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Abstract

Human cognition is punctuated by abrupt, spontaneous shifts between top-
ics—driven by emotional, contextual, or associative cues—a phenomenon known
as spontaneous thought in neuroscience. In contrast, self-attention-based models
rely on structured patterns over their inputs to predict each next token, lacking
spontaneity. Motivated by this distinction, we characterize spontaneous topic
changes in self-attention architectures and reveal divergences from spontaneous
human thought. First, we establish theoretical results under a simplified, single-
layer self-attention model with suitable conditions by defining a topic as a set of
Token Priority Graphs (TPGs). Specifically, we demonstrate that (1) the model
maintains the priority order of tokens related to the input topic, (2) a spontaneous
topic change can occur only if lower-priority tokens outnumber all higher-priority
tokens of the input topic, and (3) unlike human cognition, the longer context length
or the more ambiguous input topic does not increase the likelihood of spontaneous
change. Second, we empirically validate that the effect of input length or topic
ambiguity persists in modern, state-of-the-art LLMs, underscoring a fundamental
disparity between human cognition and AI behavior in the context of spontaneous
topic changes. To the best of our knowledge, no prior work has explored these
questions with a focus so closely aligned to human thought.

1 Introduction

Human cognition is punctuated by abrupt, apparently unstructured topic changes, the hallmark of
spontaneous human thought, a phenomenon that has become a central topic in cognitive neuroscience
[4, 8, 9, 23, 32–34]. For example, a spontaneous shift in focus during a conversation, a sudden
leap between ideas when brainstorming, or an unexpected redirection in storytelling. These abrupt
changes may be due to an emotional connection, such as recalling reading a book during a family
vacation, where sensory details like the scent of the ocean or the warmth of the sun trigger a vivid
memory. However, LLMs shift topics in response to contextual cues in the input, rather than initiating
spontaneous topic changes on their own. They follow a structured, statistical approach, remaining on
topic unless explicit cues signal a change. Figure 1 illustrates this distinction using the first sentence
of the book “One hundred years of solitude” [11].

Our work takes initial steps toward formalizing the dynamics of spontaneous topic changes in LLMs
and analyzing how they relate to or diverge from spontaneous human thought. To this end, we ground
our theoretical analysis in a single-layer self-attention model and empirically extend it to modern
LLMs, laying the groundwork for drawing comparisons between AI models and human cognition.
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Figure 1: Illustration
of the difference be-
tween human cognition
and LLMs. The original
fragment of “One hun-
dred years of solitude"
[11] (top) has a clear
spontaneous thought, but
the GPT-2’s completion
(bottom), demonstrates
continuity.2

Figure 2: Overview of our theoretical framework. We define a topic
as a set of TPGs {G(k)}Kk=1 (Def. 2) and generate a dataset for each
topic. The combination of dataset A and dataset B becomes the dataset
for the mixed-topic model. We train self-attention models independently
on each dataset. Then, we generate a new input sequence from topic A
and predict the next token with two models, self-attention model A and
self-attention model (mixed-topic). The next-token prediction with the
mixed-topic model is categorized into three outcomes: keeps topic A
(topic continuity from Def. 3); ambiguous sequence (from Def. 4); or
changes topic A (change of topic from Def. 5). Further details for each
category are shown in Figure 3.

Recent advancements in the related field have substantially deepened our understanding of self-
attention architectures. Li et al. [25], Tarzanagh et al. [48, 49] have linked the self-attention to
support vector machines (SVMs), offering optimization strategies for next-token prediction. Li et al.
[26] highlight that in mixed-topic inputs, transformers achieve higher pairwise attention between
same-topic words compared to different-topic words. In parallel, prior studies have recognized the
practical challenges of spontaneous topic changes in LLMs and proposed approaches to address
them [19, 27, 28, 36, 46, 55]. Notably, spontaneous topic changes must be differentiated from
hallucinations, generating incorrect or fabricated information without a clear contextual basis [20, 31].

Despite these advancements, our understanding of the dynamics of spontaneous topic changes in
LLMs remains limited. Investigating the relationship between spontaneous topic changes in self-
attention models and spontaneous human thought can provide valuable insights into the cognitive
discrepancies of current language models compared with humans. Since modern LLMs rely on
self-attention architectures, we begin by theoretically characterizing spontaneous topic changes in a
simplified setting. We then extend these findings through experiments on more complex, state-of-
the-art models. To the best of our knowledge, no prior studies have investigated these dynamics so
closely in relation to human thought.

Figure 2 outlines our theoretical framework. To make the mathematical analysis tractable, we
follow the same single-layer self-attention framework with log-loss objective function governed by
Assumptions 1–4 from Li et al. [25]. Inspired by token-priority graphs (TPGs) [25] and building on
attribution graphs from Ameisen et al. [1] for exposing an LLM’s internal computation, we define
a topic as a set of TPGs. This graph-based formulation aligns naturally with recent advances in
structured representations for LLMs [42, 52]. Furthermore, this mirrors neuroscience models of
spontaneous human thought, in which concepts serve as nodes connected by associative edges [32].
Despite relying on these specific settings, our experiments extend our findings to modern LLMs,
empirically confirming that relaxing these assumptions does not seem to undermine our core insights.

1.1 Summary of findings

Imagine an oracle that is an expert on Topic A, capable of following any conversation within that
topic while staying true to its context. Now, suppose the oracle gains knowledge of Topic B and is
following a conversation about Topic A. Will the oracle’s responses remain within Topic A, or will

2Just to illustrate, we use the prompt Please continue this short sentence, forgetting about “One hundred
Years of Solitude”, since on a real conversation the LLM would be blind to the final output.
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the influence of the knowledge of Topic B cause the conversation to drift? This analogy encapsulates
the problem we address: understanding when and why attention models might preserve a topic or
change to another spontaneously. Specifically, we make the following contributions:

1. Preservation of input topic priorities. Using a controlled sandbox, we demonstrate in
Theorem 2 that self-attention models trained on mixed-topic datasets maintain the priorities
of tokens associated with the original topic of an input sequence (Topic A in our analogy).

2. Changing topics triggered by token frequency. In Theorem 3, we show that the oracle’s
responses may reflect a change of topic only if a lower-priority token appears more frequently
than all higher-priority tokens of Topic A.

3. Impact of input length and topic ambiguity. Theorem 4 establishes that longer input
sequences decrease the likelihood of changing topics. Furthermore, input topic ambiguity
acts as a stabilizing factor, not increasing the frequency of spontaneous topic changes.

4. Difference between LLMs and human cognition. In Section 6 we empirically extend
Theorem 4 to modern, deeper LLMs. Unlike human cognition, where extended discussions
often encourage spontaneous thoughts and topic ambiguity promotes cognitive connections,
our results highlight the opposite behavior in LLMs: neither longer prompts nor greater
topic ambiguity appreciably increases the likelihood of a spontaneous topic change.

Overview of the paper structure. We begin with the problem setup in Sec 2. Sec 3 introduces the
definition of topic, and Sec 4 examines how self-attention models allocate the token priorities within
the mixed topics. In Sec 5, we establish the conditions under which a self-attention model induces
spontaneous topic changes and show the dynamics of topic changes with longer input sequences or
the presence of topic ambiguity. We then extend our analysis to frontier LLMs in Sec 6. Related work
and discussion are provided in Secs 7 and 8, respectively. All proofs are provided in Appendix A.

2 Problem setup

2.1 Next topic prediction with self-attention model

In line with the approach presented by Tarzanagh et al. [49] and Li et al. [25], we frame the next-
token prediction task as a multi-class classification problem. Given a vocabulary of size K with an
embedding matrix E = [e1 e2 · · · eK ]⊤ ∈ RK×d, we aim to predict the next token ID y ∈ [K]
based on an input sequence X = [x1 x2 · · · xT ]

⊤ ∈ RT×d with xi ∈ E for all i ∈ [T ]. The training
dataset, denoted as

DSET = {(Xi, yi) ∈ RTi×d × [K]}ni=1,

contains sequences of varying lengths Ti. In our notation x is the embedding vector corresponding to
the token ID x, this is x = ex. For prediction, we utilize a single-layer self-attention model with a
combined key-query weight matrix W ∈ Rd×d and identity value matrix as in Tarzanagh et al. [49].
The self-attention embedding output

fW(X) = X⊤S(XWx̄), (output)

where S(·) is the softmax operation and x̄ := xT , serves as a weighted representation of the tokens,
allowing for context-sensitive prediction of y based on the final input token. Let ℓ : R → R be a loss
function. For the training dataset DSET, we consider the empirical risk minimization (ERM) with:

L(W) =
1

n

n∑
i=1

ℓ(c⊤yi
X⊤

i S(XiWx̄i)). (ERM)

We assume a well pre-trained classification head matrix C = [c1 c2 · · · cK ]⊤ ∈ RK×d. Each
classification head ck ∈ Rd is fixed and bounded for all k ∈ [K]. Starting from W(0) ∈ Rd×d with
step size η > 0, for τ ≥ 0 we optimize W with a gradient descent algorithm

W(τ+1) = W(τ) − η∇L(W(τ)). (Algo-GD)

We keep the first two assumptions from Li et al. [25]:
Assumption 1. ∀y, k ∈ [K], k ̸= y, c⊤y ey = 1 and c⊤y ek = 0.
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Assumption 2. For any (X, y) ∈ DSET, the token ey is contained in the input sequence X.

Assumption 1 represents a variation of the weight-tying approach commonly used in language models
[40, 50]. Once training is complete, for a new input sequence X, and a model characterized by W,
we predict the next token ID ŷw based on greedy decoding the probabilities from the softmax of the
classification output

ŷw ∈ arg max
k∈[K]

[S (CfW(X))]k . (1)

2.2 Token-priority graph and global convergence of the self-attention model

Li et al. [25] defined a token-priority graph (TPG) as a directed graph with nodes representing tokens
in the vocabulary. DSET(k) is a subset of sequences from DSET with the same last token is ek = x̄.
They defined TPGs {G(k)}Kk=1 such that every G(k) is a directed graph where for every sequence
(X, y) ∈ DSET(k) a directed edge is added from ey to every token x ∈ X. TPGs are further divided
into strongly-connected components (SCCs), which capture subsets of tokens with equal priority. For
tokens within two different SCCs, strict priority orders emerge, helping the model to differentiate
between tokens when learning next-token predictions. We use the same notation as Li et al. [25],
given a directed graph G, for i, j ∈ [K] such that i ̸= j:

• i ∈ G denotes that the node i belongs to G.
• (i ⇒ j) ∈ G denotes that the directed path (i → j) is presented in G but j → i is not.
• (i ≍ j) ∈ G means that both nodes i and j are in the same strongly connected component

(SCC) of G (there exists both a path i → j and j → i).

For any two distinct nodes i, j in the same TPG, they either satisfy (i ⇒ j), (j ⇒ i) or (i ≍ j). Nodes
in each G(k) represent indices in [K], and SCC structure supports the self-attention mechanism’s
ability to assign priority within sequences based on the conditioning last token. Theorem 2 of Li
et al. [25] proved that under Assumptions 1 and 2, the self-attention model learned through Algo-GD
converges to the solution of the following Support Vector Machine (SVM) defined by the TPGs of
the underlying dataset DSET

Wsvm = argmin
W

∥W∥F (Graph-SVM)

s.t. (ei − ej)
⊤Wek

{
= 0, ∀(i ≍ j) ∈ G(k)

≥ 1, ∀(i ⇒ j) ∈ G(k) ∀k ∈ [K].

Here is a condensed version of the theorem:
Theorem 1 (Li et al. [25]). Consider dataset DSET and suppose Assumptions 1 and 2 hold. Set loss
function as ℓ(u) = − log(u). Starting Algo-GD from any W(0) with constant size η, if Wsvm ̸= 0,

W̃ = lim
τ→∞

W(τ)

∥W(τ)∥F
=

Wsvm

∥Wsvm∥F
(2)

This convergence implies that the model predicts the next token based on priorities obtained from the
SCCs within the TPG relevant to the last token of the input sequence. Unlike the work in Li et al.
[25], which considers both hard retrieval and soft composition components and examines multiple
loss functions in subsequent results, we focus exclusively on a log-loss function in this work, leaving
the exploration of other loss functions for future research. Since the soft composition component is
not required for our subsequent definitions and theoretical results, we concentrate solely on the hard
retrieval component.

We add here another reasonable assumption that prevents the probabilities in Equation 1 from being
equal due to improbable numerical reasons, and we present our first lemma.

Assumption 3. For any (X, y) ∈ DSET, ∃i, j ∈ [T ] and u, v ∈ Z such that u
[
S(XW̃x̄)

]
i
=

v
[
S(XW̃x̄)

]
j

if and only if u = v and
[
S(XW̃x̄)

]
i
=

[
S(XW̃x̄)

]
j
.

Lemma 1. Suppose conditions from Theorem 1 and Assumption 3 hold. Consider an input se-
quence X from DSET(k) and corresponding TPG G(k), ∀i, j ∈ [K] we have [S (CfW̃(X))]

i
=

[S (CfW̃(X))]
j

iff (xi ≍ xj) ∈ G(k).
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This means that the tokens that maximize the probability for weights W̃ in Equation 1 are all within
the same SCC leading to the following definition:

Definition 1 (highest probability SCC). Consider an input sequence X from DSET(k) and corre-
sponding TPG G(k). We define Ĝ(k)(X) ∈ G(k) as the highest probability SCC for X in G(k) such
that ∀x ∈ Ĝ(k)(X) we have [S (CfW̃(X))]

x
= ∥S (CfW̃(X))∥∞.

3 Defining topics

In order to answer our research questions regarding the dynamics of topic changes we need to define
the concept of a topic. In the previous settings, a dataset DSET generates TPGs {G(k)}Kk=1, but,
conversely, an existing set of TPGs can generate DSET. Therefore, inspired by Ameisen et al. [1] that
introduces attribution graphs to reveal the LLMs’ internal computational structure, we define a topic
as a set of TPGs:

Definition 2 (topic). A topic T is a set of TPGs {G(k)}Kk=1. Given topic T defined by TPGs {G(k)}Kk=1,
input sequence X belongs to T if ∀x ∈ X, x ∈ G(x̄). A sequence (X, y) is within T if X belongs to
T and ∀x ∈ X, (y ⇒ x) ∈ G(x̄).

Our graph-based formulation aligns with recent advances in structured representations of LLMs
[42, 52]. Given the finite number of edges, a DSET can be generated from T such that it can
reconstruct the exact TPGs {G(k)}Kk=1 that define T, following the construction method in Li et al.
[25]. This leads to the following reasonable assumption:

Assumption 4. A DSET generated from any topic T defined by {G(k)}Kk=1 exactly reconstructs back
the TPGs {G(k)}Kk=1.

Detailed explanation is provided in Appendix B. This assumption enables the application of the
results from Li et al. [25], with the concepts of topics and TPGs being used interchangeably.

Definition 3 (topic continuity). Given an input sequence X that belongs to T, a weight matrix W is
said to keep topic T for the input sequence X if ŷW ∈ Ĝ(k)(X).

Remark. Given two topics, Ta and Tb, with corresponding datasets DSETa and DSETb, the union
of {G(k)

a }Kk=1 and {G(k)
b }Kk=1 forms the TPGs for the mixed topics Tab, denoted by {G(k)

ab }Kk=1.

It is clear that W̃a trained only with DSETa will always keep topic Ta.3 But we could also obtain
W̃ab with a dataset combining DSETa and DSETb as training sets. The central question is whether
W̃ab keeps topic Ta, given an input sequence X that belongs to Ta, or if it instead predicts tokens
that prompt a topic change.

4 Attention within mixed topics

Let’s first understand how attention models assign priority to tokens within mixed-topic setting. For
simplicity, we elaborate our results using a two-topic scenario, but it is straightforward to extend the
results on multiple topics. Notice the self-attention embedding output is a linear combination of X
given by S(XWx̄). The embeddings in X corresponding to the highest entries in S(XWx̄) will
receive higher priority to predict the next token, therefore we can hypothesize that models in which
S(XWx̄) are ordered in a similar way will predict similar next tokens. This idea leads to our first
main result which considers this situation within a mixed-topic setting:

Theorem 2. Consider datasets DSETa and DSETb from topics Ta and Tb, respectively. Let DSETab

be the union of DSETa and DSETb. Suppose Assumptions 1, 2, 3 and 4 hold. Set loss function as
ℓ(u) = − log(u). Starting Algo-GD from any initial point with constant size η and if Wsvm

a ̸= 0 and
Wsvm

ab ̸= 0; for a given sequence X that belongs to Ta, we have that W̃ab preserves the attention
priority of Ta on input X. This is ∀i, j ∈ [T ]:

3Notation: The subscripts of weights and objects correspond to the associated topic. For instance W̃a

denotes the weights defined in Equation 2, obtained from DSETa, which pertains to topic Ta.
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Figure 3: Depiction of each scenario in next token prediction. Left: Taking the last token e4 as
an example, G(4)

ab for Tab is formed by the union of G(4)
a and G(4)

b . The direction of edge is from
output to input and the dotted square denotes the strongly-connected components (SCC) in which
tokens have equal priority. Right: For each input sequence belonging to Ta, we use a self-attention
model trained on DSETa and another model trained on the mixed-topic dataset DSETab to predict the
next tokens, denoted as ŷwa

and ŷwab
, respectively. Ĝ(4)

ab and Ĝ(4)
a represent the highest probability

SCCs (Definition 1) in mixed-topic setting and in Ta, respectively. There are three scenarios, topic
continuity (Definition 3), ambiguous sequence (Definition 4), and change of topic (Definition 5). The
numeric details for each scenario are provided in Appendix C.5.

• if [S(XW̃ax̄)]i = [S(XW̃ax̄)]j , then [S(XW̃abx̄)]i = [S(XW̃abx̄)]j

• if [S(XW̃ax̄)]i > [S(XW̃ax̄)]j , then [S(XW̃abx̄)]i ≥ [S(XW̃abx̄)]j

• if [S(XW̃ax̄)]i < [S(XW̃ax̄)]j , then [S(XW̃abx̄)]i ≤ [S(XW̃abx̄)]j

This implies that for an input sequence X, a model trained in a mixed-topic setting will maintain
the priority of the topic to which X belongs. Consequently, the attention will be allocated in the
same order as if the model had been trained exclusively on the original topic of X. For the first input
sequence X = [e5, e1, e3, e4]

⊤ from Ta, as shown in Figure 3 (right), the predicted next token ŷwab

is e5 and the highest probability SCC in mixed topics is Ĝ(4)
ab (X) = {e5}. Since ŷwab

belongs to
Ĝ(4)
ab (X), Wab for input sequence X is considered as topic continuity, based on the Definition 3.

The only assumption about X on Theorem 2 is that it belongs to Ta. However, if X belongs to Ta

and Tb, the priority will be preserved within both topics. Additionally, strict equality in the attention
priority holds, but strict inequalities may not, as the union of their TPGs can form new SCCs. As
illustrated on the left of Figure 3, G(4)

a and G(4)
b denote the TPGs corresponding to the last input token

e4 for Ta and Tb, respectively. In G(4)
a , the token priority is e5 > e3 > e1 = e2 > e4. In contrast,

in G(4)
ab for the mixed topics, the priority order is e5 > e3 > e1 = e2 = e4. The equality e1 = e2

from G(4)
a is maintained in G(4)

ab , whereas the strict inequality e2 > e4 is relaxed to e2 = e4 in mixed
topics, forming the new SCC, {e1, e2, e4}, in G(4)

ab .

5 Explaining topic shifts

The formation of new SCCs when combining datasets suggests that the highest priority SCC for some
input sequences may increase in size in this new setting. This also suggests that topic shifts may
arise from ambiguity within an input sequence rather than a straightforward change in topic. In our
oracle analogy, gaining knowledge of both Topic A and Topic B might cause a conversation to be
naturally followed within Topic A or also outside Topic A. We introduce the following definition to
characterize this phenomenon:

Definition 4 (ambiguous sequence). Given DSETa and DSETb generated from two different topics
Ta and Tb. Denote Tab as the combined topic defined by a combination of DSETa and DSETb. A
sequence X that belongs to Ta is ambiguous in Tab with respect to Ta if W̃ab does not keep topic
Ta for X, but Ĝ(x̄)

a (X) ⊂ Ĝ(x̄)
ab (X).
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Definition 4 defines an ambiguous sequence as one where the highest-probability next-token pre-
dictions include tokens from both within and outside the input topic, reflecting natural ambiguity
from overlapping topics. Take the second input sequence X = [e1, e4, e1, e4]

⊤ in Figure 3 (right) as
an example. Ĝ(4)

a (X) is {e1}, as depicted in G(4)
a from Figure 3 (left) and Ĝ(4)

ab (X) is {e1, e4}, as
shown in G(4)

ab from Figure 3 (left). Ĝ(4)
a (X) is a subset of Ĝ(4)

ab (X), although ŷwab
̸∈ Ĝ(4)

a (X). We
can argue that the next token predicted from an ambiguous sequence cannot be considered as a topic
change, as it lacks the clear trigger phenomenon observed in human cognition. To address this, we
propose a formal definition for a topic change:
Definition 5 (change of topic). Given DSETa and DSETb generated from two topics Ta and Tb, and
a sequence X that belongs to Ta. The weight matrix W̃ab changes topic Ta for sequence X if W̃ab

does not keep topic Ta for X and X is not ambiguous in Tab with respect to Ta.

In Figure 3 (right), Wab changes topic for the last input sequence X = [e5, e4, e4, e4]
⊤, following

the Definition 5. Building on the formal definitions of topic continuity, ambiguous sequences, and
topic changes, we now present a necessary condition for a sequence to induce a topic change. This is
achieved by introducing our final definition, grounded in the highest-priority SCC as determined by
the order in the attention layer.

Definition 6 (highest priority SCC). Consider a sequence X that belongs to T. We define Ġ(x̄)(X) ⊆
G(x̄) as the highest priority SCC for X in G(x̄) such that ∀xi ∈ Ġ(x̄)(X) and xj ∈ G(x̄) we have
(xi ⇒ xj) ∈ G(x̄) or (xi ≍ xj) ∈ G(x̄).

Theorem 3. Under the same settings and assumptions in Theorem 2, let X be a sequence that
belongs to Ta. If W̃ab changes topic Ta for X then ∃xj ̸∈ Ġ(x̄)

a (X) such that ∀xi ∈ Ġ(x̄)
a (X), the

number of times xj appears in X is greater than the number of times xi appears in X.

Theorem 3 implies that, for a given sequence X from Ta and its corresponding TPG, a necessary
condition for a topic change is the presence of a lower-priority token that appears more frequently
than any of the higher-priority tokens. This can be intuitively understood through our analogy: if the
oracle is following a conversation on Topic A but the conversation contains repeated components
with lower importance in Topic A, its knowledge of Topic B may steer the response toward Topic B,
thereby initiating a shift away from Topic A. A natural question arises: what do these findings imply
in practice? Specifically, how does the probability of change of topic behave as the input sequence
length or the topic ambiguity increases? The following theorem sheds light on these dynamics.
Theorem 4. Under same settings and assumptions on datasets and training in Theorem 2, let X be a
sequence that belongs to Ta with no repeated tokens, and l be the number of elements in Ġ(x̄)

a (X).
Let X′ = [x′

1 x
′
2 · · · x′

T ]
⊤ be a random sequence of iid random tokens sampled from X such that

for a fixed p, p = min
x∈Ġ(x̄)

a (X)
P (x′

i = x). We have:

1. If p > max
x̸∈Ġ(x̄)

a (X)
P (x′

i = x), then limT→∞ P(W̃ab changes topic Ta for X′) = 0.

2. If l increases then the probability that ∃x′
j ̸∈ Ġ(x̄)

a (X) such that ∀x′
i ∈ Ġ(x̄)

a (X), x′
j

outnumbers x′
i in X′ does not increase.

There are two implications of this theorem. First, as the input sequence length increases sufficiently,
the likelihood of topic changes vanishes. Second, increasing l raises the probability of overlap
between topics and reduces the probability of satisfying the necessary conditions for a topic change,
effectively creating a bound on the frequency of topic changes. In practice, consider the oracle
analogy: if the oracle is following a sufficiently long conversation on a specific topic, it becomes
exceedingly unlikely to shift topics. Similarly, as topics A and B become more interconnected, this
increased ambiguity does not lead to more topic changes; rather, it may reduce their occurrence.
This contrasts with human cognition, where longer conversations and greater inter-connectivity of
knowledge increase the likelihood of spontaneous topic changes.

To illustrate Theorem 4 through simulations, we generate embeddings with K = 10 and d = 16. We
approximate W̃a and W̃ab as the results obtained after τ = 8000 iterations of Algo-GD. We quantify
the proportion of test sequences in which W̃ab keeps Ta (keep topic), proportion of ambiguous
sequences in Tab (ambiguity) and proportion in which W̃ab changes topic (change topic). First, we
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(a) Length of sequences. (b) Topic ambiguity.

Figure 4: The proportion of topic continuity, ambiguous sequence, and change of topic as (a) input
length and (b) topic ambiguity increase.

explore the effect of longer sequences by varying the length T of the test sequences Z. We increase
T from 4 to 512. Figure 4a illustrates how the proportion of change topic decreases as T increases.
Second, we investigate the effect of topic overlap with an increasing number of edges L. Intuitively,
a higher L results in an increase l and a greater overlap between TPGs of different topics. We vary L
from 4 to 18. Figure 4b demonstrates that as L increases, ambiguity increases, while the proportion
of change topic doesn’t increase. These two findings contrast with expectations derived from human
cognition but align with the result of Theorem 4. Lastly, among the 85,000 test sequences generated
for these experiments, 99.98% satisfy Theorem 3 (i.e., topic changes occur when a low-priority token
appears more frequently than high-priority tokens). The remaining 0.02% mismatched cases are
solely due to minor approximation discrepancies in the attention softmax. These results validate
Theorem 3 (see simulation details in Appendix C).

6 Experiments in frontier LLMs

To prove Theorem 4 we work within the simplified, single-layer self-attention model of Li et al. [25].
Although this abstraction omits many hallmarks of contemporary LLMs (deep stacks of attention
blocks, alternative cost functions, and other training heuristics), it offers a mathematically tractable
setting that lets us derive interesting mathematical results. These results, in turn, can be used to
understand how cutting-edge LLMs behave in terms of spontaneous topic changes. We empirically
investigate such behavior on four frontier models: GPT-4o, Llama-3.3, Claude-3.7, and DeepSeek-V3.

Real dataset. We randomly select 100 arXiv papers published in March 2025 since the publicly
disclosed knowledge cutoff dates for our study LLMs fall at the end of 2024 or earlier. This ensures
that these models have not been trained on these data. We consider each paper as a different “topic”.

Experimental setup. For two distinct papers A and B, and an input prompt (X) from paper A, we
consider a measure of topic continuity as the cosine similarity between the embeddings of the texts
generated when the LLM has contextual knowledge solely from paper A (ŷWa ) and when the LLM
has contextual knowledge from both paper A and B (ŷWab

). We treat this cosine similarity as an
empirical proxy for our formal definition of topic continuity (Definition 3): therefore the larger the
similarity, the smaller the chance that the model has led to a change of topic. This proxy suggests
two testable consequences which become the empirical counterpart of our Theorem 4: (1) cosine
similarity is expected to increase with the length of the input prompt, and (2) it is not expected to
decrease with increasing ambiguity in paper A and paper B.

To more closely align with our theoretical framework, where a model gains knowledge of topic A and
incrementally gains knowledge of topic B, we implement a Retrieval-Augmented Generation (RAG)
approach, retrieving information exclusively from paper A or jointly from papers A and B [51]. Based
on the input prompt, we retrieve the top 3 most relevant excerpts from paper A or paper B to form the
contextual knowledge set A or set B. The combined contextual knowledge set is simply the union of
sets A and B. We add set A to the input prompt to obtain the generated text with sole knowledge of
paper A (ŷWa), and we add the combined set to the input prompt to obtain the generated text with

8



(a) Length of sequences. (b) Topic ambiguity.

Figure 5: Similarity between continuations generated with single-topic and mixed-topic knowledge
as (a) input length and (b) topic ambiguity increase.

combined knowledge of paper A and B (ŷWab
). To closely follow our greedy decoding approach in

our theoretical framework, we set the temperature parameter to 0 for all LLMs.

We designate each paper as paper A and randomly select 5 different papers from the remaining 99
papers as distinct paper B. For each input segment, we calculate the average cosine similarity between
ŷWa and ŷWab across these five pairs of paper A and paper B, using each LLM. The results for each
LLM are averaged over all 100 papers. See additional experimental details in Appendix D.

Experiment 1: Impact of input length. We use the first 10, 30, . . . , 150 words from each paper
A’s abstract as the input prompt. Figure 5a shows, for each LLM, the average cosine similarity
as a function of input length; shaded bands indicate 95% confidence intervals. Across all models,
similarity tends to increase with input length, aligning with the behavior predicted by Theorem 4.
Appendix D.3.1 presents an additional experiment in which we extend the input length to 1210 words
extracted from each paper’s introduction; the results further support our conclusions.

Experiment 2: Impact of topic ambiguity. We fix the input prompt length to the first 80 words of
each paper A’s abstract. We quantify topic ambiguity by the average similarity among each paper A’s
keywords: lower keyword similarity signifies higher probability of overlap between paper A and other
papers, consistent with our setup in Theorem 4. We partition the papers into five equal-width bins
along this ambiguity spectrum. Figure 5b summarizes the results: each boxplot shows the distribution
of cosine similarities within an ambiguity bin, with the x-axis ordered from least to most ambiguous.
Across all LLMs the median similarity does not seem to decrease, in agreement with the prediction of
Theorem 4. In Appendix D.3.2, we present an additional experiment using an alternative ambiguity
measure based on cross-paper keyword similarity, yielding results consistent with our conclusions.

Taken together, the two experiments provide preliminary empirical support for Theorem 4, showing
that its prediction, derived from a single-layer self-attention toy model, can be extended to today’s
deep, multi-layer LLMs. Crucially, an important divergence between machine and human cognition
persists in these frontier models: neither longer prompts nor greater topic ambiguity appreciably
increases the likelihood of a spontaneous topic change.

7 Related work

Training and generalization of Transformer. (1) Properties of Softmax. The self-attention
mechanism employs the softmax function to selectively emphasize different parts of the input. Gu
et al. [16], Goodfellow et al. [13], and Deng et al. [10] underscore the pivotal role of the softmax
function in shaping attention distributions, influencing how models process and prioritize information
within input sequences. Bombari and Mondelli [5] examined the word sensitivity of attention layers,
revealing that softmax-based attention layers are adept at capturing the significance of individual
words. However, recent work has also pointed out limitations of the softmax function [41, 10]. (2)
Optimization in attention-based models. Additionally, recent research interprets Transformer
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models as kernel machines, akin to support vector machines (SVMs), with self-attention layers
performing maximum margin separation in the token space [48, 49, 25, 21]. (3) Chain-of-Thought
(CoT) and In-Context Learning (ICL). Moreover, transformers exhibit remarkable abilities in
generalization through ICL, where models effectively learn from contextual cues during inference
[6, 56, 37]. CoT prompting [54, 57, 44, 24] enhances this by breaking down reasoning processes into
intermediate steps, highlighting the emergent reasoning abilities of transformers. (4) Improvement
efficiency of transformers. Recent advancements aim to improve the computational efficiency of
transformers [22, 7, 47, 53], ensuring their viability for large-scale deployment while maintaining or
enhancing their representational capabilities.

Next token prediction in LLMs. (1) Theoretical and architectural innovations. Shannon [43]’s
foundational work laid the groundwork for estimating the predictability of natural language sequences,
providing a basis for subsequent advances in language modeling. Recent studies have expanded our
understanding of how LLMs anticipate future tokens from internal hidden states, offering valuable
insights into the efficiency and effectiveness of Transformer-based architectures [17, 38, 45]. Despite
their impressive predictive capabilities, these models face fundamental limitations. For instance,
Bachmann and Nagarajan [3] highlights the shortcomings of teacher-forced training, emphasizing
how this approach can fail and suggesting strategies to improve model robustness. (2) Efficiency and
Optimization. Goyal et al. [14] introduces a novel method that incorporates a deliberate computation
step before output generation, enhancing reasoning capabilities. Additionally, Gloeckle et al. [12]
advocates for multi-token prediction, which significantly improves both efficiency and speed.

Self-Attention and topic dynamics. Advancements in self-attention research have deepened our
understanding of how transformers handle evolving semantic contexts. Prior work has explored di-
verse aspects of topic modeling, such as dynamic topic structures [35], hierarchical relationships [29],
topic-aware attention mechanisms [39], and the mechanistic underpinnings of topic representation
[26]. While these studies provide insights into managing static and hierarchical topic structures, our
work focuses on the topic changes with the given input sequences from a specific topic.

8 Discussion

Our theoretical analysis on self-attention models and empirical investigations on modern LLMs reveal
fundamental clues regarding the distinctions between model-based spontaneous topic changes and
spontaneous human thought, a phenomenon that is critical for comparing conversational dynamics
across humans and AI. In an era of growing concern about AI’s cognitive resemblance to humans, our
framework provides preliminary results differentiating these phenomena, thereby opening pathways
for future interdisciplinary research at the interface of artificial and human cognition.

Limitations. Our theoretical framework builds on the same simplified single-layer self-attention
model with a log-loss objective from Li et al. [25] and defines topics as TPGs. These abstractions
do not fully capture the complexities of contemporary LLMs, including deep attention architectures,
alternative loss functions, and diverse training objectives. Despite loosening these assumptions, our
experiments suggest that the essence of our core theoretical conclusions holds across modern LLMs
within our framework of study. Future work will investigate how broadly these theoretical insights
generalize to complex architectures, for example within longer context windows and/or LLM outputs.

Code. The source code can be found on GitHub: https://github.com/muminjia/Dynamics-of-
Spontaneous-Topic-Changes
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A Technical proofs

A.1 Proof of Lemma 1

Let a = S(XW̃x̄).

CfW̃(X) = C
(
X⊤S

(
XW̃x̄

))
(3)

= C
(
X⊤a

)
(4)

=


∑T

i=1 ai (c
⊤
1 · xi)∑T

i=1 ai (c
⊤
2 · xi)

...∑T
i=1 ai (c

⊤
K · xi)

 . (5)

(6)

Let ki be the number of times token xi appears in X. Then,

[CfW̃(X)]
xi

= kiai.

From Assumption 3 we have that

[CfW̃(X)]
xi

= [CfW̃(X)]
xj

⇐⇒ ai = aj (7)

⇐⇒ (xi ≍ xj) ∈ G(x̄) or xi = xj . (8)

If xi ̸= xj then xi and xj are in the same SCC.

A.2 Proof of Lemma 2

Lemma 2. For an input sequence X that belongs to T and i, j ∈ [T ],

• [S(XW̃x̄)]i = [S(XW̃x̄)]j ⇐⇒ (xi ≍ xj) ∈ G(x̄) or i = j.

• [S(XW̃x̄)]i < [S(XW̃x̄)]j ⇐⇒ (xj ⇒ xi) ∈ G(x̄).

• [S(XW̃x̄)]i > [S(XW̃x̄)]j ⇐⇒ (xi ⇒ xj) ∈ G(x̄).

Proof. Since X belongs to T, ∀x ∈ X we have x ∈ G(x̄), therefore from the construction of TPGs
by Li et al. [25], for every xi,xj ∈ X we have one of the these relationships: (xi ⇒ xj), (xj ⇒ xi),
(xi ≍ xj) or xi = xj . From the constraints in Algo-GD:

• [S(XW̃x̄)]i = [S(XW̃x̄)]j ⇐⇒ (xi − xj)
⊤W̃x̄ = 0 ⇐⇒ (xj ≍ xi) ∈ G(x̄) or i = j.

• [S(XW̃x̄)]i > [S(XW̃x̄)]j ⇐⇒ (xi − xj)
⊤W̃x̄ > 1 ⇐⇒ (xj ⇒ xi) ∈ G(x̄).

• [S(XW̃x̄)]i < [S(XW̃x̄)]j ⇐⇒ (xi − xj)
⊤W̃x̄ < 1 ⇐⇒ (xi ⇒ xj) ∈ G(x̄).

A.3 Proof of Lemma 3

Lemma 3. For an input sequence X that belongs to T,

Ġ(x̄)(X) =
{
xi | [S(XW̃x̄)]i = ∥S(XW̃x̄)∥∞

}
.

Proof. Let G = {xi | [S(XW̃x̄)]i = ∥S(XW̃x̄)∥∞}. From Lemma 2 ∀xi, xj ∈ G, (xi ≍ xj) ∈
G(x̄). Therefore all elements in G belong to the same SCC. Also from Lemma 2, ∀xi ∈ G, xj ̸∈ G

we have (xi ⇒ xj) ∈ G(x̄). This means that every element in G has the highest priority among
tokens in X concluding our proof.
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A.4 Proof of Theorem 2

From construction, ∀k ∈ [K], G(k)
a ⊆ G(k)

ab . This means that ∀xi,xj ∈ X, we have:

• if (xi ≍ xj) ∈ G(x̄)
a then (xi ≍ xj) ∈ G(x̄)

ab

• if (xj ⇒ xi) ∈ G(x̄)
a then (xj ⇒ xi) ∈ G(x̄)

ab or (xi ≍ xj) ∈ G(x̄)
ab

• if (xi ⇒ xj) ∈ G(x̄)
a then (xi ⇒ xj) ∈ G(x̄)

ab or (xi ≍ xj) ∈ G(x̄)
ab

Combining with Lemma 2:

• [S(XW̃ax̄)]i = [S(XW̃ax̄)]j ⇐⇒ (xi ≍ xj) ∈ G(x̄)
a or i = j, then (xi ≍ xj) ∈ G(x̄)

ab or
i = j ⇐⇒ [S(XW̃abx̄)]i = [S(XW̃abx̄)]j

• [S(XW̃ax̄)]i < [S(XW̃ax̄)]j ⇐⇒ (xj ⇒ xi) ∈ G(x̄)
a then (xj ⇒ xi) ∈ G(x̄)

ab or
(xi ≍ xj) ∈ G(x̄)

ab ⇐⇒ [S(XW̃abx̄)]i ≤ [S(XW̃abx̄)]j

• [S(XW̃ax̄)]i > [S(XW̃ax̄)]j ⇐⇒ (xi ⇒ xj) ∈ G(x̄)
a then (xi ⇒ xj) ∈ G(x̄)

ab or
(xi ≍ xj) ∈ G(x̄)

ab ⇐⇒ [S(XW̃abx̄)]i ≥ [S(XW̃abx̄)]j

A.5 Proof of Theorem 3

Let a = S(XW̃ax̄) and b = S(XW̃abx̄). Without loss of generality, suppose a is in decreasing
order a1 ≥ · · · ≥ aT . From Theorem 2, we also have b1 ≥ · · · ≥ bT . Let ki be the number of times
token xi appears in X. Following an analogous procedure as in Lemma 1 we get[

CfW̃a(τ)
(X)

]
xi

= kiai (9)[
CfW̃ab(τ)

(X)
]
xi

= kibi (10)

We will proof the contrapositive: If ∃xi ∈ Ġ(x̄)
a (X) such that ki ≥ kj for all j ∈ [K], then there is

no change of topic, so W̃ab keeps topic Ta for input sequence X, or X is ambiguous in Tab with
respect to Ta.

From Lemma 3, if xi ∈ Ġ(x̄)
a (X), we have ai ≥ aj for all j ∈ [K]. Suppose ∃xi ∈ Ġ(x̄)

a (X)

such that ki ≥ kj for all j ∈ [K], we have that kiai ≥ kjaj for all j ∈ [K] then xi ∈ Ĝ(x̄)
a (X).

Analogously since bi ≥ bj , xi ∈ Ĝ(x̄)
ab (X). If ∃xl ∈ Ĝ(x̄)

a (X) with xl ̸= xi then klal ≥ kjaj for
all j ∈ [K], then klal = kiai. Therefore from Assumption 3 and Lemma 3, (xl ≍ xi) ∈ G(x̄)

a .
Analogously (xl ≍ xi) ∈ G(x̄)

ab . This means that if ∃xi ∈ Ġ(x̄)
a (X) such that ki ≥ kj for all j ∈ [K],

then Ĝ(x̄)
a (X) ⊆ Ĝ(x̄)

ab (X). Then W̃ab keeps topic Ta for input sequence X, or X is ambiguous in
Tab with respect to Ta.

A.6 Proof of Theorem 4

1. This is a direct consequence from the law of large numbers. If T → ∞ the proportion
of each token will match the probability. Since p > max

x̸∈Ġ(x̄)
a (X)

P (x′
i = x), then the

probability that ∃x′
j ̸∈ Ġ(x̄)

a (X) such that ∀x′
i ∈ Ġ(x̄)

a (X), the number of times x′
j appears

in X′ is greater than the number of times x′
i appears in X′ will go to zero, and therefore the

probability of change topics will do it also.

2. Without loss of generality suppose Ġ(x̄)
a (X) = {x1, x2, · · · , xl}. Clearly if we prove the

result assuming ∀x ∈ Ġ(x̄)
a (X), p = P (x′

i = x), we will also have it for the more general
case p = min

x∈Ġ(x̄)
a (X)

P (x′
i = x).

Let X′
l = [x′

1,l x
′
2,l · · · x′

T,l]
⊤ be a random sequences generated as described in the theorem,

where the size of Ġ(x̄)
a (X) is l. Let ki,l be the number of times xi is selected in X′

l . Let
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Al = max1≤i≤l ki,l and Bl = maxl+1≤i≤K ki,l. Let P (l) = P(Bl > Al). We want to
prove P (l + 1) ≤ P (l). We construct a coupling between X′

l and X′
l+1 by performing T

independent trials. For each trial i we generate a uniform random variable Ui in [0, 1] and
we choose tokens in X′

l and X′
l+1 in this way:

• If Ui ≤ pl both the selected tokens x′
i,l and x′

i,l+1 are in {x1, x2, · · · , xl}.
• If pl < Ui ≤ p(l + 1), we select x′

i,l = xl+1 if Ui ≤ pl + q or x′
i,l = xl+2 otherwise,

and we select x′
i,l+1 = xl+1; where q is the probability of choosing xl+1 in X′

l. Since
p > q, there is an interval where xi,l = xl+2 but xi,l+1 = xl+1.

• If Ui > p(l+1), then both the selected tokens x′
i,l and x′

i,l+1 are in {xl+2, x2, · · · , xl}.
Notice that the probability of choosing xi in X′

l+1 for i ≥ l + 2 decreases because p is
constant.

From the previous coupling we have that ki,l = ki,l+1 for 1 ≤ i ≤ l, kl+1,l ≤ kl+1,l+1 for
i = l+1, and ki,l ≥ ki,l+1 for i ≥ l+2. This means that Al+1 = max(Al, kl+1,l+1) ≥ Al

and Bl+1 = maxl+2≤i≤K ki,l+1 ≤ Bl. Therefore P (l+1) = P(Bl+1 > Al+1) ≤ P(Bl >
Al) = P (l).

B Explanation of Assumption 4

As illustrated in Figure 6, the dataset for Ta and the dataset for Tb demonstrate interchangeability
with G(4)

a and G(4)
b , respectively.

Figure 6: Illustration of Assumption 4. Here are two datasets related to the TPGs, G(4)
a and G(4)

b ,
from Figure 3 (left). From the directed arrows in G(4)

a , we can generate a dataset with the last token
e4 for Ta, which can reconstruct back the G(4)

a . A similar process applies for the G(4)
b .

C Detailed simulation studies with single-layer self-attention

C.1 Simulation process

Theoretical TPGs generation. For each token ek, L edges are randomly selected to construct the
theoretical TPG G(k)

theor for ek , ensuring that ek is involved, as either a source or destination node.
Based on these selected edges, we add additional edges from ek to all other tokens included in L
edges, thereby ensuring that all tokens in Gk

theor can be reached by ek. Thus, we obtain the theoretical
TPGs {G(k)

a,theor}Kk=1 for Topic A . This process is repeated to generate another group of theoretical

TPGs {G(k)
b,theor}Kk=1 for the Topic B. Let G(k)

a,theor and G(k)
b,theor combine for each k, we obtain the

theoretical TPGs for topics combinations {G(k)
ab,theor}Kk=1.
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Training Dataset Generation. Generate training datasets DSETa and DSETb based on
{G(k)

a,theor}Kk=1 and {G(k)
b,theor}Kk=1, respectively. For each input sequence in DSET, the sequence length

Ttrain is 4, which means X = [x1 x2 · · · xTtrain
]⊤ ∈ RTtrain×d with xi from E = [e1, e2, ...eK ]⊤.

ek is randomly selected as the last token and other tokens (other input tokens and the next predicted
token) are chosen based on G(k)

theor. Specifically, the next token eTtrain+1 is determined by sampling
with the weighted probability in G(k)

theor, where the weight for each token corresponds to the number
of outcoming edges. Given Assumption 2, we randomly choose the position of the next token in the
input sequence. Then, the remaining input tokens are randomly selected from tokens connected by
incoming edges from ek (i.e., ek → ei) and placed in the random position within the input sequence.
This process is repeated n times to generate training data for each topic respectively. Empirical
TPGs {G(k)

a,empir}Kk=1 and {G(k)
b,empir}Kk=1 are derived from the training datasets DSETa and DSETb.

According to Assumption 4, the empirical TPGs {G(k)
empir}Kk=1 are expected to be identical to the

theoretical TPGs {G(k)
theor}Kk=1 for each topic. The experiments are conducted with 5000 instances,

with each parameter setting evaluated over 50 epochs, consisting of 100 sequences per epoch.

Trained attention weights. We employ a single-layer attention mechanism implemented in PyTorch.
The model is trained using the SGD optimizer with a learning rate η = 0.01 for 8000 iterations. The
training of attention weights is divided into two stages for each instance: (1) computing Wsvm for
each topic;4 (2) get W(τ) at each iteration for each topic. In Stage (1), prior to using the CVXPY
package to get Wsvm, SCCs are identified for each TPG derived from the using Tarjan’s algorithm.
Afterward, Wsvm is normalized to ensure consistency in subsequence computations. In Stage (2),
the MLayerAttn function encapsulates the architecture of a single-layer attention-based model.
The training function is then used to optimize the attention weights by minimizing the loss defined
in ERM. Finally, the correlation between Wsvm and W(τ) is calculated using the dot product.

Next token prediction. To differentiate the input sequence length of the testing data from that of
the training data, we introduce Ttest. TPGs based on the training dataset DSETa are utilized to
generate test datasets consisting of 100 sequences from Ta per epoch. Specifically, the last token
xTtest

of the test input sequence is randomly selected from K tokens (i.e. xTtest
= ek) and the

remaining input tokens are randomly chosen based on the SCCs of Gk
a , where tokens with higher

priority are assigned greater weights. For instance, in G4
a, tokens e1, e2, e4 are captured with the

priority order e1 = e2 > e4. The weights assigned to input tokens e1, e2, and e4 are 0.4, 0.4, and
0.2, respectively. It reflects that e1 and e2 are in the same higher-priority SCC, thus having greater
weights compared to e4. Intuitively, tokens within the same SCC are more likely to co-occur than
those from different SCCs. This approach enables the generated test input sequences to mimic real
word relationships and reflect their contextual groupings. Following the generation of the test dataset
from Ta, the next tokens ŷwa and ŷwab

are predicted by Equation 1, with Wa and Wab obtained
from the last iteration. To reduce the potential numerical issues in the outputs, S(XWx̄) is rounded
to three decimals, ensuring that tokens within the same SCC yield consistent softmax outputs.

C.2 Additional experiments to support Theorem 2

To further illustrate Theorem 2 we define the attention priority similarity of weights W′ relative to
W for a sequence X as: RW,W′(X) =

1

T − 1

T−1∑
j=1

g
(
[S (XW′x̄)]ij − [S (XW′x̄)]ij+1

)
,

where i1, · · · , iT is a permutation of 1, · · · , T such that [S (XWx̄)]i1 ≥ · · · ≥ [S (XWx̄)]iT , and

g(w) =

{
1, if w ≥ 0,
1

e−w , otherwise.

The attention priority similarity quantifies how well the weights W′ preserve the attention priority
of the weights W. A value of 1 indicates that the priority is fully preserved. Using this metric, we

4Note: Wsvm = 0 means the number of SCCs is 1 for Gk,∀k ∈ [K]. During the simulation, we proceed to
the next instance when Wsvm = 0 until reaching a total of 100 instances.
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Figure 7: Convergence of attention priority similarity for Wab(τ)
∥Wab(τ)∥F

relative to Wa(τ)
∥Wa(τ)∥F

(blue) and
Wb(τ)

∥Wb(τ)∥F
(orange).

Table 1: Proportion of keep topic, ambiguous, and change of topic with varying Ttest =
{4, 8, 16, 24, 32, 64, 128, 256, 512}.

Ttest KEEP(%) AMBIGUOUS(%) CHANGE(%)

4 98.60 ± 1.54 1.40 ± 1.54 0.00 ± 0.00
8 98.50 ± 1.47 0.96 ± 1.11 0.54 ± 0.76
16 98.06 ± 1.33 0.54 ± 0.76 1.40 ± 1.07
24 98.48 ± 1.31 0.26 ± 0.44 1.26 ± 1.10
32 98.84 ± 1.15 0.12 ± 0.33 1.04 ± 1.03
64 99.10 ± 1.07 0.04 ± 0.20 0.86 ± 1.05
128 99.64 ± 0.53 0.02 ± 0.14 0.34 ± 0.52
256 99.98 ± 0.14 0.00 ± 0.00 0.02 ± 0.14
512 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

conduct experiments, with results in Figure 7. We generate embeddings with K = 10 and d = 16,
and randomly construct TPGs for Ta and Tb. Using these TPGs, we randomly generate DSETa

and DSETb. We compute Wa(τ)
∥Wa(τ)∥F

, Wb(τ)
∥Wb(τ)∥F

and Wab(τ)
∥Wab(τ)∥F

using the same procedure as Li et al.
[25]. We generate test sequences Z within Ta, and we calculate the attention priority similarity of

Wab(τ)
∥Wab(τ)∥F

relative to both Wa(τ)
∥Wa(τ)∥F

and Wb(τ)
∥Wb(τ)∥F

. We repeat this process for multiple TPGs and
input sequences (simulation details in Appendix C). Figure 7 clearly demonstrates that the similarity
converges to 1 after τ = 8000 iterations when evaluated relative to Wa(τ)

∥Wa(τ)∥F
(blue line), but fails to

converge relative to Wb(τ)
∥Wb(τ)∥F

(orange line). These observations align with the results of Theorem 2.

C.3 Simulation in Section 5

In Figure 5(a), we predict next tokens for 5000 test sequences from Ta with Ttest =
{4, 8, 16, 24, 32, 64, 128, 256, 512}, while fixing L = 4, d = 16, Ttrain = 4, and K = 10. The
proportion of each scenario with varying T is illustrated in Table 1. For Figure 5(b), we predict
next tokens for 5000 test sequences (the sequence length is Ttest = 20) using models trained with
L = {4, 6, 8, 10, 12, 14, 16, 18}, d = 16, K = 10, and Ttrain = 4. The proportion of each scenario
with varying L is illustrated in Table 2.

C.4 Additional experiments for convergence in mixed topics

Building upon the convergence experiments in Li et al. [25], our work demonstrates that the correlation
coefficients ⟨Wab(τ),W

svm
ab ⟩/⟨∥Wab(τ)∥F , ∥Wsvm

ab ∥F ⟩ (green lines) in Figure 8, measured with
varying K = {6, 10, 14} and L = {8, 12, 16}, approach to 1. These results indicate that Theorem 1
extends beyond individual topics to also capture the convergence in mixed-topic scenarios, albeit
with relatively slower convergence. In these experiments, we fix Ttrain = 4 and d = 16. Each point
represents the average over 5000 randomly generated instances, trained with 8000 iterations. The
shaded area around each line represents the 95% confidence interval, computed over 50 epochs.
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Table 2: Proportion of keep topic, ambiguous, and change of topic with varying L =
{4, 6, 8, 10, 12, 14, 16, 18}.

L KEEP(%) AMBIGUOUS(%) CHANGE(%)

4 98.22 ± 1.43 0.26 ± 0.60 1.52 ± 1.31
6 98.30 ± 1.37 0.50 ± 0.68 1.20 ± 1.11
8 98.18 ± 1.49 0.68 ± 0.68 1.14 ± 1.23
10 98.42 ± 1.25 0.76 ± 0.85 0.82 ± 1.02
12 98.14 ± 1.32 0.82 ± 0.92 1.04 ± 0.97
14 97.96 ± 1.44 1.24 ± 1.06 0.80 ± 0.86
16 98.28 ± 1.33 0.98 ± 0.91 0.74 ± 0.85
18 98.02 ± 1.58 1.26 ± 1.14 0.72 ± 0.86

(a) K = 6, L = 4 (b) K = 10, L = 4 (c) K = 14, L = 4

(d) K = 10, L = 8 (e) K = 10, L = 12 (f) K = 10, L = 16

Figure 8: Convergence of Wa(τ)
∥Wa(τ)∥F

(blue), Wb(τ)
∥Wb(τ)∥F

(orange), and Wab(τ)
∥Wab(τ)∥F

(green) for varying K

and L, with fixed Ttrain = 4 and d = 16.

C.5 Numerical analysis for each scenario in Figure 3

Figure 9 provides a numerical breakdown for each scenario in Figure 3. In Figure 9, each distinct
color corresponds to a unique token within the input sequence X, which consists of 4 tokens. e4 is
the last token across all three input sequences. For each input sequence X, we apply Wa(τ) and
Wab(τ) with τ = 8000 to predict the next token, yielding ŷWa

and ŷWab
, respectively.

Let [S(XWa(τ)x̄)]i = ai and [S(XWab(τ)x̄)]i = bi, for i ∈ [T ]. Following Equation 9 and
Equation 10, we compute [CfWa(τ)(X)]xi and [CfWab(τ)(X)]xi to get the highest probability SCC
and predict the next token for each input sequence.

Topic continuity. In Fig. 9a, input sequence X consists of four unique tokens: e5, e1, e3, and e4.
Based on G(4)

a in Figure 3 (left), the priority order of these tokens is e5 > e3 > e1 > e4, with
corresponding ai values: 0.45 > 0.25 > 0.20 > 0.1. Since [CfWa(τ)(X)]e5

= 1 × 0.45 is the
largest, Ĝ(4)

a = {e5} and ŷWa = e5. In the mixed-topic scenario, Wab preserves the attention
priority but e4 and e1 have the same priority: e5 > e3 > e1 = e4, with corresponding bi values:
0.40 > 0.30 > 0.15 = 0.15. Token e5 is still with the highest probability to be chosen, as
[CfWa(τ)(X)]e5

= 1×0.40. Following the Definition 3, Wab keeps topic for the the input sequence
X = [e5, e1, e3, e4]

⊤.

Ambiguous sequence. Input sequence X in Fig. 9b has two unique tokens: e1 and e4. The priority
order is e1 > e4, following G(4)

a in Figure 3 (left). The corresponding values are a1 = a3 = 0.3
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(a) Topic continuity. (b) Ambiguous sequence.

(c) Change of topic.

Figure 9: Numeric details for each scenario: (a) topic continuity, (b) ambiguous sequence, and (c)
change of topic.

and a2 = a4 = 0.2. Then [CfWa(τ)(X)]e1 = 2 × 0.30 and [CfWa(τ)(X)]e4 = 2 × 0.20. Thus,
Ĝ(4)
a is {e5} with the highest probability. Wab makes e4 and e1 with the same priority, as indicated

by G(4)
ab in Figure 3 (left). Both e1 and e4 are within the highest probability SCC, Ĝ(4)

ab , due to
[CfWab(τ)(X)]e1

= [CfWab(τ)(X)]e4
= 2× 0.25. Although ŷWab

̸∈ Ĝ(4)
a , Ĝ(4)

a ∈ Ĝ(4)
ab . Therefore,

the sequence X = [e1, e4, e1, e4]
⊤ is ambiguous, based on the Definition 4.

Change of topic. For the input sequence X in Fig. 9c, the only two unique tokens, e5 and e4, are
with the same priority order in both G(4)

a and G(4)
ab from Figure 3 (left): e5 > e1. With Wa(τ) trained

in Ta, the token e5 has a1 = 0.70 and the token e4 has a2 = a3 = a4 = 0.10. Obviously, 1×0.70 =

[CfWa(τ)(X)]e5
> [CfWa(τ)(X)]e4

= 3× 0.10. Thus, Ĝ(4)
a consists of e5. However, Ĝ(4)

ab consists
of e4 instead of e5, due to 1 × 0.40 = [CfWab(τ)(X)]e5

< [CfWab(τ)(X)]e4
= 3 × 0.20. Since

ŷWab
̸∈ Ĝ(4)

a and Ĝ(4)
a ̸⊂ Ĝ(4)

ab , Wab changes topic for the input sequence X. Moreover, we have
(e5 ⇒ ei) ∈ G(4)

ab for i ∈ [4], as shown in Figure 3 (left). Thus, the highest priority SCC (Definition 1)
in Tab is Ġ(4)

ab (X) = {e5}. In the input sequence X = [e5, e4, e4, e4]
⊤, the lower-priority token

e4 ̸∈ Ġ(4)
ab (X) appears more frequently than the higher-priority token e5 ∈ Ġ(4)

ab (X), illustrating our
Theorem 3.
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D Experimental details in Section 6

In this section, we provide the experimental details in four LLMs: GPT-4o, Llama-3.3, Claude-3.7,
and DeepSeek-V3. Here, we outline the general procedure used in each model, under identical
parameter settings, to generate continuations for each segment of the abstract.

1. Extract the first T words from paper A’s abstract as the input segment X from Topic A.

2. Randomly select 5 papers different from paper A, as papers B in {Bi}5i=1.

3. For the input segment X, apply RAG to extract top 3 relevant excerpts (chunks) from paper
A as the the knowledge A, denoted as RefA. Each chunk has 800 tokens length.

4. Similarly, retrieve top 3 relevant excerpts from paper Bi as the knowledge Bi, denoted as
RefBi .

5. Combine the knowledge from Topic A and from Topic Bi as the knowledge ABi for mixed
Topics, denoted as RefABi

.

6. For the input segment X, promot each LLM with PromptA and PromptABi
, to generate the

continuations as ŷWa and ŷWab
, respectively. Notably, the only difference between PromptA

and PromptABi
is the reference excerpts provided RefA or RefABi

. All LLMs are set with a
temperature of 0 to match the greedy decoding in our theoretical framework. The maximum
completion length was set to 1000 tokens to ensure that the generated continuations could
complete the abstract.

(a) PromptA:
Here are some relevant excerpts from research paper(s) as reference:RefA. Below is the
1st fragment of an abstract from arXiv paper A: X. Please continue the 2nd fragment
of the abstract based on the relevant excerpts without including the given content in
the output.

(b) PromptABi
:

Here are some relevant excerpts from research paper(s) as reference:RefABi
. Below

is the 1st fragment of an abstract from arXiv paper A: X. Please continue the 2nd
fragment of the abstract based on the relevant excerpts without including the given
content in the output.

7. Calculate the average cosine similarity between ŷWa and ŷWab across five pairs of paper A
and paper Bi.

D.1 Impact of input length

To investigate the impact of the input length, we vary T = {10, 30, 50, 70, 90, 110, 130, 150} for
every paper as Topic A, increasing the length of the input segment X extracted from the abstract of
paper A, as shown on the x-axis from Figure 5a.

D.2 Impact of topic ambiguity

We quantify topic (paper) ambiguity by computing the average similarity among each paper’s
keywords. Since arXiv papers do not provide keywords, we use Llama-3.3 to generate four keywords
for each paper prior to generating continuations with the LLMs. To investigate the topic ambiguity,
we fix the input length with T = 80 for every paper as Topic A and order papers by the average
keywords similarity, as shown on the x-axis of Figure 5b. A higher keywords similarity corresponds
to lower topic ambiguity.

D.3 Additional experiments

D.3.1 Extended input length

To further examine the impact of the input length, we randomly select 50 out of 100 arXiv papers
introduced in Sec. 6 and extend the input length with the first 310, 460, . . . , 1210 words from
the introduction of each paper A as the input prompt. We start from T = 310 because shorter
introductions provide insufficient contextual information to reliably extract relevant excerpts from the
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full paper when using RAG. As shown in Figure 10, the average cosine similarity generally increases
with the more introduction content from paper A, with the exception of DeepSeek, which exhibits
only a marginal improvement.

Figure 10: Extended length of input sequences.

D.3.2 Alternative measure of ambiguity

As an alternative approach to validate our results, we also measure the ambiguity based on the
similarity between the keywords of paper A and those of paper B. Following the same setup, we rank
the cosine similarity for each paper A by the increasing similarity between its keywords and those of
five papers B, where a higher level corresponds to a greater ambiguity. As shown in Figure 11, our
results still hold since the cosine similarity remains relatively stable as the ambiguity level increases.

E Computational resources for experiments

In our simulations based on the single-layer self-attention model, each group of parameter setting
requires 7 hours to train two models separately, one for single input topic and one for mixed topics,
followed by 2 additional hours for next-token prediction.

Figure 11: Topic ambiguity measured by the similarity between the keywords of paper A and those
of paper B. Higher keywords similarity indicate greater topic ambiguity between the two papers.
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In our experiments on LLMs, we query GPT-4o, Llama-3.3, Claude-3.7, and DeepSeek-V3 through
API calls. All experiments were conducted on a standard laptop without specialized hardware.
For each LLM, the full process, including selecting relevant excerpts using RAG and generating
continuations, requires approximately 80 hours of runtime, with a total of 30 million input tokens and
5 million output tokens. The total API usage cost for the experiments is approximately 350 USD.

F Impact statement

Our investigation highlights fundamental differences between spontaneous topic changes in LLMs
and spontaneous human thought, informing the development of more natural and flexible AI systems
in domains such as customer service and mental health support. However, improving such capabilities
can raise ethical considerations, including inadvertent manipulation of user focus, especially in
persuasive or sensitive contexts. Our work, while largely theoretical, emphasizes the importance
of fairness, privacy, and user autonomy as developers refine these systems to serve users’ interests,
respect contextual boundaries, and remain accountable. This research has the potential to advance
both Machine Learning and Human-Computer Interaction by informing new architectures that
mimic human-like topic shifts; nevertheless, any real-world application of these findings should be
accompanied by vigilant oversight to mitigate risks of misuse—such as deceptive or manipulative
dialogue shifting. There are many other potential societal consequences of our work, none which we
feel must be specifically highlighted here.

26



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The fifth paragraph and Subsection 1.1 in Introduction accurately reflect the
paper’s contributions, scope, assumptions and limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We introduce assumptions in Introduction and we have a subsection of limita-
tions in Section 8, including the lack of theoretical framework for complex architectures,
alternative cost functions, and diverse training objectives.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

27



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Building on Assumptions 1 and 2 from Theorem 1 in Li et al. [25], and
incorporating our new Assumptions 3 and 4, we present Theorems 2, 3, and 4. All proofs
are provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full disclosure of the implementation details to reproduce experi-
mental results. Section 5 and Appendix C present the simulation details and results based on
the single-layer self-attention model, while the experiments on modern LLMs are detailed
in Section 6 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and data for reproducibility is provided as supplementary material.
Upon acceptance we will also provide a public GitHub repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We fully disclose the experimental setup in Section 5 and the corresponding
details in Appendix C.1 for the single-layer self-attention model. The experimental setup
and details for modern LLMs are provided in Section 6 and Appendix D, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Figure 5a shows the 95% intervals of the average cosine similarity as the
input length increases. In Appendix C, Table 1 and Table 2 report the 95% intervals for
the percentage of each scenario. Additionally, Figure 7 shows the 95% confidence interval
for the attention priority similarity, and Figure 8 presents the convergence of W with
corresponding 95% confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix E provides details on the computational resources used in our
experiments, including execution time, API usage costs, and the total number of input and
output tokens.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix E, we discuss the social impact of our work from both potential
positive and negative impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

31



Justification: Our work is conducted in Python with several open-source Python libraries.
For generating continuations in our experiments, we access the following publicly released
LLMs via API: GPT-4o[18], Llama-3.3[15], Claude-3.7[2], and DeepSeek-V3[30].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a detailed description of the dataset used for the single-layer self-
attention model in Appendix C.1 and the dataset used for the modern LLMs in Appendix D.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work doesn’t involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLM APIs, including GPT-4o, Llama-3.3, Claude-3.7, and DeepSeek-
V3, to generate the continuations of the input segment. Section 6 and Appendix D provide
all experimental results and detailed process related to the frontier LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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