
Under review as a conference paper at ICLR 2021

NEURAL DISJUNCTIVE NORMAL FORM: VERTICALLY
INTEGRATING LOGIC WITH DEEP LEARNING FOR
CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Neural Disjunctive Normal Form (Neural DNF), a hybrid neuro-
symbolic classifier that vertically integrates propositional logic with a deep neural
network. Here, we aim at a vertical integration of logic and deep learning: we uti-
lize the ability of deep neural networks as feature extractors to extract intermediate
representation from data, and then a Disjunctive Normal Form (DNF) module to
perform logical rule-based classification; we also seek this integration to be tight
that these two normally-incompatible modules can be learned in an end-to-end
manner, for which we propose the BOAT algorithm.

Compared with standard deep classifiers which use a linear model or variants of
additive model as the classification head, Neural DNF provides a new choice of
model based on logic rules. It offers interpretability via an explicit symbolic rep-
resentation, strong model expressity, and a different type of model inductive bias.
Neural DNF is particularly suited for certain tasks that require some logical com-
position and provides extra interpretability.

1 INTRODUCTION

In the recent years, the emphasis of machine learning, particularly deep learning, has been to in-
crease the capacity to accurately model complex patterns, but typically such flexibility results in
blackboxes that are too complex for humans to understand. While the ability of deep learning on
feature extraction and pattern recognition is widely recognized, the blackbox nature makes it hard
for human to interpret the underlying mechanism; furthermore, this lack of interpretability leads
to difficulties for human to interact with or manipulate the model, when trying to debug undesired
behaviors or to improve model by incorporating human knowledge.

A possible solution to this limitation of deep learning, as discussed and promoted by many re-
searchers (Marcus, 2020; Bengio, 2019; Yi et al., 2019; Mao et al., 2019; Hudson and Manning,
2019; Penkov, 2019) , is to develop hybird neuro-symbolic models. While there are many differ-
ent approaches on integrating neural and symbolic models, one of these approaches called Verti-
cal Integration1, aims at exploiting the best of both worlds in a straight-forward way: it utilizes
deep learning to learn high-level features from raw sensory data (which deep learning are good at),
and utilizes symbolic models to reason about the high-level features (which symbolic models are
good at). More formally, the vertical integration approach can be represented as a two stage model
f = g ◦φ whose prediction on a sample x is given by ŷ = f(x) = g(φ(x)) where the first-stage φ is
a neural network feature extractor and the second-stage g is the symbolic model processing the ex-
tracted features into final prediction. Vertical integration has its biological inspiration: we know that
certain areas in the brain are used to process input signals (Grill-Spector and Malach, 2004) while
others are responsible for logical reasoning (Shokri-Kojori et al., 2012). But from a more practical
perspective, vertical integration promises a solution to demystify the blackbox by decomposing the
prediction task into two stages, handled by different models; and a better-demystified interpretable
model can enable easier human interactions and manipulations on the model.

1The term vertical integration is categorized in a recent survey (Garcez et al., 2019) on neuro-symbolic
models. The neuro-symbolic literatute (Besold et al., 2017) offers a multilitude of approaches covering different
settings, making it hard to discuss in brief due to space. We provide a more discussion in appendix.
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The choice of symbolic model to integrate naturally depends on the task. SAT-Net (Wang et al.,
2019a) utilizes a symbolic SAT solver layer on top of a convolutional neural network (CNN) for
solving a satisfiability-based task of visual Sudoku; Donadello et al. (2017) utilizes first-order fuzzy
logic on top of a Fast-RCNN to extract structured semantic descriptions from images; DeepProbLog
(Manhaeve et al., 2018) builds a probabilistic logic program on top of a CNN within a domain-
specified grammar template for tasks like visual digit addition and sorting. In this paper, since we
deal with the most basic task of binary classification, we choose propositional logic in Disjunctive
Normal Form (DNF), also known as ‘decision rules’ or ‘rule set’. As a well-studied symbolic
model, DNF has been established as being general and interpretable. DNF performs a simple and
transparent ‘OR-of-ANDs’ prediction: if at least one AND clause (a conjunction of conditions) is
satisfied, it predicts the positive class; otherwise negative. DNF is interpretable not only because its
symbolic structure is intuitive to follow, but also that each conjunctive clause of DNF can be viewed
as a separate IF-THEN rule, providing ‘smaller-than-global’ interpretations (Rudin, 2019). DNF is
a general rule format, as any propositional logic formula has an equivalent DNF formula, and thus
any rule-based binary classifier including decision set/list/tree can be expressed by a DNF.

We seek Neural DNF’s vertical integration to be tight, i.e. we wish to optimize the deep feature
extractor and the DNF end-to-end. However, the main technical challenge here is that the learning
algorithms for rule-based models and deep learning models are generally incompatible, making
end-to-end learning not directly possible. In order to address this challenge, we propose BOAT (Bi-
Optimizer learning with Adaptively-Temperatured noise) to train φ and g jointly (see fig. 1): we use
standard continuous-parameter optimizer Adam (Kingma and Ba, 2014) to optimize the first-stage
neural network φ and modify a binary-parameter optimizer from Helwegen et al. (2019) to optimize
the parameters of the second-stage rule-based g. As the novel key ingredient of BOAT, we propose
adaptively-temperatured noise to perform weight perturbation which enables the learning of the rule-
based g. Our experiments demonstrate that learning constantly fails without such noise. Compared
with standard deep learning classifiers which has a fully-connected linear layer as g, Neural DNF
offers (1) a logic-based inductive bias and (2) better interpretability at competitive accuracy.
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Figure 1: Overview of Neural DNF and the proposed BOAT Algorithm

The rule-based Neural DNF is particularly suited for classification tasks that require the logical
compositions of certain concepts. We demonstrate that with experiments on a toy dataset called
2D-XOR, an extension of the XOR problem which has received special interest in the literature
(Minsky and Papert, 1969). We consider 2D-XOR as a minimal example to show the benefits of
Neural DNF’s vertical integration, because 2D-XOR requires a model to both learn the right high-
level features (concepts) from the raw data and the right XOR function. We further apply Neural
DNF to image datasets in two scenarios: In the first scenario, we use a regular deep network as
feature extractor with no further constraints. We show that Neural DNF can successfully learn both
the feature extractor and the logical rules for classification, and achieve competitive accuracy. Note
that in this case there is no guarantee that the extracted features are meaningful to human. In the
second scenario, we constrain the feature extractor to produce human-aligned interpretable features
by enforcing an auxiliary concept loss based on human concept annotations. In this scenario, Neural
DNF becomes highly interpretable that the interpretability enables human to easily interact with and
manipulate the learned model, such as performing human-intervention on the extracted features to
improve accuracy, or slightly tweaking the model to recognize an imaginary class that does not exist
in the dataset. In conclusion, our experiments show that Neural DNF achieves accuracy comparable
that of blackbox deep learning models while offering an interpretable symbolic DNF representation,
that makes human easier to interact with or manipulate the model.
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2 NEURAL DISJUNCTIVE NORMAL FORM

We consider a standard supervised learning setting of classification: given a dataset of D =

{(x, y)}|D|1 , we wish to learn a classification function f . For simplicity, we now assume y to be
binary labels (y ∈ {0, 1}) and will extend to multi-class later. We use the two-stage formulation
: the classifier function f = g ◦ φ is a composition of two functions φ and g, where φ is a neural
network feature extractor, taking raw data x as input and returning a set of intermediate represen-
tations {c1, c2, . . . , cK} ∈ {0, 1}K where K is a predefined number. We use 0 and 1 to represent
False and True. We call each c a concept predicate to emphasize that c has a Boolean interpretation:
it indicates the presence or the absence of a concept. A Disjunctive Normal Form module g is used
for the actual classification. The overall classification is given by ŷ = f(x) = g(φ(x)).

The logical rule-based g is formulated as a Disjunctive Normal Form (DNF). g takes a set of
Boolean predicates as input feature and makes binary prediction. g can be more intuitively inter-
preted as a decision set, consisting of a set of if-then rules: g predicts the positive class if at least one
of the rules is satisfied and predicts the negative class otherwise. We define a rule ri to be a conjunc-
tion of one or more conditions (literals): ri = bi1 ∧ bi2 ∧ . . . where bj for j ∈ {1, 2, · · · 2K} can be
a predicate c or its negation ¬c. A DNF is a disjunction of one or more rules: r1 ∨ r2 ∨ . . . ∨ rn.

Rule learning algorithm for DNF can be viewed as a subset selection problem: first, a pool of all
candidate rules is constructed and then ‘learning’ corresponds to finding a good subset of rules as
the learned DNF. LetN to be the size of pool of rules andK the number of predicates, we formulate
using a binary matrix W2K×N and a binary vector SN . W2K×N represents the pool of candidate
rules: each column represents a rule and the non-zero elements of a column indicate the conditions
of that rule. SN can be viewed as a membership vector that determines which rules are selected as
the learned DNF. Given input concept predicates c = {c}K1 , g computes the Boolean function as:

ŷ = g(c) =

N∨
Sj=1

∧
Wi,j=1

bi where {b}2Ki = {c1,¬c1, c2,¬c2, . . . , ck,¬ck} (1)

Note that eq. (1) is used during training; after training, W2K×N is discarded and only the selected
rules are stored. Conventional methods of rule learning (Lakkaraju et al., 2016; Wang et al., 2017)
usually construct a fixed W by rule pre-mining; and then ‘learning’ corresponds to the discrete
optimization of the membership vector S. However, this is not compatible if we wish to jointly
optimize g with the neural network φ end-to-end. In order to do so, we make two essential modifi-
cations: (I) we make both W2K×N and SN learnable parameters; (II) we introduce a differentiable
replacement2 of the logical operation of eq. (1) so that gradients can be properly backpropagated:

rj =
∧

Wi,j=1

bi
replaced by−−−−−−→ rj =

2k∏
i

Fconj(bi,Wi,j), where Fconj(b, w) = 1−w(1−b) (2)

ŷ =
∨

Sj=1

rj
replaced by−−−−−−→ ŷ = 1−

N∏
j

(1− Fdisj(rj ,Sj)), where Fdisj(r, s) = r · s (3)

eqs. (2) and (3) computes the DNF function exactly as eq. (1), but note that since W and S are bi-
nary, optimizing {W ,S}with mini-batch gradient descent is non-trivial. The above formulation can
be easily extended to multi-class settings by using a different W and S for each class (thus we have
a different DNF ‘tower’ for each class) while the concept predicates being shared across classes; in
test time when more than one classes are predicted as positive, some tie-breaking procedure can be
employed. In this paper, we simply use lazy tie-breaking by selecting the first encountered positive
class in ascending order (e.g. when class 1, 4, 7 are all predicted as positive, we select class 1).

The neural network feature extractor φ processes the raw input x into a set of intermediate rep-
resentations {c1, c2, . . . , ck} called concept predicates. The neural network φ’s output c̃i is real-
valued. To ensure the extracted c can be processed by the DNF g, c needs to be binary. We use
a binary step function to discretize c̃i into Boolean predicates: ci = 1 if c̃i > 0 and ci = 0 other-
wise. However, since gradient through this step function is zero almost anywhere and thus prevents

2Obtaining eqs. (2) and (3) is not new, similar formulation can be found in the literature such as the logical
activation functions (Payani and Fekri, 2019; Wang et al., 2019b) or soft NAND gate (Sajjadi et al., 2016).
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training, we utilize the Improved SemHash (Kaiser and Bengio, 2018). It does not need any manual
annealing of temperature (Bulat et al., 2019; Hansen et al., 2019) or additional loss functions and has
been demonstrated to be a robust discretization technique in various domains (Kaiser and Bengio,
2018; Chen et al., 2019b; Kaiser et al., 2019). Ideally, the intermediate output c should be the high-
level ‘natural’ features that are aligned with human-comprehensible concepts. Quoted from Melis
and Jaakkola (2018), for medical image processing, the concept predicate c should indicate tissue
ruggedness, irregularity, elongation, etc, and are ‘the first aspects that doctors look for when diag-
nosing’. However, this is ill-defined and indeed a very much more challenging task. We explore two
options of φ on some image datasets: in section 4.2. we choose to use a convolutional neural net-
work and do not put any extra constraints; in section 4.3, we enforce the feature extractor to produce
interpretable representations by enforcing an auxiliary concept loss based on human annotations.

Objective function of Neural DNF is given as L = Lloss + λgRg(W ,S) where Lloss =
1
|D|
∑

(x,y)∈D L(y, gW (φθ(x))) is the classification loss (using MSE or BCE) and Rg is the reg-
ularization for g. For a simple regularization of g, we want the number of rules and the length of
rules to be small. Note that as only rules selected by S are actually used, we can use a grouped
L1-norm by Rg(W ,S) = λg

∑N
j |Sj |1|W·,j |1. Note that in the multi-class setting, our exten-

sion of Neural DNF is simply treating a multi-class classification as multiple one-versus-all binary
classifications. In this case, the objective function sums up the classification loss for all the classes.

3 THE BOAT ALGORITHM FOR LEARNING NEURAL DNF

In this section, we introduce Bi-Optimizer learning with Adaptively-Temperatured noise(BOAT),
the learning algorithm for Neural DNF. BOAT utilizes two optimizers: a standard deep learning
optimizer Adam (Kingma and Ba, 2014) that optimizes the continuous parameters θ of the neural
network φ and a binary-parameter optimizer adopted from [Helwegen et al., 2019] that optimizes the
binary parameters {W ,S} of the DNF g. As the key ingredient of BOAT, during training the binary
parameters W and S are perturbed by noise whose magnitude is controlled by the noise temperature
σ (eq. (4)). We emphasize that (1) the introduced noise is necessary as otherwise learning of {W ,S}
constantly fails even in very simple cases (see appendix fig 1) and (2) the noise temperature σ is also
a learnable continuous parameter, which can be optimized together with other continuous parameters
by Adam. Making the temperature learnable avoids the tedious tuning of temperature schedules.

Joint optimization of gW ,S and φθ is non-trivial, because although the overall model is differen-
tiable, {W ,S} consists of binary values ({0, 1}) and thus standard deep learning optimizers de-
signed for continuous parameters cannot be directly applied. One alternative, denoted as DNF-Real
(Payani and Fekri, 2019; Wang et al., 2019b), is to simply use real-valued weight {W̃ , S̃} trans-
formed using sigmoid/tanh functions as a surrogate and then use Adam as the optimizer. After
training, real-valued weights are thresholded to binary values, and performance drop can occur. In
practice, we find DNF-Real to be optimization-friendly just like any other real-valued DNNs but it
is not guaranteed to result in binary-valued parameters. Another alternative, which we denote as
DNF-STE, is adopted from binary neural network research (Courbariaux et al., 2016; Darabi et al.,
2018). It maintains real-valued latent parameters which are binarized in forward pass computation.
In backward computation the gradients are updated to the latent real-valued parameters using the
straight-through estimator (STE) (Bengio et al., 2013). This technique is widely used and works
quite well for large-scale binary neural networks. However, for a small-sized DNF g, DNF-STE is
very sensitive to initialization and hyperparameters and can easily be stuck in local minima.

The introduced BOAT combines the best of both approaches: (1) It is optimization-friendly and not
very sensitive to initialization and hyperparameters. This is especially important as g is not overpa-
rameterized; (2) It naturally optimizes binary parameters. A pseudocode is provided in appendix.

Modified Bop: BOAT uses a modified version of the Bop optimizer (Helwegen et al., 2019) to
optimize the binary-valued parameter {W ,S} given gradient as learning signals. We make minor
modifications to suit Bop (originally for {−1, 1}) into the case of {0, 1}. The Modified Bop
optimizer introduced in this paper uses gradient as the learning signal and flips the value of w ∈
{0, 1} only if the gradient signal m exceeds a predefined accepting threshold τ :

w =

{
1− w, if |m| > τ and (w = 1 and m > 0 or w = 0 and m < 0)

w, otherwise.
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where m is the gradient-based learning signal computed in the backward pass. A non-zero τ is
introduced to avoid rapid back-and-forth flips of the binary parameter and we find it helpful to
stabilize the learning because m is of high variance. To obtain consistent learning signals, instead
of using vanilla gradient∇ as m, the exponential moving average of gradients is used:

m = γm+ (1− γ)∇
where γ is the exponential decay rate and ∇ is the mini-batch gradient. We use γ = 1 − 10−5 and
τ = 10−6 as default value while the trick for tuning γ and τ can be found in original Bop paper.

Key ingredient of BOAT: Adaptively-temperatured Noise: The reason we introduce adaptively-
temperatured noise is that simply using the introduced Modified Bop shares the same drawback
as using DNF-STE: optimization is very sensitive to initialization and hyperparameters and can
be stuck in local minima very easily. When stuck in local minima, the gradients w.r.t W and S
effectively become zero, and thus any further updates for W and S are disabled. We suspect the
reason is that even the DNF function eqs. (2) and (3) is well defined on [0, 1], since the choice of
values of W and S can only take {0, 1}, the loss surface is non-smooth and thus the optimization
becomes hard. To overcome this, we propose to perturb the binary weights w during training by
adding noise in the forward pass such that the perturbed w̃ lies in [0, 1]. We believe the introduced
noise smoothes the loss surface and helps the optimization. Specifically, for every entry w in W
and S, we utilize a noise temperature parameter σw ∈ [0, 0.5] to perturb w with noise as follows:

w̃ =

{
1− σw · ε if w = 1

0 + σw · ε if w = 0
, where ε ∼ Uniform(0, 1) (4)

During training the perturbed weight w̃ is used in the forward pass computation of the objective
function; in test time, we simply disable this perturbation. To force σw lies in range [0, 0.5], we
clip σw by σw = min(0.5,max(σw, 0)) after evey mini-batch update. Note that σw is not globally
shared: we have a σw for every w in W and S (so in total 2K ∗ N + N ). We make σw also a
learnable parameter. We initialize σw = σ0 and optimize σw by Adam as well. The choice of
initial value σ0 requires heuristic: with a too large σ0 optimization becomes slower (appendix fig
1c ), and σ cannot be too small: in the extreme case with zero noise the optimization of W ,S will
constantly fail (appendix fig 1b). We find values in [0.1, 0.3] all work fine and we use σ0 = 0.2
as the default initial value. Remark: We evaluate BOAT with its alternatives for learning the DNF
alone in appendix sec E.1. We can also apply same noise for DNF-STE, but it converges slower
(appendix fig 2). We conjecture the reason to be the acceptance threshold τ which effectively filters
out noisy learning signals so that rapid flipping is prevented, suggested as main advantage of Bop.

4 EXPERIMENTS

4.1 ON A 2D TOY DATASET.
Here we first apply Neural DNF on a 2D toy dataset 2D-XOR (fig. 2). 2D-XOR is generated by first
drawing four isotropic 2D Gaussian clusters and mark them as red square, blue square, blue circle
and red circle (in clockwise order). We use a XOR-like label assigningment, labeling red squares and
blue circles as positive and the rest two clusters as negative. We consider 2D-XOR as an extension
of the historically important XOR problem, and its difficulty is that the feature of being ‘red’/‘non-
red’ and ‘square’/‘non-square’ is not provided as input directly but needs to be learned in a 2-d
input space. This makes the learning harder since it requires to learn both the correct intermediate
feature and the correct logical decision function. We use a one fully-connected layer network as φ to
produce two concept predicates c1, c2 and can visualize in as two lines in the 2-d space. We expect
the learned Neural DNF to find the two correct concept predicates that represent shape and color,

Figure 2: Neural DNF on 2D-XOR

respectively, and the correct classification function (‘color
is red and shape is square or color is not red and shape is
not square’). As shown in fig. 2, we visualize the decision
boundary of c1 and c2 by two lines and we find c1, c2 do
separate red-against-blue and square-against-circle as ex-
pected. We view fig. 2 as a minimal working example of
Neural DNF demonstrating that it is useful when (1) the
feature used for logic-based function are not provided but
needs to be learned and (2) the underlying classification
process consists of subtypes (each described as one rule)
and requires some logical compositions.
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4.2 ON IMAGE DATASETS. SCENARIO 1
In this section we apply Neural DNF with a CNN as feature extractor without any further contraints.
and then demonstrate empirically that given the same first-stage feature extractor architecture, Neu-
ral DNF sacrifices slight loss of accuracy (table 1) while gaining more faithful interpretations (fig. 3).
We first evaluate the accuracy of Neural DNF on several image datasets table 1. Using the same ar-
chitecture for φ, the models we compare are (1) Neural DNF (2) a standard DNN (i.e. a linear
model as g) and (3) self-explaining neural network (SENN) (Melis and Jaakkola, 2018), which uses
a neural network to generate the coefficients of a linear model conditioned on the input and claims to
have better interpretability. Since binarization is not required for DNN or SENN, we also evaluate
DNN and SENN with/without it. We observe that all models perform similarly well in terms of
test accuracy across datasets, while Neural DNF loses accuracy only slightly. Comparing DNN and
SENN with/without binarization, we can see that both DNN and SENN loses accuracy slightly be-
cause of the binarization. So the loss of Neural DNF ’s accuracy can be explained from two sources:
(1) the binarization (Improved SemHash) and (2) the use of rules as the classifier instead of the
more well-studied linear (additive) models. We suspect this is also partially because Neural DNF
treats multi-class settomg as multiple one-versus-all classifications and does not produce probabilis-
tic outputs like DNN and SENN. However, this should not be viewed as a weakness as long as the
accuracy loss is slight. We believe that this issue can be alleviated that given a sufficiently flexible
φ, the accuracy loss of Neural DNF can be negligible like the case of simple dataset MNIST.

Table 1: Test Accuracy on some image datasets
MNIST KMNIST SVHN CIFAR10

Neural DNF 99.08% 95.43% 90.13% 67.91%
standard DNN 99.12% 95.86% 90.74% 70.43%
standard DNN (without Binarization) 99.11% 96.02% 91.45% 71.45%
SENN 98.48% 92.64% 90.79% 71.09%
SENN (without Binarization) 98.50% 91.46% 92.15% 72.32%

Now regarding the interpretability, the problem here is, we can in principle inspect3 the meaning of
concept and rules of Neural DNF, but since we have no constraints on φ, the extracted features are
only highly discriminative and is not guaranteed to be aligned with human perceptible concepts. A
symbolic DNF that operates on non-interpretable representations is still non-interpretable. We will
revisit this interpretable representation problem in next section; but despite tje first-stage, here we
can still compare the interpretability of the second-stage model. Despite many qualitive arguments
for favouring the interpretability of the symbolic DNF (appendix B.3), we can further quantitively
evaluate the faithfulness of models’ interpretability, a critical critera that measures how faithful the
explanation for a particular prediction are to the underlying computation of prediction. We adopt the
faithfulness metric proposed by (Melis and Jaakkola, 2018) which measures the correlation of the
change of the prediction (class probabilities) and the change of the explanation (relevance scores of
features) upon perturbation of test examples.4 We report the faithfulness metric on test set for DNN,
SENN and Neural DNF in fig. 3. For DNN, we use the coefficients of final linear layer as rele-

Figure 3: Evaluating the faithfulness of explanations on test set

vance scores. Alternatively, for DNN we can also utilize some representitive post-hoc interpretation
methods (also known as attribution methods): Guided Backprop (GB) (Springenberg et al., 2014),

3We do provide an anecdotal example on the explanations Neural DNF can derive in (appendix fig 4) as
a direct comparison to the explanations provided by linear models (e.g., the MNIST example from the self-
explaining network (Melis and Jaakkola, 2018)) and explains the benefits of a symbolic DNF.

4As in (Melis and Jaakkola, 2018), the relevance score assignment and feature perturbation is done for the
extracted feature φ(x), not at the level of the raw data x.
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gradient SHAP (Lundberg and Lee, 2017), Integrated Gradient (IG) (Sundararajan et al., 2017) and
DeepLIFT (Shrikumar et al., 2017). SENN can use its self-generated coefficients as relevance scores
(Melis and Jaakkola, 2018). For Neural DNF, we use the difference analysis (Robnik-Šikonja and
Kononenko, 2008), a model-agnostic relevance score assignment method to assign scores. As
shown in fig. 3, Neural DNF consistently achieves the highest faithfulness estimates for all datasets
and its faithfulness has the smallest variance. This means Neural DNF’s explanations are highly
faithful in a robust way across different test samples. SENN is more faithful than DNN; and for
the post-hoc methods while GB performs very similarly with DNN-coef, IG/SHAP/DeepLIFT dras-
tically improves the faithfulness. This is because the latter three methods compute the relevance
w.r.t to a baseline reference, a concept that is now considered very essential (Sturmfels et al., 2020).
However, we emphasize that even these sophisticated post-hoc methods do not reach the same level
of faithfulness as Neural DNF, in particular not on MNIST and KMNIST. We believe that Neural
DNF’s extremely high faithfulness is the direct result of the symbolic nature of DNF.

4.3 ON IMAGE DATASETS, SCENARIO 2
Here we test a new scenario where we have concept annotations so we can train the feature extractor
to produce human-aligned interpretable representations. Our goal is that if we can align the extracted
features with human understanding, then we can achieve a highly interpretable model which human
can easily interact with and manipulate. We use the CUB dataset (Wah et al., 2011) which has 200
class and 112 binary annotataed concepts (preprocessed by Koh et al. (2020)). In Koh et al. (2020)
the authors propose the concept bottleneck model, a similar two-stage model using a Inception-V3
based feature extractor φ and a linear layer g. Given concepts the annotations, a concept prediction
loss can be applied so that the extracted faetures are constrained to align with annotated values.
Koh et al. (2020) also propose the test-time human intervention: since the extracted concepts can
be wrong, human can check and correct extracted concepts so that test accuracy can be improved
significantly through this interaction. We follow Koh et al. (2020) and replace the second-stage g
with a DNF. Koh et al. (2020) evaluate several strategies for training the two-stage model. Here we
use the independent training strategy: we train φ to predict concepts and train g to predict class label
using concepts; only in test time we stack φ and g together. The reason of choosing independent
training instead of joint training is counterintuive, however, this is because we find that the extracted
concepts after joint training are less well-aligned with human annotations, and it then makes the
human intervention less effective than independent trained models. In other words, based on non-
interpretable features, any human interaction/manipulation will be unreliable. This phenomenon is
consistent with Koh et al. (2020), and we think novel architectures that extracts interpretable features
without the need of annotations can solve it, in that case joint training should give better results. In
table 2 we report the accuracy of Neural DNF, the concept bottleneck model and blackbox DNN.
Neural DNF achieves less test accuracy compared with the concept bottleneck model by a large
margin, we suspect it might because Neural DNF is dealing with too many (200-class) one-versus-
all prediction and does not produce probabilistic outputs like other models do. But after intervention
both Neural DNF and the concept bottleneck model achiveve perfect accuracy. This indicates that
(1) the accuracy by applying human intervention can be improved significantly which is the benefits
of having an highly interpretable model; (2) the bottleneck of accuracy is the feature extractor: the
classification of CUB can be effectively solved given a perfect feature extractor.

Table 2: Test Accuracy on CUB dataset

test acc test acc with human intervention

Neural DNF 61.94% 100.00%
Concept bottleneck model 72.38% 100.00%
Blackbox DNN 74.69% N/A

While losing quite much in accuracy, the symbolic nature enables the Neural DNF to do the things
the concept bottleneck model cannot. We show in fig. 4 (top) a correctly predicted sample for the
class of ‘Chestnut sided Warbler’ and in fig. 4 (middle) an incorretly predicted sample and how
human intervention can correct the prediction. DNF rules are a very human-readable format, that
the rules are very sparse involving only a few concepts and the logical operation is intuitive to
understand. The DNF rules also alleviate the burden of human intervention compared to the concept
bottleneck, as only a few concepts are used in the decision rule, a human user can only check and
correct these concepts indicated in the rules and does not have to go through every concepts which
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In this highly interpretable Neural DNF model, we can tweak the rules to classify 
Blue-crown Chestnut sided Warbler, even if it does not exist in the training data (or even real world)

 

Prediction for a test sample

Test time human
intervention:

(Inception-V3 architecture) 
mapping raw images to human-

understandable concepts

Feature Extractor              ......
primarily white: True 
              ......
yellow crown: True
              ......

(In total 112 concepts.)
Extracted Concepts

DNF (expressed as IF-THEN rules)

IF grey wing is True AND white back is True AND black nape is True AND
has solid AND  pattern wing is True solid 
---> THEN predict class Common_Tern

IF
  yellow upper-parts is True AND white_nape is True AND primarily white
is True AND yellow crown is True  
---> THEN predict class Chestnut_sided_Warbler

 
IF
  black back is True AND primarily grey is True AND white crown is True 
OR
  brown back is True AND grey belly is True AND brown upper-parts is
False 
---> THEN predict class White_crowned_Sparrow

......

...... Match this rule!

Prediction

This is a Chestnut
sided Warbler

ground truth: a Chestnut sided Warbler (testset id 4738)

             ......
primarily white: False 
              ......
yellow crown: False
              ......

The feature extractor fail to identify the
correct concept, as the crown color and
the main body color is not so clear.

another Chestnut sided Warbler (testset id 4740)

(the same feature
extractor)

Feature Extractor DNF
the same rules (in particular the
Chestnut sided Warbler's rule as
above subfigure)

not a
Chestnut
sided
Warbler

Wrong prediction!

In test time, we can enable human intervention by checking each
concepts' value and correct the concept values by human
understanding (in this case human vision)

             ......
primarily white: True 
              ......
yellow crown: True
              ......

DNF
the same rules (in particular the
Chestnut sided Warbler's rule as
above subfigure)

is a 
Chestnut
sided
Warbler

Correct!

To classify an imaginary class by manipulating the model

After human intervention

An bird of the imaginary class 
Blue-crown Chestnut sided Warbler

There is no such bird as  
Blue-crown Chestnut
sided Warbler
the image is a synthetic
image

However we can still be able
to classify this imaginary
class

IF yellow upper-parts is True AND white_nape is True AND primarily white is True AND blue crown is True  
---> THEN predict class Chestnut_sided_Warbler

IF yellow upper-parts is True AND white_nape is True AND primarily white is True AND yellow crown is True  
---> THEN predict class Chestnut_sided_Warbler

(the concept of blue crown, though, is in the training set)

The decision rule for Chestnut sided Warbler  is as below. Note that it has a yellow crown.

Figure 4: (top) illustration of a correct prediction of Neural DNF for class ‘Chestnut sided Warbler’;
(middle) illustration of human interaction: an incorrect prediction of Neural DNF for class ‘Chestnut
sided Warbler’ can be corrected by human intervention; (bottom) illustration of manipulating a
learned Neural DNF to classify an imaginary class ‘Blue-crown Chestnut sided Warbler’.

the concept bottleneck model requires. Also, the symbolic nature of DNF enables us to incorporate
knowledge and manipulate the models easily in a way that the concept bottleneck model (with a
linear g) cannot offer. In in fig. 4 (bottom), we provide an illustration on how we can tweak the
Neural DNF to predict an imaginary class ”blue-crown Chestnut sided Warbler” that does not exist
in the training dataset (not even in real world). Taking the rule for ‘Chestnut sided Warbler’, we
can simply replacing the condition of ‘yellow crown is True’ with ‘blue crown is True’. Note that
’blue crown’ is already in the training set and one of the concepts φ can extract. Of course we can
go further that we can train and append new feature extractors for new concepts and then play with
new concepts. There are, however, limitations because of the expressity of prositional logic.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented Neural DNF, a vertically integrated neuro-symbolic classifier. Neu-
ral DNF takes a step towards the fundamental problem of integrating continuous perception and
logical reasoning. Neural DNF adopts a two-stage model that utlizes a DNN to extract features,
called concept predicates, and a propositional logic DNF module to make classification based on the
concepts. We propose the BOAT algorithm for joint learning of the DNF module and the feature ex-
tractor DNN. In order to avoid laborious manual tuning, we employ an Improved SemHash method
to binarize the extracted features, to obtain concept predicates, because it does not need to manually
tune any extra parameters or add further losses. We also introduce adaptive temperatured-noise,
which is a minimal modification of the binary-parameter optimizer Bop that enables the effective
optimization of the parameters of the second-stage rule-based model.

This paper suggests several directions for future research. In our experiments in Neural DNF , we
have used concept annotations and the concept-bottleneck DNN architecture to extract interpretable
features. However, in practice there is often no prior knowledge of ‘concept annotations’ available.
Therefore, novel deep learning architectures that can extract human-understandable concepts from
data without the need of concept annotations should be investigated. This may require domain-
specific knowledge representations and loss functions (Melis and Jaakkola, 2018; Chen et al., 2019a;
Biffi et al., 2018; Kim and Canny, 2017; Johnson et al., 2016). Another future direction is the
use of more powerful languages than propositional logic, for example, the more general inductive
logic programming. Since BOAT requires only minimal changes of the standard deep learning
optimization, we believe it can be potentially applied to models with a more powerful second-stage
rule-based module, or to other models with mixed binary-continuous parameters.
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