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Abstract
Large Language Models (LLMs) exhibit con-001
strained extrapolation capabilities, particularly002
when confronted with input text that exceeds003
the model training window. This phenomenon004
manifests as a discernible degradation in per-005
formance, attributable to two principal factors.006
Firstly, the modification in positional encod-007
ing, induced by variations in text length, exerts008
a discernible impact on attention calculations,009
thereby giving rise to substantive deviations.010
Secondly, inherent limitations within the atten-011
tion mechanism engender attention dispersion012
as the length of the input text increases.013

In this paper, we investigate the phenomenon of014
attention dispersion and propose a straightfor-015
ward yet effective approach, namely Dynamic016
Drop Attention (DDA). DDA filters noise and017
retains important information to mitigate atten-018
tion dispersion during attention computation.019
DDA significantly enhances the text generation020
capability of LLMs without fine-tuning. To021
evaluate the effectiveness of the DDA, we im-022
plement it on the open-source Llama2 model023
and perform experiments on the LongQA and024
QMSum datasets. Compared to the vanilla025
Llama2, the DDA-based model achieves an im-026
provement in perplexity for language modeling.027
Additionally, manual evaluations attest to im-028
provements in the conciseness, relevance, and029
accuracy of the generated text.030

1 Introduction031

With the advancement of NLP technology, the capa-032

bilities of Large Language Models (LLMs) (Brown033

et al., 2020; Zhang et al., 2022; Touvron et al.,034

2023a; Ouyang et al., 2022) have become in-035

creasingly powerful, achieving astonishing perfor-036

mance in various NLP tasks such as question an-037

swering (Kamalloo et al., 2023), text summariza-038

tion (Zhang et al., 2023; Goyal and Durrett, 2020),039

dialogue systems (OpenAI, 2023; Taori et al., 2023;040

Chiang et al., 2023), and code completion (Chen041

et al., 2021; Roziere et al., 2023). As LLMs are042

applied in real-world scenarios, the text length that 043

LLMs need to handle in specific scenarios is also 044

becoming longer. This requires LLMs to have ef- 045

fective long-text processing capabilities. For exam- 046

ple, a research paper has about 10,000 tokens and 047

it is a challenging task to understand the paper and 048

generate high-quality responses to questions for 049

Llama-2 (Touvron et al., 2023b), which is trained 050

on a context window of 4K tokens. 051

Figure 1: Depiction of Maximum Attention Scores in
Relation to Text Length: A notable decline in scores is
observed as the sequence length augments.

Noticeable performance degradation has been 052

observed for LLMs when input text surpasses the 053

model training window (Press et al., 2021; Chen 054

et al., 2023a), attributed to two primary factors. On 055

one hand, the capability of LLMs for long texts 056

is affected by the position encoding which varies 057

with length (Chen et al., 2023a), which influences 058

the attention computation and leads to substantial 059

deviations in attention estimation. On the other 060

hand, the attention mechanism has inherent limita- 061

1



(a) 40 heads (b) 1st head (c) 10th head

Figure 2: Comparative visualization of the top-10 average attention logits across different attention layers for 32
sentences. Each figure corresponds to the token at the same position 8000. Fig (a) depicts the average attention
score derived from multiple heads, while the remaining figures represent attention scores from individual heads.
The attention scores are noticeably more evenly distributed in the bottom layers.

tions. As the input text lengthens, the phenomenon062

of attention dispersion(Zhao et al., 2019) arises,063

which leads to a decline in the model’s perception064

of vital tokens, thereby reducing the model’s ability065

to handle long texts.066

Current works study the impact of the model’s067

position encoding (Su et al., 2023; Chen et al.,068

2023a; bloc97, 2023; Xiong et al., 2023) on ex-069

trapolation to improve the capabilities of LLMs070

in long texts. However, the work on improv-071

ing the long-text capabilities of LLMs through072

the attention mechanism is still insufficient.073

StreamingLLM (Xiao et al., 2023) analyzes the074

attention distribution and enhances the model’s075

ability to generate infinitely long text based on the076

discovery of the attention sink phenomenon. Never-077

theless, it is noteworthy that this method incurs the078

loss of information from preceding text segments.079

In this paper, we propose to explore the impact080

of attention dispersion on Llama-2’s extrapolation081

ability and improve Llama-2’s long text generation082

ability with Dynamic Drop Attention(DDA).083

To explicate the attention dispersion, we calcu-084

late the average multi-head attention scores for to-085

kens positioned between the 100th and 8000th po-086

sitions across 32 sentences. As illustrated in Figure087

1, it can be found that an extension in text length088

leads to a significant decline in average multi-head089

attention scores. This demonstrates that Llama-2090

struggles to focus on important tokens during the091

processing of long texts, leading to the issue of092

attention dispersion.093

To gain a deeper insight into the attention disper-094

sion, we visualize the top-10 average multi-head at-095

tention scores across different layers, as illustrated096

in Figure 2. Each figure corresponds to the token097

at the identical position of 8000. Figure 2(a) shows 098

the average attention score derived from multiple 099

heads, while the subsequent Figure 2(b) and Fig- 100

ure 2(c) represent attention scores from individual 101

heads. The attention scores are noticeably closer 102

in numerical values in the lower layers, while they 103

become more polarized in the higher layers. This 104

suggests that the attention dispersion phenomenon 105

is not prevalent across all layers. This observation 106

arises because the initial layer exhibits minimal dis- 107

parity between the embedding of the query and key, 108

resulting in closely calculated scores. Based on the 109

visualization, it can be tentatively concluded that 110

the degree of attention dispersion amplifies with 111

the increase in text length, and not all attention 112

layers exhibit dispersion of attention. 113

Based on the above insights, we propose Dy- 114

namic Drop Attention(DDA), a simple yet effec- 115

tive method, to improve the long text generation 116

ability of Llama-2 without fine-tuning. DDA aims 117

to alleviate the model’s attention dispersion by pre- 118

serving important information and removing noise. 119

The importance of tokens is relevant to similarity 120

scores between query and key. To validate the ef- 121

fectiveness of the DDA method, experiments are 122

performed on the LongQA (Chen et al., 2023b) and 123

QMSum (Zhong et al., 2021) datasets. Compared 124

to the vanilla Llama2-13B, the DDA-based Llama2 125

achieves a significant improvement in perplexity 126

for generated text. Through manual evaluation, 127

improvements in the conciseness, relevance, and 128

accuracy of generated text are also evident. 129

2 Related Work 130

In recent years, large language models (LLMs) 131

have achieved excellent performance in many natu- 132
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Figure 3: Overview of DDA: The yellow text represents retained content with a length that does not exceed the
model training window size, requiring no further action. On the other hand, the blue original text exceeds the model
training window size. It is initially segmented into n chunks, each containing L tokens, and subjected to Drop
Attention (DA) with distinct drop rates. This procedure is independently applied to each chunk of the generated text.

ral language processing tasks. However, they still133

suffer performance limitations when dealing with134

long texts (Huang et al., 2023; Dong et al., 2023).135

This is because a fixed context length is set dur-136

ing model pre-training. When input texts far ex-137

ceed this length appear in downstream tasks, the138

model cannot extrapolate to untrained position en-139

coding, leading to performance degradation. Re-140

cently, many works have been proposed for han-141

dling long texts, which can be mainly divided into142

three lines: segmentation, position encoding extrap-143

olation, and attention mechanism improvement.144

Segmentation Segmentation-based methods di-145

vide long text into multiple segments equal to the146

model’s context window and enable information147

flow between different segments through certain148

mechanisms. Transformer-XL (Dai et al., 2019)149

adopts a segment recursion mechanism, reusing150

the hidden state of previous segments when mod-151

eling the current segment. RMT (Bulatov et al.,152

2022) adds memory tokens at the beginning and153

end of the segment, where the read memory token154

at the beginning of the segment can read infor-155

mation from the previous segment, and the write156

memory token at the end is used to update the mem-157

ory representation. AutoCompressors (Chevalier158

et al., 2023) add a summary token at the end of159

each segment and accumulate it as a soft token in160

all subsequent segments. LongLoRA (Chen et al.,161

2023b) adopts a shift-short attention mechanism,162

it achieves token overlap between two segments163

through shift operations, which allows attention164

calculations to be performed between segments.165

Although these methods can integrate information166

from all segments to some extent, the segmentation167

of continuous content inevitably leads to informa-168

tion loss. On the other hand, to implement special169

segment information transmission mechanisms, it170

is necessary to modify the model structure and171

fine-tune the model with training data, which is a172

time-consuming process.173

position encoding extrapolation The goal of174

these methods is to extrapolate the finite position 175

encoding trained by the model to infinite length, 176

thereby enabling the model trained based on a 177

shorter context window to handle longer texts. Ro- 178

tary Position Embeddings (RoPE) (Su et al., 2023) 179

use a rotation matrix to integrate relative position 180

information dependence into the calculation of self- 181

attention, which is a relative position encoding 182

method with good extrapolation capabilities. NTK- 183

aware RoPE is a further extension of RoPE. It uses 184

a set of trigonometric function vectors with differ- 185

ent periods to express positions, and this method 186

does not require fine-tuning of the model. Posi- 187

tional Interpolation (PI) (Chen et al., 2023a) com- 188

presses position encoding uniformly into the range 189

of trained position encoding, but it requires a small 190

amount of data fine-tuning to achieve decent re- 191

sults. 192

Attention mechanism improvement These 193

methods focus on enhancing the model’s ability 194

to capture richer information within the context 195

window. It has an orthogonal relationship with 196

the methods mentioned above and can be easily 197

combined with the methods of the first two lines. 198

Streaming-LLM (Xiao et al., 2023) points out that 199

autoregressive LLMs exhibit the phenomenon of 200

"attention sink", namely attention scores are con- 201

centrated on the initial tokens. This is determined 202

by the characteristics of autoregressive language 203

modeling because the initial tokens can see all sub- 204

sequent tokens. This leads to a sharp drop in the 205

performance of methods based on sliding window 206

attention after the key value of the initial token 207

is missing. Based on this discovery, Streaming- 208

LLM retains the key value of the initial tokens for 209

subsequent window attention calculations of the 210

sliding window attention mechanism, effectively 211

enhancing the model’s ability to capture long-text 212

information. Our method belongs to this line. Simi- 213

lar to streaming-LLM, we found that LLMs exhibit 214

attention dispersion when dealing with long texts, 215

and based on this discovery, we proposed the drop 216
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attention method to filter low-relevance tokens to217

alleviate the attention dispersion issue.218

3 Method219

3.1 Attention dispersion220

As the length of the input text extends, a phe-221

nomenon known as attention dispersion emerges,222

leading to a decrease in the model’s ability to per-223

ceive crucial tokens. As shown in Figure 1, the224

degree of attention dispersion intensifies in corre-225

lation with the increase in text length. A signifi-226

cant degradation in performance becomes apparent227

when the input text exceeds the model’s training228

window. The attention dispersion is tied to the at-229

tention computation mechanism. To explore why230

the degree of attention dispersion increases as the231

text length increases, an analysis of the attention232

computation mechanism (Vaswani et al., 2023) is233

conducted as follows:234

attn(q, k, v) = softmax(
q ∗ k√

d
)v (1)235

The definition of softmax is as follows:236

237

ai =
ei

ei +
∑n

j=0,j ̸=i ej
(2)238

In practical NLP tasks, the text length n is not239

fixed. When dealing with some long texts, as the240

text length n gradually increases, there are two241

trends in the maximum value ai of the attention242

coefficient, as shown below:243 {
ai → 1, ei ≫ ej

ai → 1/n, ei ≃ ej
(3)244

As shown in Figure 2, the first scenario mostly245

occurs in the lower-level attention, while the sec-246

ond scenario is more prevalent in the upper-level247

attention. As n increases, the ai in the first case248

is less affected; although it changes, it remains a249

relatively large constant value close to 1. On the250

other hand, the ai in the second case will be sig-251

nificantly affected, with ai decreasing significantly,252

even approaching 0, as n tends towards infinity.253

Specifically, as illustrated in Figure 1, when the254

text length n reaches 8000, the maximum value255

of the attention coefficient is 0.003, representing a256

two-order-of-magnitude drop compared to the max-257

imum value of the attention coefficient at position258

50. Intuitively, the decrease in the value of ai will259

introduce more noise into the attention mechanism260

when aggregating vector information, reducing the 261

model’s resolution and thereby affecting the infer- 262

ence performance. 263

3.2 Drop Attention 264

To alleviate model attention dispersion, an intuitive 265

idea is to reduce the number of tokens calculat- 266

ing attention scores. To remove noise and retain 267

more important information, we propose a simple 268

and effective method called Drop Attention (DA). 269

The specific operation is as follows: first, calculate 270

the attention scores a = [a0, a1, ..., al] between 271

query and key, then calculate the attention coef- 272

ficient aq corresponding to the quantile q of this 273

vector, and call q the drop rate. The attention coef- 274

ficients smaller than aq are set to −∞, which can 275

be represented by the following equation: 276

ai =

{
ai, if ai > aq

−∞, if ai <= aq
(4) 277

By utilizing this approach, we can effectively filter 278

out noise and retain crucial information. Further- 279

more, it allows for the mitigation of attention dis- 280

persion, thereby enhancing the long-text question- 281

answering proficiency of Llama2. 282

3.3 Dynamic Drop Attention 283

Equation 2 suggests that as the sentence length in- 284

creases and the attention coefficient diminishes, the 285

degree of attention dispersion escalates. There is 286

a positive correlation between the degree of atten- 287

tion dispersion and length, implying that longer 288

sentences exhibit more pronounced attention dis- 289

persion. Consequently, we introduce dynamic drop 290

attention (DDA), a method where different posi- 291

tions are assigned varying drop rates during the 292

calculation of attention. 293

As shown in Figure 3, the yellow part of the orig- 294

inal text represents retained content with a length 295

that does not exceed the model training window 296

size, the part of the original text has a normal cal- 297

culation of attention scores. The blue chunks of 298

original text exceed the model training window 299

size. The text is divided into different chunks, each 300

chunk may contain L tokens. When calculating at- 301

tention scores, each chunk needs DA with a distinct 302

drop rate. Drop rate γi is set as follow: 303

γi = γi−1 + ϵ, i = 0, 1....n (5) 304

A relatively small initial drop rate γ1 is set in the 305

first chunk. As the length of the tokens that need to 306
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be dropped increases, the drop rate of subsequent307

chunks adds a small constant ϵ to the initial drop308

rate, ultimately forming a segmented dynamic drop309

rate. For the generated text, it is also divided into310

different chunks and uses different drop rates σi.311

4 Experiments312

To evaluate the effectiveness of DA and DDA,313

we apply these methods to Llama2-13b-chat314

and compare them with the vanilla Llama2-13b-315

chat. The evaluation involves using the LongQA316

dataset (Chen et al., 2023b) and the QMSum317

dataset (Zhong et al., 2021). LongQA comprises318

over 7,000 question-answer pairs, with questions319

generated from books or articles to test the models.320

The average length of the text in LongQA is 10,500321

tokens. QMSum consists of 1,808 query-summary322

pairs from 232 meetings across multiple domains,323

with an average meeting length of 9,070 tokens. In324

the experiment, due to limitations in GPU memory,325

we filter out examples with a token count exceeding326

12,000 and simultaneously excluded samples with327

a length less than 4,000 tokens. All experiments328

are carried out using 8 GPUs of A100*80G. No329

fine-tuning is applied in any of the experiments.330

4.1 Comparison with vanilla Llamm2-13B331

To evaluate the efficacy of DA and DDA, we con-332

duct assessments on the LongQA and QMSum333

datasets, utilizing log PPL as the evaluation met-334

ric. Both methods are applied to the last 4000335

tokens of the original text. For DA, a fixed drop336

rate of 0.3 is employed, while DDA utilizes an337

initial drop rate of 0.05, incrementing by 0.05 for338

every 1000 tokens. As presented in Table 1, both

Table 1: Comparison of log PPL scores among Llama2-
13B, Llama2-DA, and Llama2-DDA. A significant de-
crease in the log PPL score is observed for Llama2-
DDA.

metrics Llama2-
13B

Llama2-
DA

Llama2-
DDA

LongQA 1.691 1.681 1.668
QMSum 2.588 2.576 2.572

339
DA and DDA result in a reduction in log PPL com-340

pared to the baseline Llama2-13B model. This341

reduction suggests that alleviating attention dis-342

persion is crucial for enhancing the model’s abil-343

ity to handle long texts. In the LongQA dataset,344

Llama2-DDA achieves a log PPL score of 1.668,345

significantly lower than both Llama2-13B (1.691) 346

and Llama2-DA (1.681). Similarly, in the QMSum 347

dataset, Llama2-DDA exhibits a log PPL score of 348

2.572, showing a significant decrease compared to 349

both Llama2-13B (2.588) and Llama2-DA (2.576). 350

The result underscores the effectiveness of DDA in 351

reducing attention dispersion, contributing to en- 352

hanced model understanding and performance on 353

LongQA and QMSum datasets. 354

Furthermore, the DDA-based Llama demon- 355

strates a lower PPL score compared to the DA- 356

based Llama, suggesting that different positions 357

experience varying degrees of attention dispersion, 358

necessitating distinct drop rates. 359

To further evaluate the generation performance, 360

we randomly select 100 samples from the gener- 361

ated results for manual evaluation. To ensure fair- 362

ness, we anonymize the generated results before 363

having them assessed by two researchers. The eval- 364

uation focuses on the relevance of the generated 365

content to the questions and the presence of redun- 366

dancy. The evaluation results are shown in Figure 367

4. In the set of 100 generated samples, the major- 368

ity exhibit a similar text generation performance 369

between the two models. Llama2-13B-DA shows 370

a slight improvement compared to Llama2-13B, 371

while Llama2-13B-DDA demonstrates a more sig- 372

nificant improvement over the vanilla Llama2-13B. 373

The manual evaluation results also indicate a no- 374

ticeable enhancement in the long-text processing 375

capability of Llama2-13B with DDA.

Figure 4: Human evaluation results of 100 generated
texts, excluding draws. The x-axis denotes the number
of victories in human evaluation. A significant improve-
ment is observed in Llama2-13B with DDA compared
to the vanilla Llama2-13B.

376
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Original Text Generated Text PPL
initial drop rate increment max drop rate drop rate

0 0 0 0 1.691
0 0 0 0.1 1.694
0 0 0 0.3 1699
0 0 0 0.5 1.720

0.3 0.0 0.3 0 1.674
0.1 0.05 0.25 0 1.669
0.1 0.1 0.4 0 1.670
0.15 0.05 0.3 0 1.668
0.15 0.05 0.3 0.3 1.684

Table 2: Effect of drop rate on PPL in Llama2-13B Model

4.2 Different Number of Tokens with DA377

An examination of the impact of DA on varying to-378

ken counts is underway to evaluate its effectiveness.379

Specifically, we implement DA on the last 2000,380

4000, and 6000 tokens of the original texts sourced381

from the LongQA dataset. The corresponding log382

PPL scores for each token count are summarized383

in Table 3. Notably, the model attains its lowest384

PPL score of 1.68 when the number of tokens is385

set to 6000. Additionally, the PPL of the last 4000386

tokens using DA is in proximity to that of the last387

6000 tokens using DA.388

This observation can be elucidated by consider-389

ing that the average length of the dataset’s text is390

10500, while the training window of Llama2-13B391

is constrained to 4000 tokens. The last 6000 to-392

kens may not have undergone sufficient training,393

potentially leading to attention dispersion. The394

application of DA to these tokens appears to ef-395

fectively enhance the generation performance, as396

indicated by the observed decrease in the log PPL397

score.398

Table 3: PPL scores corresponding to different number
of tokens utilizing DA.

tokens 0 2000 4000 6000
log PPL 1.691 1.684 1.681 1.68

4.3 Select Proper Drop Rate399

The careful selection of an appropriate drop rate400

is crucial for DA and DDA. An inappropriate drop401

rate may result in a performance degradation in402

the Llama2-13B model. To investigate the impact403

of different drop rates, a series of experiments are404

conducted, utilizing PPL as the evaluation metric.405

The results are summarized in Table 2.406

As evident from the table, the configuration with 407

an initial drop rate of 0.15, an increment of 0.05, 408

and a maximum drop rate of 0.3 yields the lowest 409

perplexity value for the generated text, recording a 410

value of 1.668. This particular setting outperforms 411

all other parameter combinations, indicating its 412

effectiveness in optimizing text generation quality. 413

Additionally, the implementation results also reveal 414

that the effectiveness of DDA surpasses that of DA. 415

Choosing an appropriate drop rate is crucial, as 416

both excessively large and excessively small drop 417

rates may fail to achieve the optimal improvement. 418

Currently, a drop rate of 0.3 appears to be relatively 419

effective.

Figure 5: PPL of different layers with DA
420

Surprisingly, the counterintuitive observation 421

emerges that DA applied on the generated text leads 422

to an increase in PPL compared to the baseline 423

Llama2-13B model. Interestingly, even when both 424

DDA and DA are applied to the original and gener- 425

ated texts, the PPL score increases compared to the 426

scenario where DDA is exclusively applied to the 427

original text. This implies a significant influence on 428
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Table 4: The maximum attention score of Llama2 and Llama2-DDA.The results validate our hypothesis that DDA
can effectively alleviate the phenomenon of attention dispersion

method 3000 2500 2000 1500 1000 500 0
Llama2 0.005703 0.002293 0.002922 0.003391 0.00422 0.002266 0.002367

Llama2-DDA 0.005848 0.00245 0.003096 0.003635 0.004414 0.002594 0.002733
Relative Change +2.54% +6.84% +5.95% +7.19% +4.60% +14.47% +15.46%

Drop Rate 15% 20% 20% 25% 25% 30% 30%

the model’s performance when DA is implemented429

on the generated text, underscoring the intricate430

interplay between attention mechanisms and model431

behavior.432

4.4 The layers of Attention Dispersion433

To further investigate the mechanism of attention434

dispersion in Llama2, we visualize the top-k at-435

tention scores of the 8000th token, as depicted436

in Figure 6. In the lower layers of attention, the437

maximum attention scores exhibit relatively small438

values, and the differences between these values439

are also minimal. As the attention layers deepen,440

the disparities between the top-k attention values441

increase, and Llama2’s attention starts to focus on442

a select few tokens. This suggests that attention dis-443

persion predominantly occurs in the lower layers444

of attention.

Figure 6: Average of maximum attention scores in dif-
ferent layer

445

To assess whether the lower-level attention lay-446

ers are more susceptible to attention dispersion,447

attention layers one, three, ten, twenty, and forty448

underwent DA with a drop rate of 0.3. As illus-449

trated in Figure 5, which showcases the PPL scores450

after applying DA to different attention layers, the451

lowest PPL score is attained when three attention452

layers undergo DA. With an increase in the num-453

ber of DA layers, the PPL score remains almost 454

unchanged. These experimental findings align with 455

the earlier observation that attention dispersion is 456

primarily concentrated in the lower-level attention. 457

Therefore, by applying drop attention to the first 458

three attention layers, the attention dispersion phe- 459

nomenon in Llama2-13B is mitigated, thereby en- 460

hancing its text generation capability. 461

The reason why attention is comparatively more 462

dispersed in the lower layers is that, at the ini- 463

tial computation stage, the disparity between the 464

query vector and the key embedding is not sig- 465

nificant. Consequently, during the calculation of 466

attention scores, the lower layers of attention yield 467

relatively mild and evenly distributed probability 468

values. However, as the attention layers stack and 469

the aggregation of vectors intensifies, the differ- 470

ences between vectors become more pronounced, 471

leading to the polarization of the probability distri- 472

bution. 473

4.5 Alleviating Attention Dispersion 474

Figure 7: Comparative analysis of the maximum at-
tention score for the same token position ranging from
5000 to 8000, between the vanilla Llama2 and Llama2
implemented with DDA. The trend suggests that DDA
assists Llama2 in mitigating attention dispersion.
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In order to assess the effectiveness of DDA in475

mitigating attention dispersion, we conducted an476

analysis comparing changes in attention coeffi-477

cients between Llama2 and Llama2-DDA for spe-478

cific token positions. The evaluation focused on479

the last 3000 tokens, and we computed the aver-480

age of the top 5 maximum multi-head attention481

coefficients for every 500 tokens. The summarized482

results are presented in Table 4 and illustrated in483

Figure 7.484

The Table4 and Figure7 show that the attention485

scores for Llama2-DDA are generally higher than486

those for the original Llama2, indicating a signifi-487

cant alleviation of attention dispersion after DDA488

processing. This improvement is particularly no-489

ticeable for tokens in later positions, suggesting490

that DDA has a more pronounced impact when ad-491

dressing cases of severe attention dispersion. These492

findings support the hypothesis that DDA effec-493

tively mitigates attention dispersion issues, espe-494

cially in contexts where dispersion is more promi-495

nent.496

In summary, the results validate our hypothesis497

that DDA can effectively alleviate the phenomenon498

of attention dispersion, leading to improvements in499

the model’s performance.500

5 Conclusion501

In conclusion, the current state of LLMs reveals a502

limitation in their ability to extrapolate text length.503

The performance degradation observed when in-504

put text surpasses the model training window is505

attributed to two key factors. Firstly, alterations in506

positional encoding, induced by length variations,507

disrupt attention calculations, leading to significant508

deviations in attention estimation and adversely af-509

fecting the LLMs’ proficiency in handling extended510

texts. Secondly, inherent constraints within the at-511

tention mechanism result in attention diffusion as512

the input text lengthens, diminishing the model’s513

awareness of crucial tokens and, consequently, im-514

peding its effectiveness in processing lengthy texts.515

The research delves into the phenomenon of at-516

tention dispersion and introduces an uncomplicated517

yet effective method DDA. DDA dynamically fil-518

ters noise and retain important information to al-519

leviate attention dispersion during attention com-520

putation in LLMs. The method notably enhances521

the text generation capability of LLMs without ne-522

cessitating fine-tuning. To validate the efficacy of523

the DDA method, we apply it to the open-source524

Llama2-13B model and conduct experiments on 525

the LongQA and QMSum dataset. The DDA-based 526

Llama2 demonstrates a discernible decrease in PPL 527

for generated text when compared to the vanilla 528

Llama2-13B. The manual evaluation further corrob- 529

orates improvements in the conciseness, relevance, 530

and accuracy of the generated text. 531

6 Limitations 532

This article still has some limitations. Firstly, the 533

study reveals a significant decline in the model’s 534

generation performance when DDA is applied to 535

generated text. However, the paper does not delve 536

into the underlying reasons for this phenomenon. 537

Secondly, there is room for improvement in the 538

computational efficiency of the DDA method. The 539

current implementation is relatively slow and in- 540

curs a large GPU memory footprint, especially 541

when handling longer texts, leading to the risk of 542

Out-Of-Memory (OOM) issues. Lastly, consid- 543

ering the application of DDA during the model’s 544

finetuning and pretraining stages may be beneficial 545

to evaluate its impact on the model’s extrapola- 546

tion ability when dealing with long texts. Further 547

research and optimization in these areas would en- 548

hance the comprehensiveness and practicality of 549

the proposed method. 550
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