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Abstract

Adversarial training is a well-known methodol-001
ogy for enhancing language models and avoid-002
ing harmful responses and misclassification.003
Although adversarial training has gained empir-004
ical success, many existing methods to create005
embeddings via query-based adversarial sam-006
ples that are different from actual realistic text007
adversarial features during the training process.008
In this work, we propose UnGAT and MulGAT,009
new approaches for adversarial training. They010
produce perturbations as discrete tokens rather011
than apply perturbations to embedding repre-012
sentations during whole training process. In013
particular, both UnGAT and MulGAT consist014
of a generator that produces adversarial text015
and a victim model fine-tuned on both original016
and adversarial text. While UnGAT’s generator017
is fine-tuned to fool victim model without ad-018
versarial dataset, MulGAT transfers adversarial019
features from source tasks to unseen tasks via a020
generator fine-tuned on multi-task adversarial021
dataset. Experiments on text classification and022
dialogue generation demonstrate the effective-023
ness of our approaches over many state-of-the-024
art baselines.025

1 Introduction026

The vulnerability of deep learning models to ad-027

versarial attacks and samples has been well known028

for recent years (Zhu et al., 2020; Wu et al., 2023;029

Madry et al., 2018). The performance of a lan-030

guage model is significantly reduced in the eval-031

uation of the robustness benchmark (Wang et al.,032

2021) and query-based adversarial attacks (Li et al.,033

2023b). In particular, the perturbation of one or034

some words or characters in the original input can035

mislead language models without changing seman-036

tics and meanings. Adversarial training is a method-037

ology to make language models less brittle against038

these attacks (Madry et al., 2018; Zhu et al., 2020;039

Raman et al., 2023).040

Despite the achievement of many adversarial 041

training methods, they need to construct the em- 042

bedding perturbation in the latent space, necessi- 043

tating multiple iterations of gradient descent for 044

each sample (Zhu et al., 2020; Madry et al., 2018). 045

This drastically increases the computation cost 046

and has an existing gap between embedding per- 047

turbation and real adversarial feature (Zhao and 048

Mao, 2023). In this paper, we propose two meth- 049

ods named Unsuperised Generative Adversiaral 050

Trainining (UnGAT), and Multi-task Generative 051

Adversarial Training (MulGAT). Both UnGAT and 052

MulGAT combine two transformer models, a gener- 053

ator and a victim model. The generator and victim 054

models are trained simultaneously as a two-player 055

mini-max game in the UnGAT training process. 056

The aim of the generator is to change a clean in- 057

put into an adversarial text to be against the vic- 058

tim model. The robustness of the victim model is 059

gained through both adversarial text and cleaned in- 060

put. Compared to previous works (Li et al., 2023a; 061

Zhao and Mao, 2023), the major advantages of the 062

proposed UnGAT are: (1) No require special input 063

tokens (e.g. [MASK]) to perturb text for adversar- 064

ial training. This helps our UnGAT and MulGAT 065

be easily adapted to many kinds of pre-trained mod- 066

els. (2) The UnGAT does not utilize adversarial 067

gradients, requesting a number of model’s query 068

to construct a noise per clean text, to inject embed- 069

ding representation of text. Our method optimizes 070

the generator objectives by using the victim loss 071

gradients instead. In this paper, we conduct com- 072

prehensive experiments on the AdvGLUE bench- 073

mark (Wang et al., 2018, 2021) and dialogue gen- 074

eration. We validate UnGAT and MulGAT with 075

many state-of-the-art methods (Zhu et al., 2020; 076

Aghajanyan et al., 2021; Xu et al., 2021; Tong 077

et al., 2022; Raman et al., 2023; Wu et al., 2023; 078

Zhong et al., 2023; Madry et al., 2018; Ishida et al., 079

2020; Hoang et al., 2024) with BERT (Devlin et al., 080

2019), BART(Lewis et al., 2020), and T5 (Raffel 081
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et al., 2020) models. In addition, we also perform082

an ablation study to show the necessity of each083

component and the effect of the hyper-parameters084

on the robustness of UnGAT and MulGAT. The085

empirical results on five datasets of the AdvGLUE086

benchmark and four dialogue generation datasets087

demonstrate the effectiveness of our generative ad-088

versarial training framework.089

2 Related work090

2.1 Pre-trained transformer models091

Over the past many years, the number of pre-092

trained transformer language models has increased093

drastically, achieving remarkable performance on094

many NLP benchmarks. BERT (Devlin et al.,095

2019) is the first encoder transformer model, pre-096

trained by optimizing mask language model and097

next sentence prediction objectives. In contrast,098

GPT2 (Radford et al., 2019) differs from BERT099

in the pre-training approach, it is pre-trained on100

a causal language modeling objective, where the101

model predicts the next token in a sequence with-102

out any token masking. BART (Lewis et al., 2020)103

and T5 (Raffel et al., 2020) are typical pre-trained104

encoder-decoder transformer models, that combine105

the advantages of bidirectional encoding, as BERT,106

with autoregressive decoding for generation tasks.107

In contrast, ELECTRA (Clark et al., 2020) imple-108

ments replaced token detection that is demonstrated109

more efficiently than conventional mask language110

modeling methods.111

2.2 Adversarial training112

Adversarial training is a well-known method to113

alleviate the brittleness of models to adversarial114

examples (Madry et al., 2018). One of the initial115

method, (Madry et al., 2018) construct continuous116

adversarial text based project gradient descent via117

model-query in multi-steps. Several works (Zhu118

et al., 2020; Wu et al., 2023) introduce other em-119

bedding perturbation via projected gradient descent.120

(Aghajanyan et al., 2021) analyzes use of trust re-121

gion methods and representational collapse to keep122

generalizable representations during training pro-123

cess. Self-evolution learning (Zhong et al., 2023)124

proposes a token masking method and learn data125

distribution to improve model’s performance on126

natural language understanding tasks. AdvFooler127

(Hoang et al., 2024) enhances model’s robustness128

by randomizing the latent representation of the in-129

put through many layers at inference time. Other130

works (Li et al., 2023a; Zhao and Mao, 2023) fo- 131

cus on combining projected gradient descent with 132

replaced token detection to enhance efficiency in 133

the training process. In contrast to these methods, 134

our methods use a generator to produce adversarial 135

text for adversarial training, that can transfer ad- 136

versarial features from source tasks to unseen tasks 137

via MulGAT procedure. 138

2.3 Generative Adversarial Networks 139

Generative Adversarial Networks (GANs) (Good- 140

fellow et al., 2014) can be used to improve the 141

quality of synthetic data in image generation tasks. 142

GANs include two components: (1) generator for 143

sythetic data generation, and (2) discriminator to 144

distinguish human data and synthetic data. In trans- 145

former model pre-training, some methods inspired 146

by GANs are adapted to pre-train language models 147

(Clark et al., 2020). Taking this inspiration, we pro- 148

pose an adversarial training framework, UnGAT 149

and MultGAT, as a two-player min-max game. In- 150

stead of utilizing loss gradient for perturbing word 151

embeddings as (Li et al., 2023a; Wu et al., 2023), 152

UnGAT uses loss gradient to update generator for 153

making adversarial input. 154

3 Proposed methods 155

3.1 Preliminaries 156

Our proposed adversarial training process includes 157

two language models: a generator G with param- 158

eter ϕ and a victim f with parameter θ. Both 159

the generator and the victim model are required 160

to share the same vocabulary V in UnGAT. Similar 161

to (Goodfellow et al., 2014), they are jointly trained 162

by optimizing a two-player min-max game with the 163

value function V (G, f): 164

min
G

max
f

V (G, f) = E
x∼D

[f(x)] + E
x∼D

[f(G(x))] 165

where f(x) and f(G(x)) are probability of correct 166

label y of clean input and noise input respectively. 167

We train the generator G to minimize f(G(x)), 168

with the aim of making the victim model misclas- 169

sify. Simultaneously, we train victim f to maxi- 170

mize both f(x) and f(G(x)). 171

3.2 UnGAT 172

The overall procedure of UnGAT is shown in Al- 173

gorithm 1. A generator maps an original text 174

x = [x1, x2, ..., xn], xi ∈ V to a noise text x̂ = 175

[x̂1, x̂2, ..., x̂n], x̂i ∈ V that satisfies f(x, θ) ̸= 176
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Algorithm 1: Pseudocode of UnGAT

1 Require: Training dataset D, generator G,
victim f , epoch n

2 for epoch = 1,2,3,...,n do
3 for batch (x, y) ⊂ D do
4 /* Train generator */
5 t̂ = gumbel_softmax(G(x))
6 Compute Ladv, Ldiv from t̂ and y
7 Compute Eq. 4 from Ladv, Ldiv

8 Update G by gradient of Eq. 4
9 /* Train victim */

10 t̂ = gumbel_softmax(G(x))
11 Compute Eq. 5 from x, t̂, y
12 Update f by gradient of Eq. 5
13 end
14 end

f(x̂, θ). To construct a noise text x̂, the gener-177

ator maps input text x = [x1, x2, ..., xn] into its178

output logits , h = [h1, h2, ..., hn], h ∈ R|V |, |V |179

is the size of vocabulary V . Then, new tokens for180

noise text can be easily sampled or searched via181

softmax distribution. However, using sample(h)182

or argmax(h) operators cause the problem of non-183

differentiability and the generator’s parameter ϕ184

cannot be updated by gradient-based optimization185

because of the natural discrete of words (Nie et al.,186

2019). To address this issue, the Gumbel-Max trick187

(Maddison et al., 2017) is adopted to approximate188

the discrete distribution of the generator’s logits.189

The Gumbel-Max trick samples the discrete token190

t̂i following:191

t̂i = softmax(τ(hi + gi)) (1)192

where t̂i is one-hot vector, g(k)i = −log(−log(Ui))193

and Ui ∼ Uniform(0, 1). τ is the temperature,194

which is set to 1. Now, the noise text is x̂ ∼ t̂ =195

[t̂1, t̂2, ..., t̂n], that is differentiable with respect to196

h. Then, we can calculate the loss value of the197

adversarial text x̂:198

Ladv = loss(f(G(x), θ), y)

= loss(f(t̂, θ), y)
(2)199

However, solely optimize Equation 2 can make200

model get in stuck with text degeneration, which201

a word/token is generated repeatedly. It can lead202

our training process to sub-optimal convergence.203

From (Ji and Huang, 2021; Yang et al., 2022) explo-204

ration, we adapt diversity loss as regularization.205

Diversity loss encourage model to use all token 206

in vocabulary equally, by minimizing the negative 207

entropy of token’s logits following the below func- 208

tion: 209

ĥ = max(h)

Ldiv =
1

n

n∑
k=1

ĥnlog(ĥn)
(3) 210

Finally, combing Equation 2, and Equation 3, 211

our loss for fine-tuning generator is: 212

Lgen = λLdiv − (1− λ)Ladv (4) 213

where λ is the diversity rate (0.0 ≤ λ ≤ 1.0). 214

For a sample (x, y) ∈ D, generator G is fixed 215
1, we construct an noise sample (x̂, y), x̂ = G(x), 216

then the victim model will predict the correct label 217

of both x and x̂. The victim model is updated by 218

the gradient of the below objectives: 219

Lvic = L(f(x, θ), y) + L(f(x̂, θ), y) (5) 220

In construction of noise sample x̂, we still adapt 221

Gumbel-Max trick similar generator’s training in- 222

stead of argmax operator. The randomness is useful 223

for alleviating the effect of adversarial samples (Xie 224

et al., 2018). We do not implement any balance 225

weight as diversity rate in victim training, because 226

the importance of clean and noise samples is equiv- 227

alent in optimization of Equation 5. 228

3.3 MulGAT: generator as multi-task learner 229

UnGAT faces some challenges: (1) waste of mem- 230

ory: UnGAT will create many copies of the pre- 231

trained model for each tasks, (2) lack of inheriting 232

adversarial features: the generator in UnGAT is 233

learned to maximize the loss (e.g. cross-entropy 234

loss) of victim model via back-propagation. As 235

a result, UnGAT’s generator cannot produce ad- 236

versarial sequences mimicking the adversarial sen- 237

tences of query-based attack tools. 238

Adversarial transferability (Yuan et al., 2021; Lv 239

et al., 2023) shows that an adversarial feature can 240

fool many types of language models on a unique 241

task. Inspired by this exploration, we implement 242

MulGAT so that the generator can learn about ad- 243

versarial features with a small number of tasks and 244

then transfer their knowledge to adapt unseen tasks. 245

Figure 1 illustrates a clear comparison between Un- 246

GAT and MulGAT in generator training, both of 247

1The generator G is not updated during victim model train-
ing process.
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them have a generator and victim model. We fine-248

tune the generator on the TCAB dataset (Asthana249

et al., 2022), which contains six distinct datasets250

in the field of hate speech detection and sentiment251

analysis. MulGAT’s generator learns diverse ad-252

versarial features in both of word and token pertur-253

bation, produced by attacking many transformer-254

encoder models. Compared to UnGAT, the gener-255

ator’s weights are not updated during MulGAT’s256

fine-tuning process. Consequently, MulGAT sig-257

nificantly reduces the computational cost, an issue258

of UnGAT as well as many previous adversarial259

training methods (Madry et al., 2018).260

4 Experimental setup261

4.1 Datasets262

We perform experiments on the AdvGLUE bench-263

mark (Wang et al., 2021) constructed from the264

GLUE benchmark (Wang et al., 2019). AdvGLUE265

consists of six datasets: Sentiment Analysis (SST-266

2), Paraphrase (QQP), Natual Language Inference267

(MNLI, QNLI), Textual Entailment (RTE). We use268

the original training dataset of each one in Ad-269

vGLUE, and then evaluate the performance of fine-270

tuned models on AdvGLUE by using accuracy met-271

ric (see Table 6 for more details of number of sam-272

ples for training and testing). The results of our273

method and the baselines are reported in Table 1274

with two BERT backbones. For dialogue genera-275

tion, we evaluate the effectiveness of both UnGAT276

and MulGAt on four different datasets, including277

Persona-Chat (PC) (Zhang et al., 2018), Blended-278

Skill-Talk (BST) (Smith et al., 2020), Empathetic-279

Dialogue (ED) (Rashkin et al., 2019), and Conv-280

AI-2 (CV2) (Dinan et al., 2019). Following (Li281

et al., 2023b), the dialogue model takes an input282

that includes the entire dialogue history between283

two people and the current utterance of one person,284

and produces the utterance of the other person. See285

Appendix A for more details.286

4.2 Metrics287

We evaluate the robustness of adversarial train-288

ing methods for dialogue generation via four met-289

rics (1) The length of generation text (Length):290

DGSlow (Li et al., 2023b) fools a model to gener-291

ate tokens as much as possible, so shorter length is292

better. (2) METEOR (Banerjee and Lavie, 2005)293

is to compute the performance (i.e., the match be-294

tween ground truth and model output) of model295

under attack. (3) Cos indicates the cosine simi-296

larity of original input and adversarial input made 297

by attack tools, low Cos means that the original 298

input is textualy different from adversarial input.(4) 299

Attack success rate (ASR) defines the success per- 300

centage of a attack tool, following Equation 6: 301

ASR =

∑N
i 1[s(x, x̂) > α] ∧ 1[E(y, ŷ)]

N
s.t. E(y, ŷ) =(B(y, yref )−B(ŷ, yref )) > β

∨(R(y, yref )−R(ŷ, yref )) > β

∨(M(y, yref )−M(ŷ, yref )) > β

(6)

302

where s(x, x̂) denotes the cosine similarity be- 303

tween embeddings of original input x and crafted 304

input x̂. B(., .), R(., .), and M(., .) stand for 305

BLEU(Papineni et al., 2002), ROUGE(Lin, 2004), 306

and METEOR (Banerjee and Lavie, 2005) metric 307

respectively. An attack fails when the semantic 308

meaning of both x and x̂ is irrelevant or adversarial 309

text cannot fool the model to generate outputs that 310

do not relate to the inputs. In our work, we set 311

perturbation threshold α as 0.7 and performance 312

threshold β as 0.0 for all experiments on dialogue 313

generation. For the text classification benchmark, 314

we mainly use accuracy to compare our proposed 315

approaches with many strong baselines. 316

4.3 Attack tool 317

In our work, we use DGSlow (Li et al., 2023b), a 318

state-of-the-art tool for adversarial attack on di- 319

alogue generation system. DGSlow iteratively 320

searches and substitutes vulnerable words in order 321

to maximize generation output length and mini- 322

mize generation accuracy by gradient-based multi- 323

objective optimization. Following (Li et al., 2023b), 324

we use pre-trained BERT-Large-Cased model for 325

word perturbation with the number of candidates 326

set as 50 for mutation. We restrict maximum num- 327

ber of iterations to 5, meaning that no more than 5 328

words changed for each input sentence. 329

5 Results 330

5.1 AdvGLUE result 331

Table 1 shows that our proposed methods consis- 332

tently outperform all baselines across different di- 333

versity datasets of Adversarial GLUE. Our average 334

accuracy for both UnGAT and MulGAT is much 335

higher than that of many previous methods. In 336

experiments with BERT-Base, compared to the 337
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Figure 1: Illustration of training and using generator of UnGAT (left) and MulGAT (right). On the top left, each
generator is trained for a specific task by unsupervised learning to maximize the loss of victim model, and then each
generator perturbs its task (bottom left). In contrast, multi-task generator learns perturbation features from various
tasks in TCAB, an attack benchmark dataset (on the top right). And then multi-task generator transfers knowledge
of TCAB dataset to unknown dataset without victim model feedback like UnGAT (on the bottom right).

second-best method (BERT-CreAT), our proposed338

method improves the accuracy by 6. 1% on average.339

Specifically, our proposed method increases the ac-340

curacy of vanilla fine-tuning from 38.6% to 48.7%341

and 55.9%, demonstrating the effectiveness of ad-342

versarial training without vector perturbation with343

projected gradient descent. TCAB dataset contains344

SST-2 dataset, used to trained MulGAT’s generator,345

we evaluate our methods by the average accuracy346

of MNLI, QNLI, QQP and RTE, named Avg-4. It347

is apparent that MulGAT can effectively transfer348

adversarial features to unseen tasks (i.e., from sen-349

timent analysis and hate speech detection to natural350

language inference and textual entailment).351

5.2 Dialogue generation result352

The main results are shown in Table 2 on BART353

and T5 models in four benchmark datasets. First,354

we evaluate the robustness of using UnGAT for lan-355

guage models in the query-based attack scenario.356

For the PC task, we find that fine-tuning BART with357

UnGAT achieves the ASR of 28. 6%, while other358

state-of-the-art baselines, AdvFooler and Flooding, 359

reach the ASR of 33. 3%. Moreover, MulGAT can 360

prevent dialogue models from generating longer 361

output sentences due to attack of DGSlow, this can 362

be witnessed via experiments of fine-tuning T5 and 363

BART with MulGAT on BST, ED dataset. In some 364

cases, UnGAT or MulGAT can prevent the model 365

from generating a longer output, which is one of 366

the objectives of the attack tool (i.e., DGSlow). 367

They achieve the shortest or second-shortest output 368

lengths on ED and BST datasets, showing that the 369

models produce less irrelevant output due to adver- 370

sarial input. In summary, UnGAT and MulGAT 371

reduce attack success rate significantly compared 372

to many baselines. 373

6 Ablation study 374

6.1 Different backbones 375

To evaluate the effectiveness of UnGAT, we con- 376

duct the ablation study on different pre-trained 377

transformer backbones: (1) BERT, (2) ROBERTA 378
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Method Adv-SST2 Adv-MNLI Adv-QNLI Adv-QQP Adv-RTE Avg Avg-4
BERT-Base

FT 32.3 32.6 40.1 50.8 37.0 38.6 40.1
FreeLB 31.6 33.5 45.4 51.0 42.0 40.7 43.0

BERT-MLM 32.0 27.6 43.4 48.5 45.9 39.5 41.4
BERT-CreAT 35.3 36.0 44.8 51.5 45.2 42.6 44.4

SE 28.4 23.5 42.6 42.3 33.3 34.0 35.4
MVP 28.4 28.9 36.5 52.6 39.5 37.2 39.4

UnGAT 39.2 35.6 51.4 51.3 68.3 48.7 51.7
MulGAT 58.1 43.8 47.3 66.7 63.4 55.9 55.3

BERT-Large
FT 47.6 35.0 46.4 38.5 37.0 41.8 39.2

R3F 38.5 35.8 47.5 40.6 50.1 42.5 43.5
ChildTuningF 34.5 33.9 47.5 40.4 42.0 39.6 41.0
ChildTuningD 39.2 34.1 49.6 40.7 46.2 41.9 42.7
Match-Tuning 54.1 35.5 47.5 41.5 52.5 45.7 46.8

SE 35.1 24.7 45.3 50.0 53.1 41.6 43.3
UnGAT 52.7 37.7 52.7 59.0 73.2 55.1 55.7
MulGAT 62.2 45.5 55.4 73.1 60.5 59.3 58.6

Table 1: Accuracy results on the AdvGLUE benchmark. We report accuracy of each method in five datasets. Avg
and Avg-4 stands for the accuracy average of five datasets and four datasets, excluding SST-2, respectively. The best
results of each model is bold.

(Liu et al., 2020), (3) ELECTRA (Clark et al.,379

2020), and (4) GPT2 (Radford et al., 2019). We380

choose three datasets for ablation study, includ-381

ing SST-2, QNLI, and RTE. For fair comparison382

among different backbones, we use the base ver-383

sion of each pre-trained model. Overall, ELEC-384

TRA achieves the highest accuracy on average,385

the second-best is BERT. In the SST-2, QNLI and386

RTE tasks, the accuracies of ELECTRA are 56.8%,387

62.2% and 70.8%, respectively, which are signifi-388

cantly higher than the results of other models.389

6.2 Effect of diversity rate390

We compare our proposed method with BERT-Base391

in different diversity rates on the SST-2 and RTE392

datasets. The diversity rate is from 0.1 to 0.9, ex-393

hibiting the trade-off between cross-entropy loss394

and diversity loss (regularization) in Equation 4.395

Figure 2 gives the results of the models through var-396

ious diversity rates. In RTE task, we observe that397

the accuracy of BERT-Base on AdvGLUE peaks at398

68.3% with λ = 0.5, outperforming many state-of-399

the-art baselines. In SST-2 task, the BERT-Base’s400

result exhibits that the model has high accuracy on401

adversarial benchmark subject to λ ≥ 0.7. How-402

ever, experimental results for BERT-Large show403

that the lower diversity boosts the model’s accu-404

racy on benchmark. The accuracy of BERT-Large 405

reaches the highest point of 52.7 at λ = 0.2, and 406

then the accuracy decreases when λ > 0.2. For 407

BERT-Large in the RTE task, the accuracy on the 408

AdvGLUE benchmark fluctuates significantly be- 409

tween 24.4% and 73.2% over various diversity 410

rates. On the GLUE benchmark, there are no strong 411

change in accuracy on both BERT-Base and BERT- 412

Large backbones. On the other hand, the results of 413

RTE task are unstable. In conclusion, our proposed 414

adversarial training methods are affected remark- 415

ably by the different diversity rate. 416

6.3 Training objectives 417

We compare the performance of our proposed meth- 418

ods via many variants. In this ablation study, we 419

evaluate UnGAT with different settings: (1) Freeze 420

generator (FG): we do not train the generator, and 421

only the victim model is fine-tuned during the train- 422

ing process.(2) No diversity loss (w/o diversity 423

loss): we set zero diversity rate (λ = 0) in Equa- 424

tion 4. Overall, removing some elements of our 425

proposed methods leads to a declination of model 426

accuracy on the test benchmark, showing via Ta- 427

ble 3. In the experiments with BERT-Base back- 428

bone, the zero diversity rate does not have signif- 429

icant impact on the result of the model on adver- 430
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Dataset Method BART T5
ASR Length Cosine ME ASR Length Cosine ME

PC

FT 47.6 19.8 0.66 28.6 38.1 12.7 0.71 23.0
PGD 57.1 41.5 0.72 28.6 23.8 15.4 0.63 24.3

Flooding 33.3 21.4 0.58 28.2 14.3 13.7 0.61 24.3
FreeLB 38.1 20.9 0.65 25.7 38.1 13.2 0.68 25.3

AdvFooler (En) 33.3 13.6 0.59 25.5 38.1 12.7 0.74 23.3
AdvFooler (De) 53.3 9.0 0.59 21.3 38.1 12.5 0.80 23.3
AdvFooler (All) 58.3 52.3 0.86 23.6 47.6 12.9 0.80 23.1

UnGAT 28.6 17.8 0.66 29.9 38.1 16.0 0.73 24.6
MulGAT 33.3 19.0 0.72 30.2 19.1 14.2 0.71 23.5

BST

FT 76.7 29.0 0.82 26.2 63.3 27.2 0.74 15.3
PGD 63.3 32.4 0.73 24.3 46.7 27.2 0.68 17.3

Flooding 70.0 67.9 0.76 22.7 50.0 24.7 0.67 16.5
FreeLB 70.0 33.4 0.73 26.1 53.3 28.6 0.71 15.0

AdvFooler (En) 56.7 53.0 0.73 22.7 47.7 23.4 0.84 20.6
AdvFooler (De) 69.2 89.1 0.92 9.6 60.0 20.0 0.89 17.9
AdvFooler (All) 60.0 27.6 0.89 11.1 50.0 18.6 0.87 20.7

UnGAT 56.7 28.1 0.67 24.3 50.0 33.0 0.66 16.0
MulGAT 53.3 26.0 0.72 28.2 46.7 36.6 0.67 15.4

ED

FT 60.0 54.4 0.71 11.8 60.0 32.2 0.76 8.9
PGD 60.0 44.7 0.67 14.6 30.0 25.7 0.62 13.8

Flooding 50.0 62.8 0.74 14.1 60.0 48.5 0.72 8.4
FreeLB 30.0 143.5 0.65 12.8 30.0 38.0 0.61 7.8

AdvFooler (En) 30.0 14.6 0.70 14.2 60.0 32.2 0.76 8.9
AdvFooler (De) 60.0 54.7 0.71 14.2 60.0 32.2 0.76 8.9
AdvFooler (All) 60.0 54.7 0.71 14.2 70.0 14.9 0.83 9.3

UnGAT 30.0 17.9 0.76 13.5 30.0 18.7 0.76 10.0
MulGAT 10.0 20.7 0.76 13.1 20.0 14.8 0.83 15.1

CV2

FT 43.8 17.9 0.69 16.3 37.5 18.3 0.64 12.6
PGD 12.5 20.1 0.45 12.6 31.3 11.6 0.68 17.1

Flooding 37.5 20.9 0.56 13.9 43.8 20.1 0.63 15.3
FreeLB 37.5 23.0 0.62 2.0 43.8 30.4 0.62 17.8

AdvFooler (En) 25.0 11.4 0.52 11.8 31.3 17.6 0.62 12.8
AdvFooler (De) 46.2 43.6 0.86 8.4 50.0 22.1 0.79 14.6
AdvFooler (All) 58.3 89.3 0.88 6.3 50.0 21.6 0.78 14.4

UnGAT 12.5 14.6 0.72 11.9 18.8 43.4 0.61 10.7
MulGAT 12.5 12.8 0.78 8.5 12.5 11.3 0.75 10.0

Table 2: Evaluation of adversarial training methods in four dialogue generation benchmark datasets. ASR and
Length denotes the attack success rate and average generation output length, respectively. Cosine denotes the cosine
similarity between original and adversarial sentences. ME stands for the METEOR metric.

sarial benchmarks. The average accuracy declines431

slightly by 0.5%, which means that the generator432

can be trained by optimizing solely the classifica-433

tion loss. In contrast, if there is no diversity rate434

in Equation 4, the results of BERT-Large are much435

worse than those of UnGAT. Specifically, when436

diversity loss is removed, the average accuracy de-437

clines to 48.0%, in which the accuracy on RTE task438

considerably decreases from 73.2% to 43.9%. On 439

the other hand, freezing the generator’s parame- 440

ters during training steps causes deterioration in 441

the result of BERT-Base. With BERT-Large back- 442

bone, the accuracy of generator freezing increases 443

by 1.4% on QNLI and 7.3% on RTE datasets. This 444

ablation study demonstrates the importance of each 445

component of our UnGAT. 446

7



Setting Adv-SST2 Adv-QNLI Adv-RTE Average ∆ ↓
BERT-Base

UnGAT (baseline) 39.2 51.4 68.3 53.0 -
Freeze generator 33.8 46.5 58.5 46.3 6.7
W/o diversity loss 37.8 51.4 68.3 52.5 0.5

BERT-Large
UnGAT (baseline) 52.7 52.7 73.2 59.5 -
Freeze generator 39.2 48.7 51.2 46.4 13.2
W/o diversity loss 52.7 47.3 43.9 48.0 11.5

Table 3: Result of UnGAT with different settings. ∆ ↓ denotes the accuracy drop compared to UnGAT.

Model SST2 QNLI RTE Avg ↑
BERT

FT 32.3 40.1 37.0 36.5 -
UnGAT 39.2 51.4 65.9 52.0 15.5
MulGAT 58.1 47.3 63.4 56.3 19.8

RoBERTa
FT 31.1 33.8 37.0 34.0 -

UnGAT 32.4 43.2 46.3 40.6 6.6
MulGAT 61.5 41.9 35.8 46.4 12.4

GPT2
FT 43.2 46.6 43.2 44.3 -

UnGAT 51.4 46.0 48.8 48.7 4.4
MulGAT 54.1 51.4 50.6 52.0 7.7

ELECTRA
FT 63.5 57.4 53.1 58 -

UnGAT 56.8 62.2 70.8 63.3 5.3
MulGAT 78.4 59.5 58.0 65.3 7.3

Table 4: Results of UnGAT and MulGAT on backbone
models on SST-2, QNLI, RTE datasets of AdvGLUE.
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Figure 2: The accuracy of BERT-Base and BERT-Large
model through various diversity rates. “GLUE” and
“AdvGLUE” denote accuracy on the validation set of
each task on each benchmarks.

Dataset Token Word Word+Token
PC 14.3 28.6 19.1

BST 50.0 50.0 12.1
ED 50.0 30.0 20.0

CV2 18.6 12.5 12.5

Table 5: ASR of each adversarial feature on four bench-
mark datasets.

6.4 Adversarial Features 447

In this section, we validate the effectiveness of Mul- 448

GAT via training generator with diverse adversarial 449

features (1) token-level, (2) word-level, and (3) 450

combination of word-level and token-level. We 451

divide TCAB into two parts: token-level features 452

and word-level features, and then fine-tune genera- 453

tor in each part. The ASR of each feature type is 454

reported in Table 5, we fine-tune T5 with different 455

adversarial features of MulGAT on PC, BST, ED 456

and CV2 datasets. Overall, the attack success rate 457

of MulGAT with combination of token-level and 458

word-level features is significantly better compared 459

to the others, except token-level features on PC 460

task. It shows that fine-tuning language models 461

with both word and token features has beneficial 462

effects against query-based adversarial attacks. 463

7 Conclusion 464

In this work, we have introduced new adversar- 465

ial training approaches, UnGAT and MulGAT, to 466

improve the model performance. Both use a lan- 467

guage model to generate adversarial examples for 468

training, instead of aadding perturbations to contin- 469

uous word embeddings by gradient descent. Our 470

proposed methods improve many language models 471

(e.g. BERT, BART, and T5) on adversarial bench- 472

marks demonstrated via empirical experiments. 473
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Limitations474

Due to high computational cost, we do not conduct475

experiments with our proposed method to larger476

language models, that are raised in recent years.477

In UnGAT, we do not train generator under any478

linguistic or semantic similarity constraints, so the479

adversarial text of generator should be investigated480

in an insightful future work. Furthermore, our481

work limits in the context of AdvGLUE and di-482

alogue generation benchmark, the potential tasks483

and benchmarks could be explored such as machine484

translation, machine reading comprehension tasks.485

Ethics Statement486

In this paper, the authors introduce UnGAT and487

MulGAT, adversarial training methods to improve488

model robustness. The methods and outcomes are489

intended for purely academic and constructive pur-490

poses, with no foreseeable risk of misuse or neg-491

ative societal impact. We acknowledge the ACL492

Policy on Publication Ethics.493
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A Implementation details 779

A.1 Backbones 780

The detailed pre-trained models for generator and 781

victim model in all experiments are showed in 782

Table 7. In each task, we set different hyper- 783

parameter, the detailed hyper-parameter is provided 784

in Table 8. For BERT and ROBERTA backbones, 785

we use distil version of them (Sanh et al., 2019) 786

for generator to reduce computational cost. In ex- 787

periments with four benchmark datasets for dia- 788

logue generation, we mainly use BART-Base and 789

T5-Small checkpoint. In experiments with Mul- 790

GAT, We fine-tune these generative language mod- 791

els with learning rate 5e-5, linear learning rate 792

scheduler within 100 epochs. For UnGAT, we use 793

a fixed diversity rate 0.5 and fine-tune these models 794

within 15 epochs

Dataset Train Dev Test
SST-2 67.3k 0.87k 0.15k
MNLI 393k 9.82k 0.12k
QNLI 116k 5.46k 0.15k
QQP 795k 40.4k 0.08k
RTE 2.49k 0.28k 0.08k

Table 6: Data statistics

795
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Generator Victim
DistilBERT-Base-Uncased BERT-Base-Uncased
DistilBERT-Base-Uncased BERT-Large-Uncased

DistilRoBERTa-Base RoBERTa-Base
GPT2 GPT2

ELECTRA-Base ELECTRA-Base

Table 7: Pre-trained models of generator and victim

A.2 Baselines796

We fine-tune pre-trained BERT models, including797

BERT-Base and BERT-Large on the GLUE bench-798

mark (Wang et al., 2019), by Huggingface Trans-799

formers (Wolf et al., 2020) and Pytorch (Paszke800

et al., 2019). To evaluate the robustness of our801

proposed method, we compare our methods with802

the following baseline: Vanilla fine-tuning (FT):803

We fine-tune pre-trained models and evaluate fol-804

lowing (Wang et al., 2021) on the GLUE bench-805

mark. Prompt-based fine-tuning (MVP) (Ra-806

man et al., 2023): finds that fine-tune model807

via prompts help model against adversarial ex-808

amples. Self-Evolution Learning (SE) (Zhong809

et al., 2023) continues pretraining masked language810

model (e.g., BERT) with linguistically-motivated811

masking strategies and then fine-tune these models812

on downstream datasets. CreAT (Wu et al., 2023)813

(BERT-CreAT) is an adversarial training that find-814

ing perturbations based on the deviation of output815

distribution and contextualized representation. Be-816

sides, BERT-MLM pre-trains BERT on subsets of817

C4 dataset (Raffel et al., 2020) and then fine-tunes818

on downstream datasets. R3F (Aghajanyan et al.,819

2021) fine-tunes language models in trust region820

to alleviate the degradation of generalizable rep-821

resentations of language models. ChildTuningF822

and ChildTuningD (Xu et al., 2021) update the823

subset of model parameters by multiplying the gra-824

dients corresponding to the model parameter by825

binary matrix (mask) for generalizable fine-tuning.826

Match-Tuning (Tong et al., 2022) determines how827

to utilize the in-batch instances during the whole828

training process.829

For the generation of benchmark data sets, we830

consider using several state-of-the-art adversar-831

ial training methods. Projected Gradient Descent832

(PGD) (Madry et al., 2018) is implemented by833

injecting word embeddings with adversarial per-834

turbations in the embedding space. (Flooding)835

(Ishida et al., 2020) avoids training loss reaching836

zero during training by maintaining training loss837

value higher than flood level. Free large batch ad-838

versarial training using projected gradient descent839

(FreeLB) (Zhu et al., 2020) also adds adversarial 840

perturbations, generated in a region around input 841

samples, to embeddings. (Hoang et al., 2024) pro- 842

poses (AdvFooler), a method to randomize the 843

latent representation of the input and layer’s output 844

to prevent query-based attack tools from finding 845

important words in input. We extend AdvFooler 846

to sequence-to-sequence (seq2seq) models (e.g., 847

BART, T5) for generation tasks, resulting three 848

baseline (AdvFooler(En), AdvFooler(De), Adv- 849

Fooler(All)). AdvFooler(En) indicates that we just 850

use AdvFooler for Encoder block of seq2seq model. 851

Similarly, AdvFooler(De) and AdvFooler(All) are 852

used for Decoder and both Encoder-Decoder block 853

of seq2seq model respectively. 854

All experiments are conducted on an A100 GPU 855

and two T4 GPUs. 856

A.3 Multi-task generator for MulGAT 857

We adapt encoder-decoder Transformer architec- 858

ture rather than encoder-only and decoder-only 859

model architecture for original examples to adver- 860

sarial. The encoder will capture the feature and 861

information of input sentence, and then the decoder 862

generate the output with variable length. This is 863

easily adapt model for different kind of perturba- 864

tion: token-level perturbation, and word-level per- 865

turbation. 866

The TCAB dataset contains more than 1.4 mil- 867

lion samples, including word-level adversarial sam- 868

ples and token-level adversarial samples. Similar 869

to (Lv et al., 2023), we fine-tune BART-Base on 870

TACB with learning rate 0.001 and AdamW op- 871

timizer (Loshchilov and Hutter, 2019) within 20 872

epochs. To speed up the fine-tuning process, we 873

use Jax (Bradbury et al., 2018) and RedCoast (Tan 874

et al., 2024) framework to fine-tune BART on TPU 875

VM V3 (8 cores). The batch size per core is 64, 876

so the total batch size is 512. The total fine-tuning 877

time is about 24 hours. During inference, there are 878

no tools used to restrict grammar or limit the bound 879

for adversarial texts. 880

12



BERT-Base BERT-Large
Hyper-parameter SST-2 MNLI QNLI QQP RTE SST-2 MNLI QNLI QQP RTE

Learning rate 2e-5
Batch size 32
Optimizer AdamW (Loshchilov and Hutter, 2019)

Max length 128 256 128 320 320 128 256 128 320 320
Epoch 9 1 6 2 7 5 3 3 1 3
λ 0.7 0.5 0.5 0.5 0.6 0.2 0.5 0.3 0.3 0.6

Table 8: The hyper-parameter for BERT-Base and BERT-Large in our experiments
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