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Abstract

Electrocardiography (ECQG) analysis is crucial for cardiac diagnosis, yet existing
foundation models often fail to capture the periodicity and diverse features required
for varied clinical tasks. We propose ECG-MOoE, a hybrid architecture that inte-
grates multi-model temporal features with a cardiac period-aware expert module.
Our approach uses a dual-path Mixture-of-Experts to separately model beat-level
morphology and rhythm, combined with a hierarchical fusion network using LoRA
for efficient inference. Evaluated on five public clinical tasks, ECG-MoE achieves
state-of-the-art performance with 40% faster inference than multi-task baselines.

1 Instruction

Cardiovascular diseases remain the leading cause of global mortality [1]]. Electrocardiography (ECG)
is a primary non-invasive tool for cardiac assessment, with increasing relevance due to advances in
wearable monitoring [2]. ECG interpretation relies on waveform-feature-disease correlations, where
specific morphologies like QT prolongation or ST elevation indicate particular pathologies (3|4} 5, 16].
These features are often phase-localized within the periodic P-QRS-T cycle [[7, 18].

Challenges ECG-MoE Downstream Tasks
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Figure 1: Existing foundation models have limitations because different models capture distinct
ECG features, hindering multi-task performance within a single model. Furthermore, despite the
strong periodicity inherent in ECG signals, this characteristic is often overlooked by existing ECG
foundation models. To address these issues, we propose an ensemble learning method based on
Period MoE. The effectiveness of our approach is validated across five common downstream tasks.

Foundation models have shown promise in automated ECG diagnosis but struggle to comprehen-
sively represent clinically nuanced, segment-specific features [9]. In particular, existing foundation

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



29

30
31
32
33
34
35

36
37
38
39
40

41
42
43
44
45
46

47

48
49
50

51
52

models have limitations because different models capture distinct ECG features, hindering multi-task
performance within a single model. Furthermore, despite the strong periodicity inherent in ECG
signals, this characteristic is often overlooked by existing ECG foundation models. They also incur
high computational costs, hindering clinical adoption. Moreover, they often fail to align with ECG’s
inherent periodicity, where each heartbeat carries distinct diagnostic information [[10, [11} [12], making
it difficult to leverage rhythmic consistency while accommodating pathological variations [[13}[14].

To address these issues, as shown in Figure we introduce ECG-MOE, a hybrid architecture that
integrates multi-model temporal features [15] with a dual-path Mixture-of-Experts (MoE) using task-
conditioned gating [16]]. Specifically, we propose an ensemble learning method based on Period MoE.
We employ Low-Rank Adaptation (LoRA) for parameter-efficient fusion [17,[18]. The effectiveness
of our approach is validated across five common downstream tasks. Validated on five clinical tasks,
ECG-MOoE achieves state-of-the-art performance with 40% faster inference and improved robustness.

2 Related Works

Electrocardiogram Foundation Models. Recent deep learning advances have developed ECG foun-
dation models using CNNs [19] and Transformers [[13]] for tasks like arrhythmia detection. While
pretraining and self-supervision [20] learn general features, these approaches often treat ECGs as
generic time-series, neglecting the inherent periodicity critical to cardiac electrophysiology [[LO, [13]].
This results in suboptimal handling of phase-localized abnormalities and inefficient rhythm modeling,
which is a gap our period-conditioned framework directly addresses.

ECG Periodicity Modeling. ECG’s quasi-periodicity has been exploited via segmentation [14] and
rhythm-tracking methods, yet these struggle with pathological variations and holistic modeling.
Although RNNs [21] capture temporal dependencies, they are inefficient and sensitive to period
variability. No current framework incorporates periodicity as a core inductive bias for foundation
models, despite its diagnostic importance [7} [12].

Multi-Task ECG Analysis. Multi-task learning (MTL) addresses simultaneous cardiac condition
detection, but shared-backbone approaches [22]] suffer from interference, especially in complex
diagnostics like ST-segment analysis [6]. Modular or parameter-efficient designs improve scalability
but ignore ECG’s phase-specific biomarkers. Existing models fail to combine task-specific feature
extraction with periodicity constraints. ECG-MoE overcomes this via hierarchical fusion and task-
conditioned gating, enabling efficient and accurate multi-task inference.

3 Method

As shown in Figure 2| our proposed ECG analysis framework employs a multi-branch architecture
that synergistically integrates heterogeneous feature representations while explicitly modeling cardiac
periodicity. The model comprises three modules, each with distinct mathematical formulations:
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Figure 2: ECG-MoE framework: @ Multi-model feature extraction with adaptive downsampling, @

Period-aware gating weight generation via specialized MoE, ® Multi-Task fusion using LoRA.

Multi-Model Feature Extraction. Our framework integrates five time-series foundation models to

capture diverse ECG characteristics. For input X € R¢*”, each model extracts features after



53

54

55
56

57
58
59
60
61

62

63
64

65
66

67
68

69

70
71
72
73
74

75

76
77
78
79
80

81

82
83

84
85

86
87
88
89

90

adaptive downsampling:

Fk = f0,(DSk(X)) )]
Features are projected and concatenated into a unified representation:
Fm =Pk € M(W,Fy +by) 2)

This ensemble approach captures complementary temporal patterns from different model architectures,
enhancing feature diversity.

Periodic Expert Network. We design a dual-path MoE architecture to model ECG periodicity. R-peak
detection segments the signal into individual heartbeats, which are normalized to fixed length. Three
CNN experts with different kernel sizes process morphological features within beats, while two
dilated CNNs capture inter-beat rhythm patterns. A task-conditioned gating mechanism dynamically
weights expert contributions based on global signal characteristics and task embeddings:

g, = softmax(U,[X & et]) 3)

Features are integrated via multi-head attention to produce the final periodic representation Fperiodic.

Multi-Task Fusion. A hierarchical gating network combines multi-model and periodic features based
on task requirements. The gating weights &,,, and ap are learned through task-conditioned networks:

Ffused = amFm @ apFperiodic (@]

Task-specific heads then generate predictions from the fused features. The model is optimized with a
composite loss that combines task-specific objectives with contrastive regularization:

K
L= Z Etaskk + )\Lconl (5)

k=1

This design enables efficient parameter sharing while maintaining specialized processing for diverse
clinical tasks through end-to-end training.

4 Experiments

In this section, we evaluate the effectiveness of our proposed model from two key perspectives:
performance and efficiency. Specifically, we compare its predictive accuracy across multiple tasks
and analyze its computational efficiency in terms of training and inference costs. By examining
these aspects, we aim to demonstrate the advantages of our model in achieving a balanced trade-off
between accuracy and computational feasibility.

4.1 Dataset and Baselines

We utilize the MIMIC-IV-ECG [23]] and PTB-XL [24] datasets. MIMIC-IV-ECG is currently the
largest publicly released ECG repository, which contains 800,035 diagnostic electrocardiograms
acquired from 161,352 unique patients. The PTB-XL dataset comprises 21,837 clinical 12-lead
ECGs, each lasting 10 seconds, from 18,885 patients. We select TimesNet [25]], DLinear [26],
MOMENT [27]], TEMPO [28]] and ECG-FM [29] as baselines and construct an ensemble of them.

4.2 Research Questions and Results

RQI: Model Selection Rationale. Why were specific foundation models selected, and what benefits
does their ensemble provide?

We evaluate SOTA time-series models based on architectural diversity and ECG applicability through
zero-shot evaluation on 10,000 patient samples.

Table ] shows zero-shot performance of baseline models. We can get the key findings of ECG-FM
excels in clinical diagnostics with domain-specific pretraining. TimesNet captures morphologi-
cal variations effectively. DLinear shows competence in temporal feature modeling. MOMENT
underperforms without domain adaptation.

These results validate our ensemble strategy, combining strengths of different architectures.
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Table 1: Zero-shot performance of baseline models on ECG data. Highlighted are the top first
and second results. RR Interval Estimation (RR), Age Estimation (Age), Sex Classification (Sex),
Potassium Abnormality Prediction (Ka), Arrhythmia Detection (AD).

TimesNet DLinear MOMENT TEMPO ECG-FM

Regression  RR  817.0+2.5 8I164+29 8166+21 816.3+19 816.3+1.9
(MAE]) Age 062.28+0.36 62.63+£0.50 62.61+0.37 62.33+0.38 62.27+0.38
Binary Class Sex  0.60 £ 0.00 0.51+0.08 0.34£0.00 042+0.00 0.33+0.00
(F11) Ka 0.06+0.00 0.056+£0.00 0.02£0.00 0.18=0.00  0.3540.00

15 Class .
(ACCT) AD  0.06 £0.01 0.03£0.02 0.03£0.02 0.02+0.00 0.07=£0.00

RQ?2: Performance Benchmarking. Does ECG-MoE outperform existing models on ECG analysis?

We conduct comparative evaluation across five clinical tasks using 10,000 patients. As shown in
Table 2] ECG-MOoE achieves SOTA performance.

Table 2: Performance of fine-tuned baseline models on five ECG downstream tasks. Bold values
represent the best performance.

TimesNet DLinear MOMENT TEMPO ECG-FM ECG-MoE

Regression  RR  304.3+4.3 786.0+54 1469+13 141.5+2.1 1473+1.3 7637 +4.7
(MAE)) Age 24.89+0.07 28.46+0.74 13.41+045 13.524+0.31 13.494+0.17 12.83 +0.42

Binary Class Sex 0.51+0.05 0.57+0.01 0.69+0.02 0.54+0.01 0.52+0.05 0.69 £ 0.01
(F11) Ka 041+0.01 043£0.01 0494000 0.50£0.00 0.49+0.00 0.57 +0.00

15 Class
(ACCH)

AD 0.174+0.00 0484+0.02 066+0.03 054+0.14 0494+0.03 0.73 +0.01

ECG-MOoE reduces MAE in RR-interval estimation by 46.0% and improves arrhythmia detection
accuracy by 10.6%, demonstrating superior diagnostic capability.

RQ3: Computational Efficiency. Can ECG-MoE maintain viability under resource constraints?

We measure GPU memory and throughput during inference. ECG-MoE achieves a breakthrough in
efficiency by operating within a constrained 8.2 GB of GPU memory, which represents a significant
35% reduction in resource consumption. It processes data at a rate of 14.7 samples per second,
yielding a processing speed that is three times faster than real-time. Most importantly, the model
maintains an optimal balance between this exceptional efficiency and high predictive accuracy. This
supports operation in resource-limited environments without compromising performance.

RQA4: Ablation Study. How do architectural components impact ECG-MoE’s performance?

Table 3: Comprehensive performance comparison of various MoE and attention mechanisms against
the proposed ECG-MoE on ECG tasks.

MoE Time MoE | Self-Attn Cross-Attn | ECG-MoE

Regression RR  103.47+24 7864+14 | 11746+3.2 86.71£5.8 76.37 4.7
(MAE)) Age 16.49+087 13.04+0.14 | 1547+0.85 14.71£0.51 | 12.83 £0.42

Binary Class Sex 0.53+0.13 0.61£0.10 | 0.54£0.01 0.61+0.02 0.69 £0.01

(F171) Ka 0.39 +£0.17 0.50 £0.10 0.48 +0.00 0.48 +=0.00 0.57 +0.00
15 Class
(ACC) AD 0.62+0.01 0.74+0.00 | 0.67+0.00 0.69 £0.01 0.73 £0.00

As shown in Table E} we evaluate MoE architectures, and attention mechanisms. Multi-task learning
significantly enhances performance across various clinical tasks. ECG-MoE’s cardiac rhythm-aware
gating mechanism notably outperforms generic mixture-of-experts approaches, while its hybrid
attention module enables precision diagnostics by achieving a 53.5% improvement in RR-interval
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accuracy. Furthermore, routing heatmaps reveal physiologically plausible patterns of expert activation,
reinforcing the model’s clinical interpretability.

References
[1] Ala Alwan. Global status report on noncommunicable diseases 2010. 2011.

[2] Josef Stehlik, Carsten Schmalfuss, Biykem Bozkurt, Jose Nativi-Nicolau, Peter Wohlfahrt,
Stephan Wegerich, Kevin Rose, Ranjan Ray, Richard Schofield, Anita Deswal, et al. Continuous
wearable monitoring analytics predict heart failure hospitalization: the link-hf multicenter study.
Circulation: Heart Failure, 13(3):¢006513, 2020.

[3] Craig T January, L Samuel Wann, Joseph S Alpert, Hugh Calkins, Joaquin E Cigarroa, Joseph C
Cleveland, Jamie B Conti, Patrick T Ellinor, Michael D Ezekowitz, Michael E Field, et al. 2014
aha/acc/hrs guideline for the management of patients with atrial fibrillation: a report of the
american college of cardiology/american heart association task force on practice guidelines and
the heart rthythm society. Journal of the American College of Cardiology, 64(21):e1-€76, 2014.

[4] John R Montford and Stuart Linas. How dangerous is hyperkalemia? Journal of the American
Society of Nephrology, 28(11):3155-3165, 2017.

[5] Peter J Schwartz, Arthur J Moss, G Michael Vincent, and Richard S Crampton. Diagnostic
criteria for the long qt syndrome. an update. Circulation, 88(2):782-784, 1993.

[6] Kristian Thygesen, Joseph S Alpert, Allan S Jaffe, Bernard R Chaitman, Jeroen J Bax, David A
Morrow, Harvey D White, and Executive Group on behalf of the Joint European Society
of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association
(AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocar-
dial Infarction. Fourth universal definition of myocardial infarction (2018). Journal of the
American college of cardiology, 72(18):2231-2264, 2018.

[7] Galen S Wagner, Peter Macfarlane, Hein Wellens, Mark Josephson, Anton Gorgels, David M
Mirvis, Olle Pahlm, Borys Surawicz, Paul Kligfield, Rory Childers, et al. Aha/accf/hrs recom-
mendations for the standardization and interpretation of the electrocardiogram: part vi: acute
ischemia/infarction a scientific statement from the american heart association electrocardio-
graphy and arrhythmias committee, council on clinical cardiology; the american college of
cardiology foundation; and the heart rhythm society endorsed by the international society for
computerized electrocardiology. Journal of the American College of Cardiology, 53(11):1003—
1011, 2009.

[8] David S Rosenbaum, Lance E Jackson, Joseph M Smith, Hasan Garan, Jeremy N Ruskin, and
Richard J Cohen. Electrical alternans and vulnerability to ventricular arrhythmias. New England
Jjournal of medicine, 330(4):235-241, 1994.

[9] Zhongwei Wan, Che Liu, Xin Wang, Chaofan Tao, Hui Shen, Zhenwu Peng, Jie Fu, Rossella
Arcucci, Huaxiu Yao, and Mi Zhang. Meit: Multi-modal electrocardiogram instruction tuning
on large language models for report generation. arXiv preprint arXiv:2403.04945, 2024.

[10] Borys Surawicz and Timothy Knilans. Chou’s electrocardiography in clinical practice: adult
and pediatric. Elsevier Health Sciences, 2008.

[11] Antoni Bayes De Luna, Miquel Fiol-Sala, Antoni Bayes-Genis, and Adrian Baranchuk. Clinical
electrocardiography: a textbook. John Wiley & Sons, 2021.

[12] Gan-Xin Yan and Charles Antzelevitch. Cellular basis for the normal t wave and the elec-
trocardiographic manifestations of the long-qt syndrome. Circulation, 98(18):1928-1936,
1998.

[13] Gari D Clifford, Chengyu Liu, Benjamin Moody, Li-wei H Lehman, Ikaro Silva, Qiao Li,
Alistair E Johnson, and Roger G Mark. Af classification from a short single lead ecg recording:
The physionet/computing in cardiology challenge 2017. In 2017 computing in cardiology
(CinC), pages 1-4. IEEE, 2017.



156
157

158
159
160
161

162
163
164

165
166
167

168
169
170

171
172
173

174
175
176
177
178

179
180
181
182

183
184

186

187
188
189

191
192

193
194
195

197
198

199
200
201

202
203

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

Leif Sornmo and Pablo Laguna. Bioelectrical signal processing in cardiac and neurological
applications. Academic press, 2005.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106-11115,
2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix

multiplication for transformers at scale. Advances in neural information processing systems,
35:30318-30332, 2022.

Pranav Rajpurkar, Awni Y Hannun, Masoumeh Haghpanahi, Codie Bourn, and Andrew Y Ng.
Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint
arXiv:1707.01836, 2017.

Zachi I Attia, Peter A Noseworthy, Francisco Lopez-Jimenez, Samuel J Asirvatham, Abhishek J
Deshmukh, Bernard J Gersh, Rickey E Carter, Xiaoxi Yao, Alejandro A Rabinstein, Brad J
Erickson, et al. An artificial intelligence-enabled ecg algorithm for the identification of patients
with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. The
Lancet, 394(10201):861-867, 2019.

Jonathan Rubin, Saman Parvaneh, Asif Rahman, Bryan Conroy, and Saeed Babaeizadeh.
Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation
using short single-lead ecg recordings. In 2017 Computing in cardiology (cinc), pages 1-4.
IEEE, 2017.

Jinlong Ji, Xuhui Chen, Changqing Luo, and Pan Li. A deep multi-task learning approach
for ecg data analysis. In 2018 IEEE EMBS International conference on biomedical & health
informatics (BHI), pages 124—127. IEEE, 2018.

Brian Gow and et al. Mimic-iv-ecg: Diagnostic electrocardiogram matched subset, 2023.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I. Lunze,
Wojciech Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography
dataset. Scientific Data, May 2020.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
net: Temporal 2d-variation modeling for general time series analysis. arXiv preprint
arXiv:2210.02186, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121-11128, 2023.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

Kaden McKeen, Laura Oliva, Sameer Masood, Augustin Toma, Barry Rubin, and Bo Wang.
Ecg-fm: An open electrocardiogram foundation model. arXiv preprint arXiv:2408.05178, 2024.



	Instruction
	Related Works
	Method
	Experiments
	Dataset and Baselines
	Research Questions and Results


