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Abstract

Large Language Models (LLMs) exhibit con-
strained extrapolation capabilities, particularly
when confronted with input text that exceeds
the model training window. This phenomenon
manifests as a discernible degradation in per-
formance, attributable to two principal factors.
Firstly, the modification in positional encod-
ing, induced by variations in text length, exerts
a discernible impact on attention calculations,
thereby giving rise to substantive deviations.
Secondly, inherent limitations within the atten-
tion mechanism engender attention dispersion
as the length of the input text increases.

In this paper, we investigate the phenomenon of
attention dispersion and propose a straightfor-
ward yet effective approach, namely Dynamic
Drop Attention (DDA). DDA filters noise and
retains important information to mitigate atten-
tion dispersion during attention computation.
DDA significantly enhances the text generation
capability of LLMs without fine-tuning. To
evaluate the effectiveness of the DDA, we im-
plement it on the open-source Llama2 model
and perform experiments on the LongQA and
QMSum datasets. Compared to the vanilla
Llama2, the DDA-based model achieves an im-
provement in perplexity for language modeling.
Additionally, manual evaluations attest to im-
provements in the conciseness, relevance, and
accuracy of the generated text.

1 Introduction

With the advancement of NLP technology, the capa-
bilities of Large Language Models (LLMs) (Brown
et al., 2020; Zhang et al., 2022; Touvron et al.,
2023a; Ouyang et al., 2022) have become in-
creasingly powerful, achieving astonishing perfor-
mance in various NLP tasks such as question an-
swering (Kamalloo et al., 2023), text summariza-
tion (Zhang et al., 2023; Goyal and Durrett, 2020),
dialogue systems (OpenAl, 2023; Taori et al., 2023;
Chiang et al., 2023), and code completion (Chen
et al., 2021; Roziere et al., 2023). As LLMs are

applied in real-world scenarios, the text length that
LLMs need to handle in specific scenarios is also
becoming longer. This requires LLMs to have ef-
fective long-text processing capabilities. For exam-
ple, a research paper has about 10,000 tokens and
it is a challenging task to understand the paper and
generate high-quality responses to questions for
Llama-2 (Touvron et al., 2023b), which is trained
on a context window of 4K tokens.
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Figure 1: Depiction of Maximum Attention Scores in
Relation to Text Length: A notable decline in scores is
observed as the sequence length augments.

Noticeable performance degradation has been
observed for LLMs when input text surpasses the
model training window (Press et al., 2021; Chen
et al., 2023a), attributed to two primary factors. On
one hand, the capability of LLMs for long texts
is affected by the position encoding which varies
with length (Chen et al., 2023a), which influences
the attention computation and leads to substantial
deviations in attention estimation. On the other
hand, the attention mechanism has inherent limita-
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Figure 2: Comparative visualization of the top-10 average attention logits across different attention layers for 32
sentences. Each figure corresponds to the token at the same position 8000. Fig (a) depicts the average attention
score derived from multiple heads, while the remaining figures represent attention scores from individual heads.
The attention scores are noticeably more evenly distributed in the bottom layers.

tions. As the input text lengthens, the phenomenon
of attention dispersion(Zhao et al., 2019) arises,
which leads to a decline in the model’s perception
of vital tokens, thereby reducing the model’s ability
to handle long texts.

Current works study the impact of the model’s
position encoding (Su et al., 2023; Chen et al.,
2023a; bloc97, 2023; Xiong et al., 2023) on ex-
trapolation to improve the capabilities of LLMs
in long texts. However, the work on improv-
ing the long-text capabilities of LLMs through
the attention mechanism is still insufficient.
StreaminglLLM (Xiao et al., 2023) analyzes the
attention distribution and enhances the model’s
ability to generate infinitely long text based on the
discovery of the attention sink phenomenon. Never-
theless, it is noteworthy that this method incurs the
loss of information from preceding text segments.
In this paper, we propose to explore the impact
of attention dispersion on Llama-2’s extrapolation
ability and improve Llama-2’s long text generation
ability with Dynamic Drop Attention(DDA).

To explicate the attention dispersion, we calcu-
late the average multi-head attention scores for to-
kens positioned between the 100th and 8000th po-
sitions across 32 sentences. As illustrated in Figure
1, it can be found that an extension in text length
leads to a significant decline in average multi-head
attention scores. This demonstrates that Llama-2
struggles to focus on important tokens during the
processing of long texts, leading to the issue of
attention dispersion.

To gain a deeper insight into the attention disper-
sion, we visualize the top-10 average multi-head at-
tention scores across different layers, as illustrated
in Figure 2. Each figure corresponds to the token

at the identical position of 8000. Figure 2(a) shows
the average attention score derived from multiple
heads, while the subsequent Figure 2(b) and Fig-
ure 2(c) represent attention scores from individual
heads. The attention scores are noticeably closer
in numerical values in the lower layers, while they
become more polarized in the higher layers. This
suggests that the attention dispersion phenomenon
is not prevalent across all layers. This observation
arises because the initial layer exhibits minimal dis-
parity between the embedding of the query and key,
resulting in closely calculated scores. Based on the
visualization, it can be tentatively concluded that
the degree of attention dispersion amplifies with
the increase in text length, and not all attention
layers exhibit dispersion of attention.

Based on the above insights, we propose Dy-
namic Drop Attention(DDA), a simple yet effec-
tive method, to improve the long text generation
ability of Llama-2 without fine-tuning. DDA aims
to alleviate the model’s attention dispersion by pre-
serving important information and removing noise.
The importance of tokens is relevant to similarity
scores between query and key. To validate the ef-
fectiveness of the DDA method, experiments are
performed on the LongQA (Chen et al., 2023b) and
QMSum (Zhong et al., 2021) datasets. Compared
to the vanilla Llama2-13B, the DDA-based Llama2
achieves a significant improvement in perplexity
for generated text. Through manual evaluation,
improvements in the conciseness, relevance, and
accuracy of generated text are also evident.

2 Related Work

In recent years, large language models (LLMs)
have achieved excellent performance in many natu-
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Figure 3: Overview of DDA: The yellow text represents retained content with a length that does not exceed the
model training window size, requiring no further action. On the other hand, the blue original text exceeds the model
training window size. It is initially segmented into n chunks, each containing L tokens, and subjected to Drop
Attention (DA) with distinct drop rates. This procedure is independently applied to each chunk of the generated text.

ral language processing tasks. However, they still
suffer performance limitations when dealing with
long texts (Huang et al., 2023; Dong et al., 2023).
This is because a fixed context length is set dur-
ing model pre-training. When input texts far ex-
ceed this length appear in downstream tasks, the
model cannot extrapolate to untrained position en-
coding, leading to performance degradation. Re-
cently, many works have been proposed for han-
dling long texts, which can be mainly divided into
three lines: segmentation, position encoding extrap-
olation, and attention mechanism improvement.

Segmentation Segmentation-based methods di-
vide long text into multiple segments equal to the
model’s context window and enable information
flow between different segments through certain
mechanisms. Transformer-XL (Dai et al., 2019)
adopts a segment recursion mechanism, reusing
the hidden state of previous segments when mod-
eling the current segment. RMT (Bulatov et al.,
2022) adds memory tokens at the beginning and
end of the segment, where the read memory token
at the beginning of the segment can read infor-
mation from the previous segment, and the write
memory token at the end is used to update the mem-
ory representation. AutoCompressors (Chevalier
et al., 2023) add a summary token at the end of
each segment and accumulate it as a soft token in
all subsequent segments. LongLLoRA (Chen et al.,
2023b) adopts a shift-short attention mechanism,
it achieves token overlap between two segments
through shift operations, which allows attention
calculations to be performed between segments.
Although these methods can integrate information
from all segments to some extent, the segmentation
of continuous content inevitably leads to informa-
tion loss. On the other hand, to implement special
segment information transmission mechanisms, it
is necessary to modify the model structure and
fine-tune the model with training data, which is a
time-consuming process.

position encoding extrapolation The goal of

these methods is to extrapolate the finite position
encoding trained by the model to infinite length,
thereby enabling the model trained based on a
shorter context window to handle longer texts. Ro-
tary Position Embeddings (RoPE) (Su et al., 2023)
use a rotation matrix to integrate relative position
information dependence into the calculation of self-
attention, which is a relative position encoding
method with good extrapolation capabilities. NTK-
aware RoPE is a further extension of RoPE. It uses
a set of trigonometric function vectors with differ-
ent periods to express positions, and this method
does not require fine-tuning of the model. Posi-
tional Interpolation (PI) (Chen et al., 2023a) com-
presses position encoding uniformly into the range
of trained position encoding, but it requires a small
amount of data fine-tuning to achieve decent re-
sults.

Attention mechanism improvement These
methods focus on enhancing the model’s ability
to capture richer information within the context
window. It has an orthogonal relationship with
the methods mentioned above and can be easily
combined with the methods of the first two lines.
Streaming-LLM (Xiao et al., 2023) points out that
autoregressive LLMs exhibit the phenomenon of
"attention sink", namely attention scores are con-
centrated on the initial tokens. This is determined
by the characteristics of autoregressive language
modeling because the initial tokens can see all sub-
sequent tokens. This leads to a sharp drop in the
performance of methods based on sliding window
attention after the key value of the initial token
is missing. Based on this discovery, Streaming-
LLM retains the key value of the initial tokens for
subsequent window attention calculations of the
sliding window attention mechanism, effectively
enhancing the model’s ability to capture long-text
information. Our method belongs to this line. Simi-
lar to streaming-LLM, we found that LLMs exhibit
attention dispersion when dealing with long texts,
and based on this discovery, we proposed the drop



attention method to filter low-relevance tokens to
alleviate the attention dispersion issue.

3 Method

3.1 Attention dispersion

As the length of the input text extends, a phe-
nomenon known as attention dispersion emerges,
leading to a decrease in the model’s ability to per-
ceive crucial tokens. As shown in Figure 1, the
degree of attention dispersion intensifies in corre-
lation with the increase in text length. A signifi-
cant degradation in performance becomes apparent
when the input text exceeds the model’s training
window. The attention dispersion is tied to the at-
tention computation mechanism. To explore why
the degree of attention dispersion increases as the
text length increases, an analysis of the attention
computation mechanism (Vaswani et al., 2023) is
conducted as follows:

attn(q, k,v) = softmax(q i

Vd

The definition of softmax is as follows:

oo (D)

€
n
€+ j=0,ji €

In practical NLP tasks, the text length n is not
fixed. When dealing with some long texts, as the
text length n gradually increases, there are two
trends in the maximum value a; of the attention
coefficient, as shown below:
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As shown in Figure 2, the first scenario mostly
occurs in the lower-level attention, while the sec-
ond scenario is more prevalent in the upper-level
attention. As n increases, the a; in the first case
is less affected; although it changes, it remains a
relatively large constant value close to 1. On the
other hand, the a; in the second case will be sig-
nificantly affected, with a; decreasing significantly,
even approaching 0, as n tends towards infinity.
Specifically, as illustrated in Figure 1, when the
text length n reaches 8000, the maximum value
of the attention coefficient is 0.003, representing a
two-order-of-magnitude drop compared to the max-
imum value of the attention coefficient at position
50. Intuitively, the decrease in the value of a; will
introduce more noise into the attention mechanism

when aggregating vector information, reducing the
model’s resolution and thereby affecting the infer-
ence performance.

3.2 Drop Attention

To alleviate model attention dispersion, an intuitive
idea is to reduce the number of tokens calculat-
ing attention scores. To remove noise and retain
more important information, we propose a simple
and effective method called Drop Attention (DA).
The specific operation is as follows: first, calculate
the attention scores a = [ag, a1, ..., ;] between
query and key, then calculate the attention coef-
ficient a, corresponding to the quantile ¢ of this
vector, and call ¢ the drop rate. The attention coef-
ficients smaller than a, are set to —oo, which can
be represented by the following equation:

a;, if a; > a
al: (2] f .’l q (4)
— 00, if a; <= aq

By utilizing this approach, we can effectively filter
out noise and retain crucial information. Further-
more, it allows for the mitigation of attention dis-
persion, thereby enhancing the long-text question-
answering proficiency of Llama2.

3.3 Dynamic Drop Attention

Equation 2 suggests that as the sentence length in-
creases and the attention coefficient diminishes, the
degree of attention dispersion escalates. There is
a positive correlation between the degree of atten-
tion dispersion and length, implying that longer
sentences exhibit more pronounced attention dis-
persion. Consequently, we introduce dynamic drop
attention (DDA), a method where different posi-
tions are assigned varying drop rates during the
calculation of attention.

As shown in Figure 3, the yellow part of the orig-
inal text represents retained content with a length
that does not exceed the model training window
size, the part of the original text has a normal cal-
culation of attention scores. The blue chunks of
original text exceed the model training window
size. The text is divided into different chunks, each
chunk may contain L tokens. When calculating at-
tention scores, each chunk needs DA with a distinct
drop rate. Drop rate ~; is set as follow:

Yi="v-1+¢€1=0,1...n 5)

A relatively small initial drop rate ~; is set in the
first chunk. As the length of the tokens that need to



be dropped increases, the drop rate of subsequent
chunks adds a small constant € to the initial drop
rate, ultimately forming a segmented dynamic drop
rate. For the generated text, it is also divided into
different chunks and uses different drop rates o;.

4 Experiments

To evaluate the effectiveness of DA and DDA,
we apply these methods to Llama2-13b-chat
and compare them with the vanilla Llama2-13b-
chat. The evaluation involves using the LongQA
dataset (Chen et al., 2023b) and the QMSum
dataset (Zhong et al., 2021). LongQA comprises
over 7,000 question-answer pairs, with questions
generated from books or articles to test the models.
The average length of the text in LongQA is 10,500
tokens. QMSum consists of 1,808 query-summary
pairs from 232 meetings across multiple domains,
with an average meeting length of 9,070 tokens. In
the experiment, due to limitations in GPU memory,
we filter out examples with a token count exceeding
12,000 and simultaneously excluded samples with
a length less than 4,000 tokens. All experiments
are carried out using 8 GPUs of A100*80G. No
fine-tuning is applied in any of the experiments.

4.1 Comparison with vanilla Llamm2-13B

To evaluate the efficacy of DA and DDA, we con-
duct assessments on the LongQA and QMSum
datasets, utilizing log PPL as the evaluation met-
ric. Both methods are applied to the last 4000
tokens of the original text. For DA, a fixed drop
rate of 0.3 is employed, while DDA utilizes an
initial drop rate of 0.05, incrementing by 0.05 for
every 1000 tokens. As presented in Table 1, both

Table 1: Comparison of log PPL scores among Llama?2-
13B, Llama2-DA, and Llama2-DDA. A significant de-
crease in the log PPL score is observed for Llama2-
DDA.

metrics Llama2- Llama2- Llama2-
13B DA DDA

LongQA  1.691 1.681 1.668

QMSum  2.588 2.576 2.572

DA and DDA result in a reduction in log PPL com-
pared to the baseline Llama2-13B model. This
reduction suggests that alleviating attention dis-
persion is crucial for enhancing the model’s abil-
ity to handle long texts. In the LongQA dataset,
Llama2-DDA achieves a log PPL score of 1.668,

significantly lower than both Llama2-13B (1.691)
and Llama2-DA (1.681). Similarly, in the QMSum
dataset, Llama2-DDA exhibits a log PPL score of
2.572, showing a significant decrease compared to
both Llama2-13B (2.588) and Llama2-DA (2.576).
The result underscores the effectiveness of DDA in
reducing attention dispersion, contributing to en-
hanced model understanding and performance on
LongQA and QMSum datasets.

Furthermore, the DDA-based Llama demon-
strates a lower PPL score compared to the DA-
based Llama, suggesting that different positions
experience varying degrees of attention dispersion,
necessitating distinct drop rates.

To further evaluate the generation performance,
we randomly select 100 samples from the gener-
ated results for manual evaluation. To ensure fair-
ness, we anonymize the generated results before
having them assessed by two researchers. The eval-
uation focuses on the relevance of the generated
content to the questions and the presence of redun-
dancy. The evaluation results are shown in Figure
4. In the set of 100 generated samples, the major-
ity exhibit a similar text generation performance
between the two models. Llama2-13B-DA shows
a slight improvement compared to Llama2-13B,
while Llama2-13B-DDA demonstrates a more sig-
nificant improvement over the vanilla Llama2-13B.
The manual evaluation results also indicate a no-
ticeable enhancement in the long-text processing
capability of Llama2-13B with DDA.

B llama2-138
Llama2-13B-DA
B llama2-13B-DDA

17.5 4

15.0 4

12.5 4

10.0 4

7.5 4

5.0 9

2.51

Llama2-13B vs Llama2-13B-DA

Llama2-13B vs Llama2-13B-DDA

Figure 4: Human evaluation results of 100 generated
texts, excluding draws. The x-axis denotes the number
of victories in human evaluation. A significant improve-
ment is observed in Llama2-13B with DDA compared
to the vanilla Llama2-13B.



Original Text Generated Text  PPL
initial drop rate  increment max drop rate drop rate

0 0 0 0 1.691
0 0 0 0.1 1.694
0 0 0 0.3 1699
0 0 0 0.5 1.720
0.3 0.0 0.3 0 1.674
0.1 0.05 0.25 0 1.669
0.1 0.1 0.4 0 1.670
0.15 0.05 0.3 0 1.668
0.15 0.05 0.3 0.3 1.684

Table 2: Effect of drop rate on PPL in Llama2-13B Model

4.2 Different Number of Tokens with DA

An examination of the impact of DA on varying to-
ken counts is underway to evaluate its effectiveness.
Specifically, we implement DA on the last 2000,
4000, and 6000 tokens of the original texts sourced
from the LongQA dataset. The corresponding log
PPL scores for each token count are summarized
in Table 3. Notably, the model attains its lowest
PPL score of 1.68 when the number of tokens is
set to 6000. Additionally, the PPL of the last 4000
tokens using DA is in proximity to that of the last
6000 tokens using DA.

This observation can be elucidated by consider-
ing that the average length of the dataset’s text is
10500, while the training window of Llama2-13B
is constrained to 4000 tokens. The last 6000 to-
kens may not have undergone sufficient training,
potentially leading to attention dispersion. The
application of DA to these tokens appears to ef-
fectively enhance the generation performance, as
indicated by the observed decrease in the log PPL
score.

Table 3: PPL scores corresponding to different number
of tokens utilizing DA.

2000
1.684

4000 6000
1.681 1.68

tokens 0
log PPL  1.691

4.3 Select Proper Drop Rate

The careful selection of an appropriate drop rate
is crucial for DA and DDA. An inappropriate drop
rate may result in a performance degradation in
the Llama2-13B model. To investigate the impact
of different drop rates, a series of experiments are
conducted, utilizing PPL as the evaluation metric.
The results are summarized in Table 2.

As evident from the table, the configuration with
an initial drop rate of 0.15, an increment of 0.05,
and a maximum drop rate of 0.3 yields the lowest
perplexity value for the generated text, recording a
value of 1.668. This particular setting outperforms
all other parameter combinations, indicating its
effectiveness in optimizing text generation quality.
Additionally, the implementation results also reveal
that the effectiveness of DDA surpasses that of DA.
Choosing an appropriate drop rate is crucial, as
both excessively large and excessively small drop
rates may fail to achieve the optimal improvement.
Currently, a drop rate of 0.3 appears to be relatively
effective.

6 i é 1‘0 2‘0 4‘0
Layers

Figure 5: PPL of different layers with DA

Surprisingly, the counterintuitive observation
emerges that DA applied on the generated text leads
to an increase in PPL compared to the baseline
Llama2-13B model. Interestingly, even when both
DDA and DA are applied to the original and gener-
ated texts, the PPL score increases compared to the
scenario where DDA is exclusively applied to the
original text. This implies a significant influence on



Table 4: The maximum attention score of Llama2 and Llama2-DDA.The results validate our hypothesis that DDA
can effectively alleviate the phenomenon of attention dispersion

method 3000 2500 2000 1500 1000 500 0
Llama2 0.005703 0.002293 0.002922 0.003391 0.00422 0.002266 0.002367
Llama2-DDA  0.005848 0.00245 0.003096 0.003635 0.004414 0.002594 0.002733
Relative Change +2.54%  +6.84%  +595% +7.19%  +4.60% +14.47% +15.46%
Drop Rate 15% 20% 20% 25% 25% 30% 30%

the model’s performance when DA is implemented
on the generated text, underscoring the intricate
interplay between attention mechanisms and model
behavior.

4.4 The layers of Attention Dispersion

To further investigate the mechanism of attention
dispersion in Llama2, we visualize the top-k at-
tention scores of the 8000th token, as depicted
in Figure 6. In the lower layers of attention, the
maximum attention scores exhibit relatively small
values, and the differences between these values
are also minimal. As the attention layers deepen,
the disparities between the top-k attention values
increase, and Llama?2’s attention starts to focus on
a select few tokens. This suggests that attention dis-
persion predominantly occurs in the lower layers
of attention.

10
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Figure 6: Average of maximum attention scores in dif-
ferent layer

To assess whether the lower-level attention lay-
ers are more susceptible to attention dispersion,
attention layers one, three, ten, twenty, and forty
underwent DA with a drop rate of 0.3. As illus-
trated in Figure 5, which showcases the PPL scores
after applying DA to different attention layers, the
lowest PPL score is attained when three attention
layers undergo DA. With an increase in the num-

ber of DA layers, the PPL score remains almost
unchanged. These experimental findings align with
the earlier observation that attention dispersion is
primarily concentrated in the lower-level attention.
Therefore, by applying drop attention to the first
three attention layers, the attention dispersion phe-
nomenon in Llama2-13B is mitigated, thereby en-
hancing its text generation capability.

The reason why attention is comparatively more
dispersed in the lower layers is that, at the ini-
tial computation stage, the disparity between the
query vector and the key embedding is not sig-
nificant. Consequently, during the calculation of
attention scores, the lower layers of attention yield
relatively mild and evenly distributed probability
values. However, as the attention layers stack and
the aggregation of vectors intensifies, the differ-
ences between vectors become more pronounced,
leading to the polarization of the probability distri-
bution.

4.5 Alleviating Attention Dispersion

0.0060
— Uama2-138
Uama2-138-DDA

0.0055

0.0050

0.0045

0.0040

Attention Score

0.0035

0.0030

0.0025

5000 5500 60 7000 7500 8000

00 6500
Postion of Token

Figure 7: Comparative analysis of the maximum at-
tention score for the same token position ranging from
5000 to 8000, between the vanilla Llama2 and Llama2
implemented with DDA. The trend suggests that DDA
assists Llama2 in mitigating attention dispersion.



In order to assess the effectiveness of DDA in
mitigating attention dispersion, we conducted an
analysis comparing changes in attention coeffi-
cients between Llama2 and Llama2-DDA for spe-
cific token positions. The evaluation focused on
the last 3000 tokens, and we computed the aver-
age of the top 5 maximum multi-head attention
coefficients for every 500 tokens. The summarized
results are presented in Table 4 and illustrated in
Figure 7.

The Table4 and Figure7 show that the attention
scores for Llama2-DDA are generally higher than
those for the original Llama2, indicating a signifi-
cant alleviation of attention dispersion after DDA
processing. This improvement is particularly no-
ticeable for tokens in later positions, suggesting
that DDA has a more pronounced impact when ad-
dressing cases of severe attention dispersion. These
findings support the hypothesis that DDA effec-
tively mitigates attention dispersion issues, espe-
cially in contexts where dispersion is more promi-
nent.

In summary, the results validate our hypothesis
that DDA can effectively alleviate the phenomenon
of attention dispersion, leading to improvements in
the model’s performance.

5 Conclusion

In conclusion, the current state of LLMs reveals a
limitation in their ability to extrapolate text length.
The performance degradation observed when in-
put text surpasses the model training window is
attributed to two key factors. Firstly, alterations in
positional encoding, induced by length variations,
disrupt attention calculations, leading to significant
deviations in attention estimation and adversely af-
fecting the LLMs’ proficiency in handling extended
texts. Secondly, inherent constraints within the at-
tention mechanism result in attention diffusion as
the input text lengthens, diminishing the model’s
awareness of crucial tokens and, consequently, im-
peding its effectiveness in processing lengthy texts.

The research delves into the phenomenon of at-
tention dispersion and introduces an uncomplicated
yet effective method DDA. DDA dynamically fil-
ters noise and retain important information to al-
leviate attention dispersion during attention com-
putation in LLMs. The method notably enhances
the text generation capability of LLMs without ne-
cessitating fine-tuning. To validate the efficacy of
the DDA method, we apply it to the open-source

Llama2-13B model and conduct experiments on
the LongQA and QMSum dataset. The DDA-based
Llama2 demonstrates a discernible decrease in PPL.
for generated text when compared to the vanilla
Llama2-13B. The manual evaluation further corrob-
orates improvements in the conciseness, relevance,
and accuracy of the generated text.

6 Limitations

This article still has some limitations. Firstly, the
study reveals a significant decline in the model’s
generation performance when DDA is applied to
generated text. However, the paper does not delve
into the underlying reasons for this phenomenon.
Secondly, there is room for improvement in the
computational efficiency of the DDA method. The
current implementation is relatively slow and in-
curs a large GPU memory footprint, especially
when handling longer texts, leading to the risk of
Out-Of-Memory (OOM) issues. Lastly, consid-
ering the application of DDA during the model’s
finetuning and pretraining stages may be beneficial
to evaluate its impact on the model’s extrapola-
tion ability when dealing with long texts. Further
research and optimization in these areas would en-
hance the comprehensiveness and practicality of
the proposed method.

References

bloc97. 2023. Ntk-aware scaled rope allows llama mod-
els to have extended (8k+) context size without any
fine-tuning and minimal perplexity degradation.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev.
2022. Recurrent memory transformer.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023a. Extending context window
of large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.


https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.
http://arxiv.org/abs/2207.06881

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Dangi Chen. 2023. Adapting language models to
compress contexts.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-x1: Attentive language models beyond a
fixed-length context.

Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin
Zhao. 2023. A survey on long text modeling with
transformers.

Tanya Goyal and Greg Durrett. 2020. Evaluating factu-
ality in generation with dependency-level entailment.

Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai,
Zenan Li, Yuan Yao, Taolue Chen, Lijuan Yang, Zhou
Xin, and Xiaoxing Ma. 2023. Advancing transformer
architecture in long-context large language models:
A comprehensive survey.

Ehsan Kamalloo, Nouha Dziri, Charles LA Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
arXiv preprint arXiv:2305.06984.

OpenAl. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Ofir Press, Noah A Smith, and Mike Lewis. 2021.
Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint
arXiv:2108.12409.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, page 127063.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
et al. 2023. Effective long-context scaling of founda-
tion models. arXiv preprint arXiv:2309.16039.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,
Kathleen McKeown, and Tatsunori B Hashimoto.
2023. Benchmarking large language models for news
summarization. arXiv preprint arXiv:2301.13848.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. 2021.
Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint
arXiv:2104.05938.


http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2305.14788
http://arxiv.org/abs/2305.14788
http://arxiv.org/abs/2305.14788
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/2302.14502
http://arxiv.org/abs/2302.14502
http://arxiv.org/abs/2302.14502
http://arxiv.org/abs/2010.05478
http://arxiv.org/abs/2010.05478
http://arxiv.org/abs/2010.05478
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453

