
Under review as a conference paper at ICLR 2024

LLM-CODEBOOK FOR EXTREME COMPRESSION OF
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have exhibited outstanding performance in both
understanding and generating language. However, their remarkable abilities of-
ten correlate with large model sizes, leading to challenges during deployment,
inference, and training phases. While weight quantization and pruning are preva-
lent strategies, they tend to lose crucial information under extreme compression.
In this paper, we propose LLM-Codebook for extreme compression of large lan-
guage models (LLM-Codebook), which maps expansive LLMs (in GB) to com-
pact codebooks (in KB). The foundation of LLM-Codebook is our novel Hessian-
aware K-means algorithm, which clusters weights into codebooks based on Hes-
sian information, preserving parameters that have significant impacts on predic-
tions. Simultaneously, the tuning technique, LoRA is adopted to update layers
that have not been compressed, aiming to recover performance using only a lim-
ited corpus. LLM-Codebook effectively preserves the generation and multi-task
solving abilities of LLMs, surpassing advanced methods such as GPTQ, QLoRA,
LLM-Pruner, and SparseGPT. We validate our approach by extremely compress-
ing LLaMA-7B and Vicuna-7B to a memory requirement of 2GB (a 6x compres-
sion factor) while retaining 99% of the baseline performance. Furthermore, our
approach maintains reasonable accuracy even under extreme compression ratio,
achieving 90% of the original performance (36% better than GPTQ) when the
model size is compressed to one-eighth.

1 INTRODUCTION

Recently, advanced language models, also known as Large Language Models (LLMs) (OpenAI
(2023), Touvron et al., Thoppilan et al. (2022), Scao et al. (2022), Zeng et al. (2022), Touvron et al.),
have showcased impressive capabilities in complex language modeling tasks. Yet, in spite of their
stellar achievements, the computational and storage costs of LLMs raise substantial challenges. For
example, GPT3-175B has a hundred billion parameters and requires multi-GPU to inference Zhang
et al. (2022), which poses significant challenges to applying LLM models on mobile devices.

Conventional weight pruning and quantization methods have been widely used to reduce the signif-
icant amount of memory required by LLMs, but they are challenging under extreme compression
conditions. The main reason for this is that they are lossy compression methods. Although the
performance of the model can be preserved at a low compression ratio by discarding non-critical in-
formation, essential information is also lost at an extreme compression ratio, leading to a substantial
decrease in model accuracy.

Structured pruning removes channels containing crucial information, leading to a significant de-
cline in accuracy during extreme compression. Unstructured pruning is hardware-unfriendly and
requires a large amount of indexing, making extreme compression unachievable. Quantization, at
the point of extreme compression, suffers from inadequate expressive capacity leading to a signif-
icant performance degradation. Additionally, specialized hardware systems are required to support
the operation of specific bit quantization, rendering the compressed models incompatible with older
hardware systems.

To break the limitations of conventional methods, new compression methods must be designed,
which can not only achieve a very high compression ratio but also represent rich information to
minimize the loss of model accuracy. As illustrated in Figure 1, the weight has structural properties,

1

Under review as a conference paper at ICLR 2024

Weight tensor

0.0029

0.0028

0.0036

RTN
Error

0.0044

>

>

>

>

0.0015

0.0016

0.0010

Codeword
Error

0.0017

Codeword

0.0048

0.0029

0.0055

RTN
Error

0.0036

0.0031

<

<

<

<

<

0.0015

0.0010

0.0015

Codeword
Error

0.0009

0.0018

Codeword

Figure 1: Illustration of LLM-Codebook. Compressing the V linear projection of the second trans-
former module of LLaMA-7B at 87.5% compression ratio compares LLM-Codebook with Round-
To-Nearest (RTN). RTN: selects group-wise quantization granularity and rounds weight tensor to
the nearest quantization level. LLM-Codebook: considers the vector repeatability of weight tensor
and generates codewords of codebook to reconstruct vectors of weight tensor, which have much
lower compression error than RTN.

and the structure weight-sharing strategy can reduce the weight compression error more effectively
than the low-bit quantization method under extreme compression. Therefore, we propose LLM-
Codebook for extreme compression of large language models (LLM-Codebook). To the best of our
knowledge, it is the first time employing codebooks for LLMs compression. To ensure that the
codebooks retain useful parameters for model prediction, LLM-Codebook is generated based on
our proposed Hessian-aware K-means algorithm, which leverages Hessian information to identify
and preserve salient parameters while clustering weights into codebooks. Meanwhile, Low-Rank
Adaptation (LoRA) Hu et al. (2021) is employed to update the remaining uncompressed layers, with
the objective of improving performance through a limited dataset.

LLM-Codebook is an automated compression framework wherein all codebooks are automatically
generated, removing the necessity for manual design and completing in three hours and reducing
the memory requirements to less than a quarter of the original. The compression process relies on a
mere 50k corpus, reducing dependency on extensive fine-tuning datasets. Moreover, the compressed
language model retains its proficiency in addressing a broad range of language tasks effectively.

Experiments show that LLM-Codebook outperforms existing work, i.e., LLaMA-7B and Vicuna-
7B, on various tasks including language modeling and common sense QA. At a compression ratio
of around 81%, LLM-Codebook can maintain 99% of its original performance. In contrast, GPTQ
suffers a significant loss in accuracy, while LLM-Prunner and SparseGPT completely collapse. Un-
der extreme compression conditions when the compression ratio exceeds 87%, LLM-Codebook can
maintain about 90% of its original performance, while GPTQ collapses due to excessive weight
quantization error.

2 RELATED WORK

Large Language Model Compression. Though LLMs have shown great potential in semantic un-
derstanding and language generation, their large model size greatly limits their application on mobile
devices. Weight pruning and quantization are the two most commonly used methods to compress
LLMs. For LLM pruning, LLM-Prunner Ma et al. (2023) computes the importance of channel-wise
weights to perform structured pruning on the model and then fine-tunes the pruned model using
LoRA (Hu et al., 2021). However, each channel contains crucial information, and pruning them can
significantly degrade the performance. SparseGPT Frantar & Alistarh (2023) performs unstructured
pruning on the weights while compensating for the weights that are not pruned. Similarly, the loss
of important information cannot be compensated by updating the unpruned weights. In the field of
LLM quantization, methods like ZeroQuant Yao et al. (2022), LLM.int8() Dettmers et al. (2022),
LUT-GEMM Park et al. (2022) have shown the potential of 8-bit weight quantization, but they can-
not be adopted in extreme compression condition. GPTQ Frantar et al. (2022) demonstrated efficient
quantization of weights to 2-4 bits, which compensates for the weights based on the Hessian matrix.
Since GPTQ employs RTN quantization, it suffers severe accuracy loss under extreme low-bit con-

2

Under review as a conference paper at ICLR 2024

Hessian-aware
K-means

Compressed
weight tensor

Compressed
layer

Tuning LLM by LoRA

Compressed
layer

Compressed
layer

Compressed
layer……Uncompressed

layer

Adapter

Uncompresse
d layer

Adapter

Uncompressed
layer

Adapter

Choose layer
randomly

𝐶out

𝐶in

Weight tensor

𝐶out

𝐶in

Hessian matrix

𝐶in

𝐶out

Weight slices

ሺ𝐶out ∗ 𝐶𝑖𝑛 ൊ 𝑑ሻ ∗ 𝑑

𝐶out

𝑑

𝑘

Codebook

Index

ሺ
𝐶in

𝑑
ሻ

Figure 2: LLM-Codebook compression procedure. When LLM is being fine-tuned by LoRA, LLM-
Codebook chooses the uncompressed layer randomly to compress, and then Hessian information
can make codewords retain the salient parameters that contribute most to the prediction during the
Hessian-aware K-means algorithm. Its weight tensor of size Cout × Cin is compressed by using a
codebook of size k × d and index of size Cin

d × Cout, which have low memory needs. Finally, the
codebook and index are used to reconstruct the compressed weight tensor for the compressed layer.

ditions due to significant quantization errors of crucial information. QLoRA Dettmers et al. (2023)
doubly quantizes the weights into 4-bit NormalFloat format and then fine-tunes them using LoRA,
which faces the same extreme low-bit quantization issues.

Compression based on Clustering. Clustering is another weight compression method that reduces
the model size by sharing weights. Unstructured weight-sharing methods like Deep Compression
Han et al. (2015) quantize the weights to enforce weight sharing by K-means and adopt Huffman
coding to encode indexes. However, as each parameter has a quantization index, these methods
are not suitable for extreme compression. Some works focus on sharing weights structurally: Son
et al. (2018) compresses CNNs by applying K-means clustering to convolution kernels so that re-
dundancies are removed by sharing weights between similar kernels; Stock et al. (2019) uses the
Expectation–Maximization algorithm to ensure that the output of each compressed layer remains
the same as the original output and generates codebooks by K-means. They have not emphasized
the retention of important information during the clustering process, leading to a decline in perfor-
mance.

3 OUR APPROACH

As shown in Figure 2, to minimize the error caused by LLM-codebook compression, we choose
layer-wise compression. Therefore, each uncompressed layer is randomly selected for compression,
and then the following three stages are repeated until all uncompressed layers have been compressed:
(1) The Salience Stage (Section 3.1) derives the salience of the random layer’s weight through the
Hessian matrix. (2) The Cluster Stage (Section 3.2) employs the Hessian-aware K-means algorithm
to cluster the codebook which is then harnessed to restore the layer’s weight. (3) The Recover
Stage (Section 3.3) engages in a rapid tuning process to update the uncompressed layers so that
performance drop can be mostly counteracted.

3.1 SALIENCE STAGE

We consider i-th fully-connected layer of LLM with weight Wi ∈ RCin×Cout . Our compression
objective is to retain the parameters that have the most substantial influence on the model’s predictive

3

Under review as a conference paper at ICLR 2024

performance, which is indicated by the deviation in loss and calculated using a public dataset D =
{xm, ym}nm=1 comprising n samples. Specifically, to estimate the salience of Wi, the deviation in
the loss function caused by Wi from zero to the current value can be formulated as (LeCun et al.,
1989):

Si = |∆L (Wi;D) | =

∣∣∣∣∣∂L (D)

∂Wi

⊤
Wi +

1

2
W⊤

i HWi +O
(
∥Wi∥3

)∣∣∣∣∣ , ∂L (D)

∂Wi

⊤
̸≈ 0 (1)

where H is the Hessian matrix and L denotes the Cross-entropy loss: L = −
∑

m log (p (ym | xm)),
when ym is one-hot encoded. As Ma et al. (2023) describes, since D here is not a part of the original
training data, the first term does not approach zero, thus it cannot be neglected. Then we derive
the above function at a finer granularity, where each parameter W k

i within Wi is calculated for its
salience:

Sk
i = |∆L

(
W k

i ;D
)
| =

∣∣∣∣∂L (D)

∂W k
i

W k
i +

1

2
W k

i HkkW
k
i +O

(∥∥W k
i

∥∥3)∣∣∣∣ (2)

where k represents the k-th parameter in Wi and Hkk is the diagonal of H . However, the formula
cannot be directly computed, since the computation of H on the LLM is impractical due to its
O
(
N2
)

complexity. Thus, we demonstrate how to approximate H . According to Barshan et al.
(2020), the Fisher information matrix F of a conditional distribution parameterized by p (y | xm) is:

F =
1

n

n∑
m=1

Ep∇(log p (y | xm))∇(log p (y | xm))T = − 1

n

n∑
m=1

Ep∇2 log p (y | xm) (3)

We assume that the pre-trained LLM has learned a distribution p (y | x) close to the ”true” distribu-
tion, such that F is approximated by replacing Ep with a Monte Carlo estimate based on the target
values ym in the public set:

F ≈ − 1

n

n∑
m=1

∇2 log p (ym | xm) = H (4)

Therefore, H can be replaced by F in the computation of parameter salience:

Sk
i ≈

∣∣∣∣∂L (D)

∂W k
i

+
1

2
W k

i FkkW
k
i +O

(∥∥W k
i

∥∥3)∣∣∣∣ ≈
∣∣∣∣∣∣∂L (D)

∂W k
i

W k
i − 1

2

(
1

n

n∑
m=1

∂L(Dn)

∂W k
i

W k
i

)2
∣∣∣∣∣∣

(5)
where the remainder term can be neglected. By utilizing any Sk

i , we estimate the salience at the
granularity of each parameter of weight.

3.2 CLUSTERING STAGE

The clustering stage generates a codebook to reconstruct Wi. Each row of Wi is split into p contigu-
ous subvectors and learns a codebook on the resulting p× Cout subvectors. Then, each subvector is
mapped to its nearest codeword in this codebook.

For simplicity, we assume that Cin is a multiple of p, and thus all subvectors have the same dimension
d = Cin/p. The codebook Ci = {Ci1, . . . , Cik} contains k codewords of dimension d.

The following four steps explain how the codebook is learned by using the Hessian-aware K-means
algorithm:

(1) Setting the objective function. The function is expressed as the squared Euclidean norm of
the difference between original weight Wi and compressed weight Ŵi reconstructed by code-
book :

∥Wi − Ŵi∥22 =
∑
n

∥∥∥Wim − Ŵim

∥∥∥2
2
=
∑
n

∥Wim − cim∥22 (6)

where Wim represents the m-th subvector of Wi. Wi is mapped to its compressed version Ŵi =
(ci1, . . . , cim) where i1 denotes the index of the codeword assigned to the first subvector Wi1,
and so forth.

4

Under review as a conference paper at ICLR 2024

(2) Initializing Codebook. The saliences of subvectors of Wi are computed in summation of
d parameters in each subvector: Sim =

∑d
n=1 S

n
i . The k subvectors with the highest salience

serve as the initial codewords in the codebook.

(3) Assigning Clusters. Each subvector Wim is assigned to the nearest codeword by calculating
the Euclidean distance from itself to each codeword cik:

k̂ = argmin
k

∥Wim − cik∥22 (7)

where k̂ represents the index of the nearest codeword to the subvector Wim.

(4) Updating Codebook. For each cluster where the subvectors have the same k̂, the codeword
is updated by using the salience-weighted mean of the subvectors in the cluster:

cik =

∑
m∈clusterk̂

Sim ×Wim∑
m∈clusterk̂

Sim + ϵ
(8)

where ϵ is set to a small value (e.g., 1e−10) to prevent division by zero.

Steps (3) and (4) are repeated until the number of updated codewords falls below the threshold or
the number of iterations exceeds a specified limit, indicating that the codebook is completed.

3.3 RECOVER STAGE

In the recovery stage, we adopt the LoRA method to fine-tune the uncompressed layers so that the
performance drop can be mostly counteracted. Given an original weight of uncompressed layer
W o

j ∈ RCin×Cout , LoRA modifies its update by using a low-rank decomposition represented as
Wj = W o

j +∆W = W o
j +BA, where B ∈ RCin×r, A ∈ Rr×Cout , and the rank r ≪ min (Cin, Cout).

During the fine-tuning process, W o
j remains constant without gradient updates, whereas A and B

contain trainable parameters. Given a projection Y = XWj with X ∈ Rb×Cin , the computation in
this context can be expressed as:

Y = WjX = (W o
j +∆W)X = (W o

j X) + s(BA)X (9)

where s is a scalar. The overall fine-tuning complexity is very low by optimizing A and B. Ad-
ditionally, the pre-trained weights of the uncompressed layer and the adapter are merged before
compression to ensure that no parameters are added in the final compressed model.

4 EXPERIMENTS

Overview. We begin our experiments by validating the accuracy of LLM-Codebook relative to
other lossy quantization and pruning methods on models with 7 billion parameters that provide
acceptable runtimes. Next, we present the results of size compression ratios ranging from 75% to
95% for LLaMA-7B and Vicuna-7B models. The perplexity (PPL) and accuracy metrics are used
for challenging language generation tasks and classification tasks, respectively. Thereafter, we show
that LLM-Codebook remains stable under extreme compression ratio (compression ratio greater than
85%), whereas other compression methods have already collapsed. To complement this performance
analysis, we also conduct metrics statistics for LLaMA-7B, including the number of parameters,
memory needs, and compression ratio. In addition, we focus on investigating the Hessian-aware
strategies and tuning strategies for the impact on LLM-Codebook, and conduct detailed ablation
experiments. Finally, we employ the compressed model for text generation, demonstrating that the
compressed model still maintains excellent performance.

Setup. We apply the LLM-Codebook compression method to the pre-trained LLaMA Touvron et al.
(2023) and Vicuna Chiang et al. (2023) provided by Huggingface. Each model is compressed on
a single 48 GB NVIDIA A6000 GPU for about 3 hours. To gauge our model’s efficacy in a task-
neutral context, we adopt the evaluation metrics that LLaMa uses for zero-shot task classification on
common sense reasoning datasets: BoolQ Clark et al. (2019), PIQA Bisk et al. (2020), HellaSwag
Zellers et al. (2019), WinoGrande Sakaguchi et al. (2021), ARC-easy Clark et al. (2018), ARC-
challenge Clark et al. (2018), and OpenbookQA Mihaylov et al. (2018). As suggested by Gao

5

Under review as a conference paper at ICLR 2024

Table 1: Zero-shot performance of the compressed LLaMA-7B and Vicuna-7B. The average value
is calculated among seven classification datasets. ’Bold’ indicates the best performance within each
5% compression ratio interval. ’Ratio’ denotes compression ratio. ’NF4-DQ’ denotes that QLoRA
uses a 4-bit NormalFloat format with double quantization. ’g128’ denotes that RTN and GPTQ
adopt group-wise quantization with a group size of 128. (d,k) represents each codebook has k
codewords of dimension d.

.
Method Ratio Wiki2↓ PTB↓ ARC-c ARC-e BoolQ HellaS OBQA PIQA WinoG Avg.

LLaMA-7B 0.0% 12.6 53.8 44.8 72.9 75.1 76.2 44.4 79.2 69.9 66.1

QLoRA-NF4-DQ 71.6% 15.8 70.9 44.4 71.0 75.4 77.0 43.2 73.2 68.9 64.7
RTN-4bit-g128 74.1% 15.7 62.1 43.1 70.8 73.4 74.2 43.2 78.3 69.2 64.6

GPTQ-4bit-g128 74.1% 13.1 53.2 44.2 71.9 74.9 75.8 44.2 78.8 69.1 65.6
SparseGPT 75.0% 107.7 358.8 23.3 34.0 60.9 33.8 26.0 56.6 53.3 41.1

LLM-Pruner 75.2% 117.4 379.0 24.7 33.0 49.6 32.8 28.6 62.2 56.1 41.0
(d,k) =

(
4, 215

)
75.9% 13.4 56.0 46.1 73.2 75.8 75.5 43.4 80.0 70.1 66.3

RTN-3bit-g128 80.3% 90.0 368.8 27.4 45.3 48.0 45.5 29.2 65.8 53.5 45.0
GPTQ-3bit-g128 80.3% 15.0 60.4 42.2 69.4 70.7 72.5 41.8 77.8 67.1 63.0
(d,k) =

(
4, 212

)
81.0% 14.6 63.1 43.3 70.6 77.4 74.5 43.8 79.1 68.3 65.3

SparseGPT 82.5% 443.1 1e3 24.2 28.7 39.0 29.1 24.2 52.7 49.5 35.3
LLM-Pruner 82.9% 164.3 555.7 24.8 30.0 60.9 26.7 30.6 53.1 48.9 39.3

RTN-2bit-g128 86.6% 8e4 7e4 29.0 25.0 50.3 26.5 27.2 49.1 50.0 36.7
GPTQ-2bit-g128 86.6% 736.2 1e3 24.9 28.2 39.9 26.9 25.0 52.1 51.3 35.5
(d,k) =

(
8, 215

)
87.1% 20.2 80.7 37.2 63.2 70.7 66.2 38.2 73.0 63.4 58.8

SparseGPT 87.5% 2e3 4e3 26.0 26.3 38.2 26.6 23.8 50.4 48.9 34.3
LLM-Pruner 87.9% 1e4 1e4 26.9 26.9 40.0 25.7 26.8 49.5 52.2 35.4

SparseGPT 90.0% 3e3 5e3 27.0 26.4 37.8 26.0 23.6 50.8 49.7 34.5
LLM-Pruner 90.0% 2e4 1e4 27.5 27.2 41.1 25.5 29.2 49.0 49.0 35.4

(d,k) =
(
8, 212

)
90.0% 31.5 131.0 30.1 50.0 64.5 55.7 31.2 71.3 57.1 51.4

(d,k) =
(
16, 215

)
91.9% 121.5 380.5 24.3 36.7 39.7 32.8 27.6 58.0 52.5 38.8

(d,k) =
(
16, 212

)
94.7% 2e3 3e3 26.5 28.0 37.9 26.7 25.6 50.1 51.1 35.1

Vicuna-7B 0.0% 17.1 63.1 44.5 71.9 78.1 73.9 43.8 79.1 69.1 65.8

QLoRA-NF4-DQ 71.6% 17.3 67.0 42.5 71.1 77.2 73.6 42.0 78.5 68.4 64.8
RTN-4bit-g128 74.1% 21.5 74.0 42.7 68.6 71.0 71.4 42.8 77.9 65.4 62.8

GPTQ-4bit-g128 74.1% 17.8 65.1 41.7 70.8 75.8 73.6 42.2 78.5 70.1 64.7
SparseGPT 75.0% 116.5 302.2 22.6 34.3 45.7 34.4 26.0 56.3 53.9 39.0

LLM-Pruner 75.2% 140.5 479.1 25.4 30.9 62.2 27.3 31.4 54.6 49.5 40.2
(d,k) =

(
4, 215

)
75.9% 15.7 58.6 43.4 69.5 78.5 74.4 43.8 78.6 68.6 65.3

RTN-3bit-g128 80.3% 182.6 450.1 24.8 37.4 53.9 40.0 30.4 59.5 51.8 42.5
GPTQ-3bit-g128 80.3% 21.3 75.8 41.0 66.5 66.2 70.2 38.8 76.2 66.2 60.7
(d,k) =

(
4, 212

)
81.0% 16.2 59.5 41.2 67.7 78.4 72.3 42.4 78.2 67.9 64.0

SparseGPT 82.5% 479.1 1e3 22.2 28.5 37.8 28.6 23.4 52.2 49.9 34.7
LLM-Pruner 82.5% 210.1 831.0 26.0 30.0 60.7 26.8 31.2 53.3 49.7 39.7

RTN-2bit-g128 86.6% 1e5 1e5 28.0 26.7 50.0 26.1 29.0 47.8 48.4 36.6
GPTQ-2bit-g128 86.6% 6e3 7e3 25.8 25.9 44.6 26.4 27.4 50.9 52.0 36.1
(d,k) =

(
8, 215

)
87.1% 21.0 71.8 35.1 60.0 72.0 65.2 37.0 74.8 63.7 58.2

SparseGPT 87.5% 2e3 4e3 26.5 26.4 37.8 26.0 23.4 50.4 49.3 34.3
LLM-Pruner 87.9% 7e3 6e3 26.7 26.5 46.2 25.0 26.8 49.0 49.3 35.6

SparseGPT 90.0% 3e3 5e3 26.3 26.1 38.0 25.6 22.6 50.2 48.9 34.0
LLM-Pruner 90.0% 7e3 5e3 27.0 26.1 39.2 24.8 27.4 49.6 48.8 34.7

(d,k) =
(
8, 212

)
90.0% 33.2 99.3 31.0 52.3 60.1 53.1 32.6 69.0 57.2 50.8

(d,k) =
(
16, 215

)
91.9% 91.8 286.1 23.6 37.3 58.4 34.5 23.2 59.9 51.1 41.1

(d,k) =
(
16, 212

)
94.7% 9e3 1e4 26.0 25.9 38.1 26.4 26.0 50.3 50.5 34.7

et al. (2021), our model either ranks the options in a multiple-choice task or generates open-ended
answers. Furthermore, we also supplement the zero-shot perplexity evaluation metrics including
Wikitext2 Merity et al. (2016) and PTB Marcus et al. (1993).

Baselines. Our primary baseline is the Round-To-Nearest (RTN) quantization, which has shown to
be particularly effective for small group sizes, such as 128. We also benchmark against state-of-
the-art methods such as GPTQ Frantar et al. (2022) for Post-Training Quantization (PTQ), QLoRA
Dettmers et al. (2023) for Quantization-Aware Training (QAT), LLM-Prunner Ma et al. (2023) for
structured pruning, and SparseGPT Frantar & Alistarh (2023) for unstructured pruning.

6

Under review as a conference paper at ICLR 2024

Table 2: Metrics of LLM-Codebook for LLaMA-7B. (d,k) represents each codebook has k code-
words of dimension d.

LLaMA-7B
(
4, 215

) (
4, 212

) (
8, 215

) (
8, 212

) (
16, 215

) (
16, 212

)
#Params 6.74B 1.91B 1.89B 1.13B 1.08B 0.78B 0.68B

Memory Needs 12.38GB 2.98GB 2.35GB 1.60GB 1.24GB 1.00GB 0.66GB

Compression Ratio 0.0% 75.91% 81.00% 87.07% 90.00% 91.92% 94.67%

Metrics. Table 2 shows the metrics of the models employed in our experiments: the number of
parameters, the memory requirement for each model’s operation, and the compression ratio. The
dimension and number of codewords in each codebook are set to d ∈ {4, 8, 16} and k ∈ {215, 212}
for each compression regime, respectively. Furthermore, We do not compress the embedding layer
and the output layer, as they are responsible for embedding the text or transforming the features into
text. The memory requirements of these two layers are also not accounted for in the experiments.
The memory requirement after compressing is calculated as the sum of the indexing cost (number
of Byte per subvector of weight) and the overhead of storing the codebooks in bfloat16 format:
Cin×Cout

d × log2(k)
8 B + k × d× 2B. Therefore, increasing d can reduce the compression ratio more

significantly than decreasing k when Cin and Cout have large values such as 4096. For instance,
compressing weight of size 4096 × 4096 with k = 215 = 32768 codewords (15/8 Byte for the
index of each subvector) and a codeword dimension of d = 8 results in an indexing cost of 3.84 MB
for m = 2, 097, 152 subvectors, plus the cost of storing the codebook of 512 kB. This reduces the
memory requirement from 32MB to 4MB, achieving a compression ratio of about 87%.

Layer sensitivity in Compression. We conduct multi-
ple experiments, and each time only one layer is com-
pressed with a codebook size of (d,k) =

(
16, 212

)
.

As depicted in figure 3, the transformer modules across
different layers exhibit an uneven distribution of sensi-
tivity, with the first three layers and the last two layers
having a more important impact on the model’s per-
formance. In other words, compressing these layers
suffers from more significant performance degradation
than other layers. Moreover, the parameter count of
each FFN linear projection is three times that of each
QKVO linear projection in the same transformer layer.
To address the above-mentioned two issues, we dou-
ble the codebook size (number of codewords) of the
QKVO linear projections and increase the codebook
size of the FFN linear projections to four times in these
layers. In other layers, we decrease the codebook size
of the QKVO linear projections to half of its initial size
and keep the overall codebook size of the FFN linear
projections unchanged. This ensures a consistent over-
all compression ratio.

Wikitext2 PTB

0 5 10 15 20 25 30

20

40

60

80

100

120

140

Layer

P
er
pl
ex
it
y

328.
733.

629.
733.

0

Figure 3: Layer sensitivity for Com-
pressing: compressing weights in only
one layer of LLaMA-7B. The perplex-
ity of the first layer for Wikitext2 and
PTB is 328 and 733, respectively, and
the perplexity of the third layer is 629
and 733, respectively.

Hyperparameters. From Bookcorpus Zhu et al. (2015), we randomly select 15 samples and trun-
cate each of them to a sequence length of 128 to compute the salience for both LLaMA and Vicuna.
In the recovery stage, we utilize the clean version of Alpaca Taori et al. (2023), which contains
approximately 50k samples. The batch size for fine-tuning is set to 64 and the AdamW optimizer
is employed in our experiment. The learning rate, the LoRA rank, the LoRA alpha, and the LoRA
dropout are set to 0.0001, 128, 1, and 0.05, respectively. For every 3 + m × 9 iterations, an un-
compressed layer is randomly selected for compression, where m denotes the ratio of the number of
compressed layers to the number of all layers.

Zero-shot Performance Table 1 presents the zero-shot performance of the compressed model.
Based on the evaluation conducted on LLaMA, the LLM-Codebook outperforms the advanced prun-
ing methods and quantization methods by significant margins. For example, at a compression ratio

7

Under review as a conference paper at ICLR 2024

Table 3: Ablation study on LLaMA-7B. The data is obtained by subtracting the results of the com-
plete method from that of the ablation method with the same codebook size. The average value is
calculated among seven classification datasets. The ’Sal’ option indicates whether salience is used
in the Clustering Stage, while the ’Tune’ option denotes whether LoRA is employed for fine-tuning
during the Recovery Stage. (d,k) represents each codebook has k codewords of dimension d.

Method Sal Tune Wiki2↓ PTB↓ ARC-c ARC-e BoolQ HellaS OBQA PIQA WinoG Avg.(
4, 215

)
+1.0 +3.0 -1.2 -1.9 -3.1 -1.2 -2.8 -1.7 -1.3 -2.0(

4, 215
)

✓ +0.4 +0.7 -2.4 -2.0 -3.0 -1.7 -2.6 -1.4 +0.7 -1.8(
4, 215

)
✓ +1.0 +4.3 -0.2 +0.5 -1.8 -0.5 -1.4 -0.4 +0.1 -0.6(

4, 212
)

+5.6 +15.2 -4.2 -5.1 -4.3 -6.2 -1.0 -2.3 -4.9 -4.0(
4, 212

)
✓ +1.8 +3.8 -3.5 -2.6 -2.1 -5.0 -2.6 -1.5 -1.5 -2.7(

4, 212
)

✓ +1.5 +3.6 +0.3 -0.1 -3.3 -1.3 -0.6 +0.3 -2.5 -1.0(
8, 215

)
+218.0 +466.1 -8.4 -15.8 -26.2 -31.6 -7.8 -13.6 -10.5 -16.2(

8, 215
)

✓ +76.7 +179.0 -7.1 -11.3 -18.0 -28.2 -6.2 -9.2 -10.9 -12.9(
8, 215

)
✓ +5.1 +9.3 -0.4 +0.3 -5.0 -3.0 -0.2 -2.1 -0.8 -1.6(

8, 212
)

+1e4 +2e4 +1.7 -12.9 +9.9 -10.6 +2.0 -12.8 -1.5 -3.5(
8, 212

)
✓ +1e4 +9e3 -0.0 -12.7 -4.3 -11.0 -2.6 -12.9 -0.2 -6.3(

8, 212
)

✓ +301.3 +1e4 -1.4 -7.2 +13.9 -5.2 +0.2 -7.1 -1.1 -1.2

of 75%, maintain the same level of performance as the original model in terms of accuracy and
perplexity. The pruning methods LLM-Pruner and SparseGPT experience a 20% decline in ac-
curacy, while the quantization methods QLoRA and GPTQ also see a 1-2% decrease in accuracy.
Furthermore, when the model size is compressed to one-eighth, LLM-Codebook achieves 90% of
the original performance, while other methods have already failed because they have lost some cru-
cial information in such a high compression ratio. Specifically, LLM-Codebook still manages to
maintain nearly 80% accuracy in classification tasks when the model is compressed to one-tenth
of its original size. LLM-Codebook only collapses completely when the compression ratio reaches
95%. The compression results of Vicuna-7B align with those of LLaMA-7B, as compressing 87%
of model size on Vicuna-7B maintains performance at about 90%, while other methods have already
collapsed. These results validate the effectiveness of LLM-Codebook in extreme model compres-
sion.

Ablation Study. We conduct ablation experiments including whether to employ salience for clus-
tering or whether to perform tuning, as shown in Table 3. To investigate the importance of salience
in the Hessian-aware K-means algorithm, we use a normal K-means algorithm to compress weight
only based on weight values. Without tuning by LoRA, the perplexity of the normal method is
3x higher than that of the Hessian-aware method, which means that the Hessian-aware method can
retain the weight parameters that have the greatest influence on model predictions. In the case of
employing the normal K-means algorithm, the perplexity and accuracy of fine-tuning with LoRA
are better than that without fine-tuning. Especially, at a compression ratio of 90%, there is a de-
crease of more than 200 in perplexity. This implies that the updating information of the weights can
effectively compensate for the performance drop, which is also encoded into the codebook.

Compression error. As illustrated in Figure 4, under equivalent compression ratios, LLM-
Codebook consistently outperforms RTN quantization. The compression ratio of LLM-Codebook is
7% higher than that of RTN to achieve a close Mean Absolute Error (MAE). The smaller compres-
sion error enables LLM-Codebook to maintain acceptable performance under extreme compression
scenarios, while RTN-based methods like GPTQ collapse due to the large quantization error of much
crucial information. This suggests that there are a large number of similar vectors in the LLM weight
parameters, which can be represented by the same codeword.

Generation Results. Table 4 provides generation results from the original models and the com-
pressed models. The results from the compressed model outputs display coherence, pertinence,
and insight in relation to the assigned topic, each of which aligns well with those from the original
model. This indicates that the source of this information is more from the original model rather than
the tuning dataset.

8

Under review as a conference paper at ICLR 2024

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RTN-4bit-g128 (74.1%) RTN-3bit-g128 (80.3%) RTN-2bit-g128 (86.6%)
(d,k)=(4,2^15) (75.9%) (d,k)=(4,2^12) (81.1%) (d,k)=(8,2^15) (87.1%)

Layer

W
ei

gh
t M

A
E

Figure 4: Mean Absolute Error (MAE) between uncompressed weights and weights compressed by
Round-To-Nearest (RTN) quantization or LLM-Codebook in different layers of LLaMA-7B. The
percentage in the legend represents the compression ratio. (d,k) represents each codebook has k
codewords of dimension d.

Table 4: Language generation results obtained with the original model and the compressed model.
’Ratio’ denotes compression ratio.

Ratio LLaMA-7B Vicuna-7B

0.0% List 5 reasons why someone should learn to code: 1. In-
crease marketability and job opportunities: Being able
to write code in any language means you can create soft-
ware, websites or apps that can be used for a variety of
purposes. Having this skill is very valuable because it
opens up doors to jobs in the tech industry...

The differences between genetic traditional and
engineering breeding is the ability to manipulate
genes at a molecular level, which is not possible with
traditional breeding. Genetic engineering allows for the
creation of new traits that are not found in nature. This
can be used for many purposes...

81.0% List 5 reasons why someone should learn to code: 1.
Increased Employment Opportunities – With the ever-
growing demand for computer programmers, coders
have an advantage in job opportunities compared to non-
coding graduates. Many businesses now use technology
to enhance their operations and require programmers...

The differences between genetic traditional and
engineering breeding is the way in which genes are
manipulated. With traditional breeding, breeders
selectively choose traits to pass on from one generation
to another through selection of individuals with
desirable characteristics. In contrast...

87.1% List 5 reasons why someone should learn to code: 1.
Career opportunities: One of the biggest reasons is that
there will always be a demand for people who can code.
Jobs in IT are growing rapidly and they’re not going
away anytime soon, making it a great time to start learn-
ing how to code. 2. Personal development...

The differences between genetic traditional and
engineering breeding is that traditional breeding relies
on the physical appearance of the animals to choose
traits, while genetic engineering uses selective DNA
sequencing for making the decisions. Traditional
breeding focuses more on specific traits...

5 CONCLUSION

In this work, we have proposed a LLM-Codebook for extreme compression of large language mod-
els (LLM-Codebook), effectively mapping extensive LLMs (in GB) to compact codebooks (in KB).
Central to LLM-Codebook is our Hessian-aware K-means algorithm that clusters weights into code-
books based on Hessian information, ensuring the preservation of critical parameters impacting
predictions. Moreover, we have leveraged tuning techniques LoRA to update uncompressed layers,
aiming to restore performance utilizing only a limited corpus. LLM-Codebook has demonstrated
notable preservation of generative and multi-task solving capabilities inherent to LLMs, surpassing
conventional techniques like GPTQ, QLoRA, LLM-Pruner, and SparseGPT. Through rigorous eval-
uation, we have showcased the remarkable efficacy of LLM-Codebook by compressing LLaMA-7B
and Vicuna-7B to a mere memory requirement of 2GB (a 6x compression factor), while maintaining
99% of the baseline performance. Notably, our method has upheld considerable accuracy under
extreme compression ratios, attaining 90% of the original performance, a significant 36% improve-
ment over GPTQ when the model size is compressed to one-eighth. The results affirm the potential
of LLM-Codebook as a viable solution to the challenges of deployment, inference, and training
associated with LLMs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying explana-
tory training samples via relative influence. In International Conference on Artificial Intelligence
and Statistics, pp. 1899–1909. PMLR, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

OpenAI. GPT-4 Technical Report, March 2023. URL http://arxiv.org/abs/2303.
08774. arXiv:2303.08774 [cs].

10

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774

Under review as a conference paper at ICLR 2024

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
nuqmm: Quantized matmul for efficient inference of large-scale generative language models.
arXiv preprint arXiv:2206.09557, 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. Clustering convolutional kernels to compress
deep neural networks. In Proceedings of the European conference on computer vision (ECCV),
pp. 216–232, 2018.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit
goes down: Revisiting the quantization of neural networks. arXiv preprint arXiv:1907.05686,
2019.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: open and
efficient foundation language models, 2023. URL https://arxiv. org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

11

https://github.com/tatsu-lab/stanford_alpaca

	Introduction
	Related work
	Our Approach
	Salience stage
	Clustering stage
	Recover stage

	Experiments
	Conclusion

