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Abstract

Electrocardiography (ECG) analysis is crucial for cardiac diagnosis, yet existing1

foundation models often fail to capture the periodicity and diverse features required2

for varied clinical tasks. We propose ECG-MoE, a hybrid architecture that inte-3

grates multi-model temporal features with a cardiac period-aware expert module.4

Our approach uses a dual-path Mixture-of-Experts to separately model beat-level5

morphology and rhythm, combined with a hierarchical fusion network using LoRA6

for efficient inference. Evaluated on five public clinical tasks, ECG-MoE achieves7

state-of-the-art performance with 40% faster inference than multi-task baselines.8

1 Instruction9

Cardiovascular diseases remain the leading cause of global mortality [1]. Electrocardiography (ECG)10

is a primary non-invasive tool for cardiac assessment, with increasing relevance due to advances in11

wearable monitoring [2]. ECG interpretation relies on waveform-feature-disease correlations, where12

specific morphologies like QT prolongation or ST elevation indicate particular pathologies [3, 4, 5, 6].13

These features are often phase-localized within the periodic P-QRS-T cycle [7, 8].14
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Figure 1: Existing foundation models have limitations because different models capture distinct
ECG features, hindering multi-task performance within a single model. Furthermore, despite the
strong periodicity inherent in ECG signals, this characteristic is often overlooked by existing ECG
foundation models. To address these issues, we propose an ensemble learning method based on
Period MoE. The effectiveness of our approach is validated across five common downstream tasks.

Foundation models have shown promise in automated ECG diagnosis but struggle to comprehen-15

sively represent clinically nuanced, segment-specific features [9]. In particular, existing foundation16
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models have limitations because different models capture distinct ECG features, hindering multi-task17

performance within a single model. Furthermore, despite the strong periodicity inherent in ECG18

signals, this characteristic is often overlooked by existing ECG foundation models. They also incur19

high computational costs, hindering clinical adoption. Moreover, they often fail to align with ECG’s20

inherent periodicity, where each heartbeat carries distinct diagnostic information [10, 11, 12], making21

it difficult to leverage rhythmic consistency while accommodating pathological variations [13, 14].22

To address these issues, as shown in Figure 1, we introduce ECG-MoE, a hybrid architecture that23

integrates multi-model temporal features [15] with a dual-path Mixture-of-Experts (MoE) using task-24

conditioned gating [16]. Specifically, we propose an ensemble learning method based on Period MoE.25

We employ Low-Rank Adaptation (LoRA) for parameter-efficient fusion [17, 18]. The effectiveness26

of our approach is validated across five common downstream tasks. Validated on five clinical tasks,27

ECG-MoE achieves state-of-the-art performance with 40% faster inference and improved robustness.28

2 Related Works29

Electrocardiogram Foundation Models. Recent deep learning advances have developed ECG foun-30

dation models using CNNs [19] and Transformers [15] for tasks like arrhythmia detection. While31

pretraining and self-supervision [20] learn general features, these approaches often treat ECGs as32

generic time-series, neglecting the inherent periodicity critical to cardiac electrophysiology [10, 13].33

This results in suboptimal handling of phase-localized abnormalities and inefficient rhythm modeling,34

which is a gap our period-conditioned framework directly addresses.35

ECG Periodicity Modeling. ECG’s quasi-periodicity has been exploited via segmentation [14] and36

rhythm-tracking methods, yet these struggle with pathological variations and holistic modeling.37

Although RNNs [21] capture temporal dependencies, they are inefficient and sensitive to period38

variability. No current framework incorporates periodicity as a core inductive bias for foundation39

models, despite its diagnostic importance [7, 12].40

Multi-Task ECG Analysis. Multi-task learning (MTL) addresses simultaneous cardiac condition41

detection, but shared-backbone approaches [22] suffer from interference, especially in complex42

diagnostics like ST-segment analysis [6]. Modular or parameter-efficient designs improve scalability43

but ignore ECG’s phase-specific biomarkers. Existing models fail to combine task-specific feature44

extraction with periodicity constraints. ECG-MoE overcomes this via hierarchical fusion and task-45

conditioned gating, enabling efficient and accurate multi-task inference.46

3 Method47

As shown in Figure 2, our proposed ECG analysis framework employs a multi-branch architecture48

that synergistically integrates heterogeneous feature representations while explicitly modeling cardiac49

periodicity. The model comprises three modules, each with distinct mathematical formulations:50
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Figure 2: ECG-MoE framework: ① Multi-model feature extraction with adaptive downsampling, ②
Period-aware gating weight generation via specialized MoE, ③ Multi-Task fusion using LoRA.

Multi-Model Feature Extraction. Our framework integrates five time-series foundation models to51

capture diverse ECG characteristics. For input X ∈ RC×T , each model extracts features after52
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adaptive downsampling:53

Fk = fθk(DSk(X)) (1)
Features are projected and concatenated into a unified representation:54

Fm =
⊕

k ∈ M(WkFk + bk) (2)

This ensemble approach captures complementary temporal patterns from different model architectures,55

enhancing feature diversity.56

Periodic Expert Network. We design a dual-path MoE architecture to model ECG periodicity. R-peak57

detection segments the signal into individual heartbeats, which are normalized to fixed length. Three58

CNN experts with different kernel sizes process morphological features within beats, while two59

dilated CNNs capture inter-beat rhythm patterns. A task-conditioned gating mechanism dynamically60

weights expert contributions based on global signal characteristics and task embeddings:61

gp = softmax(Up[X̄⊕ et]) (3)

Features are integrated via multi-head attention to produce the final periodic representation Fperiodic.62

Multi-Task Fusion. A hierarchical gating network combines multi-model and periodic features based63

on task requirements. The gating weights α̂m and α̂p are learned through task-conditioned networks:64

Ffused = α̂mFm⊕ α̂pFperiodic (4)

Task-specific heads then generate predictions from the fused features. The model is optimized with a65

composite loss that combines task-specific objectives with contrastive regularization:66

L =

K∑
k=1

Ltaskk + λLcont (5)

This design enables efficient parameter sharing while maintaining specialized processing for diverse67

clinical tasks through end-to-end training.68

4 Experiments69

In this section, we evaluate the effectiveness of our proposed model from two key perspectives:70

performance and efficiency. Specifically, we compare its predictive accuracy across multiple tasks71

and analyze its computational efficiency in terms of training and inference costs. By examining72

these aspects, we aim to demonstrate the advantages of our model in achieving a balanced trade-off73

between accuracy and computational feasibility.74

4.1 Dataset and Baselines75

We utilize the MIMIC-IV-ECG [23] and PTB-XL [24] datasets. MIMIC-IV-ECG is currently the76

largest publicly released ECG repository, which contains 800,035 diagnostic electrocardiograms77

acquired from 161,352 unique patients. The PTB-XL dataset comprises 21,837 clinical 12-lead78

ECGs, each lasting 10 seconds, from 18,885 patients. We select TimesNet [25], DLinear [26],79

MOMENT [27], TEMPO [28] and ECG-FM [29] as baselines and construct an ensemble of them.80

4.2 Research Questions and Results81

RQ1: Model Selection Rationale. Why were specific foundation models selected, and what benefits82

does their ensemble provide?83

We evaluate SOTA time-series models based on architectural diversity and ECG applicability through84

zero-shot evaluation on 10,000 patient samples.85

Table 1 shows zero-shot performance of baseline models. We can get the key findings of ECG-FM86

excels in clinical diagnostics with domain-specific pretraining. TimesNet captures morphologi-87

cal variations effectively. DLinear shows competence in temporal feature modeling. MOMENT88

underperforms without domain adaptation.89

These results validate our ensemble strategy, combining strengths of different architectures.90
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Table 1: Zero-shot performance of baseline models on ECG data. Highlighted are the top first
and second results. RR Interval Estimation (RR), Age Estimation (Age), Sex Classification (Sex),
Potassium Abnormality Prediction (Ka), Arrhythmia Detection (AD).

TimesNet DLinear MOMENT TEMPO ECG-FM
Regression

(MAE↓)
RR 817.0± 2.5 816.4± 2.9 816.6± 2.1 816.3± 1.9 816.3± 1.9
Age 62.28± 0.36 62.63± 0.50 62.61± 0.37 62.33± 0.38 62.27± 0.38

Binary Class
(F1↑)

Sex 0.60± 0.00 0.51± 0.08 0.34± 0.00 0.42± 0.00 0.33± 0.00
Ka 0.06± 0.00 0.05± 0.00 0.02± 0.00 0.18± 0.00 0.35± 0.00

15 Class
(ACC↑) AD 0.06± 0.01 0.03± 0.02 0.03± 0.02 0.02± 0.00 0.07± 0.00

RQ2: Performance Benchmarking. Does ECG-MoE outperform existing models on ECG analysis?91

We conduct comparative evaluation across five clinical tasks using 10,000 patients. As shown in92

Table 2, ECG-MoE achieves SOTA performance.93

Table 2: Performance of fine-tuned baseline models on five ECG downstream tasks. Bold values
represent the best performance.

TimesNet DLinear MOMENT TEMPO ECG-FM ECG-MoE
Regression

(MAE↓)
RR 304.3± 4.3 786.0± 5.4 146.9± 1.3 141.5± 2.1 147.3± 1.3 76.37 ± 4.7
Age 24.89± 0.07 28.46± 0.74 13.41± 0.45 13.52± 0.31 13.49± 0.17 12.83 ± 0.42

Binary Class
(F1↑)

Sex 0.51± 0.05 0.57± 0.01 0.69 ± 0.02 0.54± 0.01 0.52± 0.05 0.69 ± 0.01
Ka 0.41± 0.01 0.43± 0.01 0.49± 0.00 0.50± 0.00 0.49± 0.00 0.57 ± 0.00

15 Class
(ACC↑) AD 0.17± 0.00 0.48± 0.02 0.66± 0.03 0.54± 0.14 0.49± 0.03 0.73 ± 0.01

ECG-MoE reduces MAE in RR-interval estimation by 46.0% and improves arrhythmia detection94

accuracy by 10.6%, demonstrating superior diagnostic capability.95

RQ3: Computational Efficiency. Can ECG-MoE maintain viability under resource constraints?96

We measure GPU memory and throughput during inference. ECG-MoE achieves a breakthrough in97

efficiency by operating within a constrained 8.2 GB of GPU memory, which represents a significant98

35% reduction in resource consumption. It processes data at a rate of 14.7 samples per second,99

yielding a processing speed that is three times faster than real-time. Most importantly, the model100

maintains an optimal balance between this exceptional efficiency and high predictive accuracy. This101

supports operation in resource-limited environments without compromising performance.102

RQ4: Ablation Study. How do architectural components impact ECG-MoE’s performance?103

Table 3: Comprehensive performance comparison of various MoE and attention mechanisms against
the proposed ECG-MoE on ECG tasks.

MoE Time MoE Self-Attn Cross-Attn ECG-MoE
Regression

(MAE↓)
RR 103.47± 2.4 78.64± 1.4 117.46± 3.2 86.71± 5.8 76.37± 4.7
Age 16.49± 0.87 13.04± 0.14 15.47± 0.85 14.71± 0.51 12.83± 0.42

Binary Class
(F1↑)

Sex 0.53± 0.13 0.61± 0.10 0.54± 0.01 0.61± 0.02 0.69± 0.01
Ka 0.39± 0.17 0.50± 0.10 0.48± 0.00 0.48± 0.00 0.57± 0.00

15 Class
(ACC↑) AD 0.62± 0.01 0.74± 0.00 0.67± 0.00 0.69± 0.01 0.73± 0.00

As shown in Table 3, we evaluate MoE architectures, and attention mechanisms. Multi-task learning104

significantly enhances performance across various clinical tasks. ECG-MoE’s cardiac rhythm-aware105

gating mechanism notably outperforms generic mixture-of-experts approaches, while its hybrid106

attention module enables precision diagnostics by achieving a 53.5% improvement in RR-interval107
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accuracy. Furthermore, routing heatmaps reveal physiologically plausible patterns of expert activation,108

reinforcing the model’s clinical interpretability.109
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