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ABSTRACT

In the last decade, reinforcement learning successfully solved complex control
tasks and decision-making problems, like the Go board game. Yet, there are few
success stories when it comes to deploying those algorithms to real-world scenarios.
One of the reasons is the lack of guarantees when dealing with and avoiding unsafe
states, a fundamental requirement in critical control engineering systems. In this
paper, we introduce Guided Safe Shooting (GuSS), a model-based RL approach
that can learn to control systems with minimal violations of the safety constraints.
The model is learned on the data collected during the operation of the system in an
iterated batch fashion, and is then used to plan for the best action to perform at each
time step. We propose three different safe planners, one based on a simple random
shooting strategy and two based on MAP-Elites, a more advanced divergent-search
algorithm. Experiments show that these planners help the learning agent avoid
unsafe situations while maximally exploring the state space, a necessary aspect
when learning an accurate model of the system. Furthermore, compared to model-
free approaches, learning a model allows GuSS reducing the number of interactions
with the real-system while still reaching high rewards, a fundamental requirement
when handling engineering systems.

1 INTRODUCTION

Figure 1: An illustrative example of planning with model-based approach on the Acrobot environment.
The agent controls the torque on the first joint with the goal of getting its end effector as high as
possible, avoiding the unsafe zone (red area). Starting in the rest position (left) the agent uses
its model to find the best plan (middle) that will maximize the reward while satisfying the safety
constraint and execute it on the real system (right). The example is especially relevant to applications
in which safety and reward are traded off.

In recent years, deep Reinforcement Learning (RL) solved complex sequential decision-making
problems in a variety of domains, such as controlling robots, and video and board games (Mnih et al.,
2015; Andrychowicz et al., 2020; Silver et al., 2016). However, in the majority of these cases, success
is limited to a simulated world. The application of these RL solutions to real-world systems is still
yet to come. The main reason for this gap is the fundamental principle of RL of learning by trial
and error to maximize a reward signal (Sutton & Barto, 2018). This framework requires unlimited
access to the system to explore and perform actions possibly leading to undesired outcomes. This
is not always possible. For example, considering the task of finding the optimal control strategy
for a data center cooling problem (Lazic et al., 2018), the RL algorithm could easily take actions
leading to high temperatures during the learning process, affecting and potentially breaking the
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system. Another domain where safety is crucial is robotics. Here unsafe actions could not only break
the robot but could potentially also harm humans. This issue, known as safe exploration, is a central
problem in AI safety (Amodei et al., 2016). This is why most achievements in RL are in simulated
environments, where the agents can explore different behaviors without the risk of damaging the
real system. However, those simulators are not always accurate enough, if available at all, leading to
suboptimal control strategies when deployed on the real-system (Salvato et al., 2021).

With the long-term goal of deploying RL algorithms on real engineering systems, it is imperative
to overcome those limitations. A straightforward way to address this issue is to develop algorithms
that can be deployed directly on the real system that provide guarantees in terms of constraints, such
as safety, to ensure the integrity of the system. This could potentially have a great impact, as many
industrial systems require complex decision-making, which efficient RL systems can easily provide.
Going towards this goal, in this paper we introduce Guided Safe Shooting (GuSS), a safe Model
Based Reinforcement Learning (MBRL) algorithm that learns a model of the system and uses it to
plan for a safe course of actions through Model Predictive Control (MPC) (Garcia et al., 1989). GuSS
learns the model in an iterated batch fashion (Matsushima et al., 2021; Kégl et al., 2021), allowing
for minimal real-system interactions. This is a desirable property for safe RL approaches, as fewer
interactions with the real-system mean less chance of entering unsafe states, a condition difficult to
attain with model-free safe RL methods (Achiam et al., 2017; Ray et al., 2019b; Tessler et al., 2018).
Moreover, by learning a model of the system, this allows flexibility and safety guarantees as using the
model we can anticipate unsafe actions before they occur. Consider the illustrative example in Fig. 1:
the agent, thanks to the model of its dynamics, can perform “mental simulation” and select the best
plan to attain its goal while avoiding unsafe zones. This contrasts with many of the methods in the
literature that address the problem of finding a safe course of action through Lagrangian optimization
or by penalizing the reward function (Webster & Flach, 2021; Ma et al., 2021; Cowen-Rivers et al.,
2022). GuSS avoids unsafe situations by discarding trajectories that are deemed unsafe using the
model predictions. Within this framework, we propose three different safe planners, one based on
a simple random shooting strategy and two based on MAP-Elites (ME) (Mouret & Clune, 2015),
a more advanced Quality-Diversity (QD) algorithm. These planners are used to generate, evaluate,
and select the safest actions with the highest rewards. Using divergent-search methods for planning
allows the agent to more widely explore the possible courses of actions. This leads to both a safer and
more efficient search, while covering a higher portion of the state space, an important factor when
learning a model, given that more exploratory data lead to better models (Yarats et al., 2022).

We test GuSS on three different environments. The presented results highlight how the model and
planners can easily find strategies reaching high rewards with minimal costs, even when the two
metrics are antithetical, as is the case for the Safe Acrobot environment.

To recap, the contributions of the paper are the following:

• We introduce Guided Safe Shooting (GuSS), an MBRL method capable of efficiently
learning to avoid unsafe states while optimizing the reward;

• We propose the use of quality-diversity evolutionary methods as MAP-Elites (ME) as
planning techniques in MBRL approaches;

• We present 3 different planners, Safe Random Shooting (S-RS), Safe MAP-Elites (S-ME),
Pareto Safe MAP-Elites (PS-ME), that can generate a wide array of action sequences while
discarding the ones deemed unsafe during planning.

2 RELATED WORK

Some of the most common techniques addressing safety in RL rely on solving a Constrained Markov
Decision Process (CMDP) (Altman, 1999) through model-free RL methods (Achiam et al., 2017;
Ray et al., 2019b; Tessler et al., 2018; Hsu et al., 2021; Zhang et al., 2020). Among these approaches,
a well-known method is CPO (Achiam et al., 2017) which adds constraints to the policy optimization
process in a fashion similar to TRPO (Schulman et al., 2015). A similar approach is taken by PCPO
(Yang et al., 2020b) and its extension (Yang et al., 2020a). The algorithm works by first optimizing
the policy with respect to the reward and then projecting it back on the constraint set in an iterated
two-step process. A different strategy consists in storing all the “recovery” actions that the agent took
to leave unsafe regions in a separate replay buffer (Hsu et al., 2021). This buffer is used whenever
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the agent enters an unsafe state by selecting the most similar transition in the safe replay buffer and
performing the same action to escape the unsafe state.

Model-free RL methods need many interactions with the real-system in order to collect the data
necessary for training. This can be a huge limitation in situations in which safety is critical, where
increasing the number of samples increases the probability of entering unsafe states. MBRL limits
this problem by learning a model of the system that can then be used to learn a safe policy. This
allows increased flexibility in dealing with unsafe situations, even more if the safety constraints
change in time.

Many of these methods work by modifying either the cost or the reward function to push the algorithm
away from unsafe areas. The authors of Uncertainty Guided Cross-Entropy Methods (CEM) (Webster
& Flach, 2021) extend PETS (Chua et al., 2018) by modifying the objective function of the CEM-
based planner to avoid unsafe areas. In this setting, an unsafe area is defined as the set of states for
which the ensemble of models has the highest uncertainty. A different strategy is to inflate the cost
function with an uncertainty-aware penalty function, as done in CAP (Ma et al., 2021). This cost
change can be applied to any MBRL algorithm and its conservativeness is automatically tuned through
the use of a PI controller. Another approach, SAMBA (Cowen-Rivers et al., 2022), uses Gaussian
Processes (GP) to model the environment. This model is then used to train a policy by including
the safety constraint in the optimization process through Lagrangian multipliers. Closer to GuSS
are other methods using a trajectory sampling approach to select the safest trajectories generated by
CEM (Wen & Topcu, 2018; Liu et al., 2020). This lets us deal with the possible uncertainties of the
model predictions that could lead to consider a trajectory safe when it is not.

3 BACKGROUND

In this section, we introduce the concepts of safe-RL and QD algorithms on which our method builds.

3.1 SAFE REINFORCEMENT LEARNING

Reinforcement learning problems are usually represented as a Markov decision process (MDP)
M = ⟨S,A,T , r, γ⟩, where S is the state space,A is the action space, T ∶ S ×A→ S is the transition
dynamics, r ∶ S×A→ R is the reward function and γ ∈ [0,1] is the discount factor. Let ∆(X ) denote
the family of distributions over a set X . The goal is to find a policy π ∶ S →∆(A) which maximizes
the expected discounted return π∗ = argmax

π
Eπ [∑t γ

tr(st, at)] (Sutton & Barto, 2018). This

formulation can be easily accommodated to incorporate constraints, for example representing safety
requirements. To do so, similarly to the reward function, we define a new cost function C ∶ S ×A→ R
which, in our case, is a simple indicator for whether an unsafe interaction has occurred (Ct = 1 if
the state is unsafe and Ct = 0 otherwise). The new goal is then to find an optimal policy π∗ with a
high expected reward Eπ [∑t γ

tr(st, at)] and a low safety cost Eπ [∑tC(st, at)]. One way to solve
this new problem is to rely on constrained Markov Decision processes (CMDPs) (Altman, 1999) by
adding constraints on the expectation (La & Ghavamzadeh, 2013) or on the variance of the return
(Chow et al., 2017).

3.2 MODEL BASED REINFORCEMENT LEARNING

In this work, we address the issue of respecting safety constraints through an MBRL ap-
proach (Moerland et al., 2021). In this setting, the transition dynamics preal are estimated us-
ing the data collected when interacting with the real system. The objective is to learn a model
p(st, at) ↝ st+11 to predict st+1 given st and at and use it to learn an optimal policy π∗. In
this work, we considered the iterated-batch learning approach (also known as growing batch
(Lange et al., 2012) or semi-batch (Singh et al., 1994)). In this setting, the model is trained
and evaluated on the real-system through an alternating two-step process consisting in: (i) ap-
plying and evaluating the learned policy on the environment for a whole episode and (ii) then
training the model on the growing data of transitions collected during the evaluation τ itself
T rt = {(s1, a1, r1, c1, s′1)0, . . . , (st, at, rt, ct, s′t)0, . . . , (s1, a1, r1, c1, s′1)τ , . . . , (st, at, rt, ct, s′t)τ}

1We use↝ to denote both probabilistic and deterministic mapping.
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and updating the policy. The process is repeated until a given number of evaluations or a certain
model precision is reached.

3.3 QUALITY DIVERSITY

QD methods are a family of Evolution Algorithms (EAs) performing divergent search with the goal of
generating a collection of diverse but highly performing policies (Pugh et al., 2016; Cully & Demiris,
2017). The divergent search is performed over a, usually hand-designed, behavior space B in which
the behavior of the evaluated policies is represented. Some of these methods have been shown, given
enough iterations, to be able to uniformly cover the whole behavior space (Doncieux et al., 2019).
Combining these methods with RL approaches then allows to greatly increase the exploration abilities
of RL algorithms.

Among the different QD methods introduced in the literature (Lehman & Stanley, 2011; Paolo et al.,
2021; Mouret & Clune, 2015), in this work we use the ME algorithm (Mouret & Clune, 2015) due to
its simplicity and power. A detailed description of how ME works and the related pseudo-code are
presented in Appendix A.

4 METHOD

In this work, we use a model of the environment to plan safe trajectories maximizing the reward
function. In many real settings it is possible to assume that the set of unsafe situations is specified by
the engineer. For this reason we consider that the cost function is given and the cost is calculated
from the states the system is in.

In this section, we describe in detail how GuSS trains the model and uses the planners. An overview
of the method is presented in Alg. 1. The code is available at: <URL hidden for review>.

Algorithm 1: Guided Safe Shooting (GuSS)
1 INPUT: real-system preal, number of episodes M , number of action sequences for planning step

N , planning horizon length h, episode length T , initial random policy π0;
2 RESULT: learned model p(⋅) and planner;
3 Initialize empty trace T r = ∅;
4 s0 ¢ preal ▷ Sample initial state from real system
5 for t in [0, ..., T] do
6 at ¢ π0(st) ▷ Generate random action
7 T r = T r⋃(at, st) ▷ Store transition in trace
8 st+1 ¢ preal(st, at) ▷ Apply action on real system and get new state
9 for i in [1,...,M] do

10 pi ← TRAIN(pi−1,T r) ▷ Train model
11 for t in [0, ..., T] do
12 at ¢ PLAN(pi, st, h,N) ▷ Use planner to generate next action
13 T r = T r⋃(at, st) ▷ Store transition in trace
14 st+1 ¢ preal(st, at) ▷ Apply action on real system and get new state

4.1 TRAINING THE MODEL

Let T rt = {(s1, a1, r1, c1, s′1)...(st, at, rt, ct, s′t)} be a system trace consisting of t steps and (st, at)
a state-action tuple. The goal is to train a model p to predict st+1 given the previous (st, at).
This model can be learned in a supervised fashion given the history trace T rt. We chose as p a
deterministic deep mixture density network (Bishop, 1994), which has proven to have good properties
when used in MPC (Kégl et al., 2021). More details on the model parameters and training can be
found in Appendix E.
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4.2 PLANNING FOR SAFETY

The trained model p(st, at) is used in an MPC fashion to select the action at to apply on the real
system. This means that at every time step t we use the model to evaluate N action sequences by
simulating the trajectories of length h from state st. For each action sequence, the return R and the
cost C

R =
h

∑
k=0

γkr(s̃k, ak), C =
h

∑
k=0

γkc(s̃k, ak); (1)

are evaluated, where s̃k is the state generated by the model p(⋅) and γ the discount factor. GuSS then
selects the first action of the best sequence, with respect to both the return and the cost. In this work,
we assume that both the reward function r(s, a) and the cost function c(s, a) are given. In reality,
this is not limiting, as in many real engineering settings both the reward and the cost are known
and given by the engineer. We tested three different approaches to generate and evaluate safe action
sequences at planning time.

4.2.1 SAFE RANDOM SHOOTING (S-RS)

Based on the Random Shooting planner used in Kégl et al. (2021), Safe Random Shooting (S-RS)
generates N random sequences of actions ai ∈ A of length h. These sequences are then evaluated
on the model starting from state st. The next action at to apply on the real system is selected from
the action sequence with the lowest cost. If multiple action sequences have the same cost, at is
selected from the one with the highest reward among them. The pseudocode of the planner is shown
in Appendix B.1.

4.2.2 SAFE MAP-ELITES (S-ME)

Safe MAP-Elites (S-ME) is a safe version of the ME algorithm detailed in Appendix A. Rather than
directly generating sequences of actions as done by S-RS, here we generate the weights ϕ of small
Neural Networks (NNs) that are then used to generate actions depending on the state provided as
input: ϕ(st) = at. This removes the dependency on the horizon length h of the size of the search
space present in S-RS. After the evaluation of a policy ϕi, this is added to the collection AME . If
another policy with the same behavior descriptor has already been found, S-ME only keeps the policy
with the lowest cost. If the costs are the same, the one with the highest reward will be stored.

Moreover, at each generation, the algorithm samples K policies ϕ from the collection to generate K
new policies ϕ̃. For this step, only the policies with C = 0 are considered. If there are enough policies
in the collection satisfying this requirement, the probability of sampling each policy is weighted by
its reward. On the contrary, if only k <K policies with C = 0 are in the collection, the missing K − k
are randomly generated. This increases the exploration and can be useful in situations in which it is
difficult not to incur in any cost. The pseudocode of the planner is shown in Appendix B.2.

4.2.3 PARETO SAFE MAP-ELITES (PS-ME)

Another safe version of the ME algorithm. Contrary to S-ME, which only samples policies for
which C = 0, PS-ME sorts all the policies present in the collection into non-dominated fronts. The
K policies are then sampled from the best non-dominated front. In case less than K policies are
present on this front, PS-ME samples them from the other non-dominated front, in decreasing order
of non-domination, until all K policies are selected.

This strategy takes advantage of the search process operated until that point even when not enough
safe solutions are present, rather than relying on random policies as done with S-ME. The pseudo
code of the planner is shown in Appendix B.3.

5 EXPERIMENTS

5.1 ENVIRONMENTS

We test GuSS on two different OpenAI gym environments with safety constraints (pendulum swing-
up, Acrobot) and the OpenAI SafeCar-Goal safety-gym environment (Ray et al., 2019a). In the
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environment design we follow previous work (Cowen-Rivers et al., 2022; Ray et al., 2019b) and
delegate the details to Appendix C. Moreover, we use the stochastic version of the SafeCar-Goal
environment with the position of the unsafe areas randomly resampled at the beginning of each
episode. This makes the environment much harder, not allowing the agents to overfit the position of
the unsafe zones. To our knowledge, we are the first to use this version to test an MBRL approach,
where other works focused on the easier version with no layout randomization used by Yang et al.
(2021).

5.2 RESULTS

We compare GuSS with the three different planners introduced in Sec. 4.2 against various baselines.
To have a baseline about how much different are the performances of safe methods with respect to
unsafe ones, we compared against two unsafe versions of GuSS: RS and ME. RS performs random
shooting to plan for the next action, while ME uses vanilla MAP-Elites as a planner, without taking
into account any safety requirement. We also compared against the safe MBRL approach RCEM
(Liu et al., 2020) and its respective unsafe version, labeled CEM. Moreover, to show the efficiency
of model-based approaches when dealing with safety requirements, we compared against three
model-free baselines: CPO (Achiam et al., 2017), TRPO lag and PPO lag; all of them come from
the Safety-Gym benchmark (Ray et al., 2019b).

Figure 2: Mean reward and probability percentage of unsafe for Safe Pendulum environment. Dashed
curves indicate Model-free baselines and plain one Model-based approaches. Thicker lines represent
the proposed algorithms. The red dashed line indicates the random unsafe probability. All curves are
calculated over 5 random seed.

The algorithms are compared according to four metrics: Mean Asymptotic Reward (MAR), Mean
Reward Convergence Pace (MRCP), Probability percentage of unsafe (p(unsafe)[%]) and transient
probability percentage of unsafe (p(unsafe)[%]trans). The details on how these metrics are calculated
are defined in Appendix D.

The results are shown in Table 1. The MAR scores and the p(unsafe)[%] for the pendulum system
are shown in Fig. 2, while the ones for the acrobot system are in Fig. 3. Finally, Fig. 4 shows the
results for the SafeCar-Goal environment. Additional plots are presented in Appendices F and G.
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Figure 3: Mean reward and probability percentage of unsafe for Safe Acrobot environment. Dashed
curves indicate Model-free baselines and plain one Model-based approaches. Thicker lines represent
the proposed algorithms. The red dashed line indicates the random unsafe probability. All curves are
calculated over 5 random seed.

Figure 4: Mean reward and probability percentage of unsafe for SafeCar-Goal environment. Dashed
curves indicate Model-free baselines and plain one Model-based approaches. Thicker lines represent
the proposed algorithms. The red dashed line indicates the random unsafe probability. All curves are
calculated over 3 random seed.

6 DISCUSSION

The results presented in Sec. 5.2 show how GuSS can reach high performances while keeping safety
cost low on two of the three environments tested. As expected, on Acrobot, safe methods reach
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Table 1: Summary of the different methods on the two different environments Pendulum and Acrobot.
MAR is the mean asymptotic reward, MRCP(rthr) is the number of system access steps needed
to achieve rthr of the optimum reward, p(unsafe)[%] and p(unsafe)[%]trans are the probability
percentage of being unsafe during epochs. All the metrics are average over all epochs and seeds and
↓ and ↑ mean lower and higher the better, respectively. The best safe methods with respect to each
metric are highlighted in bold. All ± values are 90% Gaussian confidence interval.

Method MAR ↑ MRCP×103 ↓ p(unsafe)[%] ↓ p(unsafe)trans[%] ↓
Safe Pendulum rthr = −2.5

GuSS(S-RS) -2.09 ± 0.09 2.12 ± 1.45 0.35 ± 0.63 1.23 ± 1.28
GuSS(S-ME) -2.2 ± 0.16 2.0 ± 0.9 0.63 ± 0.57 0.54 ± 0.57
GuSS(PS-ME) -2.27 ± 0.17 2.10 ± 1 0.58 ± 0.52 0.6 ± 0.56
RCEM -6.12 ± 0.15 6.7 ± 0.81 0.63 ± 0.64 0.84 ± 0.7

RS -2.7 ± 0.14 2.60 ± 1.2 1.49 ± 1.0 1.36 ± 0.61
ME -2.53 ± 0.19 1.90 ± 0.7 3.01 ± 2.78 2.01 ± 1.95
CEM -2.99 ± 0.15 1.64 ± 0.41 1.59 ± 0.89 1.43 ± 0.85

CPO -6.06 ± 0.04 22 ± 0.0 1.73 ± 0.92 1.59 ± 0.78
PPO lag -4.1 ± 0.12 138 ± 65 2.05 ± 1.75 2.15 ± 1.48
TRPO lag -7.02 ± 0.03 161 ± 55 1.31 ± 0.91 2.07 ± 0.89

Safe Acrobot rthr = 1.6
GuSS(S-RS) 1.35 ± 0.07 1.6 ± 0.26 1.1 ± 1.05 1.85 ± 1.56
GuSS(S-ME) 1.64 ± 0.01 1.36 ± 0.25 1.1 ± 1.22 2.45 ± 1.92
GuSS(PS-ME) 1.65 ± 0.01 1.56 ± 0.11 1.42 ± 1.62 3.75 ± 2.77
RCEM 1.68 ± 0.01 1.60 ± 0.37 2.01 ± 1.4 2.85 ± 1.84

RS 2.07 ± 0.01 1.28 ± 0.29 24.8 ± 8.3 10.85± 7.36
ME 2.12 ± 0.02 1.12 ± 0.24 25.6 ± 7.91 12.18± 7.95
CEM 2.12 ± 0.02 1.40 ± 0.43 24.9 ± 8.91 9.14 ± 7.17

CPO 0.94 ± 0.01 87 ± 59 5.43 ± 1.74 4.35 ± 2.49
PPO lag 0.94 ± 0.01 24 ± 3 3.7 ± 1.94 4.02 ± 2.46
TRPO lag 1.02 ± 0.01 37 ± 22 4.2 ± 2.0 4.31 ± 2.53

SafeCar-Goal rthr = 10
GuSS(S-RS) -0.29 ± 0.22 - ± - 0.69 ± 1.04 0.49 ± 0.83
GuSS(S-ME) 15.25 ± 1.65 32 ± 0.0 1.99 ± 3.52 0.55 ± 0.9
GuSS(PS-ME) 10.01 ± 1.49 12.33 ± 4.54 1.95 ± 2.71 0.76 ± 1.10
RCEM -1.41 ± 0.21 - ± - 0.50 ± 0.83 0.63 ± 0.99

CEM 0.37 ± 1.77 58 ± 9.31 1.21 ± 2.47 0.67 ± 1.26

CPO 3.95 ± 0.09 297 ± 153.6 0.55 ± 1.11 0.42 ± 0.68
PPO lag 5.36 ± 0.1 231 ± 121.24 0.66 ± 1.51 0.34 ± 0.58
TRPO lag 3.66 ± 0.07 108 ± 0.0 0.65 ± 1.58 0.39 ± 0.72

lower MAR scores compared to unsafe ones due to these last ones ignoring the safety constraints. At
the same time, this leads to much higher p(unsafe) for unsafe approaches. Interestingly, this is not
the case on Pendulum where unsafe approaches tend to have lower MAR scores compared to safe
methods even while not respecting safety criteria. The best unsafe method, ME, has in fact a MAR of
−2.53± 0.19 while the worst MBRL safe method, PS-ME, has a MAR of −2.27± 0.17 (p < 1e− 08).
This is likely due to the unsafe region effectively halving the search space. The left hand side in fact
provides lower "safe rewards" compared to the right hand side, pushing the safe algorithms to focus
more on swinging the arm towards the right than the left. This is particularly visible in Appendices F
between the safe and unsafe methods where the unsafe area cleanly cuts the distribution of visited
states. Moreover, while the safe methods, and in particular ME cover a larger part of the state space,
the safe ones tend to focus much more on the high rewarding state.
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When comparing the performances of the different safe planners for GuSS, it is possible to notice
how the simpler S-RS planner outperforms the more complex S-ME and PS-ME on Pendulum with
respect to both MAR (p < 0.02) and p(unsafe) (p < 0.05). This is not the case on the more complex
Acrobot, where the improved search strategies performed by S-ME and PS-ME reach higher MAR
scores compared to S-RS (p < 0.02), while being comparable with respect to the safety cost. This
hints at the fact that while a simple strategy like S-RS is very efficient in simple set-ups, more
advanced planning techniques are needed in more complex settings. RCEM the closest method to
GuSS, failed on Pendulum but reached higher MAR on Acrobot, however with twice the safety cost.

The need for more complex planners is even more evident on the hardest environment we tested:
SafeCar-Goal. Here, S-ME and PS-ME clearly outperforms all other methods, even the model-free
approaches, in terms of MAR. At the same time, both methods show to be the most unsafe. In fact,
while on the p(unsafe)trans metric S-ME and PS-ME perform similarly to the model-free approaches,
this is not the case for the p(unsafe) which increases to surpass the random unsafe probability before
decreasing to acceptable levels. This can be explained by the increased complexity of the environment
due to the layout randomization of the unsafe areas at the beginning of each episode, which requires
for the model to generalize in order to safely navigate the environment. This effect is supported
looking at S-ME and PS-ME where respectively at around 50k steps p(unsafe) drops while the
reward increases. A similar effect can be observed with CEM but here there is no reward increase.
Moreover, while the high p(unsafe) during the training seems to be consistent with simply ignoring
the safety, closer inspection shows that this is not the case. The planning agent mostly avoids unsafe
areas, with the exception of when it does an error and traverses them. In that case, it tends to get
stuck on them without being able to leave. This is possible due to the nature of the observables inside
the unsafe regions and requires a more in-depth investigation.

At the same time, while model-free methods tend to remain safer than GuSS, they require at least an
order of magnitude more real-system interactions while still obtaining low MAR scores.

These results seem to confirm how the increased exploration of QD methods helps with the collection
of more informative data, crucial when learning the model in the MBRL setting. This is particularly
visible in the Safety-gym environment where no other baselines methods manage to solve the
environment.

7 CONCLUSION AND FUTURE WORK

In this study, we proposed GuSS, a model based planning method for safe reinforcement learning.
We tested the method on three environments with safety constraints and the results show that, while
being simple, GuSS provides good results in terms of both safety and reward trade-off with minimal
computational complexity. Moreover, we observed that in some settings, like Safe Pendulum, the
introduction of safety constraints can lead to a better completion of the task. Further experiments
are needed to confirm this effect, but if this holds, it could be possible to take advantage of it in a
curriculum learning fashion: starting from strict safety constraints and incrementally relaxing them
to get to the final task and safety requirement. This could help even more in the application of RL
methods to real engineering systems, allowing the engineers handling the system to be more confident
in the performances of the methods.

Notwithstanding the great results obtained by our proposed approach, the performances of GuSS are
still tied to the accuracy of the model. If the model is wrong, it could easily lead the agent to unsafe
states. This is particularly noticeable in the SafeCar-Goal environment, where the unsafe areas layout
randomization renders the environment particularly hard for model based approaches. This led our
method to obtain high reward but also high cost. As discussed in Section 6, these results require
more in depth analysis, but also open the path to new directions of research. A possible solution to
the problem of the model inaccuracy is to have uncertainty aware models that can predict their own
uncertainty on the sampled trajectories and use it to be more conservative in terms of safety when
learning the model. At the same time, the ME-based safe planners we proposed also suffer from
the limitation of many QD approaches, namely the need to hand-design the behavior space. While
some works have been proposed to address this issue (Cully, 2019; Paolo et al., 2020), these add
another layer of complexity to the system, possibly reducing performance with respect to the safety
constraints.
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REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we will release the code at <URL hidden for review>, once
the paper has been accepted. Moreover, the code is also attached to the submission as supplementary
material.

Finally, all the hyperparameters of the algorithms are listed in Appendix E and the detailed pseudocode
is shown in Appendix B.
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A MAP-ELITES

In MAP-Elites (ME) the behavior space B is discretized through a grid with the algorithm trying to
fill every cell of the grid (Mouret & Clune, 2015). ME starts by sampling the parameters ϕ ∈ Φ of M
policies from a random distribution and evaluating them in the environment. The behavior descriptor
bi ∈ B of a policy ϕi is then calculated from the sequence of states traversed by the system during
the policy evaluation. This descriptor is then assigned to the corresponding cell in the discretized
behavior space. If no other policy with the same behavior descriptor is discovered, ϕi is stored as
part of the collection of policies AME returned by the method. On the contrary, the algorithm only
stores, in the collection, the policy with the highest reward among those with the same behavior
descriptor. This allows the gradual increase of the quality of the policies stored in AME. At this point,
ME randomly samples a policy from the collection, and uses it to generate a new policy ϕ̃i to evaluate.
The generation of ϕ̃i is done by adding random noise to its parameters through a variation function
V(⋅). The cycle repeats until the given evaluation budget N is depleted. The pseudo-code of ME is
shown in Alg. 2.

Algorithm 2: MAP-Elites
1 INPUT: real system preal, initial state s0, evaluation budget N , parameter space Φ, discretized

behavior space B, variation function V(⋅), number of initial policies M , episode length H;
2 RESULT: collection of policies AME;
3 AME = ∅ ▷ Initialize empty collection
4 Γ← SAMPLE(Φ,M) ▷ Sample initial M policies
5 R,C,Treal = ROLLOUT(preal, s0, ϕi,H), ∀ϕi ∈ Γ ▷ Evaluate policies in the real system
6 bi = f(ϕi,T i

real), ∀ϕi ∈ Γ and ∀T i
real ∈ Treal ▷ Calculate policies behavior descriptors

7 AME ← ϕi, ∀ϕi ∈ Γ ▷ Store policies in collection
8 while N not depleted do
9 Γ¢ SELECT(AME,K,Φ) ▷ Select K policies from collection

10 Γ̃¢ V(Γ) ▷ Generate new policies
11 R,C,Treal = ROLLOUT(preal, s0, ϕ̃i,H), ∀ϕ̃i ∈ Γ̃ ▷ Evaluate new policies in the real

system
12 bi = f(ϕ̃i,T i

real), ∀ϕ̃i ∈ Γ̃ and ∀T i
real ∈ Treal ▷ Calculate behavior descriptors

13 AME ← ϕ̃i, ∀ϕ̃i ∈ Γ̃ ▷ Store policies in collection
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B PLANNERS PSEUDOCODE

This appendix contains the pseudo code of the three planners introduced in the paper. Each planner
evaluates a policy on the model through a ROLLOUT function detailed in Alg. 3.

Algorithm 3: ROLLOUT
1 INPUT: model p, initial state s0, policy ϕ, horizon length h;
2 RESULT: collected reward R, collected cost C, simulated trace Tmodel;
3 Tmodel = ∅ ▷ Initialize empty trace
4 for j in [0, . . . , h] do
5 aj ¢ ϕ(sj) ▷ Draw action from policy
6 sj+1 ¢ p(sj , aj) ▷ Draw next predicted state
7 Tmodel = Tmodel⋃(sj , aj) ▷ Update trace
8 R = ∑h

j=0 γ
jr(sj , aj) ▷ Calculate reward of action sequence

9 C = ∑h
j=0 γ

jc(sj , aj) ▷ Calculate cost of action sequence

B.1 SAFE RANDOM SHOOTING

Algorithm 4 shows the pseudocode of the Safe Random Shooting (S-RS) planner.

Algorithm 4: S-RS
1 INPUT: model p, current real-system state st, planning horizon h, evaluated action sequences N ,

action space A;
2 RESULT: action to perform at;
3 AS = ∅ ▷ Initialize empty collection of action sequences
4 for i in [0, . . . , N] do
5 ϕi = [at, . . . , at+h]¢ SAMPLE(A, h) ▷ Sample action sequence
6 Ri, Ci, T i

model = ROLLOUT(p, st, ϕi, h) ▷ Evaluate action sequence
7 AS = AS⋃(ϕi,Ri,Ci) ▷ Store evaluated action sequence
8 ASlc ¢ AS ▷ Get action sequences with lowest cost
9 ϕbest ¢ ASlc ▷ Get action sequence with highest reward

10 at ¢ ϕbest(st) ▷ Get next action

B.2 SAFE MAP-ELITES

Algorithm 6 shows the pseudocode of the Safe MAP-Elites (S-ME) method. The SELECT function
is shown in Alg. 5.

Algorithm 5: SELECT function of S-ME planner
1 INPUT: Collection of policies AME, Number of policies to select K, Policy parameter space Φ ;
2 RESULT: set of selected policies Γ;
3 Γ = ∅ ▷ Initialize empty set of selected policies
4 Γ¢ AME[C = 0] ▷ Select policies with C = 0 from collection
5 if size(Γ) <K then
6 Γ = Γ⋃SAMPLE(Φ) ▷ Sample missing policies from parameter space
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Algorithm 6: S-ME
1 INPUT: model p, current real-system state st, planning horizon h, evaluated action sequences N ,

discretized behavior space B, variation function V(⋅), number of initial policies M , number of
policies per iteration K, policy parameter space Φ ;

2 RESULT: action to perform at;
3 AME = ∅ ▷ Initialize empty collection of policies
4 Γ← SAMPLE(Φ,M) ▷ Sample initial M policies
5 R,C,Tmodel = ROLLOUT(p, st, ϕi, h), ∀ϕi ∈ Γ ▷ Evaluate policies in the model
6 bi = f(ϕi,T i

model), ∀ϕi ∈ Γ and ∀T i
model ∈ Tmodel ▷ Calculate policies behavior descriptors

7 AME ← ϕi, ∀ϕi ∈ Γ ▷ Store policies in collection
8 while N not depleted do
9 Γ¢ SELECT(AME,K,Φ) ▷ Select K policies with C = 0 from collection

10 Γ̃¢ V(Γ) ▷ Generate new policies
11 R,C,Tmodel = ROLLOUT(p, st, ϕ̃i, h), ∀ϕ̃i ∈ Γ̃ ▷ Evaluate new policies in the model
12 bi = f(ϕ̃i,T i

model), ∀ϕ̃i ∈ Γ̃ and ∀T i
model ∈ Tmodel ▷ Calculate behavior descriptors

13 AME ← ϕ̃i, ∀ϕ̃i ∈ Γ̃ ▷ Store policies in collection
14 Γlc ¢ AS ▷ Get policies with lowest cost
15 ϕbest ¢ Γlc ▷ Get policy with highest reward
16 at ¢ ϕbest(st) ▷ Get next action

B.3 PARETO SAFE MAP-ELITES

The Pareto Safe MAP-Elites (PS-ME) planner works similarly to the S-ME one with the exception of
the SELECT function at line 9 of Alg. 6. So for this planner we just report the pseudocode of this
function in Alg. 7.

Algorithm 7: SELECT function of PS-ME planner
1 INPUT: Collection of policies AME, Number of policies to select K, Policy parameter space Φ ;
2 RESULT: set of selected policies Γ;
3 Γ = ∅ ▷ Initialize empty set of selected policies
4 [Γ0

ND, . . . ,Γ
n
ND]¢ NON_DOMINATED_SORT(AME) ▷ Sort collection into non dominated

fronts
5 i = 0
6 while size(Γ) <K do
7 Γ¢ Γi

ND ▷ Select policies from best front
8 i = i + 1
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C ENVIRONMENTS

C.1 SAFE PENDULUM

Figure 5: Pendulum
upright task.

A safe version of OpenAI’s swing up pendulum Luis, in which the unsafe
region corresponds to the angles in the [20○,30○] range, shown in red in Fig. 5.
The task consists in swinging the pendulum up without crossing the unsafe
region. The agent controls the torque applied to the central joint and receives
a reward given by r = −θ2 + 0.1θ̇2 + 0.001a2, where θ is the angle of the
pendulum and a the action generated by the agent. Every time-step in which
θ ∈ [20○,30○] leads to a cost penalty of 1. The state observations consists of
the tuple s = (cos(θ), sin(θ), θ̇). Each episode has a length of T = 200.

C.2 SAFE ACROBOT

Figure 6: Acrobot up-
right task.

A safe version of the Acrobot environment (Brockman et al., 2016), shown
in Fig. 6. It consists in an underactuated double pendulum in which the
agent can control the second joint through discrete torque actions a =
{−1,0,1}. The state of the system is observed through six observables
s = (cos(θ0), sin(θ0), cos(θ1), sin(θ1), θ̇0, θ̇1). The reward r ∈ [0,4] cor-
responds to the height of the tip of the double pendulum with respect to the
hanging position. The unsafe area corresponds to each point for which the
height of the tip of the double pendulum is above 3 with respect to the hanging
position, shown in red in Fig. 6. Each episode has a length of T = 200 and
each time-step spent in the unsafe region leads to a cost penalty of 1.

For this environment, the constraint directly goes against the maximization of the reward. This is
similar to many real-world setups in which one performance metric needs to be optimized while
being careful not to go out of safety limits. An example of this is an agent controlling the cooling
system of a room whose goal is to reduce the total amount of power used while also keeping the
temperature under a certain level. The lowest power is used when the temperature is highest, but this
would render the room unusable. This means that an equilibrium has to be found between the amount
of used power and the temperature of the room, similarly on how the tip of the acrobot has to be as
high as possible while still being lower than 3.

C.3 SAFECAR-GOAL

Figure 7: Safety_gym environment

Introduced in Safety Gym (Ray et al., 2019b) it consists of a two-wheeled robot with differential drive
that has to reach a goal area in a position randomly selected on the plane, represented as the green
cylinder in Fig. 7.(c). When a goal is reached, another one is spawned in a random location. This
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repeats until the end of the episode is reached (at 1000 time-steps). On the plane there are multiple
unsafe areas, shown as blue circles in Fig. 7.(c), that the robot has to avoid. The placement of these
areas is randomly chosen at the beginning of each episode.

The agent can control the robot by setting the wheels speed, with a ∈ A = [−1,1]. The observations
consists of the data collected from multiple sensors: accelerometer, gyro, velocimeter, magnetometer,
a 10 dimensional lidar providing the position of the unsafe areas and the current position of the robot
with respect to the goal. This leads to an observation space of size 22.

In the original environment, the cost is computed using the robot position with respect to the position
of the different hazards areas. However, as these information are not available in the observations we
change the safety function using the Lidar readings and a predefined threshold of 0.9 above which a
cost of 1 is incurred.
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D METRICS

In this appendix we discuss the details on how the metrics used to compare the algorithms are defined.

Mean Asymptotic Reward (MAR). Given a trace T r and a reward rt = r(st, at) obtained at each
step t, we define the mean reward as R(T r) = 1

T ∑
T
t=1 rt. The mean reward in iteration τ is then

MR(τ) = R(T r(τ)t ). The measure of asymptotic performance (MAR), is the mean reward in the
second half of the epochs (we set N so that the algorithms converge after less than N/2 epochs)
MAR = 2

N ∑
N
τ=N/2MR(τ).

Mean Reward Convergence Pace (MRCP). To assess the speed of convergence, we define the
MRCP as the number of steps needed to achieve an environment-specific reward threshold rthr. The
unit of MRCP(rthr) is real-system access steps, to make it invariant to epoch length, and because it
better translates the sample efficiency of the different methods.

Probability percentage of unsafe (p(unsafe)[%]). To compare the safety cost of the different
algorithms, we compute the probability percentage of being unsafe during each episode as p(unsafe) =
100∗ 1

T ∑
T
k=0 Ck where T is the number of steps per episode. We also compute the transient probability

percentage p(unsafe)trans[%] as a measure to evaluate safety at the beginning of the training phase,
usually the riskiest part of the training process. It is computed by taking the mean of p(unsafe) on
the first 15% training epochs.
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E TRAINING AND HYPER-PARAMETERS SELECTION

All the training of model-based and model-free methods have been perform in parallel with 6 CPU
servers. Each server had 16 Intel(R) Xeon(R) Gold CPU’s and 32 gigabytes of RAM.

E.1 MODEL BASED METHOD

For the Safe Acrobot and Safe Pendulumn environments we used as model p a deterministic deep
auto-regressive mixture density network (DARMDNdet) while for the Safety-gym environment we
used the same architecture but without auto-regressivity (DMDNdet).

Table 2: Model and Agent Hyper-parameters

Safe Pendulum Safe Acrobot SafeCar-Goal
Model

Optimizer Adam Adam Adam
Learning rate 1e-3 1e-3 1e-3

D(AR)MDNdet Nb layers 2 2 2
Neurons per layer 50 50 50
Nb epochs 300 300 300

Planning Agents

CEM and RCEM Horizon 10 10 30
Nb actions sequence 20 20 3000
Nb elites 10 10 12

S-RS and RS Horizon 10 10 30
Nb actions sequence 100 100 3000

ME, S-ME, PS-ME Horizon 10 10 30
Nb policies 100 100 525
Nb initial policies 25 25 25
Nb policies per iteration 5 5 10
Behavior space grid size 50 × 50 50 × 50 20 × 20
Nb policy params. 26 83 77
Nb policy hidden layers 1 2 1
Nb policy hidden size 5 5 3
Policy activation func. Sigmoid Sigmoid Sigmoid

E.2 MODEL FREE METHOD

All model free algorithms implementation and hyper-parameters were taken from the
https://github.com/openai/safety-starter-agents repository.
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F OPTIMALITY

Safe-RL algorithms have to optimize the reward while minimizing the cost. Choosing which algorithm
is the best is a multi-objective optimization problem. Fig. 8 shows where each of the methods tested
in this paper resides with respect to the MAR score and the p(unsafe). Methods labeled with the same
number belong to the same optimality front with respect to the two metrics. A lower label number
indicates an higher performance of the method.

Figure 8

G EXPLORATION PLOTS

In this section we present plots about the explored state distribution for the different algorithms on
the two environments.

The State Coverage plots, leftmost one in the figures, represents the density of times a state has been
explored. The unsafe area is highlighted in red.

The Reward Heatmap plots, center ones, show the distribution of the visited states overimposed to
the reward landscape. The unsafe area is highlighted in red.
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The Reward bins plots, rightmost ones, show the histogram of visited stated with respect to the
reward of that state. The histograms are generated by dividing the interval between the minimum and
maximum reward possible in the environment into 10 buckets and counting how many visited states
obtain that reward.

It is possible to see on the reward plots for the Safe Acrobot environment in Appendix G.2 how
the safety constraint limits the number of times the states with r > 3 are visited by safe methods
compared to unsafe ones.

G.1 SAFE PENDULUM

Figure 9: Explored states for Safe Pendulum.For Safe Pendulum a state s corresponds to the
angular position and velocity of the pendulum (θ, θ̇). The states are color coded according to the
corresponding reward. The red-shaded area corresponds to the unsafe area. Each point represent an
explored state. Red points are safe states while blue points are unsafe ones. The size of the point is
proportional to the number of times that state has been visited.

Figure 10: Exploration plot for RS on Safe Pendulum.

Figure 11: Exploration plot for GuSS(S-RS) on Safe Pendulum.
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Figure 12: Exploration plot for ME on Safe Pendulum.

Figure 13: Exploration plot for GuSS(S-ME) on Safe Pendulum.

Figure 14: Exploration plot for GuSS(PS-ME) on Safe Pendulum.

Figure 15: Exploration plot for CEM on Safe Pendulum.
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Figure 16: Exploration plot for RCEM on Safe Pendulum.

G.2 SAFE ACROBOT

Figure 17: Exploration plot for RS on Safe Acrobot.

Figure 18: Exploration plot for GuSS(S-RS) on Safe Acrobot.

Figure 19: Exploration plot for ME on Safe Acrobot.
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Figure 20: Exploration plot for GuSS(S-ME) on Safe Acrobot.

Figure 21: Exploration plot for GuSS(PS-ME) on Safe Acrobot.

Figure 22: Exploration plot for CEM on Safe Acrobot.

Figure 23: Exploration plot for RCEM on Safe Acrobot.
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