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Abstract

Adversarial training is a well-known methodol-
ogy for enhancing language models and avoid-
ing harmful responses and misclassification.
Although adversarial training has gained empir-
ical success, many existing methods to create
embeddings via query-based adversarial sam-
ples that are different from actual realistic text
adversarial features during the training process.
In this work, we propose UnGAT and MulGAT,
new approaches for adversarial training. They
produce perturbations as discrete tokens rather
than apply perturbations to embedding repre-
sentations during whole training process. In
particular, both UnGAT and MulGAT consist
of a generator that produces adversarial text
and a victim model fine-tuned on both original
and adversarial text. While UnGAT’s generator
is fine-tuned to fool victim model without ad-
versarial dataset, MulGAT transfers adversarial
features from source tasks to unseen tasks via a
generator fine-tuned on multi-task adversarial
dataset. Experiments on text classification and
dialogue generation demonstrate the effective-
ness of our approaches over many state-of-the-
art baselines.

1 Introduction

The vulnerability of deep learning models to ad-
versarial attacks and samples has been well known
for recent years (Zhu et al., 2020; Wu et al., 2023;
Madry et al., 2018). The performance of a lan-
guage model is significantly reduced in the eval-
uation of the robustness benchmark (Wang et al.,
2021) and query-based adversarial attacks (Li et al.,
2023b). In particular, the perturbation of one or
some words or characters in the original input can
mislead language models without changing seman-
tics and meanings. Adversarial training is a method-
ology to make language models less brittle against
these attacks (Madry et al., 2018; Zhu et al., 2020;
Raman et al., 2023).

Despite the achievement of many adversarial
training methods, they need to construct the em-
bedding perturbation in the latent space, necessi-
tating multiple iterations of gradient descent for
each sample (Zhu et al., 2020; Madry et al., 2018).
This drastically increases the computation cost
and has an existing gap between embedding per-
turbation and real adversarial feature (Zhao and
Mao, 2023). In this paper, we propose two meth-
ods named Unsuperised Generative Adversiaral
Trainining (UnGAT), and Multi-task Generative
Adversarial Training (MulGAT). Both UnGAT and
MulGAT combine two transformer models, a gener-
ator and a victim model. The generator and victim
models are trained simultaneously as a two-player
mini-max game in the UnGAT training process.
The aim of the generator is to change a clean in-
put into an adversarial text to be against the vic-
tim model. The robustness of the victim model is
gained through both adversarial text and cleaned in-
put. Compared to previous works (Li et al., 2023a;
Zhao and Mao, 2023), the major advantages of the
proposed UnGAT are: (1) No require special input
tokens (e.g. [MASK]) to perturb text for adversar-
ial training. This helps our UnGAT and MulGAT
be easily adapted to many kinds of pre-trained mod-
els. (2) The UnGAT does not utilize adversarial
gradients, requesting a number of model’s query
to construct a noise per clean text, to inject embed-
ding representation of text. Our method optimizes
the generator objectives by using the victim loss
gradients instead. In this paper, we conduct com-
prehensive experiments on the AdvGLUE bench-
mark (Wang et al., 2018, 2021) and dialogue gen-
eration. We validate UnGAT and MulGAT with
many state-of-the-art methods (Zhu et al., 2020;
Aghajanyan et al., 2021; Xu et al., 2021; Tong
et al., 2022; Raman et al., 2023; Wu et al., 2023;
Zhong et al., 2023; Madry et al., 2018; Ishida et al.,
2020; Hoang et al., 2024) with BERT (Devlin et al.,
2019), BART(Lewis et al., 2020), and T5 (Raffel



et al., 2020) models. In addition, we also perform
an ablation study to show the necessity of each
component and the effect of the hyper-parameters
on the robustness of UnGAT and MulGAT. The
empirical results on five datasets of the AdvGLUE
benchmark and four dialogue generation datasets
demonstrate the effectiveness of our generative ad-
versarial training framework.

2 Related work

2.1 Pre-trained transformer models

Over the past many years, the number of pre-
trained transformer language models has increased
drastically, achieving remarkable performance on
many NLP benchmarks. BERT (Devlin et al.,
2019) is the first encoder transformer model, pre-
trained by optimizing mask language model and
next sentence prediction objectives. In contrast,
GPT?2 (Radford et al., 2019) differs from BERT
in the pre-training approach, it is pre-trained on
a causal language modeling objective, where the
model predicts the next token in a sequence with-
out any token masking. BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020) are typical pre-trained
encoder-decoder transformer models, that combine
the advantages of bidirectional encoding, as BERT,
with autoregressive decoding for generation tasks.
In contrast, ELECTRA (Clark et al., 2020) imple-
ments replaced token detection that is demonstrated
more efficiently than conventional mask language
modeling methods.

2.2 Adversarial training

Adversarial training is a well-known method to
alleviate the brittleness of models to adversarial
examples (Madry et al., 2018). One of the initial
method, (Madry et al., 2018) construct continuous
adversarial text based project gradient descent via
model-query in multi-steps. Several works (Zhu
et al., 2020; Wu et al., 2023) introduce other em-
bedding perturbation via projected gradient descent.
(Aghajanyan et al., 2021) analyzes use of trust re-
gion methods and representational collapse to keep
generalizable representations during training pro-
cess. Self-evolution learning (Zhong et al., 2023)
proposes a token masking method and learn data
distribution to improve model’s performance on
natural language understanding tasks. AdvFooler
(Hoang et al., 2024) enhances model’s robustness
by randomizing the latent representation of the in-
put through many layers at inference time. Other

works (Li et al., 2023a; Zhao and Mao, 2023) fo-
cus on combining projected gradient descent with
replaced token detection to enhance efficiency in
the training process. In contrast to these methods,
our methods use a generator to produce adversarial
text for adversarial training, that can transfer ad-
versarial features from source tasks to unseen tasks
via MulGAT procedure.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) (Good-
fellow et al., 2014) can be used to improve the
quality of synthetic data in image generation tasks.
GAN:s include two components: (1) generator for
sythetic data generation, and (2) discriminator to
distinguish human data and synthetic data. In trans-
former model pre-training, some methods inspired
by GANSs are adapted to pre-train language models
(Clark et al., 2020). Taking this inspiration, we pro-
pose an adversarial training framework, UnGAT
and MultGAT, as a two-player min-max game. In-
stead of utilizing loss gradient for perturbing word
embeddings as (Li et al., 2023a; Wu et al., 2023),
UnGAT uses loss gradient to update generator for
making adversarial input.

3 Proposed methods

3.1 Preliminaries

Our proposed adversarial training process includes
two language models: a generator G with param-
eter ¢ and a victim f with parameter 6. Both
the generator and the victim model are required
to share the same vocabulary V' in UnGAT. Similar
to (Goodfellow et al., 2014), they are jointly trained
by optimizing a two-player min-max game with the
value function V (G, f):

m(}nmjaxV(GJ) = E [f(&)]+ E [f(G(x))]

where f(z) and f(G(z)) are probability of correct
label y of clean input and noise input respectively.
We train the generator G' to minimize f(G(x)),
with the aim of making the victim model misclas-
sify. Simultaneously, we train victim f to maxi-

mize both f(z) and f(G(z)).

3.2 UnGAT

The overall procedure of UnGAT is shown in Al-
gorithm 1. A generator maps an original text
x = [z1,22,...,2p],x; € V to a noise text & =
[Z1,Z2, ..., Zn),T; € V that satisfies f(x,0) #



Algorithm 1: Pseudocode of UnGAT

1 Require: Training dataset D, generator G,
victim f, epoch n

2 for epoch = 1,2,3,...,n do

3 | for batch (z,y) C D do

4 /* Train generator */
5 t= gumbel_softmax(G(x))
6 Compute Lgqy, Laiv from  and y
7 Compute Eq. 4 from L4y, Laiv
8 Update GG by gradient of Eq. 4
9 /* Train victim */
10 t= gumbel_softmax(G(x))
1 Compute Eq. 5 from z, %, y
12 Update f by gradient of Eq. 5
13 end
14 end

f(z,0). To construct a noise text &, the gener-
ator maps input text x = [x1, X2, ..., Tp] into its
output logits , h = [h1, ha, ..., hn],h € RIVI, |V
is the size of vocabulary V. Then, new tokens for
noise text can be easily sampled or searched via
softmax distribution. However, using sample(h)
or argmax (h) operators cause the problem of non-
differentiability and the generator’s parameter ¢
cannot be updated by gradient-based optimization
because of the natural discrete of words (Nie et al.,
2019). To address this issue, the Gumbel-Max trick
(Maddison et al., 2017) is adopted to approximate
the discrete distribution of the generator’s logits.
The Gumbel-Max trick samples the discrete token
t; following:

t; = softmax(t(h; + g;)) (1)

where #; is one-hot vector, gz(k) = —log(—log(Uy;))
and U; ~ Uniform(0,1). 7 is the temperature,
which is set to 1. Now, the noise text is & ~ ¢ =
[t1, 2, ..., 1], that is differentiable with respect to
h. Then, we can calculate the loss value of the

adversarial text :

Loaw = loss(f(G(x),0),y)
= loss(f(t,0),y)

However, solely optimize Equation 2 can make
model get in stuck with text degeneration, which
a word/token is generated repeatedly. It can lead
our training process to sub-optimal convergence.
From (Ji and Huang, 2021; Yang et al., 2022) explo-
ration, we adapt diversity loss as regularization.

2

Diversity loss encourage model to use all token
in vocabulary equally, by minimizing the negative
entropy of token’s logits following the below func-
tion:

~

h = max(h)
I m: , s 3)
£dw = n ; hnlog(hn)

Finally, combing Equation 2, and Equation 3,
our loss for fine-tuning generator is:

Egen = )\Ediv - (1 - )\)Eadv (4)

where ) is the diversity rate (0.0 < A < 1.0).

For a sample (x,y) € D, generator G is fixed

, we construct an noise sample (Z,y), & = G(x),

then the victim model will predict the correct label

of both x and £. The victim model is updated by
the gradient of the below objectives:

Loyic = L(f(z,0),y) + L(f(2,0),y) (5)

In construction of noise sample Z, we still adapt
Gumbel-Max trick similar generator’s training in-
stead of argmax operator. The randomness is useful
for alleviating the effect of adversarial samples (Xie
et al., 2018). We do not implement any balance
weight as diversity rate in victim training, because
the importance of clean and noise samples is equiv-
alent in optimization of Equation 5.

1

3.3 MulGAT: generator as multi-task learner

UnGAT faces some challenges: (1) waste of mem-
ory: UnGAT will create many copies of the pre-
trained model for each tasks, (2) lack of inheriting
adversarial features: the generator in UnGAT is
learned to maximize the loss (e.g. cross-entropy
loss) of victim model via back-propagation. As
a result, UnGAT’s generator cannot produce ad-
versarial sequences mimicking the adversarial sen-
tences of query-based attack tools.

Adpversarial transferability (Yuan et al., 2021; Lv
et al., 2023) shows that an adversarial feature can
fool many types of language models on a unique
task. Inspired by this exploration, we implement
MulGAT so that the generator can learn about ad-
versarial features with a small number of tasks and
then transfer their knowledge to adapt unseen tasks.
Figure 1 illustrates a clear comparison between Un-
GAT and MulGAT in generator training, both of

'The generator G is not updated during victim model train-
ing process.



them have a generator and victim model. We fine-
tune the generator on the TCAB dataset (Asthana
et al., 2022), which contains six distinct datasets
in the field of hate speech detection and sentiment
analysis. MulGAT’s generator learns diverse ad-
versarial features in both of word and token pertur-
bation, produced by attacking many transformer-
encoder models. Compared to UnGAT, the gener-
ator’s weights are not updated during MulGAT’s
fine-tuning process. Consequently, MulGAT sig-
nificantly reduces the computational cost, an issue
of UnGAT as well as many previous adversarial
training methods (Madry et al., 2018).

4 Experimental setup

4.1 Datasets

We perform experiments on the AdvGLUE bench-
mark (Wang et al., 2021) constructed from the
GLUE benchmark (Wang et al., 2019). AdvGLUE
consists of six datasets: Sentiment Analysis (SST-
2), Paraphrase (QQP), Natual Language Inference
(MNLI, QNLI), Textual Entailment (RTE). We use
the original training dataset of each one in Ad-
vGLUE, and then evaluate the performance of fine-
tuned models on AdvGLUE by using accuracy met-
ric (see Table 6 for more details of number of sam-
ples for training and testing). The results of our
method and the baselines are reported in Table 1
with two BERT backbones. For dialogue genera-
tion, we evaluate the effectiveness of both UnGAT
and MulGAt on four different datasets, including
Persona-Chat (PC) (Zhang et al., 2018), Blended-
Skill-Talk (BST) (Smith et al., 2020), Empathetic-
Dialogue (ED) (Rashkin et al., 2019), and Conv-
Al-2 (CV2) (Dinan et al., 2019). Following (Li
et al., 2023b), the dialogue model takes an input
that includes the entire dialogue history between
two people and the current utterance of one person,
and produces the utterance of the other person. See
Appendix A for more details.

4.2 Metrics

We evaluate the robustness of adversarial train-
ing methods for dialogue generation via four met-
rics (1) The length of generation text (Length):
DGSlow (Li et al., 2023b) fools a model to gener-
ate tokens as much as possible, so shorter length is
better. (2) METEOR (Banerjee and Lavie, 2005)
is to compute the performance (i.e., the match be-
tween ground truth and model output) of model
under attack. (3) Cos indicates the cosine simi-

larity of original input and adversarial input made
by attack tools, low Cos means that the original
input is textualy different from adversarial input.(4)
Attack success rate (ASR) defines the success per-
centage of a attack tool, following Equation 6:

>0 Ls(z,&) > o] AL[E(y,§)]

ASR = N
s.t. E(y, ) :(B(y’yref) - B(?)’yref)) > 3
\/(R(yayw'ef) - R(?)7yref)) > f

V(M (Y, Yreg) — M(J, Yref)) > B
(6)

where s(z, ) denotes the cosine similarity be-
tween embeddings of original input x and crafted
input 2. B(.,.), R(.,.), and M(.,.) stand for
BLEU(Papineni et al., 2002), ROUGE(Lin, 2004),
and METEOR (Banerjee and Lavie, 2005) metric
respectively. An attack fails when the semantic
meaning of both z and £ is irrelevant or adversarial
text cannot fool the model to generate outputs that
do not relate to the inputs. In our work, we set
perturbation threshold « as 0.7 and performance
threshold (3 as 0.0 for all experiments on dialogue
generation. For the text classification benchmark,
we mainly use accuracy to compare our proposed
approaches with many strong baselines.

4.3 Attack tool

In our work, we use DGSlow (Li et al., 2023b), a
state-of-the-art tool for adversarial attack on di-
alogue generation system. DGSlow iteratively
searches and substitutes vulnerable words in order
to maximize generation output length and mini-
mize generation accuracy by gradient-based multi-
objective optimization. Following (Li et al., 2023b),
we use pre-trained BERT-Large-Cased model for
word perturbation with the number of candidates
set as 50 for mutation. We restrict maximum num-
ber of iterations to 5, meaning that no more than 5
words changed for each input sentence.

5 Results
5.1 AdvGLUE result

Table 1 shows that our proposed methods consis-
tently outperform all baselines across different di-
versity datasets of Adversarial GLUE. Our average
accuracy for both UnGAT and MulGAT is much
higher than that of many previous methods. In
experiments with BERT-Base, compared to the
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Figure 1: Illustration of training and using generator of UnGAT (left) and MulGAT (right). On the top left, each
generator is trained for a specific task by unsupervised learning to maximize the loss of victim model, and then each
generator perturbs its task (bottom left). In contrast, multi-task generator learns perturbation features from various
tasks in TCAB, an attack benchmark dataset (on the top right). And then multi-task generator transfers knowledge
of TCAB dataset to unknown dataset without victim model feedback like UnGAT (on the bottom right).

second-best method (BERT-CreAT), our proposed
method improves the accuracy by 6. 1% on average.
Specifically, our proposed method increases the ac-
curacy of vanilla fine-tuning from 38.6% to 48.7%
and 55.9%, demonstrating the effectiveness of ad-
versarial training without vector perturbation with
projected gradient descent. TCAB dataset contains
SST-2 dataset, used to trained MulGAT’s generator,
we evaluate our methods by the average accuracy
of MNLI, QNLI, QQP and RTE, named Avg-4. It
is apparent that MulGAT can effectively transfer
adversarial features to unseen tasks (i.e., from sen-
timent analysis and hate speech detection to natural
language inference and textual entailment).

5.2 Dialogue generation result

The main results are shown in Table 2 on BART
and T5 models in four benchmark datasets. First,
we evaluate the robustness of using UnGAT for lan-
guage models in the query-based attack scenario.
For the PC task, we find that fine-tuning BART with
UnGAT achieves the ASR of 28. 6%, while other

state-of-the-art baselines, AdvFooler and Flooding,
reach the ASR of 33. 3%. Moreover, MulGAT can
prevent dialogue models from generating longer
output sentences due to attack of DGSlow, this can
be witnessed via experiments of fine-tuning T5 and
BART with MulGAT on BST, ED dataset. In some
cases, UnGAT or MulGAT can prevent the model
from generating a longer output, which is one of
the objectives of the attack tool (i.e., DGSlow).
They achieve the shortest or second-shortest output
lengths on ED and BST datasets, showing that the
models produce less irrelevant output due to adver-
sarial input. In summary, UnGAT and MulGAT
reduce attack success rate significantly compared
to many baselines.

6 Ablation study

6.1 Different backbones

To evaluate the effectiveness of UnGAT, we con-
duct the ablation study on different pre-trained
transformer backbones: (1) BERT, (2) ROBERTA



Method | Adv-SST2 | Adv-MNLI | Adv-QNLI | Adv-QQP | Adv-RTE | Avg Avg-4
BERT-Base
FT 323 32.6 40.1 50.8 370 [386 40.1
FreeLB 31.6 335 45.4 51.0 420 | 407 430
BERT-MLM 32.0 27.6 43.4 48.5 459 1395 414
BERT-CreAT 353 36.0 44.8 51.5 452 | 426 444
SE 28.4 235 42.6 42.3 333 | 340 354
MVP 28.4 289 36.5 52.6 395 372 394
UnGAT 39.2 35.6 51.4 513 683 | 487 517
MulGAT 58.1 43.8 41.3 66.7 634 | 559 553
BERT-Large
FT 47.6 35.0 46.4 38.5 370 [ 418 392
R3F 38.5 35.8 47.5 40.6 501 | 425 435
ChildTuning 34.5 33.9 41.5 40.4 420 396 410
ChildTuningp | 39.2 34.1 49.6 40.7 462 | 419 427
Match-Tuning | 54.1 355 41.5 41.5 525 | 457 468
SE 35.1 247 45.3 50.0 531 | 416 433
UnGAT 52.7 377 52.7 59.0 732|551 557
MulGAT 62.2 45.5 55.4 73.1 605 | 593 586

Table 1: Accuracy results on the AdvGLUE benchmark. We report accuracy of each method in five datasets. Avg
and Avg-4 stands for the accuracy average of five datasets and four datasets, excluding SST-2, respectively. The best

results of each model is bold.

(Liu et al., 2020), (3) ELECTRA (Clark et al.,
2020), and (4) GPT2 (Radford et al., 2019). We
choose three datasets for ablation study, includ-
ing SST-2, QNLI, and RTE. For fair comparison
among different backbones, we use the base ver-
sion of each pre-trained model. Overall, ELEC-
TRA achieves the highest accuracy on average,
the second-best is BERT. In the SST-2, QNLI and
RTE tasks, the accuracies of ELECTRA are 56.8%,
62.2% and 70.8%, respectively, which are signifi-
cantly higher than the results of other models.

6.2 Effect of diversity rate

We compare our proposed method with BERT-Base
in different diversity rates on the SST-2 and RTE
datasets. The diversity rate is from 0.1 to 0.9, ex-
hibiting the trade-off between cross-entropy loss
and diversity loss (regularization) in Equation 4.
Figure 2 gives the results of the models through var-
ious diversity rates. In RTE task, we observe that
the accuracy of BERT-Base on AdvGLUE peaks at
68.3% with A = 0.5, outperforming many state-of-
the-art baselines. In SST-2 task, the BERT-Base’s
result exhibits that the model has high accuracy on
adversarial benchmark subject to A > 0.7. How-
ever, experimental results for BERT-Large show
that the lower diversity boosts the model’s accu-

racy on benchmark. The accuracy of BERT-Large
reaches the highest point of 52.7 at A = 0.2, and
then the accuracy decreases when A > 0.2. For
BERT-Large in the RTE task, the accuracy on the
AdvGLUE benchmark fluctuates significantly be-
tween 24.4% and 73.2% over various diversity
rates. On the GLUE benchmark, there are no strong
change in accuracy on both BERT-Base and BERT-
Large backbones. On the other hand, the results of
RTE task are unstable. In conclusion, our proposed
adversarial training methods are affected remark-
ably by the different diversity rate.

6.3 Training objectives

We compare the performance of our proposed meth-
ods via many variants. In this ablation study, we
evaluate UnGAT with different settings: (1) Freeze
generator (FG): we do not train the generator, and
only the victim model is fine-tuned during the train-
ing process.(2) No diversity loss (w/o diversity
loss): we set zero diversity rate (A = 0) in Equa-
tion 4. Overall, removing some elements of our
proposed methods leads to a declination of model
accuracy on the test benchmark, showing via Ta-
ble 3. In the experiments with BERT-Base back-
bone, the zero diversity rate does not have signif-
icant impact on the result of the model on adver-



BART TS

Dataset Method ASR Length Cosine ME | ASR Length Cosine ME
FT 47.6 19.8 0.66 28.6 | 38.1 12.7 071  23.0

PGD 57.1 415 072  28.6 | 23.8 15.4 0.63 243

Flooding 333 214 0.58 28.2 | 143 13.7 0.61 243
FreeLB 38.1 20.9 0.65 25.7 | 38.1 13.2 0.68 253

PC AdvFooler (En) | 33.3 13.6 0.59 255 38.1 12.7 0.74 233
AdvFooler (De) | 53.3 9.0 059 213 | 38.1 12.5 0.80 233
AdvFooler (All) | 583 523 086 23.6| 476 129 0.80 23.1
UnGAT 286 178 0.66 299 | 38.1 16.0 073 246

MulGAT 33.3 19.0 072  30.2 | 19.1 14.2 0.71 235

FT 76.7  29.0 0.82 262 | 633 272 0.74 153

PGD 633 324 073 243 | 4677 272 0.68 17.3

Flooding 70.0 679 0.76 227 | 50.0 247 0.67 165
FreeLB 70.0 334 073 26.1 | 533 286 071 15.0
BST AdvFooler (En) | 56.7  53.0 073 227 | 477 234 0.84  20.6
AdvFooler (De) | 69.2  89.1 0.92 9.6 | 60.0 20.0 0.89 179
AdvFooler (All) | 60.0  27.6 0.89 11.1 | 500 18.6 0.87  20.7
UnGAT 56.7  28.1 0.67 243|500 330 0.66 16.0

MulGAT 533  26.0 072  28.2 | 46.7 36.6 0.67 154

FT 60.0 544 071 11.8 | 60.0 322 0.76 8.9

PGD 60.0 447 0.67 14.6 | 30.0 25.7 0.62 13.8

Flooding 50.0 62.8 074 141 | 60.0 485 0.72 8.4

FreeLLB 30.0 1435 0.65 12.8 | 30.0 38.0 0.61 7.8

ED AdvFooler (En) | 30.0 14.6 070 142 | 60.0 322 0.76 8.9
AdvFooler (De) | 60.0  54.7 0.71 142 | 60.0 322 0.76 8.9
AdvFooler (All) | 60.0  54.7 071 142 | 70.0 149 0.83 9.3
UnGAT 30.0 179 0.76 13,5 | 30.0 187 0.76  10.0

MulGAT 10.0  20.7 076  13.1 | 20.0 148 0.83 151

FT 43.8 17.9 0.69 163 | 37.5 18.3 0.64 12.6

PGD 125 20.1 045 12,6 | 313 11.6 0.68 17.1

Flooding 375 209 0.56 139 | 438 20.1 0.63 153

FreeLB 37,5 230 0.62 20 | 438 304 0.62 17.8

cva AdvFooler (En) | 25.0 114 052 11.8 | 31.3 17.6 0.62 128
AdvFooler (De) | 46.2  43.6 0.86 84 | 50.0 22.1 0.79 14.6
AdvFooler (All) | 583  89.3 0.88 6.3 | 500 216 078 144
UnGAT 12.5 14.6 072 119 | 188 434 0.61 10.7

MulGAT 12.5 12.8 0.78 85 | 125 113 0.75  10.0

Table 2: Evaluation of adversarial training methods in four dialogue generation benchmark datasets. ASR and
Length denotes the attack success rate and average generation output length, respectively. Cosine denotes the cosine
similarity between original and adversarial sentences. ME stands for the METEOR metric.

sarial benchmarks. The average accuracy declines
slightly by 0.5%, which means that the generator
can be trained by optimizing solely the classifica-
tion loss. In contrast, if there is no diversity rate
in Equation 4, the results of BERT-Large are much
worse than those of UnGAT. Specifically, when
diversity loss is removed, the average accuracy de-
clines to 48.0%, in which the accuracy on RTE task

considerably decreases from 73.2% to 43.9%. On
the other hand, freezing the generator’s parame-
ters during training steps causes deterioration in
the result of BERT-Base. With BERT-Large back-
bone, the accuracy of generator freezing increases
by 1.4% on QNLI and 7.3% on RTE datasets. This
ablation study demonstrates the importance of each
component of our UnGAT.



Setting Adv-SST2 Adv-QNLI Adv-RTE Average A |
BERT-Base
UnGAT (baseline) 39.2 514 68.3 53.0 -
| Freeze generator 338 465 585 463 6.7 |
W/o diversity loss 37.8 514 68.3 52.5 0.5
BERT-Large
UnGAT (baseline) 52.7 52.7 73.2 59.5 -
| Freeze generator 392 487 512 464 132
W/o diversity loss 52.7 47.3 43.9 48.0 11.5

Table 3: Result of UnGAT with different settings. A | denotes the accuracy drop compared to UnGAT.

Table 4: Results of UnGAT and MulGAT on backbone
models on SST-2, QNLI, RTE datasets of AdvGLUE.
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Figure 2: The accuracy of BERT-Base and BERT-Large
model through various diversity rates. “GLUE” and
“AdvGLUE” denote accuracy on the validation set of
each task on each benchmarks.

Model | SST2 QNLI RTE | Avg | 1 Dataset | Token Word | Word+Token
BERT PC 14.3 28.6 19.1
FT 323 40.1  37.0 | 36.5 - BST 50.0 50.0 12.1
UnGAT | 39.2 514 659 | 52.0 | 155 ED 50.0 30.0 20.0
MulGAT | 58.1 473 634 | 563 | 19.8 %) 186 125 12.5
RoBERTa
FT 31.1 33.8 37.0 | 34.0 - Table 5: ASR of each adversarial feature on four bench-
UnGAT | 324 432 463 | 40.6 | 6.6 mark datasets.
MulGAT | 61.5 419 358 | 464 | 124
GPT2
FT 432 466 432 ] 443 - 6.4 Adversarial Features
UnGAT | 514  46.0 488 | 48.7 | 4.4
MulGAT | 54.1 514 506 | 520 | 7.7 In this section, we validate the effectiveness of Mul-
ELECTRA GAT via training generator with diverse adversarial
FT 635 574 531 | 58 N features (1) token-level, (2) word-level, and (3)
UnGAT | 568 622 708 | 633 | 53 combination of word-level and token-level. We
MulGAT | 784 3595 580 | 653 | 73 divide TCAB into two parts: token-level features

and word-level features, and then fine-tune genera-
tor in each part. The ASR of each feature type is
reported in Table 5, we fine-tune TS5 with different
adversarial features of MulGAT on PC, BST, ED
and CV2 datasets. Overall, the attack success rate
of MulGAT with combination of token-level and
word-level features is significantly better compared
to the others, except token-level features on PC
task. It shows that fine-tuning language models
with both word and token features has beneficial
effects against query-based adversarial attacks.

7 Conclusion

In this work, we have introduced new adversar-
ial training approaches, UnGAT and MulGAT, to
improve the model performance. Both use a lan-
guage model to generate adversarial examples for
training, instead of aadding perturbations to contin-
uous word embeddings by gradient descent. Our
proposed methods improve many language models
(e.g. BERT, BART, and T5) on adversarial bench-
marks demonstrated via empirical experiments.



Limitations

Due to high computational cost, we do not conduct
experiments with our proposed method to larger
language models, that are raised in recent years.
In UnGAT, we do not train generator under any
linguistic or semantic similarity constraints, so the
adversarial text of generator should be investigated
in an insightful future work. Furthermore, our
work limits in the context of AdvGLUE and di-
alogue generation benchmark, the potential tasks
and benchmarks could be explored such as machine
translation, machine reading comprehension tasks.
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MulGAT, adversarial training methods to improve
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A Implementation details

A.1 Backbones

The detailed pre-trained models for generator and
victim model in all experiments are showed in
Table 7. In each task, we set different hyper-
parameter, the detailed hyper-parameter is provided
in Table 8. For BERT and ROBERTA backbones,
we use distil version of them (Sanh et al., 2019)
for generator to reduce computational cost. In ex-
periments with four benchmark datasets for dia-
logue generation, we mainly use BART-Base and
T5-Small checkpoint. In experiments with Mul-
GAT, We fine-tune these generative language mod-
els with learning rate Se-5, linear learning rate
scheduler within 100 epochs. For UnGAT, we use
a fixed diversity rate 0.5 and fine-tune these models
within 15 epochs

Dataset Train Dev Test
SST-2 673k 0.87k 0.15k
MNLI 393k 9.82k 0.12k
QNLI 116k 5.46k 0.15k
QQP 795k 40.4k 0.08k
RTE 249k 0.28k 0.08k

Table 6: Data statistics
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Victim
BERT-Base-Uncased
BERT-Large-Uncased
RoBERTa-Base
GPT2
ELECTRA-Base

Generator
DistilBERT-Base-Uncased
DistilBERT-Base-Uncased

DistilRoBERTa-Base
GPT2
ELECTRA-Base

Table 7: Pre-trained models of generator and victim

A.2 Baselines

We fine-tune pre-trained BERT models, including
BERT-Base and BERT-Large on the GLUE bench-
mark (Wang et al., 2019), by Huggingface Trans-
formers (Wolf et al., 2020) and Pytorch (Paszke
et al., 2019). To evaluate the robustness of our
proposed method, we compare our methods with
the following baseline: Vanilla fine-tuning (FT):
We fine-tune pre-trained models and evaluate fol-
lowing (Wang et al., 2021) on the GLUE bench-
mark. Prompt-based fine-tuning (MVP) (Ra-
man et al.,, 2023): finds that fine-tune model
via prompts help model against adversarial ex-
amples. Self-Evolution Learning (SE) (Zhong
et al., 2023) continues pretraining masked language
model (e.g., BERT) with linguistically-motivated
masking strategies and then fine-tune these models
on downstream datasets. CreAT (Wu et al., 2023)
(BERT-CreAT) is an adversarial training that find-
ing perturbations based on the deviation of output
distribution and contextualized representation. Be-
sides, BERT-MLM pre-trains BERT on subsets of
C4 dataset (Raffel et al., 2020) and then fine-tunes
on downstream datasets. R3F (Aghajanyan et al.,
2021) fine-tunes language models in trust region
to alleviate the degradation of generalizable rep-
resentations of language models. ChildTuningr
and ChildTuningp (Xu et al., 2021) update the
subset of model parameters by multiplying the gra-
dients corresponding to the model parameter by
binary matrix (mask) for generalizable fine-tuning.
Match-Tuning (Tong et al., 2022) determines how
to utilize the in-batch instances during the whole
training process.

For the generation of benchmark data sets, we
consider using several state-of-the-art adversar-
ial training methods. Projected Gradient Descent
(PGD) (Madry et al., 2018) is implemented by
injecting word embeddings with adversarial per-
turbations in the embedding space. (Flooding)
(Ishida et al., 2020) avoids training loss reaching
zero during training by maintaining training loss
value higher than flood level. Free large batch ad-
versarial training using projected gradient descent
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(FreeLLB) (Zhu et al., 2020) also adds adversarial
perturbations, generated in a region around input
samples, to embeddings. (Hoang et al., 2024) pro-
poses (AdvFooler), a method to randomize the
latent representation of the input and layer’s output
to prevent query-based attack tools from finding
important words in input. We extend AdvFooler
to sequence-to-sequence (seq2seq) models (e.g.,
BART, T5) for generation tasks, resulting three
baseline (AdvFooler(En), AdvFooler(De), Adv-
Fooler(All)). AdvFooler(En) indicates that we just
use AdvFooler for Encoder block of seq2seq model.
Similarly, AdvFooler(De) and AdvFooler(All) are
used for Decoder and both Encoder-Decoder block
of seq2seq model respectively.

All experiments are conducted on an A100 GPU
and two T4 GPUs.

A.3 Multi-task generator for MulGAT

We adapt encoder-decoder Transformer architec-
ture rather than encoder-only and decoder-only
model architecture for original examples to adver-
sarial. The encoder will capture the feature and
information of input sentence, and then the decoder
generate the output with variable length. This is
easily adapt model for different kind of perturba-
tion: token-level perturbation, and word-level per-
turbation.

The TCAB dataset contains more than 1.4 mil-
lion samples, including word-level adversarial sam-
ples and token-level adversarial samples. Similar
to (Lv et al., 2023), we fine-tune BART-Base on
TACB with learning rate 0.001 and AdamW op-
timizer (Loshchilov and Hutter, 2019) within 20
epochs. To speed up the fine-tuning process, we
use Jax (Bradbury et al., 2018) and RedCoast (Tan
et al., 2024) framework to fine-tune BART on TPU
VM V3 (8 cores). The batch size per core is 64,
so the total batch size is 512. The total fine-tuning
time is about 24 hours. During inference, there are
no tools used to restrict grammar or limit the bound
for adversarial texts.



BERT-Base

BERT-Large

Hyper-parameter

SST-2 | MNLI | QNLI | QQP | RTE

SST-2 | MNLI | QNLI | QQP | RTE

Learning rate 2e-5
Batch size 32
Optimizer AdamW (Loshchilov and Hutter, 2019)
Max length 128 256 128 320 | 320 128 256 128 320 | 320
Epoch 9 1 6 2 7 5 3 3 1 3
A 0.7 0.5 0.5 0.5 0.6 0.2 0.5 0.3 0.3 0.6

Table 8: The hyper-parameter for BERT-Base and BERT-Large in our experiments
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