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Abstract001

Curriculum learning is a widely adopted train-002
ing strategy in natural language processing003
(NLP), where models are exposed to examples004
organized by increasing difficulty to enhance005
learning efficiency and performance. How-006
ever, most existing approaches rely on man-007
ually defined difficulty metrics – such as text008
length – which may not accurately reflect the009
model’s own perspective. To overcome this lim-010
itation, we present a self-adaptive curriculum011
learning paradigm that prioritizes fine-tuning012
examples based on difficulty scores predicted013
by pre-trained language models (PLMs) them-014
selves. Building on these scores, we explore015
various training strategies that differ in the or-016
dering of examples for the fine-tuning: from017
easy-to-hard, hard-to-easy, to mixed sampling.018
We evaluate our method on four natural lan-019
guage understanding (NLU) datasets covering020
both binary and multi-class classification tasks.021
Experimental results show that our approach022
leads to faster convergence and improved per-023
formance compared to standard random sam-024
pling. We make our code publicly available.1025

1 Introduction026

Although large language models (LLMs) are highly027

valued in the NLP community for their broad ca-028

pabilities (Naveed et al., 2024; Chang et al., 2024),029

their substantial computational cost often makes030

them impractical for many real-world scenarios031

– particularly for simple classification tasks that032

require rapid responses or deployment on resource-033

constrained infrastructure (Bai et al., 2024; Cun-034

ningham et al., 2024). As a result, task-specific035

NLP models – those pre-trained and subsequently036

fine-tuned on labeled data for specific tasks, e.g.,037

sentiment analysis – remain highly relevant (Zhao038

et al., 2024b). While many studies have focused039

on enhancing the effectiveness of pre-training (Du040

1URL hidden for anonymity.
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Figure 1: Frequencies of samples being incorrectly
(dark blue) and correctly classified (light blue) by BERT
before and after 1 epoch of training. The model tends
to make worse decisions when samples are difficult and
better decisions when they are easy. Note that a sample
with a difficulty score of 0 is the most difficult one.

et al., 2021; Yu et al., 2022a; Liu et al., 2024; Hu 041

et al., 2024), the high resource demands of this 042

stage make it more practical to instead develop im- 043

proved fine-tuning strategies (Xu et al., 2020; Chen 044

et al., 2021; Hu et al., 2022a; Ding et al., 2023). 045

One important class of fine-tuning strategies cen- 046

ters around the concept of curriculum – a process 047

inspired by human learning. Curriculum Learn- 048

ing, first introduced by Bengio et al. (2009) in 049

the general machine learning domain, has since 050

demonstrated effectiveness in NLP tasks as well 051

(Xu et al., 2020; Zhu et al., 2021; Maharana and 052

Bansal, 2022; Ranaldi et al., 2023; Gao et al., 2024). 053

This paradigm involves structuring training data 054

from simpler to more complex examples, enabling 055

models to build knowledge incrementally and learn 056

more efficiently. A central challenge in applying 057

curriculum learning lies in defining difficulty. Most 058

prior work estimates difficulty using surface-level 059

features such as sentence length or word rarity (Pla- 060

tanios et al., 2019; Xu et al., 2020; Ranaldi et al., 061

2023). However, these metrics may not align with 062

the model’s internal understanding – especially 063

for PLMs capable of capturing deeper semantic 064

attributes like irony or ambiguity thanks to massive 065

pre-training. Moreover, the assumption that train- 066

ing should always progress from easy to hard is 067

debatable; models may benefit from early exposure 068
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to difficult examples or from revisiting easier ones069

in training to mitigate forgetting (Kirkpatrick et al.,070

2017; Ke et al., 2021; Huang et al., 2024).071

To this end, we propose a self-adaptive curricu-072

lum learning paradigm that explores various sam-073

pling strategies driven by the model’s own confi-074

dence. Rather than relying on manually defined dif-075

ficulty heuristics based on the surface feature of an076

example, we leverage the PLM itself to compute a077

difficulty score – specifically, a confidence measure078

that reflects how certain the model is when classi-079

fying an example using a prompt template and a080

verbalizer component (Schick and Schütze, 2021a).081

For each example, we define its difficulty as the082

maximum absolute difference among the predicted083

class probabilities, where a smaller difference in-084

dicates greater uncertainty (i.e., higher difficulty).085

Since this computation requires no parameter up-086

dates, it can be performed efficiently across the087

dataset. Once difficulty scores are computed, we088

sort the examples in ascending or descending order089

and explore three categories of sampling strate-090

gies: Naive sequential sampling: examples are091

selected in order from easiest to hardest, or in re-092

verse. Probability-based sampling: examples are093

sampled probabilistically, with sampling probabili-094

ties defined based on their difficulty ranks. Parti-095

tioned batch sampling: examples are divided into096

easy and hard groups, and batches are formed by097

sampling from both partitions during fine-tuning.098

To validate our proposed methodology, we con-099

duct extensive experiments on four NLU datasets100

covering both binary and multi-class classification101

tasks, including sentiment analysis, hate speech de-102

tection, and natural language inference. We show103

that the difficulty scores predicted by the PLM it-104

self serve as a reliable proxy for model uncertainty105

– examples with higher difficulty scores are much106

more likely to be misclassified, as show in Figure 1.107

Moreover, our sampling strategies yield competi-108

tive or superior performance compared to standard109

random sampling in the full-dataset fine-tuning110

setting. In the few-shot fine-tuning setting, our111

methods generally outperform the baseline meth-112

ods, demonstrating strong generalization and ro-113

bustness. Our contributions are as follows:114

(i) We propose a self-adaptive curriculum115

paradigm that prioritizes fine-tuning examples116

based on difficulty scores predicted by the PLM117

itself. (ii) We propose three categories of sampling118

strategies based on ranked lists of examples accord-119

ing to their difficulty scores. (iii) We empirically120

validate our approach on four diverse NLU tasks, 121

achieving strong results in both full-dataset and 122

few-shot fine-tuning scenarios. 123

2 Related Work 124

2.1 Sampling Strategies 125

Traditional random sampling methods, though 126

widely used, often fail to make the model learn- 127

ing more effective. Therefore, more advanced 128

sampling strategies have been explored, includ- 129

ing strategies with stratified sampling (Neyman, 130

1934; Qian et al., 2009), multistage sampling 131

(Nadeem et al., 2020), adaptive ranking-based sam- 132

pling (Song et al., 2022) and class balancing tech- 133

niques such as balanced data sampling (Shao et al., 134

2024). Active learning (AL) selects the most infor- 135

mative instances for annotation (Lewis and Gale, 136

1994) to better leverage unlabeled data, with re- 137

cent strategies including uncertainty-based sam- 138

pling (Yu et al., 2022b), cold-start AL via masked 139

language modeling loss (Yuan et al., 2020), self- 140

active learning for multilingual settings (Dossou 141

et al., 2022), and hybrid AL combining uncertainty 142

and diversity (Azeemi et al., 2025). A comprehen- 143

sive survey of AL in NLP is provided by Zhang 144

et al. (2022). Adaptive sampling techniques, which 145

dynamically adjust sample selection during train- 146

ing, recent research includes difficulty-aware nega- 147

tive sampling (Li et al., 2019), hard negative mining 148

in extreme classification (Dahiya et al., 2023), and 149

class-adaptive re-sampling to mitigate false nega- 150

tives in weak supervision (Tan et al., 2023). 151

2.2 Curriculum Learning 152

Curriculum learning (CL) (Bengio et al., 2009) 153

defines the difficulty of the sample and improves 154

model convergence and performance by ordering 155

training samples from easy to hard (Soviany et al., 156

2022). In NLP, it can be implemented by sort- 157

ing and sampling sentences based on features such 158

as sentence length or word rarity (Platanios et al., 159

2019). Beyond manual annotations or simple 160

heuristics, CL variants differ in how they define 161

difficulty and structure training. Teacher-student 162

CL ranks samples via an external model (Xu et al., 163

2020; Soviany et al., 2022), while self-paced CL 164

allows models to select samples based on their in- 165

ternal progress (Jiang et al., 2015). Competence- 166

based CL introduces a formal notion of model com- 167

petence, and dynamically filters training samples 168

(Platanios et al., 2019). Beyond these mainstream 169
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variants, more recent work has extended curriculum170

learning into various specialized settings, includes171

combining CL with active learning (Jafarpour et al.,172

2021), dual CL, which handles positive and nega-173

tive samples separately (Zhu et al., 2022) and cur-174

riculum contrastive learning for knowledge graph175

entity typing (Wang et al., 2025). Recent work also176

applies curriculum learning to code language mod-177

els by defining difficulty through static complexity178

measures (Naïr et al., 2024). Some methods fol-179

low curriculum principles without being explicitly180

framed as curriculum learning (Mindermann et al.,181

2022; Thakkar et al., 2023). In contrast to this line182

of work, we propose a CL framework relying on183

the difficulty predicted by the model itself.184

2.3 Prompt-Based Fine-Tuning185

Prompt-based Fine-tuning (PFT) has emerged as186

a powerful approach for adapting PLMs to down-187

stream tasks, particularly in zero-shot and few-shot188

scenarios (Schick and Schütze, 2021a,c,b; Le Scao189

and Rush, 2021; Gao et al., 2021; Jin et al., 2022;190

An, 2023; Ma et al., 2023; Ullah et al., 2023; Xie191

and Li, 2024) . An important early stage of PFT re-192

search was marked by Pattern-Exploiting Training193

(PET), proposed by Schick and Schütze (2021c).194

Building on this, Schick and Schütze (2021a,b) fur-195

ther explored key factors such as prompt design,196

verbalizer selection, and self-training strategies,197

and extended PET to text generation tasks. In PFT,198

verbalizers can either be manually crafted or auto-199

matically optimized (Shin et al., 2020; Schick and200

Schütze, 2021a). Recent work has further extended201

PFT beyond monolingual settings to multilingual202

and cross-lingual tasks (Hu et al., 2022b; Ye et al.,203

2022; Wang et al., 2022; Ma et al., 2023). While204

early studies primarily focused on single-label clas-205

sification, more recent efforts have adapted PFT206

to more complex settings such as multi-label clas-207

sification (Yang et al., 2022). Recent work has208

also addressed semantic inconsistency and repre-209

sentation degeneration in prompt-based fine-tuning,210

proposing methods such as semantic consistency211

modeling (Xie and Li, 2024) and contrastive learn-212

ing frameworks (Zhao et al., 2024a).213

3 Methodology214

We propose a self-adaptive curriculum learning215

paradigm that relies on the difficulty predicted by216

the PLM itself. We use prompt templates (cf. §3.1)217

and the verbalizer component (cf. §3.2) to obtain218

[Mask]this wasveryaisThis ambitious project , a movie .Input

Masked Language Model

this wasveryaisThis ambitious project , a movie .Output

Verbalizer
Class	1:	“good”
Class	2:	“bad”

𝑃!"# = 𝑃$""% = 0.9
𝑃&'$ = 𝑃()% = 0.1

Dif;iculty Score
𝑃!"# − 𝑃&'$ = 0.8

Figure 2: Illustration of the proposed difficulty scor-
ing approach using masked language modeling and a
verbalizer. The input sentence is processed to predict
the masked token, and the resulting token probabilities
are mapped to class labels through a verbalizer. In this
example, the tokens “good” and “bad” represent the
positive and negative classes, respectively. The diffi-
culty score is then computed as the absolute difference
between the class probabilities, reflecting the inherent
complexity from the model’s perspective.

the class probabilities, based on which we compute 219

the difficulty score for each example (cf. §3.3). 220

With the scores, we propose different sampling 221

strategies for fine-tuning (cf. §3.4). 222

3.1 Prompt Construction 223

Our approach begins with the construction of task- 224

specific prompts. The general structure is: 225

Text+ Template 226

where Text is the actual text for which we want to 227

obtain a prediction and Template is a few tokens 228

that help the model to understand the task and make 229

a prediction. Template always contains a special 230

token [MASK]. We check the token distribution over 231

vocabularies at the [MASK] position. 232

For example, in a sentiment analysis task for 233

movie reviews, the prompt is formulated as: “This 234

is a very ambitious project, this was a [MASK] 235

movie.”, where the first half, i.e., “This is a very 236

ambitious project” is the actual sentence for classifi- 237

cation while the rest is the template. Here, [MASK] 238

prompts the model to predict an adjective token 239

(e.g., great, bad), reflecting the sentiment of a “re- 240

viewer”. The prompt templates we use for each 241

downstream task are shown in §A. 242

3.2 Verbalizer Design 243

A verbalizer maps token predictions of the model 244

at [MASK] position to task-specific category labels. 245

Taking binary classification for example, we de- 246

fine the verbalizer with carefully selected keywords 247
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aligned with the dataset and the task context:248

V = {positive → positive keyword,249

negative → negative keyword}250

where positive/negative refer to the category, and251

positive/negative keyword are the tokens we252

use representing the corresponding category. Al-253

though multiple keywords per class can be consid-254

ered, both previous research (Ma et al., 2023) and255

our preliminary results indicate that optimal per-256

formance is achieved when mapping each category257

to a single, clearly representative keyword. This258

verbalizer design is easily extendable to multi-class259

scenarios. We show our verbalizers in §A.260

3.3 Difficulty Score Calculation261

By feeding a prompt, we check the model’s output262

logits at the [MASK] position. For each token wi in263

the vocabulary V, we obtain its corresponding logit264

zi. We then calculate the probability of the token265

with the softmax function: P (wi) =
ezi∑

wj∈V ezj
266

Then, we extract the label-specific probabilities267

using verbalizers. Taking sentiment analysis (a bi-268

nary classification task, for example, we compute269

the class probability by considering the selected270

keyword for each class:271

Ppos = P (positive keyword)272

Pneg = P (negative keyword)273

Note that Ppos and Pneg are normalized so that274

Ppos+Pneg = 1. The difficulty score is then defined275

as the absolute difference between the two class276

probabilities: Difficulty Score = |Ppos − Pneg|.277

Figure 2 illustrates the process of calculating the278

difficulty score. The intuition is that a higher279

score indicates greater model confidence (lower280

difficulty), whereas a lower score suggests uncer-281

tainty (higher difficulty). Our empirical results282

verify this intuition: Figure 1 shows that, even be-283

fore training, examples with higher scores (less dif-284

ficult) generally correspond to correct predictions.285

After training, the distribution shifts significantly286

toward higher scores (many examples become less287

difficult because the model has seen them), vali-288

dating the effectiveness of our difficulty scoring289

method. This method easily generalizes to multi-290

class classification by defining difficulty score as291

the margin between the two highest class probabili-292

ties: Difficulty Score = |Pmax − Psecond-max|.293

3.4 Sampling Strategies 294

Drawing inspiration from curriculum learning, we 295

propose six sampling strategies grouped into three 296

categories. The sampling relies on the difficulty 297

score of each example. These strategies are de- 298

signed to prioritize “worth-learning” examples 299

during fine-tuning for specific tasks. Figure 3 300

presents an overview of our sampling strategies. 301

3.4.1 Naive Sequential Sampling 302

The most straightforward approach, akin to curricu- 303

lum learning, is to arrange the training examples 304

based on their difficulty scores and train the model 305

using a fixed order. Let X = {xn}Nn=1 be the train- 306

ing examples, sorted by their associated difficulty 307

scores sn in either ascending or descending or- 308

der. We propose two sampling strategies. 309

Easy to Difficult (E2D) Training examples are 310

sorted descendingly according to the scores, such 311

that s1 ≥ s2 ≥ · · · ≥ sn, with x1 being the easiest 312

one and xn the hardest one. Models are exposed to 313

examples from x1 to xN sequentially. 314

Difficult to Easy (D2E) Training examples are 315

sorted ascendingly according to the scores, such 316

that s1 ≤ s2 ≤ · · · ≤ sn, with x1 being the hardest 317

one and xn the easiest one. Models are exposed to 318

examples from x1 to xN sequentially. 319

3.4.2 Probability-Based Sampling 320

Our intuition is that sequentially exposing exam- 321

ples to the model can be overly rigid and lack di- 322

versity. This might result in the model’s degrada- 323

tion in dealing with very easy or difficult examples. 324

Therefore, we propose probability-based sampling 325

strategies that introduce a more flexible and diverse 326

training flow. Specifically, rather than following a 327

fixed order, examples are assigned probabilities 328

based on their difficulty rankings, enabling the 329

model to encounter a controlled mixture of easy 330

and hard examples. Given the ordered examples 331

X = [x1, x2, ..., xN ] according to their scores, the 332

sampling probability for xn is defined as: 333

P (xn) =
n2∑N
j=1 j

2
334

That is, the sampling probability from x1 to xN 335

increases. We propose two sampling strategies. 336

Sampling More Easy (SME) Training examples 337

are sorted ascendingly according to the scores; 338

thus, easier examples (higher ranks n) have larger 339
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Training Strategies

Difficulty 
Score

Dataset

PLM

Easy to Difficult (E2D)

Partition Sampling Prioritizing Easy 
Samples (PME)

Sampling More Easy (SME)

Difficult to Easy (D2E)

Sampling More Difficult (SMD)

Partition Sampling Prioritizing Difficult 
Samples (PMD)

… …

Easy

Difficult

Naive Sequential Sampling

Probability-Based Sampling

Partitioned Batch Sampling

Figure 3: An illustration of our sampling strategies. Each example is associated with a difficulty score based on the
PLM itself. Six sampling strategies are presented: Naive Sequential Sampling (E2D and D2E), Probability-Based
Sampling (SME and SMD), and Partitioned Batch Sampling (PME and PMD). The difficulty of examples is
indicated by color, with lighter colors representing easier samples and darker colors representing more difficult ones.

probabilities of being sampled. This results in a340

sampling behavior in favor of easy examples with341

occasional difficult ones.342

Sampling More Difficult (SMD) Training ex-343

amples are sorted descendingly according to the344

scores; thus, more difficult examples (higher ranks345

n) have larger probabilities of being sampled. This346

results in a sampling behavior in favor of hard ex-347

amples with occasional easy ones.348

3.4.3 Partitioned Batch Sampling Strategies349

As an extension of probability-based sampling, this350

method allows fine-grained control within each351

batch. Each batch B contains two partitions (B1352

and B2) of examples, with one partition focusing353

on sampling easier examples, while the other354

on more difficult ones. Note that sampling within355

each partition is still based on the probability, rather356

than being deterministic. This also ensures diver-357

sity and avoids overfitting to a fixed progression.358

This approach enables a more dynamic and bal-359

anced mixture of easy and hard samples during fine-360

tuning. We set |B1| > |B2|, aiming to give higher361

priority to partition B1 during fine-tuning.2 We362

propose two sampling strategies.363

Prioritizing Easy Samples (PME) The first par-364

tition B1 prioritizes easy samples, while the second365

partition B2 prioritizes difficult examples, achieved366

2We set |B1| : |B2| = 6 : 4 based on preliminary results.

by assigning two different probabilities to each 367

example xn, one for B1 and the other for B2: 368

PB1(xn) =
n2∑N
j=1 j

2
, PB2(xn) =

(N − n)2∑N
j=1 j

2
369

In PME, the training examples are sorted in as- 370

cending order according to the scores. In this 371

way, PB1(xn) prioritizes on easier examples while 372

PB1(xn) prioritizes on harder examples. 373

Prioritizing Difficult Samples (PMD) Con- 374

versely, the training examples are sorted in de- 375

scending order according to the scores. In this 376

way, PB1(xn) prioritizes on harder examples while 377

PB1(xn) prioritizes on easier examples. 378

4 Experimental Setup 379

We evaluate our proposed methods on four publicly 380

available datasets, covering diverse NLP tasks to 381

demonstrate the generality of our approach. 382

4.1 Datasets 383

Stanford Sentiment Treebank Binary (SST-2) 384

SST-2 (Socher et al., 2013) is a balanced binary 385

sentiment analysis dataset containing movie review 386

sentences labeled as positive or negative. 387

Fine-grained Sentiment Analysis (SST-5) SST- 388

5 dataset (Socher et al., 2013) contains sentences 389

from movie reviews labeled into five fine-grained 390
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SST-2 SST-5 HSOL XNLI

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

BERT

Random 91.97 91.97 91.99 91.96 53.62 52.37 53.18 52.05 91.67 73.58 80.15 71.76 84.01 84.02 84.23 84.01
Length 92.09 92.08 92.15 92.06 51.75 51.03 51.52 51.70 91.50 70.99 80.30 69.04 83.06 83.07 83.22 83.06
E2D 92.39 92.39 92.39 92.41 52.16 47.12 56.88 48.17 90.95 70.20 76.21 70.50 82.83 82.87 83.52 82.83
D2E 91.93 91.92 92.12 91.88 51.60 50.48 52.40 50.01 91.23 74.23 77.04 72.81 82.12 82.24 83.23 82.12
SME 91.25 91.23 91.35 91.20 52.91 49.78 53.71 50.39 91.81 73.83 79.76 72.88 83.08 83.10 83.73 83.08
SMD 91.48 91.47 91.53 91.45 52.73 50.92 51.84 51.14 91.51 74.71 79.21 72.22 82.31 82.41 83.28 82.31
PME 91.40 91.38 91.59 91.35 53.83 50.72 54.33 50.40 91.67 74.46 79.19 73.05 83.75 83.78 84.02 83.75
PMD 92.62 92.61 92.73 92.60 52.73 51.66 53.56 51.59 91.64 76.14 78.43 74.76 83.27 83.29 83.54 83.27

RoBERTa

Random 94.11 94.11 94.15 94.10 56.00 54.34 56.55 54.62 92.18 75.27 81.79 72.76 87.11 87.11 87.28 87.11
Length 93.35 93.34 93.46 93.31 54.27 53.17 52.92 54.95 92.00 67.41 85.02 65.60 86.20 86.14 86.37 86.20
E2D 93.92 93.92 95.95 93.91 57.00 53.29 56.64 53.76 90.96 73.98 77.04 74.38 85.73 85.76 86.23 85.73
D2E 93.54 93.54 93.57 93.52 57.07 55.30 56.00 55.70 91.43 73.66 79.06 71.85 87.39 87.43 87.57 87.39
SME 93.35 93.34 94.44 93.33 55.49 50.76 57.76 51.11 91.76 75.46 79.36 75.79 87.11 87.13 87.25 87.11
SMD 93.39 93.37 93.56 93.34 56.46 53.83 56.50 53.51 91.57 75.23 78.14 74.09 86.86 86.96 87.42 86.86
PME 93.85 93.84 93.89 93.82 55.76 52.17 57.13 52.64 92.14 77.27 80.05 75.64 86.86 86.91 87.17 86.86
PMD 93.27 93.27 93.36 93.27 56.89 54.15 57.22 54.04 92.53 74.96 82.89 73.71 87.47 87.49 87.58 87.47

Table 1: Comparison of different sampling strategies and baselines across four datasets (SST-2, SST-5, HSOL, and
XNLI) using BERT and RoBERTa as backbone models. Accuracy, F1 score, precision, and recall are reported.
Bold (resp. underlined) entries highlight the best (resp. second-best) performance within each model group. For
our proposed sampling approaches, we additionally use background colors red to indicate values higher than both
baselines, blue to indicate values lower than both, and white to indicate performance between the two baselines. All
results are averaged over runs with 3 different random seeds.

sentiment categories: very positive, positive, neu-391

tral, negative, and very negative.392

Hate Speech Offensive Language (HSOL) The393

Hate Speech Offensive Language dataset (David-394

son et al., 2017) includes tweets labeled into three395

categories: hate speech, offensive language, and396

neither, with a significant class imbalance.397

Cross-lingual Natural Language Inference398

(XNLI) XNLI (Conneau et al., 2018) is a widely-399

used benchmark for natural language understand-400

ing tasks, providing sentence pairs labeled in three401

categories: entailment, neutral, or contradiction.402

4.2 Models403

We use bert-base-uncased (BERT-base) (De-404

vlin et al., 2018) and roberta-base (RoBERTa-405

base) (Liu et al., 2019) as the base PLMs for all406

experiments. Since masked language modeling is407

the main objective in their pretraining, both models408

have a special [MASK] token in their vocabularies,409

which allows us to compute the difficulty score410

for each example in the training set of the down-411

stream dataset and apply our sampling strategy for412

prompt-based fine-tuning, as introduced in §3.413

4.3 Baselines414

We consider two baselines: Random and Length.415

The Random baseline follows the classic strategy416

where a batch of training examples is randomly417

sampled from the training dataset. The Length418

baseline assumes that examples with more tokens419

are more difficult (Platanios et al., 2019). The ex- 420

amples are sorted from shortest to longest accord- 421

ing to their tokenized length. Length not only re- 422

flects the inherent sentence length but also captures 423

word rarity, as rare or uncommon words are typi- 424

cally tokenized into multiple subword units, thus 425

resulting in longer sequences. 426

5 Results and Discussions 427

5.1 Main Result 428

Table 1 presents the accuracy, F1 score, precision, 429

and recall scores on the test sets of the 4 datasets 430

from the baselines and our training strategies. 431

RoBERTa consistently outperforms BERT 432

across all datasets. RoBERTa shows overall bet- 433

ter performance than BERT across all datasets un- 434

der almost all sampling strategies, including Ran- 435

dom and Length baseline. This is a strong indica- 436

tor that RoBERTa’s pretrained representation pro- 437

vides stronger generalization, especially under low- 438

resource or imbalanced sampling conditions. 439

Random sampling is occasionally sufficient, but 440

curriculum-sampling strategies offer more ro- 441

bust improvements. While the baseline Random 442

shows fair performance, especially in low-difficulty 443

or well-balanced datasets (like SST-2), it gains in- 444

consistent performance across harder datasets like 445

SST-5 and XNLI. The baseline Length achieves 446

slightly better performance than Random, indi- 447

cating that curriculum learning with the sentence 448

length as an indicator of difficulty works. However, 449
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the performance is also less consistent and usually450

worse than our proposed approaches. Our sampling451

strategies, especially PME, E2D, and SME, tend452

to offer more consistent gains, indicating the effec-453

tiveness of using the model’s own prediction for454

difficulty calculation of training examples.455

PMD achieves the highest performance in most456

cases. The PMD strategy yields top performance457

(highlighted in bold) on multiple datasets for both458

BERT and RoBERTa, especially on SST-2 and459

XNLI. Its consistent superiority suggests that its dy-460

namic sampling mechanism effectively emphasizes461

worth-learning examples during training.462

Dataset difficulty affects the benefit of sampling463

strategies. On easier datasets such as SST-2 and464

HSOL, most strategies achieve high and stable465

results, and the performance gap between base-466

lines and sampling-based methods remains rela-467

tively small. In contrast, on more challenging468

datasets like SST-5 and XNLI, the performance469

differences are more pronounced, indicating that470

sampling strategies provide greater benefits when471

the task involves finer-grained classes.472

On imbalanced datasets, the proposed sampling473

strategies offer clear advantages. In datasets474

like HSOL, which exhibit label imbalance or fine-475

grained distinctions, our sampling strategies, such476

as PME and SME, consistently achieve higher F1477

scores compared to baselines. This indicates their478

effectiveness in promoting better representation of479

minority or harder-to-learn classes, improving over-480

all balance between precision and recall.481

5.2 Training Progression Analysis482

To further understand the benefit of our methods,483

we analyze the changes in accuracy and loss on the484

validation set for each dataset within a single epoch485

of fine-tuning. Throughout the epoch, we store a486

checkpoint every 10% of the training samples. We487

then evaluate each checkpoint on the validation set.488

Consequently, we save the average accuracy and489

loss on the validation set at 10 different checkpoints.490

We discuss the trend of accuracy of SST-2 and SST-491

5 in the following. The complete results (accuracy492

and loss) for each dataset are presented in §C.493

Figure 4 presents the RoBERTa results on SST-2.494

At the first checkpoint, sampling strategies D2E,495

PME, PMD, and SMD show a clear advantage, far496

exceeding both the baselines and the E2D and SME497

strategies. This might indicate that early exposure498
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Figure 4: Progression of accuracy during a single epoch
on SST-2. Each checkpoint corresponds to a model
seeing 10% of the training examples.

to difficult examples might be helpful. Through- 499

out training, all methods exhibit some degree of 500

fluctuation. At the final checkpoint, most methods, 501

including the baselines, continue to improve. This 502

suggests that, despite fluctuations during training, 503

most methods benefit from longer training time. 504
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Figure 5: Progression of accuracy during a single epoch
on SST-5. Each checkpoint corresponds to a model
seeing 10% of the training examples.

Figure 5 presents the RoBERTa results on SST-5. 505

Different from the trend from SST-2, we observe 506

that all our training strategies significantly outper- 507

form the baseline at the first checkpoint, indicating 508

that, compared to Random and Length, our meth- 509

ods enable RoBERTa to learn useful features more 510

rapidly in the early stages. However, almost all 511

strategies exhibit substantial fluctuations through- 512

out training. In the final phase, PMD, SMD, and 513

D2E still show improvements, while other strate- 514

gies decline. Among them, PMD achieves the high- 515

est performance through a rapid increase. This 516

might suggest that, for multi-class classification, 517

prioritizing difficult samples can facilitate more 518

stable learning in the last stage of training. 519

5.3 Few-Shot Learning 520

To further investigate the benefit of our strategies 521

under the scenarios where limited training data are 522

present, we conduct a few-shot learning evaluation, 523

similar to the setup of Ma et al. (2023), using the 4 524

datasets. Specifically, we select the top 64 ranked 525
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SST-2 SST-5 HSOL XNLI

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

BERT

Random 80.85 80.60 81.92 80.78 36.58 31.22 38.43 34.07 77.69 32.58 47.70 34.96 35.52 33.41 36.07 35.52
Length 68.12 65.18 75.96 67.62 37.36 32.68 35.87 35.19 77.29 39.01 42.80 39.05 35.07 25.99 37.38 35.07
E2D 52.29 36.97 72.21 51.41 30.94 24.97 29.59 33.08 76.63 37.56 45.87 37.47 34.32 30.89 35.33 34.32
D2E 84.02 84.01 84.05 84.01 39.23 24.28 45.59 31.31 76.28 34.83 41.11 35.89 33.73 27.70 35.31 33.73
SME 81.00 80.94 81.34 80.99 40.44 30.22 44.68 33.88 77.07 37.34 45.87 37.66 35.24 31.68 35.77 35.24
SMD 78.36 78.13 79.36 78.35 40.44 29.60 39.47 33.44 77.28 34.42 47.53 36.05 35.32 29.17 36.04 35.32
PME 79.70 79.49 80.71 78.35 39.67 32.39 37.98 34.42 77.89 35.22 47.04 36.48 36.10 35.20 36.21 36.10
PMD 79.32 78.87 81.38 79.31 40.62 32.91 38.29 35.13 77.92 34.91 45.60 36.44 36.39 35.69 36.40 36.39

RoBERTa

Random 89.64 89.63 89.75 89.66 45.11 34.54 44.46 38.21 80.67 42.44 53.47 41.42 35.53 31.59 33.70 35.53
Length 84.02 83.77 85.39 83.85 40.77 28.69 40.64 33.25 79.35 39.33 50.57 39.22 35.26 27.62 26.37 35.26
E2D 87.99 87.99 88.02 87.99 43.18 35.35 39.61 37.51 77.20 35.50 50.24 36.20 35.55 29.81 34.73 35.55
D2E 90.56 90.55 90.58 90.54 45.10 26.26 34.92 35.65 77.69 38.49 47.48 38.63 32.48 22.15 32.98 32.48
SME 90.37 90.36 90.42 90.34 45.69 34.29 39.87 38.32 78.62 34.20 56.91 36.01 35.61 29.38 34.86 35.61
SMD 90.86 90.86 90.87 90.86 43.79 28.46 37.17 35.63 78.68 35.17 54.04 36.62 33.27 28.36 34.86 33.27
PME 88.95 88.93 89.17 88.93 47.41 31.39 44.86 38.24 80.64 42.04 53.97 41.76 34.29 30.90 35.02 34.29
PMD 90.06 90.03 90.35 90.01 45.13 32.33 45.13 37.11 79.99 41.34 52.05 40.84 33.83 31.13 34.57 33.83

Table 2: Comparison of different sampling strategies and baselines across four datasets (SST-2, SST-5, HSOL, and
XNLI) under few-shot learning setting with 64 training instances. Accuracy, F1 score, precision, and recall are
reported. Bold (resp. underlined) entries highlight the best (resp. second-best) performance within each model
group. For our proposed sampling approaches, we additionally use background colors red to indicate values higher
than both baselines, blue to indicate values lower than both, and white to indicate performance between the two
baselines. All results are averaged over runs with 3 different random seeds.

examples in each sampling strategy.3 The number526

of 64 samples is chosen to ensure sufficient diver-527

sity across difficulty levels. The PLMs are trained528

on these examples solely, and Table 2 presents the529

results of the resulting models on the test set.530

RoBERTa shows a clear advantage over BERT,531

especially on SST-2 and SST-5. Similar to the532

results shown in Table 1, RoBERTa also achieves533

better performance than BERT. We even notice that534

the performance on SST-2 is already close to the535

fully supervised performance reported in Table 1.536

For HSOL and XNLI, however, the gap between537

the two models is much smaller. We assume this is538

due to dataset imbalance and difficulty, which limit539

the effectiveness of few-shot learning.540

On SST-2 and SST-5, most of our sampling541

strategies consistently outperform both base-542

lines except for E2D. Length performs notice-543

ably worse than the other methods, which is be-544

cause only short-length examples are exposed to545

the model. On the other hand, the baseline Random546

remains relatively strong, as it sees both short and547

long examples. We notice that E2D in BERT fails548

to train the model properly, which is expected since549

the model only sees easy examples on which the550

model should already perform very well, even with-551

out any fine-tuning. For other training strategies,552

we generally see improvements. Strategies such553

as D2E and probability-based methods like SME,554

3We use the top 64 ranked examples for all strategies ex-
cept Random, for which examples are randomly sampled.

PME, and PMD show substantial improvements 555

across multiple metrics, indicating that hard exam- 556

ples are particularly important in few-shot learning. 557

For the more challenging inference dataset 558

XNLI, using only 64 samples appears insuffi- 559

cient for training. We notice that all models ob- 560

tain much lower performance in XNLI compared 561

with the results of full-dataset training (cf. Table 562

1). This indicates the difficulty of XNLI dataset – 563

only when enough training instances are available, 564

the model can learn the necessary features for mak- 565

ing reasonable decisions. As a result, based on the 566

poor performance, it is difficult to draw clear con- 567

clusions regarding which sampling strategy is more 568

effective on XNLI. We hypothesize that increasing 569

the number of training samples, e.g., 128 or 256, 570

could alleviate the problem. 571

6 Conclusion 572

In this work, we introduced a self-adaptive curricu- 573

lum learning paradigm that leverages a PLM’s own 574

confidence to estimate the difficulty of training ex- 575

amples. We further propose a range of sampling 576

strategies: sequential, probabilistic, and partitioned, 577

and verify the effectiveness on multiple NLU tasks. 578

Our empirical results show improved performance 579

in both full-data and few-shot settings, confirming 580

the utility of model-predicted difficulty as a train- 581

ing signal. This paradigm offers a scalable and 582

model-centric alternative to traditional curriculum 583

learning, offering insights for broader applications 584

across diverse NLU tasks. 585
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Limitations586

We propose a self-adaptive curriculum learning587

paradigm that relies on the difficulty score pre-588

dicted by the model itself. Despite promising re-589

sults, several limitations remain, particularly re-590

lated to GPU memory constraints, which restrict591

input size and dataset coverage. With access to592

more powerful GPUs, we could conduct experi-593

ments on larger and more comprehensive datasets.594

Additionally, since prompt-based learning is595

highly sensitive to prompt design, experiment-596

ing with different templates and verbalizer words597

could further enhance model performance and inter-598

pretability. Addressing imbalanced datasets by in-599

tegrating dual curriculum learning concepts and im-600

plementing dynamic or multi-phase training strate-601

gies could also improve adaptability and efficiency.602

Overcoming these challenges would significantly603

boost the effectiveness and generalizability of our604

sampling strategies.605
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A Training Details1046

We evaluate our proposed methods on four publicly1047

available datasets, covering diverse NLP tasks to1048

demonstrate the generality of our approach. Below1049

we describe each dataset, including preprocessing,1050

prompt templates, and verbalizer definitions.1051

A.1 Stanford Sentiment Treebank Binary1052

(SST-2)1053

We randomly partition the original training set into1054

training (80%) and validation sets (20%), main-1055

taining label distribution. The original validation1056

set serves as our test set. Tokenized samples are1057

truncated at 128 tokens. The prompt template and1058

verbalizer are set as follows:1059

x+ “this was a [MASK] movie.”1060

1061
V = {positive → “great”, negative → “bad”}1062

A.2 Fine-grained Sentiment Analysis (SST-5)1063

The maximum token length is set to 128 tokens.1064

The prompt template and verbalizer are set as fol-1065

lows:1066

x+ “this was a [MASK] movie.”1067

1068

V =



very positive → “amazing”,

positive → “great”,

neutral → “okay”,

negative → “bad”,

very negative → “terrible”


1069

A.3 Hate Speech Offensive Language (HSOL)1070

We split the original dataset into training (80%),1071

validation (10%), and test (10%) subsets, maintain-1072

ing class distribution. Maximum token length is1073

limited to 128 tokens. The prompt template and1074

verbalizer are set as follows:1075

x+ “this was [MASK].”1076

1077

V =


hate speech → “hateful”,

offensive → “offensive”,

neither → “neutral”

1078

A.4 Cross-lingual Natural Language 1079

Inference (XNLI) 1080

We limit maximum sequence length to 128 tokens. 1081

The prompt template and verbalizer are set as fol- 1082

lows: 1083

Sentence 1 is {premise}, sentence 2 is {hypothesis}.

They are [MASK].
1084

1085

V =


entailment → “entailed”,

neutral → “neutral”,

contradiction → “contradictory”

 1086

A.5 Hyperparameter Settings 1087

Hyperparameters are carefully tuned through em- 1088

pirical tests for optimal performance and compu- 1089

tational efficiency. Based on preliminary experi- 1090

ments, we set the learning rate to 1× 10−5, batch 1091

size to 16 for all experiments. For main exper- 1092

iment and few-shot task, each model is trained 1093

for 5 epochs. For detailed analysis we only train 1094

the model for 1 epoch. The optimizer used is 1095

AdamW (Loshchilov and Hutter, 2017) coupled 1096

with a linear scheduler (no warm-up steps). 1097

For partition sampling strategies (PME and 1098

PMD), we set the batch partitions in a 6:4 ratio 1099

(9 samples in the first partition and 7 samples in 1100

the second). 1101

Model selection for evaluation on the test set is 1102

based on the highest validation accuracy achieved 1103

during training. 1104

During training, we maintain the same hyper- 1105

parameters across all six sampling strategies and 1106

three experimental setups to ensure consistency in 1107

comparison. To mitigate the impact of random 1108

variation, we conduct each experiment using three 1109

different random seeds 66, 88, 99 and report the 1110

averaged results. For detailed analysis we use the 1111

result of seed 66. All experiments are conducted us- 1112

ing NVIDIA GeForce GTX 1080 Ti GPUs with 11 1113

GB of memory. The entire pipeline is implemented 1114

using the PyTorch framework, which facilitated 1115

efficient training and evaluation. 1116

B Reproducibility 1117

The code for data processing and model training is 1118

available at the following Github repository: URL 1119

hidden for anonymity. 1120

C Detailed Analysis 1121

This section presents the results of all detailed anal- 1122

yses that were not included in the main text. 1123
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Figure 6: Average evaluation accuracy on BERT
recorded at 10 checkpoints during a single epoch on
SST-2.
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Figure 7: Average evaluation loss on BERT recorded at
10 checkpoints during a single epoch on SST-2.

As shown in Figure 6 and 7, probabilistic sam-1124

pling methods (SME, SMD, PME, PMD) generally1125

perform better.1126
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Figure 8: Average evaluation accuracy on BERT
recorded at 10 checkpoints during a single epoch on
SST-5.
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Figure 9: Average evaluation loss on BERT recorded at
10 checkpoints during a single epoch on SST-5.

Figure 8 shows that all our training strategies 1127

start with strong performance. Performance fluc- 1128

tuates across strategies, with D2E performing sig- 1129

nificantly worse at the end. According to Figure 1130

9, SME achieves high accuracy but also results in 1131

higher loss. 1132
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Figure 10: Average evaluation accuracy on BERT
recorded at 10 checkpoints during a single epoch on
HSOL.
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Figure 11: Average evaluation loss on BERT recorded
at 10 checkpoints during a single epoch on HSOL.

Figure 10 and 11 indicate that E2D performs 1133

poorly at the beginning on imbalanced datasets. It 1134

is evident that after one epoch, our strategies no 1135

longer outperform the two baselines. 1136
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Figure 12: Average evaluation accuracy on BERT
recorded at 10 checkpoints during a single epoch on
XNLI.
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Figure 13: Average evaluation loss on BERT recorded
at 10 checkpoints during a single epoch on XNLI.

As shown in Figure 12 and 13, SMD starts off1137

weaker but converges quickly. All probabilistic1138

sampling methods (SME, SMD, PME, PMD) per-1139

form well in the end.1140
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Figure 14: Average evaluation loss on RoBERTa
recorded at 10 checkpoints during a single epoch on
SST-2.

From Figure 14, we see that D2E has low initial1141

loss, but ends with the highest loss after one epoch.1142
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Figure 15: Average evaluation loss on RoBERTa
recorded at 10 checkpoints during a single epoch on
SST-5.

As shown in Figure 15, PMD maintains the low-1143

est and most stable loss throughout training.1144

2 4 6 8 10
Checkpoint

0.84

0.86

0.88

0.90

0.92

Ev
al

 A
cc

ur
ac

y

RoBERTa on HSOL: Evaluation Accuracy Over Checkpoints

Random
Length
E2D
D2E
SME
SMD
PME
PMD

Figure 16: Average evaluation accuracy on RoBERTa
recorded at 10 checkpoints during a single epoch on
HSOL.

Figure 16 reveals that E2D shows early advan- 1145

tages, but the Length baseline performs best in the 1146

final stage. 1147
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Figure 17: Average evaluation loss on RoBERTa
recorded at 10 checkpoints during a single epoch on
HSOL.

According to Figure 17, PMD initially has the 1148

highest loss, but it decreases rapidly. 1149
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Figure 18: Average evaluation accuracy on RoBERTa
recorded at 10 checkpoints during a single epoch on
XNLI.
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Figure 19: Average evaluation loss on RoBERTa
recorded at 10 checkpoints during a single epoch on
XNLI.

Figure 18 and 19 show that apart from the base-1150

line Length, differences in performance across1151

methods are minor.1152

D Difficulty Score Distribution Over1153

Training Time1154

We analyze the evolution of sample difficulty1155

score distributions under various training strate-1156

gies across different datasets, using both BERT1157

and RoBERTa models. While different strate-1158

gies exhibit similar trends within the same dataset,1159

the distributional patterns vary notably across1160

datasets. Due to the consistency observed within1161

each dataset, we take the BERT model as a repre-1162

sentative example to illustrate these trends. Specifi-1163

cally, we present the score distribution changes of1164

BERT trained with the baseline Random on each1165

dataset, highlighting how dataset characteristics1166

influence learning dynamics.1167
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Figure 20: Sample difficulty score distributions on SST-
2 before training and after each of five training epochs
using BERT.

As shown in Figure 20, the initial difficulty score1168

distribution on the SST-2 dataset is relatively uni- 1169

form. After the first epoch, the number of easy sam- 1170

ples increases sharply, indicating that the model has 1171

learned substantially during the initial phase. The 1172

shift toward higher scores suggests increased model 1173

confidence. In subsequent epochs, the distribution 1174

stabilizes, reflecting more consistent learning dy- 1175

namics. 1176
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Figure 21: Sample difficulty score distributions on SST-
5 before training and after each of five training epochs
using BERT.

Figure 21 shows the evolution of difficulty score 1177

distribution for the BERT model on the SST-5 1178

dataset. After one epoch, the number of relatively 1179

difficult samples increases, which may be attributed 1180

to the way difficulty scores are computed. One 1181

possible explanation is that, for multi-class classi- 1182

fication, the difficulty score is defined as the abso- 1183

lute difference between the top two class probabili- 1184

ties. In this dataset, certain samples may have high 1185

but very close probabilities for adjacent sentiment 1186

classes, such as “negative” and “very negative” or 1187

“positive” and “very positive.” As the model be- 1188

gins to learn useful features, the score difference 1189

of these low-confidence difficult samples tends to 1190

increase. Once the model has acquired more dis- 1191

criminative features, it becomes easier to correctly 1192

classify these borderline cases, resulting in higher 1193

overall accuracy. In this sense, low-confidence dif- 1194

ficult samples may be the easiest to convert from 1195

incorrect to correct predictions. This interpretation 1196

is further supported by the observed score distribu- 1197

tion, indicating that the model learned meaningful 1198

features within the first epoch. 1199
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Figure 22: Sample difficulty score distributions on
HSOL before training and after each of five training
epochs using BERT.

As shown in Figure 22, the HSOL dataset is1200

highly imbalanced both in terms of label distribu-1201

tion and initial difficulty scores, with a large pro-1202

portion of hard samples. After one training epoch,1203

the number of easy samples increases slightly, in-1204

dicating some initial learning progress. However,1205

even after training is completed, a substantial num-1206

ber of difficult samples remain, suggesting that the1207

model struggles to learn from a significant portion1208

of the data.1209
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Figure 23: Sample difficulty score distributions on
XNLI before training and after each of five training
epochs using BERT.

As shown in Figure 23, the XNLI dataset ex-1210

hibits a relatively balanced initial distribution of1211

difficulty scores. Throughout training, both easy1212

and difficult samples gradually increase or decrease1213

in number in a stable manner, indicating consistent1214

learning dynamics. This stable progression may 1215

be attributed to the large size and diversity of the 1216

dataset, which provides sufficient training signals 1217

across difficulty levels. 1218
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