most a certain distance away from θ under the norm ∥v∥2

Vt−1
= v⊤Vt−1v. More explicitly our confidence set

is,

Ct(θ) = {v ∈ Rd : ∥v − θ∥2
Vt−1

≤ βT } (6)

For each arm, each player i can construct an Upper confidence bound by solving the following optimization
problem

max
θ∈Ct(θi

t)
⟨θ,xt,at⟩ (7)

This optimization problem has the solution

⟨at,a,θ
i
t⟩+

√
βt∥xt,a∥V −1

t−1
(8)

and each player will pick the arm with the highest index.

4



Under review as submission to TMLR

In the classical case, βt can be chosen as

√
βn =

√
λm2 +

√
2 log

(
1
δ

)
+ d log

(
dλ+ nL2

dλ

)
(9)

where λ is used to initialize V0 and is in this setting can be any positive number.

In the following subsections, we will generalize the LinUCB algorithm from Chu et al. (2011) to account for
the information asymmetries namely action asymmetry (Problem A) and reward asymmetry (Problem B),
and state their regret bounds.

3.2 Asymmetry in arms

Algorithm 1 mLinUCB-A for asymmetry in actions
1: Input: α > 0, K,m, d ∈ N
2: Vt ← Id,
3: bt ← 0d

4: for t = 1, 2, 3, . . . . , T do
5: θt ← V −1b
6: Observe Km arm contexts xt,a for each joint arm a ∈ A.
7: for each joint arm a ∈ A do
8: pt,a ← θ⊤

t xt,a + α
√

x⊤
t,aV

−1xt,a

9: end for
10: All players take their corresponding action for at ∈ arg maxa pt,a, where joint action at is chosen so

that it’s smallest by Definition 1. 2

11: Observe reward rt ∈ {0, 1}
12: Update V ← V + xt,at

x⊤
t,at

.
13: Update b← b+ xt,at

rt.
14: end for

In this section, we generalize the LinUCB algorithm action asymmetry (Problem A) and call it LinUCB-A.
This is the setting where each player receives the same reward but is unable to observe the other player’s
actions at every round. Since the feedback from all the players is the same, the only challenge comes in
inferring the other player’s actions. In particular, when two joint actions have the same UCB index, there
needs to be a way to break ties. Therefore, we define the following ordering on the joint arm space.
Definition 1. Number the players 1, ...,m and the K individual actions, and consider each set of joint
action a as an m digit number with each digit corresponding to the joint action. Call this base K number
Na. For joint action a, b ∈ A, we say that a < b if Na < Nb.

This is similar to what is done in Chang et al. (2022). The idea is that even though the players cannot
observe, the other player’s actions, because they obtain the same feedback, they can infer what the other
players are doing as long as they have a way to break ties should two joint actions have the same index.
Because of this coordination, the players are behaving as if they were single agent in a larger joint action
space. From this we can deduce the following regret bound.
Theorem 2. In the action asymmetric (Problem A) contextual bandit setting where the context vectors, the
frequentist regret bound of Algorithm 1 is

RT = Cd
√
T log(TL) (10)

Proof. See Corollary 19.3 of Lattimore and Szepesvári (2020).
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We note that this bound truly reduces to the single agent setting case as it doesn’t even grow with the
number of arms. This is because the success of the algorithm only depends on the accuracy in the estimate
of θ∗. In comparison, in the multiarmed bandit problem, the regret grows with action space because every
arm needs to be estimated.

3.3 Asymmetry in rewards

In this section, we generalize the LinUCB algorithm reward asymmetry (Problem B) and call it LinUCB-B.
This is the setting where each player receives an i.i.d copy of the reward but is able to observe the other
player’s actions at every round. This algorithm is similar as mLinUCB-A but taking into account that the
reward feedback is different for different players.

Algorithm 2 mLinUCB-B for asymmetry in rewards
1: Input: α > 0, K,m, d ∈ N at ← λId, where λ = T

1
2 bi

t ← 0d

2: for t = 1, 2, 3, . . . . , T do
3: Each player i updates θi

t ← V −1bi

4: Each player Observe Km arm contexts xt,a for each joint arm a ∈ A.
5: for each joint arm a ∈ A do
6: Each player i updates pi

t,a ← (θi
t)⊤xt,a + α

√
x⊤

t,aV
−1xt,a

7: end for
8: Each player i chooses their corresponding action for their observed at = arg maxa p

i
t,a.

9: Each player observe the other player’s actions.
10: Each players observes an I.I.D. reward ri

t ∈ {0, 1}
11: Each player updates V = V + xt,at

x⊤
t,at

12: Each player i updates bi ← bi + xt,at
ri

t

13: end for

The central idea is to modify λ and
√
βt so that each player’s confidence set is small enough so that for some

distribution of context vectors there is a very high probability that all the players agree on the optimal arm
for each particular round. In doing so, we allow the players to implicitly coordinate their actions without
any need for the players to communicate during the learning process. More specifically we set,√

βT = O
(
T c/2∥θ∗∥2

)
(11)

with c = 1
2 and our initialization for V0 = λI is

λ = T c. (12)

Compare this to equation equation 9. In particular, the ratio of βT /λ is much smaller for this setting than
it is for the setting in problem A. This is because βT

λ (as we show in Lemma 7) is the lower bound for the
radius of the confidence interval for our estimate of θ∗, and we need these to be sufficiently small in order
for the aforementioned coordination to occur.

We shall show that remarkably, even using the same algorithm as Algorithm 1 (with just modifying λ =
√
T )

we can obtain a regret bound that is still sublinear. Note in this algorithm that the rewards ri
t at time t

are indexed by i, since each player observes their own copy of an IID reward, without seeing the other
players’ copy. Therefore each player has their own estimate of bi as well. This also causes their estimate of
the parameter θ∗ to be different from each other, resulting in different confidence sets for θ∗ as well. The
explicit algorithm is stated in Algorithm 2, where the quantities that are now different for each player have
a superscript i attached to them. For this algorithm to work we have to assume that the context vectors are
generated by some fixed (but unknown) distribution in the unit ball of radius L.

To see that it is impossible to obtain sublinear regret using adversarial contexts consider the 2 player
environment, and suppose each player has two arms {1, 2}. Then we consider the following 2 × 2 matrix
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where the row labels are the actions of one player and the column labels are the actions for the other player.
Furthermore each entry corresponds to a context vector for that joint action.

[ 1 2

1 vt 0
2 0 v′

t

]

where either v is the best contex vector, and v ∼ v′ in that ⟨v,θ∗⟩ and ⟨v′,θ∗⟩ are really close to each
other. When they are sufficiently close, since the players have IID rewards, their estimates θi

t will also be
slightly different. If two players disagree on which context vector is the best, they will obtain 0 reward.
For the appropriate context vectors, this happens with constant probability, and thus we obtain constant
regret. Note that we refrained from setting v = v′ because when two context vectors are the same the
players can still coordinate by ordering the arms as in Definition 1 which was done while studying Problem
A. Furthermore, this is not an issue that shows up in the single-agent setting because even if the player is
unable to decide which of v or v′ is better, it doesn’t matter because pulling either incurs little regret. In
the multiplayer settings, the issues show up when two players disagree on which arm to select for many of
the erounds.

Therefore, let ψ(x) be a Lebesgue integrable probability distribution density of this ball that contains the
context vectors and suppose that ∥ψ∥L∞ < ∞. Note that it does not need to be continuous. Letting µ be
the Lebesgue measure over (Rd,M) (with M is the σ-algebra of Borel sets), it follows that for any subset
U , we have

Pµ(x ∈ U) =
∫

U

ψ(x)dµ(x) < ∥ψ∥L∞µ(U)

It follows that as µ(U)→ 0, we have Pµ(x ∈ U)→ 0 as well. This also means that as the players refine their
estimate of θ∗, the chances that the players will disagree on which arm to pull will decrease in probability.
This intuition is formalized in Lemma 7 and Lemma 8.

We can now state the regret bound of Algorithm 2 under reward asymmetry (Problem B).
Theorem 3. In the reward asymmetric (Problem B) contextual bandit setting where the context vectors are
distributed with fixed distribution the frequentist regret bound of Algorithm 2 is,

RT = O(mK2mLd
√
T log(T )) (13)

The proof of this is given in the supplementary materials.

Note that this result depends on the number of actions. That’s because in order for the players to be
coordinated the context vectors of the joint action to have be sufficiently far. This is formalized in Lemma 7

3.4 Asymmetry in Both Rewards and Actions

In the previous section, we showed that LinUCB does well even when the rewards are IID (problem B). This
is because in this setting the players are still able to observe the other player’s actions and therefore they
can make the correct updates. However, in this setting, as they cannot observe the other player’s actions,
we cannot guarantee each player will attempt to pull the same joint arm. particular, in the beginning of the
learning process, when the estimate of θ isn’t very accurate for any player, this increases the probability of
mis-coordination.

We circumvent this by giving an exploration sequence of time Tα where it will be shown in the proof that
α = 1

2 is optimal. During the exploration sequence all the players will pull arm 1 (or any other fixed arm(s))
as long as they agree on which ones to pull at each round. In this time they will update their Vt and bi

parameters. After the exploration phase they will run regular Lin UCB, but they will not update their Vt and
bi values. The idea is that after sufficient exploration they will each have (different) but accurate estimates
of θ. Since the context vectors are generated at random (rather than adversarial), there is a high probability
that they will be able to successfully coordinate pulling the best action at every round.
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Algorithm 3 ETC for asymmetry in rewards and actions
1: Input: βT > 0, K,m, d ∈ N, exploration parameter Tα.
2: at ← λId, with λ = Tα where α = 1

2
3: bi

t ← 0d

4: for t = 1, 2, 3, . . . . , Tα do
5: All players will pull the corresponding arm to the joint action 1.
6: Update Vt+1 ← Vt + xt,atx

⊤
t,at

7: Update bi ← bi + xt,atr
i
t

8: end for
9: θi

t ← V −1bi

10: for t = Tα + 1, ..., T do
11: Observe Km arm contexts xt,a for each joint arm a ∈ A.
12: for each joint arm a ∈ A do
13: pi

t,a ← (θi
t)⊤xt,a +

√
βT

√
x⊤

t,aV
−1xt,a

14: end for
15: Each player chooses their corresponding action for their observed at = arg maxa pt,a.
16: end for

Similar to Algorithm 2, our choice of λ =
√
T is important. By selecting a large enough λ we ensure that the

confidence ball for θ is sufficiently small. However, we cannot choose λ too big, or else our our confidence
ball for θ will not contain θ with sufficiently high probability.

We have the following regret bound for this algorithm

Theorem 4. In the reward and action asymmetric (problem C) contextual bandit setting where the context
vectors are distributed with fixed distribution the frequentist regret bound of the algorithm is

RT = O(mK2mLd
√
T log(T )) (14)

The proof of this theorem is given in the supplementary materials.

Similar to the regret bound of Algorithm 2 provided by Theorem 3, this depends on the number of actions
due to the fact that every round the players are miscoordinated (i.e. when the context vectors are too close
to each other), we incur linear regret.

4 Experiments

In this section, we execute simulations to corroborate the empirical efficacy of the proposed algorithms in
this paper. In Figure 1, we plot the regret versus time for both algorithms LinUCB-A and LinUCB-B. It should
be emphasized these algorithms assume different types of asymmetry: LinUCB-A assumes action asymmetry
while LinUCB-B assumes reward asymmetry.

4.1 Experiment Details

We conduct the simulations using θ and context vectors x uniformly sampled from the unit cube [0, 1√
d
].

This parametrization ensures that ∥θ∥ℓ2
and ∥x∥ℓ2

, measured using the ℓ2 norm, does not exceed L =
√
d, in

line with the constraints of our problem setting. Furthermore, it’s clear this uniform distribution is bounded
over our space for x. Each reward is set to be Gaussian, and the standard deviation of them is randomly
uniformly pre-selected to be from the range [0, 1]. For each environment, the simulations were executed over
T = 10, 000 rounds. We repeat these simulations 5 times to compute the median regret and report the 95%
confidence interval. The hyperparameter βT is set to

√
T for all algorithms analyzed.
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Figure 1: Regret plots comparing different algorithms to different information asymmetry. Red is the regret
of LinUCB-A on Problem A (asymmetry in actions). Brown is the regret for ETC on Problem B (asymmetry
in rewards). Green is the regret plot for LinUCB-B on Problem B. Finally black is the regret for ETC on
Problem C (asymmeetry in both rewards and actions).

In the proceeding section, we perform the experiment on environments with m and K equal to 2, 3, 4
respectively, with d = 5, 10. Moreover, we use LinUCB-B_ETC to denote the ETC algorithm run on problem
B. Similarly, LinUCB-C_ETC is used to denote the ETC algorithm run on problem C.3

4.2 Analysis

We note that for most of these environments LinUCB-A and LinUCB-B perform comparably well to each
other. This is because while LinUCB-A has the more favorable feedback, LinUCB-B has a larger λ parameter
which encourages less exploration. In the analysis, this affects the probability of the "good event" that the θ
will stay within the confidence ball. However, in our simulations, due to the small environment, it’s unlikely
that the "bad" events. Therefore, in this case, it’s more favorable to do less exploration.

We note that ETC appears to be piecewise linear. In particular, the first piece which only occurs for
√
T rounds

is steeper as this is the exploration phase. In the second piece, the algorithm takes the parameters taken
from the periods of exploration and then runs LinUCB without updating these parameters. Philosophically,
the slope of the regret curve reflects an algorithms learning. ecause the parameters don’t update, ETC does
not perform better as the rounds continue (which is different than the standard LinUCB, the slope of the
regret curve remains constant. Despite being piecewise linear, however, asymptotically the regret will still
grow in the same order as LinUCB-B.

In comparing ETC and LinUCB-B on the asymmetry in the rewards environment (Problem B), we note that,
LinUCB-B performs superior. However, ETC is more robust as it achieves around the same level of performance
in both Problem B And Problem C settings. This makes sense because ETC is a fully coordinated algorithm
so it does not need to relay on observing actions to achieve its performance.

5 Conclusions and Future Work

In this paper, we adapted LinUCB from Chu et al. (2011) to the multiagent setting with different types of
information asymmetry. multiplayer information asymmetry contextual bandits setting. Namely, we studied

3All the source code that has been used to generate the results presented in this paper can be found via http://tinyurl.
com/yty68wcp.
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action asymmetry (Problem A) where each player receives the same reward but cannot observe other player’s
actions. Using a coordination scheme we were able to reduce this to the single agent setting and obtain an
O(
√
T ) regret bound. On the other hand, we also studied reward asymmetry (Problem B) where each player

receives an iid copy of the reward but can observe the other player’s actions. In this setting, we can prove
that if the context vectors are distributed with a fixed distribution (rather than adversarial), then we obtain
a O(T

√
T ) regret bound. We were able to achieve this using the same algorithm as that in Problem A but

modifying λ to be
√
T . Both of these regret bounds are the first for this setting. For asymmetry in both

(Problem C), we proposed a fully coordinated ETC algorithm which did exploration for the first
√
T rounds,

and then ran LinUCB for the remaining time, which achieved the same regret as the multiplayer LinUCB.
Finally, we corroborated our results with some simulations.
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6 Supplementary Material

6.1 Concentration Lemmas

The following is taken from Theorem 20.5 of Lattimore and Szepesvári (2020). It gives us the size of the
ball that contains θ with high probability.

Lemma 5. Let δ ∈ (0, 1). Then, with probability at least 1− δ, it holds that for all t ∈ N,

∥∥∥θ̂t − θ∗

∥∥∥
Vt(λ)

<
√
λ ∥θ∗∥2 +

√
2 log

(
1
δ

)
+ log

(
detVt(λ)

λd

)
.

Furthermore, if ∥θ∗∥2 ≤ L, then P ( exists t ∈ N+ : θ∗ /∈ Ct) ≤ δ with

Ct =
{
θ ∈ Rd :

∥∥∥θ̂t−1 − θ
∥∥∥

Vt−1(λ)
< L
√
λ+

√
2 log

(
1
δ

)
+ log

(
detVt−1(λ)

λd

)}
.

6.2 Proofs of Main Theorems

In this section, we prove that the algorithm in 2 satisfies the regret bound given in Theorem 3 Consider the
’good’ event E defined as follows

E =
T⋂

t=1

m⋂
i=1

{
θi

t ∈ Ct(θ∗)
}

(15)

This event states that at every round t ∈ [T ], every player i ∈ [m] has an empirical estimate of θ∗ that is
within the confidence interval centered at θ∗. This ensures that all of the player’s estimates of θ∗ are not
too far from each other. This also means that despite each player having a different empirical estimate of
θ∗, if the context vectors of each arm are not too close for most rounds, then the players will be able to
coordinate properly. This is formalized in lemma 7. to do that we first show that the eigenvalues of Vt are
nondecreasing

Lemma 6. For any λ > 0 and βT , we have the following inequality for each players estimate for θi
t and θ∗

∥∥θi
t − θ∗∥∥ ≤ βT

λ

Proof. To prove this note that Ct is an ellipsoid where the inverse of the eigenvalues of Vt−1 give the lengths
of the principle axes. We first note that based on the fact that V0 = λI, and therefore C0 is a circle with
radius βT

λ . We will be done if we can show that Vt has nondecreasing eigenvalues. Let σk
1 ≥ σk

2 ≥ · · · ≥ σd
t

be the eigenvalues of Vt.

From the definition of Vt, it’s clear that Vt is symmetric. Thus, we can apply the Courant-Fischer min-max
Theorem to obtain

σk
t (A) = min{max{RVt

(v) | v ∈ U and v ̸= 0} | dim(U) = k}

where the Rayleigh Quotient RVt
(v) is defined as,

RVt
(v) = ⟨Vtv,v⟩

∥v∥2

12
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Therefore, we have

σk
t+1 = min{max{RVt+1(x) | v ∈ U, v ̸= 0} | dim(U) = k}

= min{max{RVt+xt,at x⊤
t,at

(x) | v ∈ U, v ̸= 0} | dim(U) = k}

= min
{

max
{
⟨(Vt + xt,atx

⊤
t,at

)v,v⟩
∥v∥2

∣∣∣∣v ∈ U, v ̸= 0
}∣∣∣∣dim(U) = k

}

= min
{

max
{
⟨Vtv,v⟩
∥v∥2 +

⟨xt,at
x⊤

t,at
v,v⟩

∥v∥2

∣∣∣∣v ∈ U, v ̸= 0
}∣∣∣∣ dim(U) = k

}

≥ min
{

max
{
⟨Vtv,v⟩
∥v∥2

∣∣∣∣v ∈ U, v ̸= 0
}∣∣∣∣ dim(U) = k

}
= σk

t

where in the inequality we used the fact that ⟨xt,at
x⊤

t,at
v,v⟩ = (xt,at

x⊤
t,at

v)⊤v = v⊤xt,at
x⊤

t,at
v =

∥∥x⊤
t,at

v
∥∥ ≥

0.

Now we show that when all the players have their estimates inside the confidence ball around θ∗, then they
can fully coordinate.
Lemma 7. Suppose θi

t ∈ Ct(θ) is an empirical estimate of θ∗ for players i. Then under the good event E,
if xt,a and xt′,a′ are context vectors such that

⟨θ∗,xt,a⟩ − ⟨θ∗,xt,a′⟩ > 2βTL

λ
(16)

then ⟨θi
t,xt,a⟩ > ⟨θi

t,xt,a′⟩

Proof. From the defintion of Ct(θ), we know that

⟨θi
t,xt,a′⟩ = ⟨θ∗,xt,a′⟩+ ⟨θi

t − θ∗,xt,a′⟩ (17)
≤ ⟨θ∗,xt,a′⟩+

∥∥θi
t − θ∗∥∥∥xt,a′∥ (18)

≤ ⟨θ∗,xt,a′⟩+
∥∥θi

t − θ∗∥∥L (19)

Similarly,

⟨θi
t,xt,a⟩ = ⟨θ∗,xt,a⟩+ ⟨θi

t − θ∗,xt,a⟩ (20)
≥ ⟨θ∗,xt,a⟩ −

∥∥θi
t − θ∗∥∥∥xt,a∥ (21)

≥ ⟨θ∗,xt,a⟩ −
∥∥θi

t − θ∗∥∥L (22)

Therefore combining the two inequalities above yields

⟨θi
t,xt,a⟩ − ⟨θi

t,xt,a′⟩ ≥ ⟨θ∗,xt,a⟩ −
∥∥θi

t − θ∗∥∥L
−
(
⟨θ∗,xt,a′⟩+

∥∥θi
t − θ∗∥∥L)

≥ ⟨θ∗,xt,a⟩ − ⟨θ∗,xt,a′⟩
− 2
∥∥θi

t − θ∗∥∥L
Form Lemma 6,

∥∥θi
t − θ∗

∥∥ ≤ βT

λ , then equation equation 16 will show ⟨θ∗,xt,a⟩−⟨θ∗,xt,a′⟩−2
∥∥θi

t − θ∗
∥∥L >

0 and the desired result will follow.

This proves the desired result.
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Figure 2: The set of points xa2 such that equation 23 is satisfied lies outside of the region bounded by
the blue and green hyperplanes determined by xt,at

. The dotted vector is θ∗, and these hyperplanes are a
distance of 4 βT L

λ∥θ∗∥ apart.

The next result tells us that the probability that the context vectors satisfy the hypothesis in Lemma 7 is
lower bounded by some constant that will grow to 1 as as T → ∞. This will be used to define the good
event Gt that will allow the players to agree on which arm they want to pull.
Lemma 8. At any given round t, if all the context vectors xt,a are generated at random with probability
density function ψ(x) < M , with ∥xt,a∥ ≤ L, Then let Pt be the probability for the following event at a round
t: Any two joint actions a and a′ satisfies the following inequality

|⟨θ∗,xt,a⟩ − ⟨θ∗,xt,a′⟩| > 2βTL

λ
(23)

Then
Pt ≥ 1−K2m c2M(c1L)dβT

λ
(24)

for universal constants c1, c2 ∈ R.

Proof. Aribtrailiry order the joint actions as a1,a2, ..., and suppose xt,a1 has been placed so that the given
conditions are satisfied. Now let’s bound the volume where the next context vector can be placed. In
particular, the set of points xt,a2 such that it satisfies equation equation 23 satisfies

⟨θ∗,xt,a2⟩ > ⟨θ∗,xt,a1⟩+ 2βTL

λ
or (25)

⟨θ∗,xt,a2⟩ < ⟨θ∗,xt,a1⟩ − 2βTL

λ
(26)

From the definition of the inner product, the set of xt,a2 that satisfy the equation above lies outside of two
hyperplanes normal to θ∗ and at a distance of 4 βT L

λ∥θ∗∥ apart. See Figure 2 for an example in d = 3. Call the
region between these two parallel hyperplanes contained within the sphere U . Then the volume of U can
be bounded by the volume of a cylinder whose base is an d− 1 dimensional sphere with radius L, and with
height 4 βT L

λ∥θ∗∥ . Thus the volume of each such region is upper bounded by

µ(U) = π
d−1

2

Γ( d+1
2 )

Ld−1
(

4 βTL

λ∥θ∗∥

)
= π

d−1
2

Γ( d+1
2 )

Ld

(
4 βT

λ∥θ∗∥

)

Thus the probability that xt,a2 satisfies equation equation 23 is at least

1−
∫

U

ψ(x)dx ≥ 1− µ(U)M (27)

≥ 1−Mπ
d−1

2 Ld

(
4 βT

λ∥θ∗∥

)
(28)

≥ 1− c2M(c1L)dβT

λ
(29)
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for some universal constants c1, c2. Repeating inductively, the probability that all Km context vectors satisfy
equation 23 is at least

Km∏
k=1

(
1− k c2M(c1L)dβT

λ

)
≥
(

1−Km c2M(c1L)dβT

λ

)Km

(30)

≥ 1−K2m c2M(c1L)dβT

λ
(31)

where in the last inequality we used (1− x)n ≥ 1− nx for x ≥ 0.

Theorem 4 In the reward and action asymmetric (problem C) contextual bandit setting where the context
vectors are distributed with fixed distribution the frequentist regret bound of algorithm is

RT = O(mK2mLd
√
T log(T )) (32)

Proof. Consider the ’good’ event at time t defined as,

Gt =
⋂

a,a′∈A

{
|⟨θ∗,xt,a⟩ − ⟨θ∗,xt,a′⟩| > 2βT

L

}

and let

G =
T⋂

t=1
Gt

This is the event that at round T , the context vectors for any two joint actions a and a′ are not too close
in the sense that their inner product with θ∗ is sufficiently far.

We suppose there are Tα rounds of exploration for some α ∈ (0, 1) and then optimize over α. We can
decompose the regret as follows:

RT = E

[
T∑

t=1
⟨θ,xat

− x∗⟩

]
(33)

≤ E

[
T α∑
t=1
⟨θ,xat

− x∗⟩+
T∑

t=T α

⟨θ,xat
− x∗⟩

]
(34)

≤ O(Tα) + E

[
T∑

t=T α

⟨θ,xat
− x∗⟩

]
(35)

= O(Tα) + E

[
T∑

t=T α

⟨θ,xat
− x∗⟩(I[Gt ∩ E] + I[(Gt ∩ E)c]

]
(36)

= O(Tα) + E

[
T∑

t=T α

⟨θ,xat − x∗⟩(I[Gt ∩ E] + I[(Gt ∩ E)c]
]

(37)

= O(Tα) + E

[
T∑

t=T α

⟨θ,xat − x∗⟩I[Gt ∩ E]
]

+
T∑

t=T α

P (Gt ∩ E)c (38)

≤ O(Tα) + E

[
T∑

t=T α

⟨θ,xat
− x∗⟩I[Gt ∩ E]

]
+

T∑
t=T α

[P (Gc
t) + P (Ec)] (39)

After Tα rounds of exploration, we have λ = Tα. Furthermore, as in Lemma 5, the probability that for all
players i,∈ [M ] their estimator is within the confidence interval (determined by βT ) is at least 1− δ. Thus
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the probability that everyone’s estimator is within this confidence interval is 1 −mδ. Picking δ = 1
T this

gives
P (Ec) ≤ mδ = m

T

Using our choices of δ and λ = Tα, we have

βT = 2 log (T ) + log
(

det (VT (λ))
λd

)
= 2 log (T ) + log

(
dλ+ TL2

Tαd

)
So that we can use lemma 8 to upper bound the probability of the complement of the good event happening
in Theorem 3, we have

P (Gc
t) ≤ K2m c2M(c1L)dβT

λ
= K2m

c2M(c1L)d
[
2 log (T ) + log

(
det(VT (λ))

T αd

)]
Tα

= O

(
K2mLd log(T )

Tα

)
(40)

According to Lemma 7, under the event I[Gt ∩E] the players are completely coordinated. This means that
we are reduced to a single agent setting with a Km size action space. However, the bound for the single agent
LinUCB regret bound doesn’t depend on the size of the action space so we do not expect the exponentially
larger action space to affect the regret. The regret for this can be bounded as follows.

Let rt be the instantaneous regret in round t (under the good event Gt ∩ E defined by,

rt =
〈
θ∗,xa∗

t
− xat

〉
.

where a∗
t is the optimal arm for round t based on the context vectors received. Let θ̃t ∈ Ct be the parameter

in the confidence set for which
〈
θ̃t,at

〉
= UCBt (at). Then, using the fact that θ∗ ∈ Ct and the definition of

the algorithm leads to 〈
θ∗,xa∗

t

〉
≤ UCBt

(
xa∗

t

)
≤ UCBt (xat

) =
〈
θ̃t,xat

〉
.

Using Cauchy-Schwarz inequality and the assumption that θ∗ ∈ Ct and facts that θ̃t ∈ Ct and Ct ⊆ Et leads
to

rt =
〈
θ∗,xa∗

t
− xat

〉
≤
〈
θ̃t − θ∗,xat

〉
≤ ∥xat

∥V −1
T

∥∥θ̃t − θ∗
∥∥

VT
(41)

≤ 2 ∥xat
∥V −1

T

√
βT = x⊤

at
V −1

T xat

√
βT ≤ O

(
2L

2√βT

Tα

)
(42)

Where use used the fact that
∥∥V −1

T

∥∥ = maxx∈Rd
∥V −1

T
x∥2

∥x∥2
is upper bounded by the largest eigenvalue = O( 1

T α )
(given by 1

λ ) since V −1
t is positive semidefinite.

Therefore, picking α = 1
2 which gives us the tightest bound by AM-GM, we have

RT =
T∑

t=1
[P (Gc

t) + P (Ec)] +
T∑

t=1
rt ≤ O

(
L2
√
βT

√
T
)

= O(mK2mLd
√
T log(T )) (43)

We can now prove the regret bound of Algorithm 2 under reward asymmetry (Problem B).

Theorem 3 In the reward asymmetric (Problem B) contextual bandit setting where the context vectors are
distributed with fixed distribution the frequentist regret bound of Algorithm 2 is

RT = O(mK2mLd
√
T log(T )) (44)
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Proof. Remarkably we can follow the same proof structure as in Theorem 4. In ETC we have two main phases

1. They pull a fixed arbitrary arm for Tα exploration rounds while updating their θ̂ estimate.

2. The remaining T − Tα rounds they will do regular Lin-UCB while not updating their parameters.

Even though in Algorithm LinUCB-B, they follow LinUCB for all T rounds, however, we can decompose these
rounds into the set of first Tα rounds and the remaining T − Tα rounds to capitalize on the decomposition
given by equation equation 39. This is because in the first Tα rounds we are still updating our estimate for
θ̂ which is exactly what happens in phase 1 of ETC. Given that our initialization λ = Tα is unchanged in
LinUCB-B from ETC this means that equation equation 40 still holds. While for the remaining T − θ̂ rounds
they will do regular Lin-UCB while still sharpening the parameters which is essentially a better version of
phase 2 of ETC. This means that equation equation 42 still holds. In fact, this equation can be made slightly
sharper by

rt ≤ O
(

2L
2√βT

t

)
(45)

Therefore we will obtain sharper bound but of the same order as O(·) hides the constants.
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