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Abstract001

Innovators often exhibit cognitive fixation on002
existing solutions or nascent ideas, hindering003
the exploration of novel alternatives. This pa-004
per introduces a methodology for constructing005
Functional Concept Graphs (FCGs), intercon-006
nected representations of functional elements007
that support abstraction, problem reframing,008
and analogical inspiration. Our approach yields009
large-scale, high-quality FCGs with explicit ab-010
straction relations, overcoming limitations of011
prior work. We further present MUSE, an algo-012
rithm leveraging FCGs to generate creative in-013
spirations for a given problem. We demonstrate014
our method by computing an FCG on 500K015
patents, which we release for further research.016
A user study indicates that participants exposed017
to MUSE’s inspirations generated more cre-018
ative ideas, both in terms of absolute number019
(up to 19% increase over participants not given020
inspirations) and ratio (75%, compared to 49%021
for no inspirations).022

1 Introduction023

A well-documented challenge in design and024

problem-solving is fixation, wherein individuals025

become prematurely attached to a narrow set of026

familiar solutions or features, thereby impeding027

the generation of truly novel concepts (Jansson028

and Smith, 1991; Purcell and Gero, 1996). This029

cognitive inertia can significantly limit the effec-030

tive exploration of the design space – the abstract031

space of all possible solutions to a given problem.032

Navigating this complex space to identify diverse033

and high-quality solutions requires systematic ap-034

proaches that encourage cognitive flexibility and035

the consideration of a broad range of alternatives.036

Existing methodologies for ideation often fall037

short in robustly guiding designers out of fixation038

traps or in structuring the vastness of the design039

space in a functionally meaningful way. While040

keyword-based search can retrieve superficially re-041

lated concepts, it often fails to uncover deeper func- 042

tional analogies that are crucial for creative leaps 043

(Holyoak and Thagard, 1996). There is a growing 044

need for representations that capture the core func- 045

tional essence of ideas, enabling a more principled 046

exploration of potential solutions. 047

We build upon an idea explored in recent work, 048

that suggested decomposing ideas into their fun- 049

damental purposes (problems) and mechanisms 050

(solutions) and organizing these into a structured 051

representation called a Functional Concept Graph 052

(FCG) (Hope et al., 2022). In FCGs nodes corre- 053

spond to purposes and mechanisms of products; 054

edges either link between purposes and mecha- 055

nisms that achieve them, or between purposes and 056

their abstraction (i.e., a more general problems). 057

We posit that such a representation can serve 058

as a powerful cognitive scaffold for designers and 059

problem-solvers. Specifically, by enabling navi- 060

gation across interconnected functional elements, 061

it facilitates the abstraction of problem statements 062

and the discovery of analogical inspirations from 063

domains that might seem unrelated at the surface 064

Figure 1: An example of a Functional Concept Graph.
Node represent problem (spurposes, in blue) and solu-
tions (mechanisms, in orange). Connections between
problem nodes indicate abstraction. Connection be-
tween solution and problem nodes indicates the mecha-
nism can solve the problem.
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level (Gentner, 1983; Gick and Holyoak, 1980).065

For example, see Figure 1. Suppose an inventor066

wishes to protect their plants from the sun. They067

are familiar with standard mechanisms, such as068

shade canopies. Through the graph, they might069

discover analogous mechanisms linked to the same070

abstract purpose. For example, they might reach071

the purpose node “protect skin from sun” through072

shared parent “protect organisms from the sun”,073

which might inspire them to think of sunscreen074

for plants (which, surprisingly, has already been075

invented). Alternatively, they might explore even076

higher-level abstractions. This structured explo-077

ration can systematically help designers break free078

from initial conceptual ruts, reframe their under-079

standing of the problem, and ultimately chart more080

innovative trajectories within the design space.081

However, the implementation of Hope et al.082

(2022) was very limited. Most notably, their edges083

only capture simple co-occurrence patterns in the084

corpus; there is no guarantee of explicitly encoding085

abstraction. In addition, their annotation process086

relied heavily on crowdworkers, which resulted in087

a noisy graph, and graph-building did not scale.088

In this work, we take advantage of the tremen-089

dous recent progress of LLMs and reimagine Func-090

tional Concept Graphs. Our contributions are:091

• We propose a novel, scalable approach to con-092

structing Functional Concept Graphs that re-093

sults in richer, better-connected and less noisy094

graphs, whose edges explicitly encode abstrac-095

tion relations.096

• We compute an FCG on 500K patents, and097

release it for further research.098

• We introduce MUSE, an algorithm that, given099

an FCG and a target problem, can produce in-100

spirations for creatively solving the problem.101

• We conduct a user study and show MUSE in-102

spirations can enhance human creativity. Our103

analysis shows that using our inspirations, par-104

ticipants were able to come up with up to105

19% more creative solutions, in comparison to106

participants that did not receive inspirations.107

More importantly, 75% of the solutions pro-108

duced by participants exposed to MUSE’s in-109

spirations were deemed creative (compared110

to 49% for participants who did not see the111

inspirations).112

• We release all the data and code used for cre-113

ating the graph and analysis. 1114

1Code and data redacted for the anonymity period.

2 Functional Concept Graphs 115

Our goal is to automatically build a Functional Con- 116

cept Graph (FCG) (Hope et al., 2022) and develop 117

an algorithm to sample inspirations from it, given 118

a target problem. 119

Building upon the foundations of functional 120

modeling, an FCG provides a structured graphi- 121

cal representation. Nodes embody functional con- 122

cepts, encompassing both the intended purposes 123

(problems tackled) and the underlying mechanisms 124

(solutions) that enable these purposes. A directed 125

edge between a purpose node and a mechanism 126

node indicates that the mechanism is useful for 127

achieving the purpose; a directed edge between 128

two purposes indicates that the first is an abstrac- 129

tion of the second (see Figure 1). 130

3 Data 131

We chose to test our idea on a patent corpus because 132

it is vast, publicly available and contains a variety 133

of real-life problems and solutions. In contrast, 134

Hope et al. (2022) has used a much smaller dataset 135

of crowdsourced innovations. 136

We use a dataset taken from Patentsview.org 137

website (Toole et al., 2021), which contains patents 138

registered in the U.S. since the 1940s. From each 139

patent, we take its title and abstract text, which con- 140

tains an informative description of the product. In 141

addition, as part of our annotations, we used each 142

patent CPC tag. 143

CPC (Cooperative Patent Classification) is a hi- 144

erarchical patent classification system, developed 145

by the European and US Patent Offices. The sys- 146

tem assigns each patent with (potentially multiple) 147

CPC tags. Each tag has an id and a short name. 148

Out of the full patent corpus extracted from the 149

website, we included only patents that belong to 150

3 CPC top-level tags (out of 9 overall): Human 151

Necessities (A), Operations and Transport (B), and 152

Mechanical Engineering (F). We included those 153

tags as they are likely to describe relatively simple 154

everyday products, as opposed to sections that de- 155

scribe more specific professional domains such as 156

Chemistry and Metallurgy (C). After the filtering, 157

we were left with about 3M patents. Due to a bud- 158

get limitations, we sampled 500K patents and used 159

them as our corpus. 160

4 Constructing an FCG 161

Our pipeline consists of 3 main steps (see Figure 2): 162

(1) extracting problems and solutions from a large 163
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Figure 2: A visualization of our full pipeline. (1) We start by extracting purpose and mechanism tags from patent
descriptions. (2) Then, we create the problem and solution nodes. To reduce the amount of computation, we first
cluster the purpose tags to create loose clusters, then aggressively cluster each loose cluster to obtain the problem
nodes. This clustering induces the solution nodes as well. (3) The final step is to create edges connecting the
problem nodes by finding abstraction relations, and then enhacing connectivity through virtual nodes.

dataset of patents, (2) creating the nodes of the164

FCG and (3) adding in the edges.165

4.1 Extracting problems and solutions166

We start by annotating each patent with its purpose167

(problem, what is it used for) and mechanism (so-168

lution, how it works). We acquire multiple mecha-169

nism and purpose tags for each patent, as opposed170

to a single aggregated tag.171

Importantly, patents are written in technical, le-172

gal language (“Legalese”). Surprisingly often, they173

are missing important commonsense information174

(for instance, a patent about airbags that never men-175

tions cars or accidents, but rather focuses on the176

technical aspects of the invention). Thus, we take177

advantage of large-scale language models as well178

as patent metadata to annotate the dataset.179

Getting mechanisms. To extract mechanism tags180

for each patent, we make use of the CPC tags, that181

offer a granular breakdown of the technical features182

of the invention.183

We processed the full set of CPC categories (over184

250,000 categories). We discard all CPC tags in185

the lowest level of hierarchy level, since they are186

too specific for our needs. We clean and preprocess187

the titles (see Appendix C.2), and end up with a set188

of 8500 CPC tags.189

Many CPC tags describe mechanisms, but not all.190

Thus, we manually tagged 1500 CPC tags as either191

related to mechanism or not. We used this anno- 192

tated dataset to fine-tune a simple RoBERTa-based 193

binary classification model (Liu et al., 2019). We 194

train the model for 500 epochs, using 1e-7 learning 195

rate. The final model we used achieved an F1 score 196

of 0.88. 197

Getting purposes. Driven by its few-shot capabili- 198

ties, we use GPT3 (Brown et al., 2020) to generate 199

purpose tags. We adopt an in-context learning ap- 200

proach, and use the method proposed in Reif et al. 201

(2021) to construct a prompt with 3 patent descrip- 202

tions and their purpose tag annotations, followed 203

by the patent description to be tagged (see Fig- 204

ure 2 for example tags and Appendix B for prompt 205

example). Although newer and more advanced 206

models are available, we found that GPT3 (Bab- 207

bage) provided the best performance-cost tradeoff 208

for tagging 500K patents. 209

4.2 Creating problem and solution nodes 210

After obtaining the purpose and mechanism tags, 211

we move on to creating the problem and solution 212

nodes that serve as our basic building blocks for 213

the graph. 214

Creating purpose nodes. Our goal is to cre- 215

ate problem nodes that cluster together concep- 216

tually similar purpose tags. To achieve this 217

goal, we choose to use agglomerative clustering 218

(Ward Jr, 1963) over Sentence-BERT (Reimers and 219
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Gurevych, 2019) embeddings of the purpose tags.220

Agglomerative clustering allows us to control the221

similarity threshold, and also does not require spec-222

ifying the number of clusters in advance.223

However, running agglomerative clustering over224

all purpose tags is costly. Thus, we perform clus-225

tering in two phases; we use K-means (MacQueen,226

1967) to split the tags into loose clusters, and then227

run agglomerative clustering on each of them. This228

idea is to have agglomerative clustering with a strict229

similarity threshold operate on smaller, manage-230

able sets of tags, making sure to keep semantically231

similar tags in the same set. We use the resulting232

clusters as the problem nodes in our graph.233

Creating solution nodes. We wish to create clus-234

ters of solutions used to solve similar problems.235

These solutions are not necessarily semantically236

similar themselves. Therefore, we do not cluster237

the mechanism tags directly, but rather induce the238

solution clusters from the problem clusters we cre-239

ated. We cluster two mechanism tags together if240

there exist purpose tags extracted from their cor-241

responding patents that were clustered together in242

the previous step.243

4.3 Adding edges244

The final step of creating the FCG is to connect245

the problem and solution nodes we obtained in246

section 4.2.247

As described in section 2, edges in FCGs re-248

flect either an abstraction relation between problem249

nodes or a problem-solution relation.250

Problem to solution. We connect a problem node251

to a solution node if there is at least one patent that252

was assigned a problem tag in the problem node253

(i.e., in the corresponding cluster) and a solution254

tag in the solution node.255

Problem to abstract problem. Intuitively, if a256

problem (“protecting an organism”) is more ab-257

stract than another (“protecting plants”), the spe-258

cific problem entails the more abstract one. Hence,259

we use a pretrained NLI model (Laurer et al., 2024)260

to identify entailment. As checking for entailment261

over all problem nodes is computationally expen-262

sive, we run the model over all pairs of problem263

nodes from the same loose cluster (Section 4.2).264

For each problem node, we select a representative265

purpose tag and add a prefix to turn it into a sen-266

tence (so it resembles the data the NLI model was267

trained on). We add an edge if the entailment score268

is above threshold t. See Appendix C.4 for details269

about entailment thresholds and prefixes. 270

We note that the graphs formed by this process 271

might include cycles, due to mistake or inconsis- 272

tencies of the NLI model. Moreover, these graphs 273

might also include redundant edges (if the graph 274

contains edges (x1, x2), (x2, x3), edge (x1, x3) is 275

redundant). Therefore, we adopt the method sug- 276

gested in Sun et al. (2017) to remove cycles while 277

maintaining the abstraction hierarchy. Then, we 278

eliminate redundant edges in the graph by keep- 279

ing only the longest paths between any connected 280

nodes. The result of this process are K interim 281

graphs G1, ..., GK (one for each K-mean cluster). 282

Enhancing connectivity. Some abstract relations 283

might not be captured by the NLI model. Thus, we 284

create two types of virtual nodes to enhance the 285

connectivity of problem nodes: 286

• LLM-based connections. We first seek ab- 287

straction relations that were not captured by 288

the NLI model. For each loose-cluster graph 289

Gi, we select a set of candidate nodes Ni that 290

describe relatively general problems, based 291

on their height in the graph. We use llama3.1- 292

8b-Instruct (Grattafiori et al., 2024) to sug- 293

gest abstractions that capture several of these 294

nodes. We create a virtual LLM-node for each 295

suggested abstraction, and connect it with the 296

nodes responsible for its creation. 297

• Verb-based connections. To capture far 298

analogies in the graph, we choose to abstract 299

problem nodes by the verb appearing in them 300

(e.g., protect). We collect lists of synonymous 301

verbs from WordNet (Fellbaum, 2010), and 302

create a virtual verb-node for each list of syn- 303

onyms. Then, we connect each node in the 304

graph to all verb-nodes containing verbs ap- 305

pearing in it. 306

The final step is to try to explicitly im- 307

prove the connections between the interim graphs 308

G1, ..., GK , to allow the user to find far analo- 309

gies. We repeat the process of enhancing connec- 310

tivity, but this time we focus on pairs of nodes 311

coming from different sets of candidate nodes, 312

u ∈ Ni, v ∈ Nj , i ̸= j. See details in Ap- 313

pendix C.6. 314

5 MUSE: Sampling inspirations 315

Given a starting node problem np, we wish to sam- 316

ple inspirations from the graph. The graph provides 317

an intuitive interpretation of paths: For example, 318

one could move up and then down, reaching a sib- 319
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ling node (connected by a shared parent abstrac-320

tion). Although many types of paths might pro-321

duce useful inspirations, we limit the paths from322

which we sample inspirations to (“up”, “down”)323

and (“up”, “up”, “down”). Sampling from other324

paths is left for future work.325

Sampling nodes from different sources. In Sec-326

tion 4.3 we described 3 types of connections be-327

tween purpose nodes: NLI-based, verb-based and328

LLM-based. We define LLM-nodes (verb-nodes)329

as nodes for which at least one of the edges along330

the path connecting then with np is LLM-based331

(verb-based). NLI-nodes are nodes for which all of332

the edges along the path are NLI-based.333

Ensuring diversity. Consider all nodes reachable334

from the start node np by following paths (“up”,335

“down”) or (“up”, “up”, “down”). To ensure the336

sampled nodes are both relevant and diverse, we337

use MMR (Carbonell and Goldstein, 1998) to select338

up to 5 nodes from each path and source (up to 30339

nodes total). We refer to this sampling process as340

MUSE – an algorithm aimed at helping users come341

up with novel ideas.342

6 Evaluation343

Now that we have built our graph, our goal is to344

use it to help users find creative and novel solutions345

to their problems. Specifically, we are interested in346

the following research questions:347

RQ1: Can inspirations from the FCG enhance348

users’ ability to come up with original solutions to349

problems? If so, what is the best way to communi-350

cate the inspirations to users?351

RQ2: Which type of trajectories in the FCG pro-352

duces more helpful inspirations?353

6.1 Experiment design354

To answer these questions, we conducted a user355

study. Participants were randomly assigned a prob-356

lem. After reading the instructions, they were given357

15 minutes to come up with as many creative ideas358

as they could. Each participant was randomly as-359

signed one out of 4 conditions, corresponding to360

different ways to display the inspirations (see be-361

low). In 3 of the conditions participants received362

inspirations drawn from the FCG; in the last condi-363

tion no inspirations were given. The subjects that364

received inspirations were instructed to identify the365

source of inspiration for each ideas (which could366

be their own idea or one of the inspirations pro-367

vided). The full instructions for the experiment are368

provided in Appendix E. 369

The experiment was carried out on the Prolific 370

platform (Prolific, 2014). Participants were paid 371

£3.25. 61 native English-speakers took part in the 372

experiment, split almost evenly between conditions 373

(16-15-15-15) and problems (31-30). 53.3% identi- 374

fied as females, and 46.7% as males. 21.4% were 375

in the 18-29 age group, while the percentages for 376

the age groups 30-44, 45-59 and 60+ were 42.9, 377

28.6 and 7.1, respectively. 378

Problems. We chose 2 everyday problems: “Seal 379

a leak” and “Cool a room”. The problems were se- 380

lected from a list of everyday household problems 381

from ehow.com. We chose these problems since 382

they are very familiar to the common person, have 383

well-known existing solutions while still enabling 384

creative solutions. 385

For each problem p, we encode the text describ- 386

ing it using Sentence-BERT, and then find the clos- 387

est node to it in the graph np using Faiss-index 388

(Douze et al., 2024). 389

Displaying the inspirations. Inspirations are prob- 390

lems sampled from the graph as described above. 391

We define 4 conditions (ways to display them): 392

1. Purpose: Showing just the purposes. 393

2. Purpose + mechanism: Showing purposes + 394

up to 3 solutions sampled for each purpose. 395

3. Purpose + mechanism sentence: Same as 396

condition 2, but we use an LLM (Claude 3.7 397

Sonnet (Anthropic, 2025)) to turn inspirations 398

into full sentences. 399

4. Empty No inspirations. 400

One example of a problem sampled as inspiration 401

for the problem “Cool a room” is “Creating a cham- 402

ber seal mechanism”. A solution sampled for this 403

problem is “Packing rings”, and the generated sen- 404

tence is “Packing rings expand under fluid pressure 405

to create effective chamber seals”. Additional ex- 406

amples are given in Appendix D. 407

7 Results 408

We are interested in the degree to which our ap- 409

proach helps users to come up with creative solu- 410

tions to well-known problems. For that, we mea- 411

sured the quality of the solutions produced by the 412

participants in the experiment. Expanding upon 413

Reinig et al. (2007); Hope et al. (2017), we define 414

creativity as a combination of utility and novelty. 415

Thus, we first score each solution with a binary 416

feasibility score representing whether this solution 417

is feasible and solves the given problem. Feasible 418
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Purp Purp+
mech

Purp+
mech
sent

Empty

Feasible (#) 4.37 3.67 4.8 4.8
Feasible (%) 0.72 0.78 0.83 0.63
Creative (k=2) (#) 3.18 2.6 4.06 3.4
Creative (k=2) (%) 0.58 0.57 0.75 0.49
Novel(k=3) (#) 1.81 1.13 1.86 1.73
Novel(k=3) (%) 0.31 0.26 0.32 0.25

Table 1: For each condition, we report the total number
and ratio (from all solutions) of feasible and creative
solutions produced. We report both the liberal (novelty
threshold k = 2) and strict (k = 3) settings. Although
the empty condition produced the most feasible solu-
tions, other conditions, especially the sentence condi-
tion, produced more novel solutions. All inspiration-
based conditions produced a higher ratio of feasible and
creative solutions than the empty condition.

solutions were then tagged with a novelty score (1:419

the solution is well-known, 2: uncommon solution,420

3: a very novel solution). In the following analysis,421

we treat a solution as either creative or not creative,422

by applying a novelty threshold k. We report re-423

sults for both a liberal setting (k = 2) and a strict424

setting (k = 3).425

Overall, 3 judges tagged 374 solutions suggested426

by the participants. Since this is a non-trivial anno-427

tation task, the judges were first calibrated over 10428

randomly selected solutions. Then, their agreement429

was computed over another set of 10 solutions. The430

remaining 354 solutions were randomly split into431

3 and annotated separately by the judges. Agree-432

ment between the judges was substantial, with 90%433

full agreement (all judges agreed) on the feasibil-434

ity scores. Agreement for the novelty score was435

high as well, with 66% agreement for the liberal436

case, and 88% agreement for the strict case. For all437

scores and cases, agreement between at least 2 out438

of the 3 judges was 100%.439

7.1 RQ1: Effect of inspirations440

We assess the degree to which each of the441

inspiration-based conditions (purpose, purpose +442

mechanism, purpose + mechanism sentence) in-443

creased the creativity of the participants. As can444

be seen in Table 1, participants in the empty con-445

dition (as well as the sentence condition) provided446

the highest absolute number of feasible solutions,447

perhaps because they did not spend time reading448

inspirations. However, the ratio of feasible ideas449

Metric
Condition Purpose Purp

+mech

Purp
+mech

sent
% creative (k=2)

from inspired
0.6 0.57 0.73

% creative (k=2)
from non-inspired

0.44 0.47 0.47

% creative (k=3)
from inspired

0.42 0.25 0.37

% creative (k=3)
from non-inspired

0.17 0.2 0.08

Table 2: Percentage of creative solutions from inspired
and non-inspired (=participant indicated this was their
own idea) solutions. For all conditions and novelty
thresholds, the percentage of creative solutions from
inspired-solutions is noticeably higher.

(out of all ideas, averaged over all participants) was 450

higher for the inspiration-based conditions, suggest- 451

ing that inspirations helped participants produce 452

higher-quality ideas. 453

For creativity, we see that for both novelty thresh- 454

olds k = 2, k = 3, the purpose+mechanism sen- 455

tence condition produced the highest number of 456

creative ideas, but participants in all inspiration- 457

based conditions produced a significantly higher 458

ratio of creative ideas compared to participants in 459

the empty condition, again indicating the contribu- 460

tion of the inspirations. 461

We were surprised to see that the performance 462

of purpose+mechanism was low compared to other 463

inspiration-based conditions. This might indicate 464

that the relation between mechanisms and purposes 465

is not always clear, confusing the participants and 466

increasing the cognitive load, and putting it into a 467

sentence helps participants. 468

Since the sentence condition has yielded the 469

best results, we focus on it, and test its usefulness 470

in producing creative ideas. We run a statistical 471

test to compare the ratios of creative ideas per par- 472

ticipant under the empty and sentence conditions. 473

We verify normality and equal variances using the 474

Shapiro-Wilk test and Levene’s test, and run Stu- 475

dent’s t-test to compare the two conditions. The 476

results for the liberal case are significant with p = 477

0.004, but the results for the strict case were not (p 478

= 0.07), potentially because the number of highly 479

novel ideas was smaller. 480

For the inspiration-based conditions, we exam- 481

ine the reported source of inspiration per idea. The 482

ratio of creative solutions out of solutions inspired 483
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Metric

Source
NLI LLM Verb

% Feasible solutions 0.84 0.78 0.73
% Creative solutions (k=2) 0.71 0.67 0.54
% Creative solutions (k=3) 0.39 0.4 0.29

Table 3: Percentages of feasible and creative solutions
per trajectory type (out of all solutions using this tra-
jectory). The results are calculated over both problems
from the experiment. For all metrics and cases, the re-
sults for NLI and LLM-based inspirations are higher
than those of the verb-based inspirations, indicating a
stronger signal for enhancing creative ideation.

by the graph was higher than the ratio of creative484

solutions out of non-inspired ones (participants’485

own ideas) across all conditions (Table 2).486

7.2 RQ2: Trajectories487

To answer our second research question, we com-488

pare the usefulness of the inspirations by their tra-489

jectory (NLI, LLM, Verb nodes).490

We look at the ratio of feasible and creative so-491

lutions out of all solutions inspired by a certain492

trajectory type. The results in Table 3 indicate that493

both LLM and NLI-based inspirations were able494

to produce solutions of higher quality than verb-495

based inspired solutions. This might make sense, as496

two nodes that only share synonymous verbs might497

be very far off. To complement this, we observe498

the percent of inspirations from each source that499

were used in creative solutions. We find that 38%500

of the verb-based inspirations were used in very501

creative solutions (novelty threshold = 3), close502

to that of the other two sources (44%, 42%). We503

conclude that although the LLM and NLI-based504

inspirations proved superior in our experiment,505

verb-based inspirations are still useful.506

7.3 Additional insights507

Solution generation over time. We compare the508

number of feasible and creative solutions produced509

by participants under each condition, as a func-510

tion of the time from the start of the experiment511

(Figure 3). Participants under the empty condition512

produced more feasible (top figure) and creative513

ideas (the figure depicts the liberal novelty setting,514

but this is true for the strict setting as well). We hy-515

pothesized that participants in the empty condition516

are not shown inspirations and can immediately517

start coming up with ideas, leading to better results518

at the beginning of the experiment. However, this519

advantage disappears over time, as the subjects in 520

the other conditions exceed the performance of the 521

empty-condition participants. We also note that 522

33.4% of the participants under the empty condi- 523

tion stated they needed more time to complete the 524

task, as opposed to 50%, 46.7% and 53.3% of the 525

participants under the inspiration-based conditions. 526

Preliminary exploration of SOTA LLMs. De- 527

spite their tremendous popularity, state-of-the-art 528

LLMs struggle with creative thinking and problem 529

solving (Tian et al., 2023; Franceschelli and Mu- 530

solesi, 2024). We perform a preliminary study to 531

assess the possibility of using LLMs to find creative 532

solutions to everyday problems. We ask GPT-4o 533

(Hurst et al., 2024), a popular SOTA LLM, to gener- 534

ate original solutions to the same problems given to 535

the participants in our experiment. We use similar 536

instructions to those given to participants. Overall, 537

GPT-4o produced 14 solutions (7 for each prob- 538

lem), 8 of which deemed feasible by our annotator. 539

However, further analysis of the solutions showed 540

that all solutions already appear online, and some 541

are common, hinting that SOTA LLMs might in- 542

deed be limited in producing truly novel solutions. 543

Satisfaction. After completing the task, partici- 544

pants were asked to complete a short survey. When 545

asked whether similar inspirations would be helpful 546

in the future when tackling a problem, 100% of the 547

participants under the sentence condition answered 548

positively, compared to 75% and 86.7% of partici- 549

pants under the purpose and purpose+mechanism 550

conditions. 551

8 Related Work 552

Computational methods aimed at augmenting hu- 553

man creativity and ideation have garnered signif- 554

icant attention. A prominent avenue focuses on 555

leveraging analogy as a powerful cognitive mech- 556

anism for generating novel solutions (Gentner, 557

1983; Hofstadter, 2001). One significant line of 558

work involves the creation and utilization of struc- 559

tured knowledge to identify potential analogies. 560

For instance, the seminal Structure-Mapping En- 561

gine (SME) (Falkenhainer et al., 1989) operates on 562

propositional representations. 563

Harnessing analogies to navigate between ideas 564

has been explored in design-by-analogy works. Re- 565

cent works (Sarica et al., 2020; Luo et al., 2021) 566

offered to retrieve inspirations from patent data, but 567

focused on semantic similarity, not structural simi- 568

larity or functional relations. Murphy et al. (2014) 569
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Figure 3: Average number of feasible (top) and novel
(bottom) solutions through time passed in the experi-
ment for the different conditions. Participants under
the empty condition (green dash-dotted line) produced
more feasible and novel ideas at the start of the ex-
periment. As time progressed, participants under the
purpose (solid blue) and purpose+mechanism sentence
(dashed green) conditions managed to come up with
more feasible and novel ideas. This aligns with our hy-
pothesis that generating solutions under the inspiration-
based conditions requires additional time.

did try to encode some functionality information,570

but this was based on shallow keyword embedding,571

without taking abstraction into account.572

More directly relevant to functional thinking are573

approaches that explicitly encode functional knowl-574

edge. The Functional Basis (Hirtz et al., 2002;575

Stone and Wood, 1999) provides a standardized576

vocabulary for describing the functions and flows577

within a system. This framework has been used to578

develop tools for concept generation, but the vocab-579

ularies are often small and restricted, and do not580

offer the expressivity of our approach.581

While analogy and abstraction are still consid-582

ered hard tasks for machines (Mitchell, 2021),583

LLMs have shown emergent capabilities of ana-584

logical reasoning (Webb et al., 2023; Zhou et al., 585

2025). This raises exciting possibilities for future 586

work. 587

9 Conclusions and future work 588

In this work we propose a method to build Func- 589

tional Concept Graphs – representations that en- 590

able navigation across interconnected functional 591

elements, facilitating abstraction and reframing of 592

problems, and the discovery of analogical inspira- 593

tions. Unlike previous attempts, our approach can 594

scale to large datasets and results in richer, better- 595

connected and less noisy graphs, whose edges ex- 596

plicitly encode abstraction relations. We also intro- 597

duce MUSE, an algorithm that, given an FCG and 598

a target problem, produces inspirations that could 599

help users creatively solve the problem. 600

We demonstrate our method by computing an 601

FCG on 500K patents, which we release for further 602

research. We conduct a user study to evaluate the 603

usefulness of MUSE. Our results indicate that our 604

inspirations resulted in more creative ideas, both in 605

terms of absolute number (up to 19% more creative 606

solutions when using inspirations) and ratio (49% 607

creative ideas without inspirations opposed to 75% 608

in the sentence condition). 609

In this work, we suggested a simple way of sam- 610

pling inspirations from the graph. In the future, we 611

plan to explore more sophisticated sampling meth- 612

ods. One immediate option is to sample far-off 613

analogies as inspirations. 614

Another interesting research direction is using 615

the inspiration graph to enhance creativity in SOTA 616

AI agents. Our initial inspection in Section 7.3 617

demonstrates that current SOTA LLMs struggle 618

generating truly never-before-seen solutions. We 619

hypothesize that enriching these models in either 620

the training or inference phases would help enhanc- 621

ing their creative problem-solving ability. 622

We hope our work would inspire further research 623

on enhancing creative ideation by automatically 624

finding structured representations for navigating 625

the design space and finding analogies in large, 626

complex idea repositories. 627

10 Ethical considerations 628

Experiment. Our used study was approved by an 629

institutional ethics committee. We do not save any 630

personal information for any of the participants 631

apart from the Prolific ID, which we discard after 632

completing the analysis. Ideas generated by the 633
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subjects remain their own, and we make no com-634

mercial use of any of them. Prior to starting the635

experiment, participants agreed to privacy and data636

collection terms which were fully described in a637

consent form.638

Usage of AI agents. We did not use any AI agents639

the writing process of this paper. For coding, we640

occasionally used Claude 3.7 Sonnet, and verified641

the output code. The parts of our pipeline that in-642

clude the usage of LLMs were explicitly described643

in Section 4.644

Reliance on automatic creativity. Our work pro-645

poses an automatic assistance to enhance creativity,646

thus reducing the burden of trying to break the cre-647

ative fixation for the users. In case our method648

becomes popular, one might rely on it in creative649

problem-solving tasks. This raises the potential650

risk of over-reliance on automatic creativity tools651

and creating biases.652

11 Limitations653

In this work, we opted to use patents extracted654

from the US patents database, and use these patents655

to draw inspirations from existing solutions. One656

limitation of our method is that we might miss out657

on many relevant products and ideas that do not658

exist in the database. Specifically, users using our659

solution cannot be inspired by patents not written660

in English and registered in the US, as they are not661

part of our dataset. This might introduce a bias662

and fixate the users to draw analogies from certain663

types of solutions, ignoring solutions from different664

cultures.665

Similarly, all participants in our user-based study666

were native English speakers. We did not test667

how our tool helps ideation for non-native English668

speakers.669

Another limitation of our work is the reliance670

on CPC tags to collect the mechanism tags. When671

generalizing to new domains, we would need alter-672

native methods for collecting mechanism tags.673
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Figure 4: Example of an annotated patent. The patent
title is associated with purpose and mechanism tags,
demonstrating the problems and solutions offered in it.

C Implementation details834

C.1 General implementation details835

All code for this project was written in python-3.10.836

The attached Git repository contains all code, de-837

pendencies and commands required to create the838

inspiration graph, sampling from it, running the839

experiment and analyzing the results. All packages840

and datasets used in this work were used solely for841

academic work, with accordance to their license.842

All data statistics, model and hyper-parameter843

choices are described in their corresponding sec-844

tions. To create the inspiration graph, we used a845

single A5000 GPU (24GB) for 4 hours. We mostly846

used it to run the NLI and llama3.1-8b-Instruct847

models described in section 4.3. In order to speed848

up the agglomerative clustering process described849

in section 4.2, we used 8 32GB-CPUs that ran in850

parallel for 3 days.851

C.2 Getting mechanism tags from CPC tags852

Prior to training the mechanism classifier described853

in section 4.1, we process each one of the CPC854

titles text. first, if it contains more than one text855

span, we split it so each CPC id may be indicated856

by multiple titles in our final tags set. This split857

to multiple text spans may result in a single patent858

having multiple tags, which are not all necessarily859

related to it. To deal with this, for each patent we860

measure the cosine similarity between its title and861

the CPC tags title’s Sentence BERT embeddings,862

and select only the most relevant one.863

C.3 Clustering package and 864

hyper-parameters 865

For all clustering purposes, we used the algo- 866

rithms implemented in Scikit-learn (Pedregosa 867

et al., 2011) used under BSD License. Loose clus- 868

tering with K-means. As explained in section 869

4.3, the loose clustering step is meant to reduce 870

the number of nodes which we aggressively cluster 871

with agglomerative clustering. We choose to use 872

K-means with K = 10000. 873

Aggressive clustering. In order to select the pa- 874

rameters for the agglomerative clustering step, we 875

generate a small dataset of 30 sentences (that did 876

not appear in our data) and split them into clusters. 877

We run the agglomerative clustering algorithm sim- 878

ilarity threshold ranging from 0.05 to 0.5, with 879

increment of 0.05. We finally choose similarity 880

threshold = 0.2, since it showed the best tradeoff 881

between the purity (1.0) and NMI (0.97) metrics. 882

We use cosine similarity as the metric for cluster- 883

ing, complete linkage. We use the default values 884

for all other parameters. 885

C.4 Abstraction with entailment 886

In order to check whether a problem node entails 887

another, we randomly select a representative pur- 888

pose tag from each node. We experiment with 2 889

prefix options – “I want” and “The patent provides”. 890

For the NLI model, we use a fine-tuned version of 891

Deberta-V3-large (304M parameters) (He et al., 892

2021), offered in Laurer et al. (2024). In order to 893

choose the entailment threshold, we tag the clusters 894

generated in section C.3, and tag all abstraction re- 895

lations between them. We test different values for 896

the entailment threshold t and prefix, settling on 897

t = 0.5 and prefix = “I want” since it achieved the 898

highest recall (0.65) and precision (0.9) rates. 899

C.5 Enhancing connectivity with LLM-based 900

connections and verb-based connections 901

We extracted verbs using NLTK (Bird, 2006), used 902

under Apache License Version 2.0. As we men- 903

tioned in section 4.3, we enhance the connectivity 904

of the graph by creating additional LLM-based 905

nodes created from a set of candidate nodes. We 906

first discuss the process of choosing these nodes. 907

Let hmax be the maximal height of a node in the 908

loose cluster graph. We choose candidate nodes 909

as all nodes whose height is at least hmax − 3 and 910

distance from the highest node in their path is 2. Af- 911

ter selecting the candidate nodes, we use K-means 912
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with K = 5 to split these nodes into 5 clusters. We913

prompt llama3.1-8b-instruct to select (if possible) a914

subset of the nodes from each cluster that can be ab-915

stracted together, and find an abstraction for them.916

As an additional validation step, for each such clus-917

ter ci, we find the furthest cluster cj by computing918

the minimum cosine similarity between all nodes.919

We add to ci to 2 nodes which are most dissimilar920

to nodes from cj . If any of these nodes were se-921

lected alongside original nodes from ci during the922

abstraction process, we discard the abstraction.923

C.6 Connecting the interim graphs924

Similar to the process of enhancing the graph con-925

nectivity using LLM-based nodes described in sec-926

tion 4.3, in order to connect the different interim927

graph we first select a set of candidate nodes for928

each loose cluster. We select the same candidate929

nodes as those described in section C.5. In order930

to connect these nodes with NLI-based nodes, we931

perform the same process described in section 4.3,932

over pairs of nodes coming from different candidate933

node sets. For the LLM-based enhancements, we934

replicate the same process described in section C.5.935

D Inspiration examples936

Figure 6 shows an example of 5 inspirations pre-937

sented in each condition in our experiment.938

E Experiment instructions939

The full instructions for our experiment are pro-940

vided in figure 7.941
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Prompt input and output example for annotating a product description

Prompt:

Example 1:
Method and device for precise invasive procedures.This invention relates generally to the field of invasive
medical procedures, and specifically to accurate monitoring of invasive procedures with an imaging
system . A method for inserting an invasive tool, including: attaching a frame to a human body adjacent
to a portion of the body; acquiring an image of the body; determining a trajectory of the tool on the
image; calculating points of intersection between the trajectory and two sheet which are adapted to be
inserted into the frame; perforating the sheets at the calculated points; placing the sheet within the frame;
and inserting the invasive tool through the perforations.
The purpose of the patent is to monitor invasive procedures.

Example 2:
Hair style device. This invention relates to devices which attach to the hand of a user ,which devices
simultaneously blow-dry and style hair on mammals. A hair-styling device containing a hand attachment
and a source for heated air under pressure connected to the hand attachment.
The purpose of the patent is to blow dry and style hair

Example 3:
Swivel wheel mount. This invention relates to a child’s stroller (a bassinet , a baby buggy or similar
device used to support or transport a person) with wheels which swivel. Disclosed is a stroller including
a frame member, a swivel mount adapted to receive the frame member, a swivel latch adapted to be
received in the swivel mount, a suspension housing including a swivel latch receiving portion, the
suspension housing adapted to be attached to the swivel mount, a swivel pin adapted to be received in the
frame member, the swivel mount, and the suspension housing, and at least one wheel pivotally attached
to the frame member.
The purpose of the patent is to provide a stroller with a swivel wheel

Your input:
Modular engine, such as a jet engine, with a speed reduction gear. The present invention relates to an
aircraft propulsion engine, such as a turbojet engine, a multi-flow turbofan, in particular with a high
dilution ratio, or a turboprop engine, having a front power transmission shaft, driven by a turbine rotor by
means of a speed reduction gear. The present invention relates to an engine (1) with a modular structure
comprising a plurality of coaxial modules (A, B, C) with, at one end, a first module (A) comprising a
power transmission shaft (3) and a speed reduction gear (7), said power transmission shaft being driven
via the speed reduction gear (7) by a turbine shaft (2) secured to one (C) of said coaxial modules that is
separate from the first module, the speed reduction gear comprising a drive means (8 and 9) fixed to the
turbine shaft (2) and to a journal (13) of a shaft of a low-pressure compressor rotor (1 a), characterized in
that it comprises a first nut (16) for fastening the drive means to the journal and a second nut (14) for
fastening the drive means to the turbine shaft.
What is the purpose of the patent? What is the context of the patent?

Output example:
The purpose of the patent is to provide a method for reducing the speed of a jet engine.

Figure 5: An example of the prompt we use to annotate patent descriptions with purpose tags, followed by an
output example. The in-context prompt consists of 3 examples for annotated patent descriptions, followed by the
description to be tagged.

13



Examples for inspirations provided in the experiment

Condition 1: Purpose

1. Possible inspiration: Think of a method and apparatus for cooling a work piece

2. Possible inspiration: Think of a system for cooling a person

3. Possible inspiration: Think of a water cooled door

4. Possible inspiration: Think of a computer cooling assembly

5. Possible inspiration: Think of a cooling bed system

Condition 2: Purpose + Mechanism

1. Possible inspiration: Think of a method and apparatus for cooling a work piece
Related concepts:

• Heat-exchange apparatus

2. Possible inspiration: Think of a system for cooling a person
Related concepts:

• Air-humidification

3. Possible inspiration: Think of a water cooled door
Related concepts:

• Combustion engines

4. Possible inspiration: Think of a computer cooling assembly
Related concepts:

• Vehicle cooling systems

5. Possible inspiration: Think of a cooling bed system
Related concepts:

• Therapeutic cooling beds

Condition 3: Purpose + Mechanism sentence

1. Possible inspiration: Think of a method and apparatus for cooling a work piece
Related concepts:

• Heat-exchange apparatus without direct contact enables precise workpiece cooling

2. Possible inspiration: Think of a system for cooling a person
Related concepts:

• Air-humidification enhances evaporative cooling effects for personal comfort

3. Possible inspiration: Think of a water cooled door
Related concepts:

• Combustion engines employ water cooling technologies for component protection

4. Possible inspiration: Think of a computer cooling assembly
Related concepts:

• Vehicle cooling systems inform compact computer cooling assembly design

5. Possible inspiration: Think of a cooling bed system
Related concepts:

• Medical science applications incorporate therapeutic cooling beds for patient care

Figure 6: Examples for inspirations sampled for the problem “Cool a room”. We provide 5 examples for each
condition. For clarity, we show the same problem and solution nodes sampled in each condition.
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Figure 7: The full instructions for our experiment
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