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Abstract

Transformers have impressive generalization001
capabilities on tasks with a fixed context length.002
However, they fail to generalize to sequences003
of arbitrary length, even for seemingly simple004
tasks such as duplicating a string. Moreover,005
simply training on longer sequences is ineffi-006
cient due to the quadratic computation complex-007
ity of the global attention mechanism. In this008
work, we demonstrate that this failure mode is009
linked to the fact that positional encodings are010
out-of-distribution for longer sequences (even011
for relative encodings) and introduce a novel012
family of positional encodings that can over-013
come this problem. Concretely, our random-014
ized positional encoding scheme simulates the015
positions of longer sequences and randomly016
selects an ordered subset to fit the sequence’s017
length. Our large-scale empirical evaluation of018
6000 models across 15 algorithmic reasoning019
tasks shows that our method allows Transform-020
ers to generalize to sequences of unseen length021
(increasing test accuracy by 12.0% on average).022

1 Introduction023

Transformers are emerging as the new workhorse024

of machine learning as they underpin many recent025

breakthroughs including sequence-to-sequence026

modeling (Vaswani et al., 2017), image recog-027

nition (Dosovitskiy et al., 2021), and multi-task028

learning (Reed et al., 2022). However, recent029

work (Delétang et al., 2022) demonstrated that030

Transformers fail to generalize to longer sequences031

on seemingly simple tasks such as binary addition.032

Thus, while certain problems can be solved without033

length generalization, algorithmic reasoning gener-034

ally requires this ability, similar to many real-world035

settings such as online or continual learning.036

While the Transformer’s attention mechanism037

can recognize complex relationships amongst to-038

kens in the input sequence, it is limited by its lack039

of positional awareness. Thus, the input sequence040

is generally augmented with positional encodings041

Figure 1: Test-time evaluation with longer inputs.
The standard positional encoding vector has values
larger than those observed during training. Our ap-
proach avoids this problem by assigning a random (or-
dered) positional encoding vector using the full range
of possible test positions to each training example.

to inject position information into the computation. 042

However, current approaches only consider posi- 043

tions up to the maximum training sequence length 044

N , and thus all the positions N +1, . . . ,M for test 045

sequences of length up to M will appear out-of- 046

distribution during evaluation (top of Fig. 1). 047

This work We introduce a novel family of ran- 048

domized positional encodings, which significantly 049

improves Transformers’ length generalization ca- 050

pabilities on algorithmic reasoning tasks. Our ap- 051

proach is compatible with any existing positional 052

encoding scheme and augments the existing meth- 053

ods by subsampling an ordered set of positions 054

from a much larger range of positions than those 055

observed during training or evaluation (i.e., up to 056

L ≫ M ; bottom of Fig. 1). Thus, over the course 057

of training, the Transformer will learn to handle 058
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“arbitrarily” large positional encodings and there-059

fore no longer encounter out-of-distribution inputs060

during evaluation. Importantly, our method is also061

significantly more efficient than the naive approach062

of simply training the Transformer on longer se-063

quences. Our main contributions are:064

• A novel family of positional encoding065

schemes that significantly improves the length066

generalization capabilities of Transformers.067

• A large-scale empirical evaluation on a wide068

range of algorithmic reasoning tasks showing069

the superiority of our method over prior work070

(an increase of the test accuracy by 12.0% on071

average and up to 43.5% on certain tasks).072

2 Related Work073

Our work is most closely related to the growing074

line of research on Transformers’ positional encod-075

ings. The first approaches simply added a trans-076

formation of the tokens’ positions, e.g., scaled si-077

nusoids (Vaswani et al., 2017) or learned embed-078

dings (Gehring et al., 2017), to the embeddings079

of the input sequence. Dai et al. (2019) subse-080

quently showed that computing the attention (at081

every layer) using the relative distances between082

the key and query vectors improves the modeling083

of long-term (inter-context) dependencies. Simi-084

larly, Su et al. (2021) proposed to inject position085

information by rotating the key-query products ac-086

cording to their relative distances. Finally, Press087

et al. (2022) improved the length generalization088

on natural language processing tasks by adding089

a constant bias to each key-query attention score090

(proportional to their distance). However, as our ex-091

periments in Section 4 will show, these approaches092

fail at length generalization on algorithmic reason-093

ing tasks, which is precisely the goal of our work.094

A concurrent work developed randomized095

learned positional encodings (Li and McClelland,096

2022), which are a special case of our family of ran-097

domized positional encodings. We also note that098

the necessity of feature and position randomization099

for length generalization has been discussed in the100

context of graph neural networks, which subsume101

Transformers (Ibarz et al., 2022; Sato et al., 2021).102

Our work is also related to the broader area of103

research on improving the systematic (length) gen-104

eralization capabilities of Transformers (Ontañón105

et al., 2022), which includes approaches investigat-106

ing embedding scaling or early stopping (Csordás107

et al., 2021), adaptive computation time (Dehghani 108

et al., 2019), geometric attention with directional 109

positional encodings and gating (Csordás et al., 110

2022), and hierarchical reinforcement learning (Liu 111

et al., 2020). Such length generalization studies are 112

often conducted in the context of formal language 113

theory, and we evaluate our method on the recent 114

benchmark by Delétang et al. (2022), which unifies 115

a large body of work on Transformers’ capability 116

to recognize formal languages (Ackerman and Cy- 117

benko, 2020; Bhattamishra et al., 2020; Ebrahimi 118

et al., 2020; Hahn, 2020; Hao et al., 2022; Merrill, 119

2019; Merrill and Sabharwal, 2022). 120

3 Randomized Positional Encodings 121

Unlike RNNs (Elman, 1990), which are unrolled 122

over tokens one step at a time, Transformers pro- 123

cess large chunks of the input sequence in parallel 124

via global attention (Vaswani et al., 2017). As a 125

result, Transformers do not need to “remember” 126

previous tokens, but they do have to break the 127

permutation-invariance of the attention mechanism. 128

To that end, the embeddings of the input sequence 129

are generally augmented with positional encodings. 130

For example, the vanilla Transformer adds the fol- 131

lowing positional encodings to the embedded input 132

sequence before passing it to the attention layers: 133

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
, (1) 134

PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

)
, (2) 135

where pos is the token’s position in the sequence, 136

dmodel ∈ N is the dimension of the input embed- 137

ding, and i ∈ {1, 2, . . . , dmodel/2}. 138

While positional encodings generally succeed 139

at inducing the required positional information 140

for sequences of fixed length, they are one of the 141

main failure modes preventing length generaliza- 142

tion. Concretely, for a Transformer with standard 143

positional encodings trained on a curriculum of se- 144

quences of maximum length N , test sequences of 145

length M > N will shift the distribution of the re- 146

sultant positional encodings away from those seen 147

in training, with the shift getting increasingly large 148

as M grows. To address this, we propose a random- 149

ized encoding scheme, which relies only on order 150

information, and can be expected to generalize up 151

to sequences of length M , where N < M ≤ L, 152

with a configurable hyperparameter L. 153
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Randomized positional encodings We assume154

that each training step will perform a step of loss155

minimization on a batch of data of fixed size. Let156

U(S) denote the discrete uniform distribution over157

set S, and let Pk := {S ⊆ {1, . . . , L} | |S| = k}.158

For each training step, we first sample a random159

length n ∼ U({1, . . . , N}) (following Delétang160

et al., 2022) and then a random set of indices I ∼161

U(Pn). We then sort I in ascending order, such162

that I = {i1, . . . , in} for i1 < i2 < · · · < in, not-163

ing that I is sampled without replacement. Finally,164

we compute our randomized positional encoding165

for token 1 ≤ j ≤ N as RPE(j, ·) := PE(ij , ·).166

At test time, when processing a sequence of length167

M > N , we use the same procedure but for all to-168

ken positions 1 ≤ j ≤ M . The intuition behind our169

method is to preserve the known good properties of170

relative encoding, but in a way that is independent171

of the maximum training length N and thus allows172

generalization to longer sequences at test time.173

As a consequence, our tokens’ positional encod-174

ings are no longer directly related to their exact175

position (the encodings even change during train-176

ing as they are resampled at every step). However,177

since we maintain the order of the encodings, the178

Transformer can still learn to extract the relevant179

positional information from the subsampled encod-180

ings. Indeed, we validate the necessity of ordering181

the sampled positions in our ablation study in Ap-182

pendix B.1. Thus, the success of our encoding183

scheme offers an interesting insight into the induc-184

tive biases of the Transformer architecture.185

The main limitation of our approach is that the186

maximum test sequence length M has to be known187

in advance to choose L ≫ M . However, our188

method is compatible with a wide range of val-189

ues for L (see Appendix B.1), and we note that this190

is a much weaker assumption than that required for191

the naive approach of simply training on longer192

sequences. Moreover, as we will show in Sec-193

tion 4, our randomized encodings trained only on194

lengths up to N perform the same on sequences of195

length M as prior approaches trained on lengths196

up to M . Therefore, our method demonstrates that197

Transformers can be efficiently trained on short se-198

quences as long as (i) the longer sequences share199

the same structure, and (ii) the longer positions are200

observed during training. Moreover, as the run-201

ning time of global attention is O(ℓ2) for sequence202

length ℓ, our encoding scheme is significantly faster203

than directly training a model on long sequences.204

4 Experimental Evaluation 205

Problem setup We closely follow the experi- 206

ment setup of Delétang et al. (2022) and eval- 207

uate our method on a wide range of algo- 208

rithmic reasoning tasks such as modular arith- 209

metic, reversing/duplicating a string, binary ad- 210

dition/multiplication, and bucket sort. The tasks 211

are derived from formal language recognition and 212

thus grouped according to the Chomsky hierar- 213

chy (Chomsky, 1956), which partitions languages 214

into regular (R), context-free, context-sensitive 215

(CS), and recursively enumerable. Regular tasks 216

can be solved by a finite-state automaton (FSA), de- 217

terministic context-free (DCF) tasks can be solved 218

by an FSA with access to a deterministic stack, and 219

CS tasks can be solved by an FSA with access to a 220

bounded tape. Note that the relation to the Chom- 221

sky hierarchy is largely irrelevant for our work and 222

only included for completeness. We evaluate our 223

method on Delétang et al. (2022)’s benchmark as 224

it is currently out of reach for Transformers and 225

clearly demonstrates their failure to generalize on 226

algorithmic reasoning tasks. We refer interested 227

readers to the original paper for more details. 228

We consider the encoder-only model of the orig- 229

inal seq-to-seq Transformer (Vaswani et al., 2017), 230

as used in popular pretrained language models such 231

as BERT (Devlin et al., 2019) or Gopher (Rae et al., 232

2021). Thus, for tasks that require a multi-token 233

output sequence y (e.g., duplicating a string), we 234

pad the input sequence with |y| empty tokens and 235

compute the entire Transformer output from the 236

padded sequence (i.e., we do not use autoregres- 237

sive sampling). We train the model on sequences 238

of length sampled uniformly from U(1, N), with 239

N = 40, and evaluate it on sequences of length 240

{N + 1, . . . ,M}, with M = 500. We set the max- 241

imum position L = 2048 (and visualize the im- 242

pact of other values on the performance in Ap- 243

pendix B.1). We report the accuracy averaged over 244

all unseen sequence lengths, i.e., N + 1, . . . ,M , 245

for the best-performing model out of 10 different 246

parameter initialization seeds and three learning 247

rates 1 × 10−4, 3 × 10−4, 5 × 10−4. We use the 248

same hyperparameters as Delétang et al. (2022) and 249

provide the full experiment setup in Appendix A. 250

Comparison to prior work We compare our 251

method to a wide range of positional encodings: 252

none, sin / cos (Vaswani et al., 2017), relative (Dai 253

et al., 2019), ALiBi (Press et al., 2022), RoPE (Su 254
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Table 1: Accuracy (in percentage) averaged over all test lengths and maximized over 10 random seeds and 3 learning
rates. The random accuracy is 50%, except for MODULAR ARITHMETIC (SIMPLE), CYCLE NAVIGATION, BUCKET
SORT, and MODULAR ARITHMETIC, where it is 20%. Our randomized method increases the test accuracy by
12.0% on average. The randomized learned encodings (denoted with ⋆) are equivalent to label-based encodings (Li
and McClelland, 2022). † denotes permutation-invariant tasks, which can be solved without positional information.

Randomized (Ours)

Level Task None sin / cos Relative ALiBi RoPE Learned sin / cos Relative ALiBi RoPE Learned⋆

R

EVEN PAIRS 50.4 50.9 96.4 67.3 51.0 50.7 100.0 100.0 81.5 100.0 97.5
MODULAR ARITHMETIC (SIMPLE) 20.1 20.5 21.8 24.2 21.6 20.2 25.7 28.1 21.2 25.5 21.1
PARITY CHECK† 51.9 50.5 51.8 51.7 51.3 50.3 52.6 52.2 50.3 52.3 52.6
CYCLE NAVIGATION† 61.9 26.3 23.0 37.6 23.6 24.2 59.0 58.8 29.8 73.6 49.7

DCF

STACK MANIPULATION 50.3 50.1 53.6 57.5 51.2 49.2 72.8 77.9 70.6 68.2 69.1
REVERSE STRING 52.8 50.6 58.3 62.3 51.9 50.7 75.6 95.1 77.1 69.9 52.9
MODULAR ARITHMETIC 31.0 28.3 30.3 32.5 25.1 25.1 33.8 34.9 31.3 32.7 31.9
SOLVE EQUATION 20.1 21.0 23.0 25.7 23.1 20.4 24.5 28.1 22.0 24.5 22.1

CS

DUPLICATE STRING 52.8 50.7 51.7 51.3 50.9 50.8 72.4 75.1 68.9 68.9 53.0
MISSING DUPLICATE 52.5 51.3 54.0 54.3 56.5 51.0 52.5 100.0 79.7 88.7 52.7
ODDS FIRST 52.8 51.6 52.7 51.4 51.3 50.6 65.9 69.3 64.7 65.6 52.7
BINARY ADDITION 50.1 49.8 54.3 51.4 50.4 49.8 64.4 64.5 56.2 60.2 61.7
BINARY MULTIPLICATION 49.9 50.1 52.2 51.0 50.2 49.6 52.1 50.1 50.5 51.7 51.9
COMPUTE SQRT 50.2 50.1 52.4 50.9 50.5 50.2 52.5 53.3 51.2 52.3 52.0
BUCKET SORT† 23.7 30.1 91.9 38.8 30.6 25.9 100.0 100.0 99.6 99.6 99.5

et al., 2021), learned (Gehring et al., 2017), and255

label-based (Li and McClelland, 2022). Note that256

the label encodings proposed by Li and McClelland257

(2022) are equivalent to randomized learned posi-258

tional encodings and thus subsumed by our method.259

We instantiate our randomized positional encoding260

scheme with all the above encodings and show the261

average test accuracy in Table 1 (with performance262

curves over test lengths in Appendix B.2). We ob-263

serve that our randomized versions significantly264

increase the test accuracy across most tasks (by265

12.0% on average and up to 43.5%). In particular,266

the randomized relative encoding solves tasks that267

were previously out of reach for prior work (e.g.,268

REVERSE STRING or MISSING DUPLICATE).269

Efficiency comparison We now show that our270

method allows us to train a model on short se-271

quences and obtain a test accuracy above 90%272

roughly 35.4 times faster than the naive approach273

of training a model on longer sequences. To that274

end, we train the randomized relative encodings on275

sequences up to length 40 and the classical relative276

positional encoding (Dai et al., 2019) on sequences277

up to length 500 and show the test accuracy (aver-278

aged over lengths 41 to 500) in Fig. 2 over training279

time (in seconds). Our model obtains a strong test280

accuracy significantly faster due to the quadratic281

cost (in terms of sequence length) of global atten-282

tion, which means that our model trains at 168.4283

steps per second compared to 22.1 steps per second284

for the naive approach (on a NVIDIA V100 GPU).285
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Figure 2: Average accuracy over unseen test lengths
on the MISSING DUPLICATE task over training time
(seconds) for two models: (i) our randomized relative
positional encoding with a maximum training sequence
length of 40, and (ii) the classical relative positional
encoding but with a maximum training length of 500.

5 Conclusion 286

We introduced a novel family of positional encod- 287

ings that significantly improves the length gener- 288

alization capabilities of Transformers. Our po- 289

sitional encodings are based on the insight that 290

conventional positional encodings will be out-of- 291

distribution when increasing the sequence length. 292

Thus, to overcome this issue, we randomly sample 293

our encodings from a wider range than the lengths 294

seen at test time, while keeping the order. Our 295

large-scale empirical evaluation demonstrates that 296

our method significantly outperfroms prior work in 297

terms of length generalization while offering supe- 298

rior computational performance over the naive ap- 299

proach of training the model on longer sequences. 300
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A Experimental Details450

We use the experiment suite proposed by Delétang451

et al. (2022), which consists of 15 algorith-452

mic reasoning tasks and is publicly available453

at https://github.com/deepmind/454

neural_networks_chomsky_hierarchy455

under the Apache 2.0 License. The tasks do not456

consist of fixed-size datasets but define training457

and testing distributions from which one can458

sample continuously. We train the models for459

2 000 000 steps with a batch size of 128, which cor-460

responds to 256 000 000 (potentially non-unique)461

training examples. At test time, we evaluate462

a single batch of size 500 for every sequence463

length in {41, . . . , 500}, which corresponds to464

230 000 testing examples. We use the Adam465

optimizer (Kingma and Ba, 2015) with gradient466

clipping and sweep over three learning rates:467

1 × 10−4, 3 × 10−4, and 5 × 10−4. Furthermore,468

for each task and positional encoding, we use 10469

different parameter initialization random seeds.470

We consider the encoder-only Transformer ar-471

chitecture (Vaswani et al., 2017), with 5 blocks472

of 8 heads each and dmodel = 64, which cor-473

responds to 249 026 parameters (270 146 in the474

case of relative and randomized relative posi-475

tional encodings). We run every task-encoding-476

hyperparameter triplet on a single NVIDIA V100477

GPU from our internal cluster. As a result,478

we used 15 (tasks) · 13 (positional encodings) ·479

3 (learning rates) · 10 (seeds) = 5850 GPU-units480

for the results in Tables 1, 4 and 5 and Fig. 4.481

For the results in Fig. 2, we used an additional482

2 (positional encodings) · 3 (learning rates) ·483

10 (seeds) = 60 GPU-units. Finally, for Fig. 3, we484

used 4 (maximum positions)·3 (learning rates)·485

10 (seeds) = 120 GPU-units, yielding a grand to-486

tal of 6030 GPU-units. We report all running times487

in Table 2 and observe that our method induces a488

negligible computational overhead.489

When applying our randomized positional en-490

coding scheme, we subsample the extended po-491

sitions only once per batch and not individually492

for every sequence. For the sin / cos, learned, and493

RoPE encodings, we apply our method as described494

in Section 3, i.e., we directly replace the original495

token positions with their sampled counterpart. For496

the relative encoding, we compute the relative dis-497

tances between the sampled positions instead of the498

original positions. Finally, for ALiBi, we sample499

the bias values from the set of extended positions.500
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Figure 3: Sweep over the maximum position L for our
randomized relative positional encodings on the MISS-
ING DUPLICATE task. The test accuracy (averaged over
unseen sequence lengths) is largely unaffected by the
concrete value of L, showing the stability of our method.

B Additional Results 501

B.1 Ablation Study 502

In this section, we conduct an ablation study over 503

the two main components of our method: (i) the 504

maximum sampling position L, and (ii) the sorting 505

of the subsampled positions. 506

We train the randomized relative positional en- 507

coding for a wide range of different maximum po- 508

sitions L: 1024, 2048, 4096, and 8192. Figure 3 509

shows that the test accuracy (averaged over all un- 510

seen sequence lengths) is largely unaffected by the 511

value of L on the MISSING DUPLICATE task. As 512

a consequence, a practitioner wanting to apply our 513

method will not have to carry out extensive tuning 514

of this parameter (as long as it is larger than the 515

maximum evaluation sequence length M ). 516

Next, we investigate the performance of our ran- 517

domized sin / cos positional encoding with and 518

without sorting of the subsampled positions. Ta- 519

ble 3 shows the test accuracy (averaged over all 520

unseen sequence lengths) for the two versions of 521

our method. We observe that sorting the positions 522

is crucial, as it increases the test accuracy by 15.7% 523

on average and up to 76.3% on certain tasks. In 524

fact, without sorting, our approach fails to beat the 525

(baseline) random accuracy on all but the CYCLE 526

NAVIGATION task, which is permutation-invariant 527

(i.e., it can be solved without positional informa- 528

tion). This confirms our intuition that the Trans- 529

former only needs to know the relative order of 530

the positional encodings (and not their exact val- 531

ues), but that it fails to solve tasks when presented 532

with positional encodings whose order does not 533

correspond to the tokens’ positions. 534
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Table 2: Mean and standard deviation of the running times (in hours) for all the positional encodings and tasks.

Randomized (Ours)

Level Task None sin / cos Relative ALiBi RoPE Learned sin / cos Relative ALiBi RoPE Learned⋆

R

PARITY CHECK† 0.86± 0.17 0.87± 0.17 1.63± 0.28 0.87± 0.17 1.41± 0.24 0.90± 0.18 0.92± 0.18 1.75± 0.29 0.94± 0.19 1.66± 0.31 1.12± 0.23
REVERSE STRING 1.17± 0.21 1.18± 0.22 2.61± 0.39 1.17± 0.22 2.01± 0.35 1.23± 0.23 1.24± 0.23 2.75± 0.41 1.27± 0.24 2.42± 0.43 1.62± 0.32
CYCLE NAVIGATION† 0.86± 0.17 0.87± 0.17 1.62± 0.27 0.86± 0.17 1.41± 0.25 0.91± 0.18 0.92± 0.18 1.75± 0.29 0.94± 0.19 1.66± 0.31 1.12± 0.22
EVEN PAIRS 0.86± 0.17 0.87± 0.17 1.63± 0.27 0.86± 0.17 1.41± 0.24 0.91± 0.18 0.92± 0.18 1.75± 0.29 0.95± 0.19 1.65± 0.31 1.12± 0.22

DCF

STACK MANIPULATION 8.09± 0.97 8.00± 0.82 9.50± 0.89 8.07± 0.94 8.87± 0.84 8.46± 0.84 8.47± 0.88 10.04± 0.96 8.55± 0.90 10.61± 1.58 9.58± 1.12
MODULAR ARITHMETIC 5.48± 0.63 5.55± 0.67 6.32± 0.81 5.50± 0.65 6.07± 0.69 5.69± 0.65 5.66± 0.64 6.56± 0.70 5.69± 0.65 6.41± 0.84 5.92± 0.80
BINARY MULTIPLICATION 1.83± 0.33 1.83± 0.30 2.86± 0.43 1.84± 0.31 2.32± 0.39 2.24± 0.35 2.23± 0.35 3.13± 0.43 2.24± 0.35 3.21± 0.51 2.88± 0.46
BINARY ADDITION 1.83± 0.32 1.82± 0.31 2.89± 0.42 1.81± 0.32 2.34± 0.39 2.22± 0.35 2.22± 0.35 3.17± 0.44 2.24± 0.35 3.29± 0.62 2.90± 0.49

CS

BINARY ADDITION 1.83± 0.32 1.82± 0.31 2.89± 0.42 1.81± 0.32 2.34± 0.39 2.22± 0.35 2.22± 0.35 3.17± 0.44 2.24± 0.35 3.29± 0.62 2.90± 0.49
COMPUTE SQRT 1.39± 0.24 1.40± 0.25 2.20± 0.34 1.40± 0.25 1.86± 0.30 1.73± 0.29 1.72± 0.29 2.43± 0.37 1.74± 0.30 2.53± 0.41 2.23± 0.38
SOLVE EQUATION 5.60± 0.65 5.60± 0.67 6.41± 0.68 5.63± 0.66 6.14± 0.68 5.74± 0.65 5.78± 0.66 6.69± 0.76 5.83± 0.69 6.50± 0.80 6.01± 0.84
DUPLICATE STRING 1.58± 0.28 1.59± 0.28 4.10± 0.54 1.58± 0.27 2.71± 0.40 1.64± 0.28 1.65± 0.29 4.24± 0.54 1.67± 0.29 3.18± 0.49 2.05± 0.38
MODULAR ARITHMETIC (SIMPLE) 0.99± 0.19 1.00± 0.19 1.74± 0.29 0.99± 0.19 1.51± 0.26 1.03± 0.20 1.05± 0.20 1.87± 0.31 1.06± 0.21 1.74± 0.31 1.23± 0.23
MISSING DUPLICATE 0.88± 0.17 0.90± 0.18 1.64± 0.27 0.88± 0.17 1.43± 0.26 0.93± 0.19 0.94± 0.19 1.78± 0.30 0.97± 0.19 1.66± 0.30 1.15± 0.23
ODDS FIRST 1.17± 0.22 1.19± 0.22 2.61± 0.38 1.17± 0.22 2.00± 0.31 1.23± 0.23 1.24± 0.23 2.74± 0.40 1.26± 0.23 2.40± 0.39 1.59± 0.29
BUCKET SORT† 1.17± 0.23 1.18± 0.22 2.61± 0.43 1.16± 0.22 2.01± 0.34 1.22± 0.23 1.24± 0.23 2.74± 0.40 1.25± 0.23 2.40± 0.41 1.60± 0.30

Table 3: Accuracy (in percentage) averaged over all test
lengths and maximized over 10 seeds and 3 learning
rates for our randomized sin / cos positional encoding
with and without sorting of the subsampled positions.

Randomized sin / cos

Level Task w/o Sorting w/ Sorting

R

EVEN PAIRS 50.4 100.0
MODULAR ARITHMETIC (SIMPLE) 20.0 25.7
PARITY CHECK† 52.2 52.6
CYCLE NAVIGATION† 59.3 59.0

DCF

STACK MANIPULATION 50.4 72.8
REVERSE STRING 52.8 75.6
MODULAR ARITHMETIC 31.0 33.8
SOLVE EQUATION 20.2 24.5

CS

DUPLICATE STRING 52.8 72.4
MISSING DUPLICATE 53.1 52.5
ODDS FIRST 52.8 65.9
BINARY ADDITION 50.0 64.4
BINARY MULTIPLICATION 49.9 52.1
COMPUTE SQRT 50.2 52.5
BUCKET SORT† 23.7 100.0

B.2 Comparison to Prior Work535

In Section 4, we compared our method to536

a wide range of positional encodings: none,537

sin / cos (Vaswani et al., 2017), relative (Dai et al.,538

2019), ALiBi (Press et al., 2022), RoPE (Su et al.,539

2021), learned (Gehring et al., 2017), and label-540

based (Li and McClelland, 2022). Here, we pro-541

vide additional results for these experiments, as542

well as a comparison to the geometric attention and543

directional encodings of Csordás et al. (2022).544

We recall that Table 1 showed the test accuracy545

maximized over the 10 parameter initialization546

seeds and the three different learning rates. We547

reported the maximum following the experiment548

setup in Delétang et al. (2022), which investigates549

whether an architecture is capable of solving a task550

at all and not on average. However, we also re-551

port the means and standard deviations (over the 552

random seeds) in Table 4 for the best-performing 553

learning rate. We observe that our randomized posi- 554

tional encoding also significantly outperform their 555

original counterparts on average. We visualize the 556

test accuracy per sequence length in Fig. 4. 557

We highlight the case of learned positional en- 558

codings, which fail to beat the random accuracy 559

baseline (cf. Tables 1 and 4). This is because the 560

columns of the embedding matrix corresponding 561

to the positions that are larger than the maximum 562

training length N are not learned during training 563

and are thus entirely random. In contrast, our ran- 564

domized version of the learned encodings consid- 565

ers all possible embedding columns during training 566

and thus achieves non-trivial to strong length gen- 567

eralization on most tasks. 568

Finally, we also compare our method to a variant 569

of the Neural Data Router (NDR) (Csordás et al., 570

2022), which was developed to improve the sys- 571

tematic generalization capabilities of Transformers. 572

We only consider the most related aspects of the 573

NDR architecture, i.e., the geometric attention and 574

the directional encoding (we do not use gating or 575

shared layers). Table 5 compares the test accuracy 576

of geometric attention and directional encodings 577

with the best results from Table 1 (for the maxi- 578

mum) and Table 4 (for the mean). We observe that 579

our randomized positional encodings outperform 580

the geometric attention overall (with a 9.7% higher 581

maximum test accuracy on average) but not on all 582

tasks. In particular, geometric attention performs 583

substantially better on MODULAR ARITHMETIC 584

(SIMPLE), which has an inherent locality bias, i.e., 585

numbers closer to the operation symbols are gen- 586

erally more relevant, which can be captured by 587

“radiating outwards” as geometric attention does. 588
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Figure 4: Performance curves on all tasks for all the positional encodings. The dashed vertical red line is the training
range, meaning that sequences to the right have not been seen during training and thus measure generalization.
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Table 4: Means and standard deviations (computed over random seeds) of the score (accuracy averaged over all
test lengths) for the results of the main experiment (see Table 1). The random accuracy is 50%, except for CYCLE
NAVIGATION, BUCKET SORT, and the modular arithmetic tasks, where it is 20%. We denote permutation-invariant
tasks, which can be solved without positional information, with †. Numbers in bold are the best performers, per task.
These results underline the superiority of our method, and especially when applied to relative positional encodings.

Randomized (Ours)

Level Task None sin / cos Relative ALiBi RoPE Learned sin / cos Relative ALiBi RoPE Learned⋆

R

EVEN PAIRS 50.1± 0.1 50.4± 0.2 67.6± 15.3 59.8± 3.2 50.4± 0.3 50.4± 0.2 99.7± 0.3 99.6± 0.6 71.4± 5.6 100.0 ± 0.0 96.2± 0.7
MODULAR ARITHMETIC (SIMPLE) 20.0± 0.0 20.2± 0.2 20.7± 0.5 23.2± 0.9 20.8± 0.5 20.1± 0.1 24.2± 1.4 24.9 ± 1.7 20.8± 0.3 23.5± 1.6 20.2± 0.4
PARITY CHECK† 50.4± 0.8 50.3± 0.2 50.4± 0.6 50.5± 0.6 50.4± 0.4 50.0± 0.1 51.1± 1.3 51.4 ± 0.5 50.0± 0.2 50.4± 1.0 50.6± 0.9
CYCLE NAVIGATION† 33.9± 10.5 23.8± 1.4 21.7± 0.8 31.1± 3.8 22.3± 0.9 21.0± 1.2 30.3± 10.7 45.9± 9.9 26.3± 2.4 52.9 ± 15.3 31.9± 8.2

DCF

STACK MANIPULATION 50.2± 0.1 47.3± 1.9 50.1± 3.3 51.0± 8.0 49.6± 3.0 44.9± 3.7 69.2± 3.2 71.7 ± 4.7 69.5± 1.1 66.0± 2.0 66.1± 2.5
REVERSE STRING 52.7± 0.1 50.4± 0.1 54.2± 1.5 56.3± 2.6 51.2± 0.3 50.4± 0.2 72.9± 1.6 77.1 ± 6.6 75.1± 1.3 67.7± 1.1 52.7± 0.2
MODULAR ARITHMETIC 31.0± 0.1 24.3± 2.2 26.1± 2.0 28.1± 3.4 24.0± 2.4 22.3± 1.5 29.6± 4.6 28.8± 5.5 29.3± 1.6 28.6± 3.9 30.3 ± 2.6
SOLVE EQUATION 20.1± 0.0 20.9± 0.2 21.9± 0.7 23.6± 1.9 21.9± 0.6 20.2± 0.2 23.6± 0.5 25.4 ± 1.8 21.1± 0.7 22.3± 1.6 21.1± 0.7

CS

DUPLICATE STRING 52.7± 0.1 50.4± 0.2 51.0± 0.4 51.0± 0.2 50.4± 0.2 50.4± 0.2 69.0± 2.9 73.1 ± 1.5 67.9± 1.4 67.1± 2.0 52.8± 0.1
MISSING DUPLICATE 51.4± 1.0 50.1± 0.6 51.1± 1.1 53.5± 0.4 53.9± 1.6 50.1± 0.4 50.4± 1.5 91.4 ± 9.8 75.2± 3.4 73.2± 1.2 51.2± 1.4
ODDS FIRST 52.7± 0.1 51.3± 0.2 51.5± 0.5 51.1± 0.2 50.8± 0.2 50.5± 0.1 62.5± 2.0 65.9 ± 1.6 62.2± 1.4 62.9± 1.3 52.7± 0.1
BINARY ADDITION 49.4± 0.3 47.3± 3.8 51.7± 1.3 48.5± 3.6 47.8± 5.4 48.9± 0.8 61.2± 1.7 62.0 ± 1.1 54.3± 1.5 57.4± 1.2 59.9± 1.3
BINARY MULTIPLICATION 49.8± 0.0 48.8± 1.0 50.2± 3.5 49.9± 2.3 49.6± 0.6 48.7± 1.7 51.8 ± 0.2 39.1± 7.1 49.2± 1.2 45.7± 6.6 51.6± 0.2
COMPUTE SQRT 50.2± 0.0 50.1± 0.0 51.5± 0.4 50.5± 0.2 50.3± 0.1 50.1± 0.1 51.9± 0.5 52.4 ± 0.6 51.1± 0.1 51.8± 0.3 51.0± 0.8
BUCKET SORT† 23.7± 0.0 25.6± 2.6 83.4± 6.6 29.3± 6.7 23.6± 3.8 20.7± 2.9 99.3± 0.4 99.4 ± 0.3 98.8± 0.7 99.3± 0.3 98.9± 0.4

Table 5: Accuracy (in %) averaged over all test lengths
for geometric attention with directional encoding.

Max Avg ± SD

Level Task Table 1 Geometric Table 4 Geometric

R

EVEN PAIRS 100.0 100.0 100.0± 0.0 94.5± 8.8
MODULAR ARITHMETIC (SIMPLE) 28.1 43.6 24.9± 1.7 27.2± 8.2
PARITY CHECK† 52.6 52.4 51.4± 0.5 51.6± 0.6
CYCLE NAVIGATION† 73.6 41.3 52.9± 15.3 32.9± 4.7

DCF

STACK MANIPULATION 77.9 58.3 71.7± 4.7 55.6± 2.3
REVERSE STRING 95.1 65.2 77.1± 6.6 59.3± 3.2
MODULAR ARITHMETIC 34.9 36.5 30.3± 2.6 32.8± 2.8
SOLVE EQUATION 28.1 31.7 25.4± 1.8 28.5± 2.0

CS

DUPLICATE STRING 75.1 58.6 73.1± 1.5 54.9± 1.6
MISSING DUPLICATE 100.0 64.4 91.4± 9.8 60.3± 2.3
ODDS FIRST 69.3 64.2 65.9± 1.6 58.1± 2.6
BINARY ADDITION 64.5 54.9 62.0± 1.1 53.5± 1.5
BINARY MULTIPLICATION 50.1 53.6 51.8± 0.2 52.1± 2.5
COMPUTE SQRT 53.3 54.1 52.4± 0.6 52.3± 0.9
BUCKET SORT† 100.0 78.3 99.5± 0.3 57.7± 11.4

B.3 Analysis589

Analyzing the activations As illustrated in590

Fig. 1, the main intuition behind our random-591

ized encodings is that they do not lead to out-592

of-distribution activations when evaluating on se-593

quences longer than the maximal training length.594

We confirm this intuition in our analysis in Fig. 5,595

which shows a 2D projection of activations onto the596

first two principal components when evaluating on597

sequences of length 40 (i.e., the maximum training598

length N , shown in blue) and length 150 (i.e., the599

generalization regime, shown in orange), using the600

same transformation. While the activations of our601

randomized relative encoding strongly overlap for602

the training and the generalization regimes in all603

layers, the standard relative encoding leads to out-604

of-distribution activations for sequence length 150605

in layers 3 and 4. We obtained qualitatively similar606

results for the sin / cos and learned encodings.607

To compute the results in Fig. 5, we generated 30 608

sequences of length 40 and 150 respectively, on the 609

REVERSE STRING task and passed them through a 610

well-trained model with either relative or random- 611

ized relative encodings. For each layer shown, we 612

fitted a (non-whitened) 2D PCA on the activations 613

obtained from sequence length 40 and projected 614

all activations from sequence length 150 into two 615

dimensions using the same transformations (yield- 616

ing 30× 40 and 30× 150 activation-datapoints per 617

layer). The random relative encoding attain an aver- 618

age accuracy of 1.0 and 0.994 on the 30 sequences 619

of length 40 and 150, respectively. The standard 620

relative encoding attain an average accuracy of 1.0 621

on sequence-length 40 and 0.596 on length 150, 622

indicating the model’s failure to generalize well 623

under the standard relative encoding. 624

Analyzing the attention matrices We also ana- 625

lyze the attention matrices learned with the relative 626

positional encoding and our corresponding random- 627

ized version on the REVERSE STRING task. To that 628

end, we follow Csordás et al. (2022) and visualize 629

the maximum over the 8 attention matrices (one 630

per head) for each of the 5 layers in Fig. 6. We 631

compare the attention matrices for sequences of 632

length 40 (i.e., the maximum training length) and 633

150 (i.e., significantly longer than the maximum 634

training length). For length 40, both encodings pro- 635

duce a noticeable X pattern, which corresponds to 636

the reversal of the string. However, for length 150, 637

the pattern only remains visible for our randomized 638

encodings while it breaks down for the original 639

version, indicating the failure to generalize. 640
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(a) Relative positional encoding (Dai et al., 2019).

(b) Randomized relative positional encoding (ours).

Figure 5: 2D PCA projections of the activations of the initial embeddings and the encoder layers for 30 sequences on
the REVERSE STRING task. For sequence-lengths beyond the training length (shown in orange), the standard relative
encoding clearly leads to out-of-distribution activations for layers 3 and 4 compared to those obtained with the
maximum training length (shown in blue). In contrast, our randomized version does not lead to out-of-distribution
activations for sequences longer than the maximum training length, confirming the intuition in Fig. 1.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

(a) Relative with a sequence of length 40.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

(b) Relative with a sequence of length 150.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

(c) Randomized relative (ours) with a sequence of length 40.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

(d) Randomized relative (ours) with sequence of length 150.

Figure 6: Analysis of the attention matrices for the relative and randomized relative positional encodings on the
REVERSE STRING task using sequences of length 40 (i.e., maximum training length) and 150 (i.e., beyond training
lengths). We visualize the maximum over the 8 heads per layer (following Csordás et al., 2022) and observe a clear
X pattern, which corresponds to the reversal of the sequence. Our randomized relative encodings maintain that
pattern on longer sequences, while it breaks down for the standard relative encoding.
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