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Abstract001

Text-to-image (T2I) models enable rapid con-002
cept design, making them widely used in AI-003
driven design. While recent studies focus on004
generating semantic and stylistic variations of005
given design concepts, functional coherence–006
the integration of multiple affordances into a007
single coherent concept–remains largely over-008
looked. In this paper, we introduce SYNTHIA,009
a framework for generating novel, functionally010
coherent designs based on desired affordances.011
Our approach leverages a hierarchical concept012
ontology that decomposes concepts into parts013
and affordances, serving as a crucial building014
block for functionally coherent design. We also015
develop a curriculum learning scheme based on016
our ontology that contrastively fine-tunes T2I017
models to progressively learn affordance com-018
position while maintaining visual novelty. To019
elaborate, we (i) gradually increase affordance020
distance, guiding models from basic concept-021
affordance association to complex affordance022
compositions that integrate parts of distinct af-023
fordances into a single, coherent form, and024
(ii) enforce visual novelty by employing con-025
trastive objectives to push learned representa-026
tions away from existing concepts. Experi-027
mental results show that SYNTHIA outperforms028
state-of-the-art T2I models, demonstrating ab-029
solute gains of 25.1% and 14.7% for novelty030
and functional coherence in human evaluation,031
respectively.032

1 Introduction033

Imagine a coffee machine with wheels that brews034

a morning coffee and delivers it to your bed every035

morning. This example illustrates a novel concept036

that is atypical and dissimilar to everyday concepts037

we regularly encounter in our lives. Novel concept038

synthesis requires an effective fusion of disparate039

concepts (e.g., coffee machine, trolley), akin040

to how humans blend ideas across cognitive do-041

mains to generate creative innovations (Fauconnier042

and Turner, 2002; Han et al., 2018).043

Existing studies on conceptual design using T2I 044

models have enabled rapid ideation of novel vi- 045

sual concepts (Cai et al., 2023; Ma et al., 2023; 046

Wang et al., 2024; Lin et al., 2025) by identify- 047

ing user challenges such as interpreting abstract 048

concepts in language to help visualize a novel de- 049

sign concept (Lin et al., 2025), or using large lan- 050

guage models (LLMs) to bootstrap initial ideation 051

in texts (Cai et al., 2023; Zhu and Luo, 2023). 052

However, they often naively feed LLM-generated 053

textual prompts into T2I models, relying on sim- 054

ple key phrases or semantic variations of concept 055

description (Cai et al., 2023; Wang et al., 2024). 056

While existing works show that T2I models can 057

generate images that seem to correctly reflect com- 058

plex human-formulated textual descriptions (e.g., 059

“beautiful rendering of neon lights in futuristic cyber- 060

punk city”), they do not focus on whether a model 061

can synthesize a novel concept when given a set of 062

affordances (e.g., brew, deliver) as input, while 063

ensuring these affordances are preserved. 064

An important aspect lacking in existing ap- 065

proaches to concept synthesis is their focus on 066

pixel-based control, overlooking the structural and 067

functional roles embedded in design. Many real- 068

world concepts are naturally “decomposable” into 069

parts, where each part signals a specific functional- 070

ity. To address this, we propose SYNTHIA, a frame- 071

work for Concept Synthesis with Affordance com- 072

position that generates functionally coherent and 073

visually novel concepts given a set of desired af- 074

fordances. Unlike prior works relying on complex 075

descriptive text to generate stylistic variations or 076

aesthetic features (Richardson et al., 2024; Vinker 077

et al., 2023), SYNTHIA leverages affordances– 078

defined as “the functionality offered by an object 079

or its parts”–as a structural guide for novel concept 080

synthesis. By aligning textual descriptions with af- 081

fordances as control signals, our models implicitly 082

learn to “decompose and reassemble” functional 083

parts, ensuring that, for instance, a hybrid of a 084
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(b) Generated concepts with distant affordances.

Figure 1: Effect of Affordance Sampling on Novel Concept Generation. Our affordance sampling strategy
selects disparate affordance pairs within our ontology, promoting novel functional coherence rather than redundant
combinations. Baseline models tend to generate existing concepts for close affordances (Fig 1a) but struggle with
distant pairs, often introducing multiple objects or omitting functions (Fig 1b). In contrast, our models consistently
generate functionally coherent novel concepts, achieving higher novelty scores for distant affordance pairs.

coffee machine and a trolley not only appears085

novel but also retains its brewing and mobility func-086

tions, achieving functional coherence.087

To facilitate structured affordance compo-088

sition, we construct a hierarchical concept089

ontology that decomposes visual concepts (e.g.,090

Furniture-Sofa) into their constituent parts (e.g.,091

leg, cushion) and associated affordances (e.g.,092

support, rest). It provides a structured represen-093

tation of concept-affordance associations, serving094

as the foundation for generating functionally095

meaningful designs. Inspired by the theory of096

combinational creativity in humans (Han et al.,097

2018), which suggests novel concepts emerge098

from disparate ideas, we propose an affordance099

sampling mechanism that strategically selects100

affordances associated with sufficiently different101

concepts using our novel similarity-based metric102

(§3.1). This ensures that generated designs103

integrate novel functionalities, avoiding trivial104

combinations, whereas random sampling yields105

similar affordances (e.g., cook, heat) that result106

in redundant outputs (Fig 1a).107

We also introduce a new curriculum learning108

scheme that fine-tunes T2I models to progressively109

learn affordance composition while maintaining110

visual novelty. Our curriculum gradually increases 111

the affordance distance, allowing models to first 112

learn basic concept-affordance associations from 113

close affordance pairs before tackling complex 114

affordance compositions that integrate multiple 115

affordances into a single, coherent form. To further 116

ensure novelty, we employ contrastive objectives 117

to push learned representations away from existing 118

concepts in our ontology. This addresses a critical 119

limitation of existing T2I models, which struggle 120

to generate coherent multi-functional concepts 121

(Fig. 1b). Without structured affordance composi- 122

tion, models tend to default to familiar objects–e.g., 123

when prompted with drive and vacuum affor- 124

dances, Stable Diffusion models simply generate 125

a car with missing vacuum functions (Fig. 1b), 126

rather than blending both affordances into an 127

integrated design. Importantly, unlike existing 128

AI-driven design frameworks that rely on detailed 129

LLM-generated descriptions, SYNTHIA enables 130

direct affordance-based prompting, e.g., “a new 131

design that has functions of {desired affordances}.”. 132

Our model implicitly learns concept-affordance 133

associations, producing novel, structured designs 134

without redundant textual prompting. 135

To evaluate our framework, we uniformly sam- 136
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Figure 2: SYNTHIA: Novel Concept Design with Affordance Composition. SYNTHIA comprises three stages:
(1) Affordance composition curriculum construction, (2) Affordance-based curriculum learning, and (3) Evaluation.
In the first stage, we build a training curriculum through sampling affordance pairs from our ontology by gradually
increasing the affordance distances. Using our curriculum, we fine-tune T2I models, where they first learn concept-
affordance relation from easy data, then integrate multiple affordances into a single functional form from hard data.
We employ a contrastive objective with positive (affordances), negative (concepts) constraints, and corresponding
images, enforcing visual novelty different from existing concepts. Finally, we evaluate models through automatic
evaluation and human evaluation with four metrics: faithfulness, and novelty, practicality, coherence.

ple 500 unseen affordance pairs from our ontology137

and assess generated concepts using automatic and138

human evaluation. We design evaluation metrics139

(§4.2) that measure faithfulness, novelty, practical-140

ity, and coherence. Experiments show that SYN-141

THIA significantly outperforms baselines, creating142

designs that are visually novel and functionally co-143

herent, with consistently higher scores across all144

metrics. Our contributions are as follows:145

• We introduce a hierarchical concept ontology146

that encodes concept-affordance associations,147

serving as crucial building blocks for novel148

concept synthesis with functional coherence.149

• We propose an affordance sampling strat-150

egy that guides disparate affordance selection,151

avoiding redundant functionalities while en-152

suring coherent concept synthesis.153

• We develop a curriculum-based optimization154

for affordance composition that fine-tunes T2I155

models, enabling T2I models to fuse multiple156

affordances into a single coherent concept.157

2 Related Work158

Text-to-Image Models. The advancement of159

text-to-image (T2I) models has enabled high-160

quality image synthesis from textual descriptions161

(Sohn et al., 2023; Xue et al., 2024; Shi et al., 2024; 162

Chen et al., 2024). Especially, the invention of 163

diffusion-based models, such as DALL-E (Ramesh 164

et al., 2021a) and Stable Diffusion (Rombach et al., 165

2022), significantly increases the performance of 166

the T2I generation by utilizing a transformer-based 167

architecture, where the image embeddings and text 168

encodings are aligned in the shared representation 169

space. For instance, Bao et al. (2024) propose a 170

compositional fine-tuning method for T2I Diffu- 171

sion Models that focuses on two novel objectives 172

and performs fine-tuning on critical parameters. 173

However, these models still struggle to understand 174

practical functionalities and integrate multiple com- 175

ponents into coherent novel concepts. This high- 176

lights the need for a new framework to enhance 177

the compositional reasoning ability of T2I models, 178

which our work aims to address. 179

Novel Concept Generation. The great power of 180

T2I models provides a potential boost to content 181

creation (Ko et al., 2023; Rangwani et al., 2024; 182

Sankar and Sen, 2024; Rahman et al., 2024; Tang 183

et al., 2024). Novel concept generation aims to 184

produce visual outputs that extend the existing con- 185

cepts by specifying the requirements as input to the 186

T2I models. For instance, Concept Weaver (Kwon 187
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et al., 2024) first generates a template image based188

on a text prompt, then refines it using a concept fu-189

sion strategy. ConceptLab (Richardson et al., 2024)190

utilizes Diffusion Prior models and formulates the191

generation process as an optimization process over192

the output space of the diffusion prior. Yet, they193

focus on concept-level generation and ignore the194

relationships between concepts and their parts. By195

prioritizing aesthetics, they limit real-world prac-196

ticality. Our work bridges this gap by designing197

an affordance-driven framework for novel concept198

synthesis, ensuring the fusion of desired functions199

to output novel but practical concepts.200

3 SYNTHIA: Novel Concept Design with201

Affordance Composition202

Our ultimate goal is to utilize T2I models in de-203

signing novel concepts that are both visually novel204

and functionally coherent. Specifically, we take the205

desired affordances as text inputs, the T2I models206

should generate an image that depicts the novel207

concept design. To achieve this, we (1) construct a208

training recipe that explicitly embeds hierarchical209

relations on visual concepts, parts, and correspond-210

ing affordances, and (2) fine-tune T2I models with211

curriculum-based optimization.212

3.1 Affordance Composition Curriculum213

The primary challenge in the novel concept genera-214

tion of existing T2I models is the lack of structured215

functional grounding. These models often struggle216

to design visually novel yet functionally coherent217

concepts while maintaining intended functionali-218

ties. For example, when combining affordances219

like Brew and Cut, they may prioritize aesthet-220

ics over functionality, omitting parts or objects221

relevant to Brew (Fig 1b). To address this, we222

construct a structured training recipe in two key223

steps: (1) building a hierarchical concept ontology,224

and (2) designing an affordance sampling strategy225

for curriculum-based training. This improves the226

model’s composition ability by learning the con-227

nection between concepts and affordances.228

Hierarchical Concept Ontology. To provide a229

structured basis for novel concept synthesis with230

functional coherence, we define a hierarchical con-231

cept ontology that decomposes visual concepts232

into constituent parts and their affordances, captur-233

ing concept-affordance associations (Fig 5). This234

ontology allows T2I models to retrieve relevant235

parts based on affordances, enabling generation236

to be well-grounded on the functionality of con- 237

cepts rather than superficial visual feature com- 238

binations. Formally, we define the ontology as 239

a four-level hierarchy O = (S, C,P,A). Super- 240

ordinate S denotes the highest-level categories, 241

such as furniture, followed by Concept C, which 242

is the set of visual concepts. Each c ∈ C be- 243

longs to a superordinate category s ∈ S, e.g., 244

Stable = furniture, and decomposes into its 245

parts P that serve specific functions in an object 246

design, e.g., Ptable = {leg, drawer}. The Affor- 247

dance A describes functionalities of concepts and 248

parts. Both a concept c ∈ C and its part p ∈ P are 249

linked to affordances set Ac = {a1, · · · , an} ∈ A, 250

e.g, Atable = {write, organize}, and Ap = 251

{p1, · · · , pn}, e.g., Aleg = {support}. Our ontol- 252

ogy spans 30 superordinates, 590 concepts, 1172 253

parts, and 686 affordances, explicitly providing a 254

structured representation of how affordance is as- 255

sociated with fine-grained parts for functionally 256

grounded novel concept synthesis. 257

Affordance Sampling. Given our ontology, we 258

can utilize it to create fine-tuning data to improve 259

the functional coherence of the generated novel 260

concept by T2I models. A naive approach to ob- 261

taining training data would be to exhaustively pair 262

all possible affordances. However, this would 263

yield 235K affordance pairs, which is computa- 264

tionally expensive. Moreover, random combination 265

risks generating redundant concepts (e.g., Heat and 266

Cook examples in Fig 1a) or functionally incoher- 267

ent objects. To achieve sufficiently different af- 268

fordance pairs that enable novel concept synthesis 269

while still being functionally integrable, we intro- 270

duce a distance-based affordance sampling strategy 271

that selects meaningful, disparate affordance pairs 272

based on ontology-derived distances. 273

We define a concept distance DC(ci, cj) be- 274

tween two concepts ci, cj ∈ C by incorporat- 275

ing functional relatedness at the affordance level 276

and semantic similarity at the concept level. We 277

compute functional relatedness using Jaccard sim- 278

ilarity J(X,Y ) = |X∩Y |
|X∪Y | between their affor- 279

dance sets while quantifying the semantic similarity 280

Sim via measuring embedding similarity using the 281

BERT (Devlin et al., 2019) model as follows: 282

DC(ci, cj) = α ∗ {J(Aci ,Acj ) + J(APci
,APcj

)}, 283

+ β ∗ Sim(BERT(ci),BERT(cj)),
(1)

284

where α, β are adjustable hyperparameters that bal- 285
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ance between functional relatedness based on affor-286

dances, and semantic relevance of concepts, respec-287

tively. Since we prioritize affordance-level simi-288

larity over concept-level similarity during training,289

we set α = 0.7 and β = 0.3. Two semantically290

similar concepts sharing more affordances have291

closer distances, such as sofa and chair, while292

those that have different affordances and seman-293

tic differences, such as car and vacuum cleaner294

have more distant distances.295

We further obtain affordance distance296

DA(ai, aj) between two affordances ai, aj ∈ A297

by averaging pairwise concept distances DC(·, ·)298

between associated concepts:299300

DA(ai, aj) =
1

|Cai | · |Caj |
∑

cp∈Cai

∑
cq∈Caj

DC(cp, cq),

(2)

301

where Cai and Caj are the sets of concepts associ-302

ated with affordances ai and aj , respectively. The303

resulting DA(·, ·) is distributed from 0.1 to 1.0.304

Based on our distance metric, close affor-305

dance pairs associated with similar concepts, e.g.,306

{sit, rest} from {sofa, chair}, support learn-307

ing basic affordance-concept associations, which308

can be easily merged into existing concepts. In309

contrast, distant affordance pairs derived from suf-310

ficiently distant concepts, e.g., {drive, vacuum}311

from {car, vacuum cleaner}, enforce greater312

functional coherence by requiring meaningful part-313

affordance integration, which is more complex than314

a trivial combination.315

Curriculum Construction. In novel concept316

generation, existing T2I models struggle with (1)317

concept-affordance associations and (2) the com-318

position of functionally coherent affordances into319

a single concept. To address these challenges with320

limited data, we propose a three-stage curriculum321

that progressively increases affordance pair dis-322

tances. In the earliest stage, we utilize close affor-323

dance pairs to reinforce fundamental knowledge of324

the concept-affordance associations. The second325

stage employs the affordance pairs from the mid-326

range distances to encourage the model to learn the327

fine-grained compositional structures while main-328

taining prior knowledge. In the last stage, we only329

introduce distant affordance pairs to challenge the330

model to synthesize novel, functionally coherent331

concepts by applying the previously learned basics332

on the fine-grained parts and affordance relations.333

We sample 600 affordance pairs uniformly 334

across the full distance spectrum and categorize 335

them into three groups. For training images used as 336

pseudo novel concepts, we generate 10 images per 337

pair using DALL-E (Ramesh et al., 2021b) with 338

GPT-4 (OpenAI, 2024) generated captions that de- 339

scribe different novel designs integrating the speci- 340

fied affordances. We then filter images using CLIP 341

similarity scores and manually select the top three. 342

This curriculum-based training enables T2I mod- 343

els to learn basic concept-affordance associations 344

while fusing affordances into coherent and func- 345

tionally meaningful designs. Thus, the T2I models 346

can successfully produce novel concepts that are 347

visually distinctive and functionally coherent. 348

3.2 Contrastive Fine-tuning with Curriculum 349

Learning 350

The goal of fine-tuning T2I models is to enable 351

them to fuse multiple affordances into a single, 352

functionally coherent concept while ensuring visual 353

novelty. With our curriculum, we propose a cur- 354

riculum learning strategy to fine-tune the diffusion- 355

based T2I models. From a data-driven perspec- 356

tive, training with affordance pairs and DALL-E- 357

generated pseudo-novel concepts helps the model 358

design novel concepts given specified affordances. 359

To further enhance visual novelty, we incorpo- 360

rate contrastive learning objectives, ensuring that 361

generated images not only reflect desired affor- 362

dances but also differ from existing concepts as- 363

sociated with them. Specifically, we define two 364

sets of constraints derived from our ontology to 365

guide the model: (1) Positive Constraints specify 366

the target affordances that must be included in the 367

novel concepts, shaping their functional structure; 368

(2) Negative Constraints consist of all existing con- 369

cepts from our ontology that already have the tar- 370

get affordances in the positive constraints. These 371

act as references to avoid. By adhering to these 372

constraints, the model generates concepts that suc- 373

cessfully integrate the specified affordances while 374

maintaining a high degree of novelty. 375

Training Objectives. The training objective of 376

fine-tuning is formulated using a triplet loss, which 377

can balance two components to achieve the de- 378

sired outcomes. The first component aims to min- 379

imize the similarity loss between the generated 380

image and the pseudo-novel image created during 381

curriculum construction, ensuring visual novelty. 382

To reduce the overfitting problem, we also sam- 383
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ple multiple pseudo-novel images that describe384

different concepts. Given the set of affordances385

Apos = {a1, · · · , an} in the positive constraints,386

together with a sampled image I+i from the pseudo-387

novel images from DALL-E, the positive loss is388

defined as follows:389

Lpos(θt) = ∥I+i − Îi∥22+Eϵ,t

[
∥ϵ− ϵθ(t)∥22

]
, (3)390

where θt is T2I model parameters, Îi denotes the391

generated image, ϵ is Gaussian random noise. We392

employ noise prediction loss, where the model393

takes the latent embedding of I+i as input and pre-394

dicts the noise as ϵθ(t), preventing catastrophic395

forgetting of learned training distribution.396

The second component of the triplet loss max-397

imizes the similarity loss between the generated398

image and a randomly sampled existing concept399

image I−i that contains partial affordances from the400

positive constraints as follows:401

Lneg(θt) = ∥I−i − Îi∥22 (4)402

In this way, the model learns to avoid generating403

existing concept images and increase its novelty.404

Our overall triplet loss is defined as follows:405

L(θt) = Lpos(θt)− γ ∗ Lneg(θt), (5)406

where γ is an adjustable hyperparameter. By bal-407

ancing two losses, our framework ensures that the408

generated images align with the desired affordances409

while remaining distinct from existing concepts.410

3.3 Novel Concept Generation during411

Inference412

After fine-tuning the diffusion-based T2I models,413

our approach requires only the desired affordances414

as positive constraints during inference time, elim-415

inating the need for manually collecting existing416

concepts as negative constraints. This efficiency417

gain stems from incorporating both positive and418

negative constraints–derived from our hierarchi-419

cal concept ontology–into the training objective.420

By embedding these constraints during training,421

the model learns concept-affordance associations422

and improves its ability to compose parts associ-423

ated with desired affordances into a novel design.424

Therefore, the model can produce novel, structured425

designs without redundant textual prompting.426

4 Experiments427

4.1 Experimental Setup428

Datasets. To train T2I models with our approach,429

we construct a dataset from two types of resources430

(more details in Appendix C.1): (1) Existing Con- 431

cept Images: For each existing concept in our ontol- 432

ogy, we collect 60 images from external platforms 433

including Google Images and iStock. To ensure 434

that images are object-centric and aligned with the 435

concept, we filter out low-quality images using 436

CLIP model (Radford et al., 2021). (2) Generated 437

Novel Concept Images: With our affordance sam- 438

pling, we uniformly sample 600 affordance pairs 439

among 235K possible pairs for fine-tuning. For the 440

test dataset, we select 500 affordance pairs among 441

the ones not used for fine-tuning. 442

Foundation Models We adopt Kandinsky3.0 443

(Vladimir et al., 2024) as the T2I backbone model; 444

it generates images based on a given text prompt, 445

with an optional negative text prompt to refine out- 446

puts. During fine-tuning, we incorporate the de- 447

sired affordances as positive inputs, while using 448

the existing concepts from the ontology as negative 449

constraints. During the inference, we provide only 450

the text prompts with desired affordances, “a new 451

design that has functions of {desired affordances}.”. 452

Training details are provided in Appendix C.3 453

Baselines Methods We compare our proposed 454

method against three baseline methods, which 455

are Stable Diffusion (Esser et al., 2024), Kandin- 456

sky (Arkhipkin et al., 2023), and Concept- 457

Lab (Richardson et al., 2024). While Stable Diffu- 458

sion and Kandinsky are general T2I models, Con- 459

ceptLab optimizes generation over diffusion before 460

creative concept design. For a fair comparison, we 461

fine-tune ConceptLab using the same training data 462

as our method. In contrast, our framework directly 463

fine-tuned the diffusion model, integrating the hi- 464

erarchical visual ontology to enforce the design of 465

a single, coherent concept that achieves multiple 466

affordances. Details on the baselines can be found 467

in Appendix C.2. 468

4.2 Evaluation Metrics 469

Automatic Evaluation. To automatically evalu- 470

ate the performance of our proposed method, we 471

design four novel metrics to assess the quality of 472

the generated data: 473

• Faithfulness: This metric evaluates how 474

well the generated object aligns with instruc- 475

tions, focusing on its intended affordances and 476

whether the image effectively conveys the ob- 477

ject’s purpose. 478

6



Automatic Evaluation Human Evaluation

Model Faithfulness Novelty Practicality Coherence Faithfulness Novelty Practicality Coherence

Stable Diffusion 3.77 3.74 3.34 3.29 2.96 2.44 3.02 2.75
Kandinsky3 3.38 4.02 2.92 3.89 2.95 2.98 3.01 3.41
ConceptLab 3.39 4.08 2.93 3.96 2.73 3.11 2.68 3.54

SYNTHIA (Ours) 3.99 4.55 3.35 4.81 3.81 3.89 3.38 4.06

Table 1: Results of the automatic evaluation and human evaluation. We compare our method with baseline models.
Each metric ranges from 0 to 5, where a higher score indicates a better performance.

Figure 3: Results of the relative automatic evaluation. We compare the quality of concepts generated from our
models and baselines with ones generated from our data generation pipeline (§3.1). Numbers indicate the percentage
(%) of baseline model wins, ties, and DALLE model wins.

• Novelty assesses the originality and creativity479

of the generated design, emphasizing unique-480

ness and unconventional concepts that sur-481

prise or intrigue users.482

• Practicality evaluates the real-world appli-483

cability of the design. It examines usability,484

alignment with human preferences, and feasi-485

bility for production.486

• Coherence evaluates whether the generated487

image is object-centric, depicting a single488

clear and functional object without unintended489

elements. It examines whether multiple affor-490

dances are fused into a unified concept rather491

than shown as separate objects.492

For all four metrics, we use absolute scores rang-493

ing from 1 to 5, with higher scores indicating better494

quality. However, since the scores for these metrics495

may be influenced by subjective interpretation, we496

also include a relative evaluation. Specifically, we497

present each generated image with its correspond-498

ing DALL-E generated image, and ask the auto-499

matic evaluator to compare and determine which is500

superior or if they are equally strong. This relative501

comparison ensures a more fair evaluation and re-502

duces potential biases. We use GPT-4o (OpenAI,503

2024) as the evaluation model to assess the metrics.504

The detailed evaluation prompts used are provided505

in Appendix A.2.506

Without Curriculum Learning With Curriculum Learning

3

4

5

Faithfulness
30 60 90 120

Novelty
30 60 90 120

Practicality
30 60 90 120

Coherence
30 60 90 120

Figure 4: Effectiveness of curriculum learning. Learn-
ing curves indicate that our curriculum learning ap-
proach enables the model to generate novel concepts
with significantly higher absolute evaluation scores even
in the early stage of training, compared to the random
training. The X-axis represents training steps.

Human Evaluation. To assess the quality of the 507

generated concepts beyond automated evaluations, 508

we conduct a human evaluation with 36 non-design 509

expert annotators. Recruited from the university 510

across diverse majors, they are provided with a 511

detailed rubric using the same metrics and a 1-5 512

scale as the automated evaluations. We randomly 513

sample 10 affordance pairs for four models, with 514

each sample independently evaluated. This allows 515

direct comparisons between human and automated 516

scores, capturing nuanced aspects of evaluation 517

quality. Details of the evaluation process are docu- 518

mented in Appendix B to ensure transparency. 519

4.3 Results and Analysis 520

Automatic Evaluation In Table 1, we compare 521

SYNTHIA against three existing T2I models using 522

our evaluation metrics. For a fair comparison, we 523

randomly sample 500 test pairs that are not used for 524

training. From the results in Table 1, we observe 525

that the Stable Diffusion model always maintains 526
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a high practicality but lower novelty. This aligns527

with our observation (Fig 1) that it tends to gener-528

ate existing concepts rather than novel concepts. In529

addition, when it cannot generate an existing con-530

cept that satisfies all affordances in the text prompt,531

the Stable Diffusion model will generate multiple532

objects in an image without any fusion. This is also533

reflected in the low coherence scores for both con-534

cept and affordance levels. For the other baseline535

methods, Kandinsky-3 and ConceptLab show an536

increase in terms of novelty and coherence. How-537

ever, they suffer from a reduction in practicality.538

Compared to all the models, our method SYNTHIA539

achieves the best faithfulness, novelty, and coher-540

ence scores while maintaining high performance541

in practicality. These results reflect that finetuning542

with the curriculum strategy can successfully fol-543

low the text instruction, fuse various affordances,544

and generate novel concepts.545

Human Evaluation To assess the consistency of546

human evaluations, we computed inter-annotator547

agreement (IAA) between two independent raters,548

where ratings were considered in agreement if their549

absolute difference was ≤ 1. IAA across all im-550

ages was 67.5% with Cohen’s Kappa of 22.3%,551

where Novelty achieved the highest agreement at552

70.9%, followed by Faithfulness (68.5%), Practical-553

ity (66.4%), and Coherence (64.1%). Additionally,554

the agreement between aggregated human ratings555

and automatic evaluations reached 91.25%, indi-556

cating that human annotators achieve a reasonable557

level of consistency while automatic evaluations558

closely align with human judgments. The human559

evaluation results consistently demonstrate that our560

model generates functionally coherent and visu-561

ally novel concepts with outperforming scores on562

faithfulness, novelty, practicality, and coherence563

(Table 1). More results are included in Figure 8.564

4.4 Ablation Studies565

The Size of Fine-tuning Training Data In our566

experiment, We fine-tune the diffusion model us-567

ing 600 affordance pairs as the training data. To568

investigate the impact of the training data size, we569

compare performance across different scales: train-570

ing with 200, 400, 600, and 800 affordance pairs571

and using automatic evaluation. As shown in Fig-572

ure 6, we find that the performance improves with573

larger datasets, and reaches the optimal point at574

600. Across all four training sizes, our model con-575

sistently outperforms baseline methods.576

Number of Positive Affordances To evaluate the 577

impact of the number of positive affordances in the 578

input prompt, we also conduct experiments using 3 579

and 4 positive affordances and compare the perfor- 580

mance of all methods. As shown in Table 3 and 4, 581

while a slight performance drop occurs across all 582

models as the number of affordances increases, our 583

method consistently maintains high novelty and 584

coherence, and outperforms the baseline methods. 585

Effectiveness of Affordance Sampling To exam- 586

ine the impact of affordance pair distance on nov- 587

elty, we select 100 pairs with the lowest and 100 588

pairs with the highest distance scores from the test 589

set. The automatic novelty scores for each group, 590

shown in Table 5, demonstrate that all three three 591

baseline methods achieve relatively low novelty 592

scores for close affordance pairs, which indicates a 593

tendency to generate existing concepts rather than 594

novel designs. In contrast, our method always ex- 595

hibits high novelty across various distances and 596

outperforms the baseline models. 597

Effectiveness of Curriculum Learning In our 598

framework, we incorporate a curriculum learning 599

(CL) strategy by gradually increasing the difficulty 600

of the training during the fine-tuning process. To 601

examine the importance of this component, we also 602

compare the performance with and without curricu- 603

lum learning (Fig 4). Specifically, we train the 604

diffusion model by randomly shuffling the training 605

data and computing the absolute automatic evalua- 606

tion results. As shown in Table 6, without curricu- 607

lum learning, we observe a performance drop and 608

results demonstrate the effectiveness of the CL. 609

5 Conclusions and Future Work 610

Text-to-image models have shown great potential 611

in concept generation. In this work, we introduce 612

a framework for novel concept design, which inte- 613

grates concept ontology construction, data genera- 614

tion, and a T2I model contrastive training pipeline 615

with curriculum learning technique. In addition, we 616

propose a four-dimensional metric that evaluates 617

the quality of generated concept images. Experi- 618

mental results across three strong T2I models from 619

both automatic and human evaluations demonstrate 620

that our method significantly outperforms the com- 621

peting baseline methods. Ablation studies also 622

highlight the importance of our affordance sam- 623

pling and curriculum learning techniques. 624
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Limitations625

Our work tackles an important yet underexplored626

problem of retaining functional coherence in AI627

for design using T2I models. While our model,628

in comparison to other state-of-the-art models, is629

able to generate more coherent and faithful images630

provided a set of affordances, e.g., brew, cut as in631

Fig. 1a, our work inherently relies on the human632

intuition to evaluate the novelty of the generated633

concepts. Although we try to alleviate the human634

bias and lack of coverage using LLM-as-a-judge635

for automatic evaluation, the question may persist.636

Moreover, although our concept ontology covers637

many different concept categories, it does not cover638

every plausible concept category in the real-world.639

It would be interesting to see follow-up works ex-640

plore the direction of constructing a more diverse,641

richer concept ontology, which in turn would con-642

tribute to the generation of more novel concept643

designs.644

Ethical Consideration645

We acknowledge that our work is aligned with the646

ACL Code of the Ethics 1 and will not raise ethical647

concerns. We do not use sensitive datasets/models648

that may cause any potential issues/risks.649

1https://www.aclweb.org/portal/content/
acl-code-ethics
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Supplementary Materials803

A Prompts804

A.1 Data Generation805

Prompt for Image Caption Generation

You are a creative assistant who designs diverse novel concepts satisfying given conditions and
generates a description of the concept. You should design three different novel concepts where
each has all functions in the given positive constraints while the concept is different from the given
negative constraints.
Generate three different descriptions of three novel concepts that contain visible unique charac-
teristics to use generated descriptions as image captions to generate images. Each description
should consist of at most three sentences and contain given positive constraints but should not
contain non-visible characteristics such as sound, smell, and taste. You must not simply combine
multiple existing concepts that have each function but creatively design a single concept that has
multiple functions at once. Generate three descriptions of three novel concepts that are not similar
to each other but distinct, and each description should be clear without unnecessary explanations
for generating images. Please separate each description with ”. Simply follow the format given in
the example below.

{
Positive Constraints: [sit, store]
Negative Constraints: [chair, car, sofa, bench, shelve, drawer]
Image Captions: [“...”]

}

806
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A.2 Automatic Evaluation 807

Prompt for Absolute Automatic Evaluation

Please act as an impartial evaluator to assess the quality of a single concept image generated by an
AI, based on the user’s requirements. Your evaluation should use the following three criteria, each
scored on a scale of 1 to 5:

Faithfulness: Evaluate how well the object aligns with the provided instructions, including its
intended affordances and functionalities. Does the text and image together indicate that the object
serves the purpose for which it was designed?
Scoring:
5: Flawlessly combines all specified functionalities as per the instructions. Text and image work in
harmony to demonstrate a well-designed and fully functional object.
4: Fulfills most instructions and intended functionalities, with only minor inconsistencies or
missing details. Text and image are mostly aligned.
3: Partially fulfills the instructions. Some functionalities are present but not well-integrated or
consistent. There may be a minor mismatch between text and image.
2: Struggles to meet the provided instructions, missing key functionalities or combining them
poorly. Text and image may conflict.
1: Does not follow the instructions at all. Functionalities are completely missing, irrelevant, or
nonsensical.

Novelty: Assess the originality and innovation of the design. Does the object show an exciting,
novel design that would surprise or intrigue users?
Scoring:
5: Highly innovative, unique, and impressive. Inspires curiosity or excitement, making it highly
desirable to explore.
4: Contains interesting and novel elements, showing clear creative thought and appeal.
3: Displays moderate novelty, with some unique features but remaining relatively conventional or
uninspiring.
2: Shows limited novelty, with minimal creativity and overly simplistic or derivative design.
1: Entirely unoriginal and mundane, lacking any creativity and appearing common or uninspiring.

Practicality: Evaluate the real-world applicability of the object. Does the design make sense for
human use? Would it align with human preferences and be feasible for production?
Scoring:
5: Extremely practical and human-centric. Highly functional, aligns perfectly with human
preferences, and seamlessly fits into real-world scenarios.
4: Mostly practical and applicable, with minor limitations that could be addressed to improve
usability.
3: Somewhat practical but with notable flaws or unrealistic elements that may limit usability in
real-world scenarios.
2: Largely impractical, with significant flaws or inconsistencies that make it unlikely to be useful.
1: Entirely impractical and unusable, failing to align with human preferences or real-world
feasibility.
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Prompt for Absolute Automatic Evaluation (continued)

Coherence: This metric evaluates whether the image generated by the AI model contains only one
primary object as instructed, focusing on the object’s clarity and functionality without the presence
of additional, unintended objects.
Scoring:
5: The image perfectly showcases one distinct object that aligns with the described attributes.
There are no extraneous objects or elements that distract from the main object.
4: The primary object is clear and mostly isolated, but there may be minor elements in the back-
ground or periphery that do not significantly detract from the main object.
3: The main object is present and identifiable, but there are other elements in the image that
somewhat distract from its clarity and functionality.
2: The image contains multiple objects where the main object is not clearly dominant or distin-
guishable from other unnecessary elements.
1: The image primarily features multiple objects, making it difficult to identify the intended single
object; the composition is cluttered or entirely irrelevant to the instruction.
Provide a score for each criterion, followed by a concise explanation justifying your ratings. Your
final response should strictly following this format:

{
"Faithfulness": [Your Faithfulness Score],
"Novelty": [Your Novelty Score],
"Practicality": [Your Practicality Score],
"Coherence": [Your Coherence Score]

}

809

Prompt for Relative Automatic Evaluation

Please act as an impartial evaluator to assess the quality of concept images generated by two
AI concept generators based on the user’s requirements. The evaluation criteria are as follows:
Faithfulness: Evaluate how well the object aligns with the provided instructions, including its
intended affordances and functionalities. Does the text and image together indicate that the object
serves the purpose for which it was designed? Novelty: Assess the originality and innovation of
the design. Does the concept demonstrate a surprising or intriguing approach that stands out as
fresh and exciting? Practicality: Evaluate the real-world applicability of the concept. Does the
design make sense for human use, align with user preferences, and appear feasible for production?
Coherence: This metric evaluates whether the image generated by the AI model contains only one
primary object as instructed, focusing on the object’s clarity and functionality without the presence
of additional, unintended objects. Provide your answer based on the follow available choices: "A"
if the first image is better, "B" if the second image is better, "C" if both are equally strong. Your
final response should strictly following this format:

{
"Faithfulness": [Your Faithfulness Choice],
"Novelty": [Your Novelty Choice],
"Practicality": [Your Practicality Choice],
"Coherence": [Your Coherence Choice]

}

810
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Figure 5: Hierarchical Concept Ontology.
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B Evaluation Details811

Human Evaluation Instruction

Objective
The goal of this evaluation is to assess the quality of novel concepts that integrate multiple
affordances into a single, coherent design. Affordance refers to the functional properties of an
object or its components. For example, a sofa affords the function of sitting, while its legs provide
the function of support.
As an annotator, you will evaluate the given concepts based on four key metrics: faithfulness,
novelty, practicality, and coherence. Each metric is defined below, along with its respective
scoring criteria.
Evaluation Criteria
Faithfulness (Does the concept effectively integrate the specified affordances?) This metric assesses
whether the generated concept successfully incorporates all provided affordances in a meaningful
and functional manner.
Scoring Scale:
5 – Fully integrates all specified affordances, demonstrating a well-designed and fully functional
object.
4 – Incorporates all affordances with minor inconsistencies or slight missing details.
3 – Partially fulfills the affordances; some functionalities are present but not well-integrated or
consistent.
2 – Struggles to meet the provided affordances; key functionalities are missing or poorly combined.
1 – Does not incorporate the specified affordances; functionalities are entirely missing, irrelevant,
or nonsensical.
Novelty (To what extent does the concept demonstrate originality and innovation?) This metric
evaluates the uniqueness and creative appeal of the design, considering whether it introduces novel
elements that would intrigue or surprise users.
Scoring Scale:
5 – Highly innovative and unique; presents a strikingly original concept that is engaging and
thought-provoking.
4 – Contains clear novel elements, demonstrating creative thought and originality.
3 – Moderately novel; some unique aspects are present, but the overall concept remains relatively
conventional.
2 – Limited novelty; the design appears simplistic, derivative, or lacking in creativity.
1 – Entirely unoriginal and uninspiring, closely resembling existing designs with no innovative
aspects.
Practicality (Is the design feasible and suitable for real-world use?) This metric assesses whether
the concept is functionally viable and aligned with human preferences and usability considerations.
Scoring Scale:
5 – Highly practical and user-centered; seamlessly functional and feasible for real-world applica-
tions.
4 – Mostly practical; minor limitations exist but do not significantly hinder usability.
3 – Somewhat practical; contains notable flaws or unrealistic elements that may limit real-world
applicability.
2 – Largely impractical; significant design flaws make real-world usability unlikely.
1 – Entirely impractical and non-functional; does not align with human preferences or feasibility
constraints.

812
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Dataset Fine-tuning Inference

Existing Generated Generated

# Concepts 772 600 500
# Images 3860 1800 500

Table 2: Statistics of the datasets.

Human Evaluation Instruction (continued)

Coherence (Does the image clearly depict a single, distinct object?) This metric evaluates whether
the design presents a singular, well-defined object, free from extraneous elements that may obscure
its intended functionality.
Scoring Scale:
5 – The image clearly and exclusively depicts a single object that integrates all specified affordances
without any distractions.
4 – The primary object is distinct and well-defined, though minor background elements may be
present without significantly detracting from clarity.
3 – The main object is identifiable, but additional elements in the image introduce some visual or
conceptual distractions.
2 – The image contains multiple objects, making it difficult to distinguish the intended primary
object or missing at least one affordance.
1 – The image primarily features multiple objects, with affordances spread across different elements
rather than a unified concept, making it unclear what the primary object is.
Final Instructions
Please evaluate each concept independently based on the above criteria.
Assign a score for each metric according to the provided descriptions.
If a concept does not fit neatly into the scoring categories, use your best judgment to determine the
most appropriate score.
Your evaluations will contribute to assessing the effectiveness of novel concept generation and help
improve future designs. Thank you for your participation.

813

C Experiments 814

C.1 Dataset 815

To evaluate the performance of our proposed method, we conduct our experiments by constructing a 816

dataset from two types of resources: 817

• Existing Concept Images: For each existing concept in our ontology, we collect a dataset of 60 818

images from external platforms including Google Images and iStock. To ensure that the dataset is 819

object-centric and minimizes noise, we filter out low-quality images using CLIP model (Radford 820

et al., 2021). Specifically, we compute the similarity between the image embeddings and the text 821

embeddings of the "a photo of {concept name}", selecting top-5 images with the highest similarity 822

scores for each concept used as negative constraints. 823

• Generated Novel Concept Images: With our affordance sampling, we uniformly sample 600 824

affordance pairs among 82K possible pairs for fine-tuning. For test dataset, we select 500 affordance 825

pairs among the ones not used for fine-tuning. We use the generated images from the sampled 826

affordances for fine-tuning and evaluation. The overall statistics can be found in Table 2. 827
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Figure 6: Results of the absolute automatic evaluation across different number of training data in SYNTHIA.
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Figure 7: Results of the relative automatic evaluation. We compare the quality of concepts generated from our
models with ones from existing T2I models. Numbers indicate the percentage (%) of baseline model wins, ties, and
DALLE model wins.

C.2 Baseline Methods828

• Stable Diffusion (Esser et al., 2024) is a strong baseline model for high-fidelity image synthesis,829

which is built on a diffusion-based framework. In this work, we leverage the pretrained stable-830

diffusion-3.5-large model as the foundation model for the text-to-image task to generate novel831

concept. Due to the limited context window length, we input only the positive constraints that contain832

the desired affordances, omitting the negative constrains associated with existing concepts.833

• Kandinsky (Arkhipkin et al., 2023; Vladimir et al., 2024) model serves as another strong baseline834

model for comparison. We utilize the pretrained Kandinsky 3.0 model without any finetuning as835

the baseline, aligning it with the foundation model used in our proposed framework. This approach836

ensures a consistent starting point for evaluation and a fair comparison. This baseline allows us to837

effectively demonstrate the impact of our proposed training framework by comparing performance838

before and after the fine-tuning process.839

• ConceptLab (Richardson et al., 2024) is a state-of-the-art framework designed for creative concept840

generation, which leverages an innovative approach that formulates the generation problem as an841

optimization process over the output space of the diffusion prior. It adopts a similar input format to842

the one used in our setting. We follow the finetuning process in the original framework, applying843

our training data to generate novel concepts. We then compare the generation quality during the844

inference time.845

C.3 Hyper-parameter Settings846

To fine-tune the diffusion model with the constructed dataset from DALL-E, we use the optimizer AdamW847

(Loshchilov and Hutter, 2019) with a learning rate of η = {5 ∗ 10−6, 10−6, 5 ∗ 10−7} to avoid the848

catastrophic forgetting problem. During the curriculum learning, we split the dataset into three groups849

based on its difficulty, and train 20 epochs for each group. For the weight factor in the triplet loss, we850

set γ = {0, 0.2, 0.5, 0.8, 1}. We finetune the UNet part in the pretrained model and freeze the weights of851

other components in the diffusion model.852
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Model Type Faithfulness Novelty Practicality Coherence

Stable Diffusion Concept 2.99 3.83 2.87 2.65
Affordance 3.73 3.80 3.33 3.97

Kandinsky3 Concept 3.10 3.92 2.79 3.24
Affordance 3.52 3.91 3.11 4.20

ConceptLab Concept 3.61 4.13 3.14 4.31
Affordance 3.78 4.03 3.08 4.27

SYNTHIA
Concept 3.90 4.34 3.28 4.60

Affordance 3.99 4.45 3.36 4.76

Table 3: Results of the automatic evaluation with three positive affordances. We compare our method with baseline
models. For each metric, a higher number indicates a better performance, where the absolute score ranges between
0 and 5.

Model Type Faithfulness Novelty Practicality Coherence

Stable Diffusion Concept 2.74 3.73 2.73 2.38
Affordance 3.41 3.82 3.08 3.71

Kandinsky3 Concept 2.92 3.88 2.62 2.82
Affordance 3.33 3.87 3.13 4.07

ConceptLab Concept 3.67 4.03 3.03 4.42
Affordance 3.61 3.98 2.98 4.17

SYNTHIA
Concept 3.85 4.36 3.14 4.59

Affordance 3.86 4.52 3.25 4.80

Table 4: Results of the automatic evaluation with four positive affordances. We compare our method with baseline
models. For each metric, a higher number indicates a better performance, where the absolute score ranges between
0 and 5.

Model Type Close Distant

Stable Diffusion Concept 3.92 4.13
Affordance 3.71 3.88

Kandinsky3 Concept 4.04 4.13
Affordance 4.18 4.14

ConceptLab Concept 4.18 4.17
Affordance 3.96 4.20

SYNTHIA
Concept 4.26 4.33

Affordance 4.46 4.59

Table 5: Results of the automatic novelty evaluation with different distances. We compare our method with baseline
models. For each metric, a higher number indicates a better performance, where the absolute score ranges between
0 and 5.

Model Type Faithfulness Novelty Practicality Coherence

SYNTHIA without CL Concept 3.61 4.03 3.07 4.30
Affordance 3.56 4.13 2.95 4.59

SYNTHIA
Concept 3.97 4.33 3.30 4.51

Affordance 3.99 4.55 3.35 4.81

Table 6: Results of the automatic evaluation with and without curriculum learning. For each metric, a higher number
indicates a better performance, where the absolute score ranges between 0 and 5.
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Figure 8: Results of the human evaluation.
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