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Abstract

Diffusion models are a class of flexible generative
models trained with an approximation to the
log-likelihood objective. However, most use
cases of diffusion models are not concerned
with likelihoods, but instead with downstream
objectives such as human-perceived image quality
or drug effectiveness. In this paper, we investigate
reinforcement learning methods for directly
optimizing diffusion models for such objectives.
We describe how posing denoising as a multi-
step decision-making problem enables a class of
policy gradient algorithms, which we refer to as
denoising diffusion policy optimization (DDPO),
that are more effective than alternative reward-
weighted likelihood approaches. Empirically,
DDPO is able to adapt text-to-image diffusion
models to objectives that are difficult to express
via prompting, such as image compressibility,
and those derived from human feedback, such
as aesthetic quality. Finally, we show that
DDPO can improve prompt-image alignment
using feedback from a vision-language model
without the need for additional data collection
or human annotation.

1. Introduction
Diffusion probabilistic models (Sohl-Dickstein et al., 2015)
have recently emerged as the de facto standard for genera-
tive modeling in continuous domains. Their flexibility in
representing complex, high-dimensional distributions has
led to the adoption of diffusion models in applications in-
cluding image and video synthesis (Ramesh et al., 2021;
Saharia et al., 2022; Ho et al., 2022), drug and material
design (Xu et al., 2021; Xie et al., 2021; Schneuing et al.,
2022), and continuous control (Janner et al., 2022; Wang
et al., 2022; Hansen-Estruch et al., 2023). The key idea
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behind diffusion models is to iteratively transform a simple
prior distribution into a target distribution by applying a
sequential denoising process. This procedure is convention-
ally motivated as a maximum likelihood estimation problem,
with the objective derived as a variational lower bound on
the model log-likelihood.

However, most use cases of diffusion models are not ex-
plicitly concerned with likelihoods, but instead on a down-
stream objective such as human-perceived image quality
or drug effectiveness. In this paper, we consider the prob-
lem of training diffusion models to satisfy such objectives
directly, as opposed to matching a data distribution. This
problem is challenging because exact likelihood computa-
tion with diffusion models is intractable, making it difficult
to apply many conventional reinforcement learning (RL)
algorithms. We instead propose to frame denoising as a
multi-step decision-making task, using the exact likelihoods
at each denoising step in place of the approximate likeli-
hoods induced by a full denoising process. We then devise
a policy gradient algorithm, which we refer to as denoising
diffusion policy optimization (DDPO), that can optimize a
diffusion model for downstream tasks using only a black-
box reward function.

We apply our algorithm to the finetuning of large pretrained
text-to-image diffusion models. Our initial evaluation fo-
cuses on tasks that are difficult to specify via prompting,
such as image compressibility, and those derived from hu-
man feedback, such as aesthetic quality. However, because
many reward functions of interest are difficult to specify
programmatically, finetuning procedures often rely on large-
scale human labeling efforts to obtain a reward signal. In the
case of text-to-image diffusion, we propose a method for re-
placing such labeling with feedback from a vision-language
model (VLM). Similar to RLAIF finetuning for language
models (Bai et al., 2022b), the resulting procedure allows
for diffusion models to be adapted to reward functions that
would otherwise require additional human annotations. We
use this procedure to improve prompt-image alignment for
unusual subject-setting compositions.

2. Experimental Evaluation
The purpose of our experiments is to evaluate the effective-
ness of RL algorithms for finetuning diffusion models to
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Compressibility: llama

Aesthetic Quality: lion

Prompt Alignment: a raccoon washing dishes

Figure 1 (Reinforcement learning for diffusion models) We propose a reinforcement learning algorithm, DDPO, for
optimizing diffusion models on downstream objectives such as compressibility, aesthetic quality, and prompt-image
alignment as determined by vision-language models. Each row shows a progression of samples for the same prompt and
random seed over the course of training.

align with a variety of user-specified objectives. We com-
pare reward-weighted regression approaches, denoted RWR,
to our proposed policy gradient approaches, denoted DDPO.
We evaluate four reward functions: compressibility and in-
compressibility, as determined by the JPEG compression
algorithm; aesthetic quality, as determined by the LAION
aesthetic quality predictor (Schuhmann, 2022); and prompt-
image alignment, as determined by the LLaVA VLM (Liu
et al., 2023). Full details of the algorithms and reward
functions are provided in Appendix C and D, respectively.
Additional experiments studying zero-shot generlization and
reward overoptimization are provided in Appendix E.1 and
E.2, respectively.

2.1. Algorithm Comparisons

We begin by evaluating all methods on the compressibility,
incompressibility, and aesthetic quality tasks, as these tasks
isolate the effectiveness of the RL approach from considera-
tions relating to automated VLM reward evaluation. We use
Stable Diffusion v1.4 (Rombach et al., 2022) as the base
model for all experiments. Compressibility and incompress-

ibility prompts are sampled uniformly from all 398 animals
in the ImageNet-1000 (Deng et al., 2009) categories. Aes-
thetic quality prompts are sampled uniformly from a smaller
set of 45 common animals.

As shown qualitatively in Figure 2, DDPO is able to effec-
tively adapt a pretrained model with only the specification of
a reward function and without any further data curation. The
strategies found to optimize each reward are nontrivial; for
example, to maximize LAION-predicted aesthetic quality,
DDPO transforms a model that produces naturalistic images
into one that produces stylized line drawings. To maximize
compressibility, DDPO removes backgrounds and applies a
Gaussian blur to what remains. To maximize incompress-
ibility, DDPO finds artifacts that are difficult for the JPEG
compression algorithm to encode, such as high-frequency
noise and sharp edges, and occasionally produces multiple
entities. Samples from RWR are provided in Appendix H
for comparison.

We provide a quantitative comparison of all methods in
Figure 3. We plot the attained reward as a function of
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Pretrained Aesthetic Quality

Compressibility Incompressibility

Figure 2 (DDPO samples) Qualitative depiction of the ef-
fects of RL fine-tuning on different reward functions. DDPO
transforms naturalistic images into stylized line drawings to
maximize predicted aesthetic quality, removes background
content and applies a foreground blur to maximize com-
pressibility, and adds artifacts and high-frequency noise to
maximize incompressibility.

the number of queries to the reward function, as reward
evaluation becomes the limiting factor in many practical
applications. DDPO shows a clear advantage over RWR
on all tasks, demonstrating that formulating the denoising
process as an MDP and estimating the policy gradient di-
rectly is more effective than optimizing a reward-weighted
lower bound on likelihood. Within the DDPO class, the im-
portance sampling estimator slightly outperforms the score
function estimator, likely due to the increased number of
optimization steps. Within the RWR class, the performance
of weighting schemes is comparable, making the sparse
weighting scheme preferable on these tasks due to its sim-
plicity and reduced resource requirements.

2.2. Automated Prompt Alignment

We next evaluate the ability of VLMs, in conjunction with
DDPO, to automatically improve the image-prompt align-
ment of the pretrained model without additional human
labels. We focus on DDPOIS for this experiment, as we
found it to be the most effective algorithm in Section 2.1.
The prompts for this task all have the form “a(n) [animal]
[activity] ”, where the animal comes from the same list of
45 common animals used in Section 2.1 and the activity is
chosen from a list of 3 activities: “riding a bike”, “playing
chess”, and “washing dishes”.

The progression of finetuning is depicted in Figure 4. Qual-
itatively, the samples come to depict the prompts much
more faithfully throughout the course of training. This
trend is also reflected quantitatively, though is less salient
as we found that even small changes in average BERTScore

(Zhang et al., 2020) could correspond to large differences
in quality. It is important to note that some of the prompts
in the finetuning set, such as “a dolphin riding a bike”, had
zero success rate from the base model; if trained in isolation,
this prompt would be unlikely to ever improve because there
would be no reward signal. It was only via transfer between
prompts that these particular prompts could improve.

Nearly all of the samples become more cartoon-like or artis-
tic during finetuning. This was not optimized for directly.
We hypothesize that this is a function of the pretraining
distribution; though it would be extremely rare to see a pho-
torealistic image of a bear washing dishes, it would be much
less unusual to see the scene depicted in a children’s book.
As a result, in the process of satisfying the content of the
prompt, the style of the samples also changes.
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Figure 3 (Finetuning effectiveness) The relative effectiveness of different RL algorithms on three reward functions. We
find that the policy gradient variants, denoted DDPO, are more effective optimizers than both RWR variants.

a dolphin riding a bike
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Figure 4 (Prompt alignment) (L) Progression of samples for the same prompt and random seed over the course of training.
The images become significantly more faithful to the prompt. The samples also adopt a cartoon-like style, which we
hypothesize is because the prompts are more likely depicted as illustrations than realistic photographs in the pretraining
distribution. (R) Quantitative improvement of prompt alignment. Each thick line is the average score for an activity, while
the faint lines show average scores for a few randomly selected individual prompts.
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A. Related Work
Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged as an effective class of generative
models for modalities including images (Ramesh et al., 2021; Saharia et al., 2022), videos (Ho et al., 2022; Singer et al.,
2022), 3D shapes (Zhou et al., 2021; Zeng et al., 2022), and robotic trajectories (Janner et al., 2022; Ajay et al., 2022; Chi
et al., 2023). While the denoising objective is conventionally derived as an approximation to likelihood, the training of
diffusion models typically departs from maximum likelihood in several ways that improve sample quality in practice (Ho
et al., 2020). Modifying the objective to more strictly optimize likelihood (Nichol & Dhariwal, 2021; Kingma et al., 2021)
often leads to worsened image quality, as likelihood is not a faithful proxy for visual quality. In this paper, we show how
diffusion models can be optimized directly for downstream objectives.

Recent progress in text-to-image diffusion models (Ramesh et al., 2021; Saharia et al., 2022) has enabled fine-grained high-
resolution image synthesis. To further improve the controllability and quality of diffusion models, recent approaches have
investigated finetuning on limited user-provided data (Ruiz et al., 2022), optimizing text embeddings for new concepts (Gal
et al., 2022), composing models (Du et al., 2023; Liu et al., 2022), adapters for additional input constraints (Zhang &
Agrawala, 2023), and inference-time techniques such as classifier (Dhariwal & Nichol, 2021) and classifier-free (Ho &
Salimans, 2021) guidance.

A number of works have studied using human feedback to optimize models in settings such as simulated robotic control
(Christiano et al., 2017), game-playing (Knox & Stone, 2008), machine translation (Nguyen et al., 2017), citation retrieval
(Menick et al., 2022), browsing-based question-answering (Nakano et al., 2021), summarization (Stiennon et al., 2020;
Ziegler et al., 2019), instruction-following (Ouyang et al., 2022), and alignment with specifications (Bai et al., 2022a).
Recently, Lee et al. (2023) studied the alignment of text-to-image diffusion models to human preferences using a method
based on reward-weighted likelihood maximization, and posited that finetuning with RL is a promising direction for
future work. In our comparisons, their method roughly corresponds to one iteration of the RWR method, though precise
implementation details are likely different. Our results demonstrate that DDPO significantly outperforms even multiple
iterations of weighted likelihood maximization (RWR-style) optimization. More generally, our aim is not to study learning
from human feedback per se, but general algorithms compatible with a variety of reward functions.

B. Preliminaries
In this section, we provide a brief background on diffusion models and the RL problem formulation.

B.1. Diffusion Models

In this work, we consider conditional diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which
represent a distribution over data x0 conditioned on context c as the result of sequential denoising. The denoising procedure is
trained to reverse a Markovian forward process q(xt | xt−1), which iteratively adds noise to the data. Reversing the forward
process can be accomplished by training a forward process posterior mean predictor µθ(xt, t, c) for all t ∈ {0, 1, . . . , T}
with the following simplified objective:

LDDPM(θ) = E
[
∥µ̃(xt,x0)− µθ(xt, t, c)∥2

]
(1)

where µ̃ is a weighted average of x0 and xt. This objective is justified as maximizing a variational lower bound on the
model log-likelihood (Ho et al., 2020).

Sampling from a diffusion model begins with sampling xT ∼ N (0, I) and using the reverse process pθ(xt−1 | xt, c) to
produce a trajectory {xT ,xT−1, . . . ,x0} ending with a sample x0. The reverse process depends not only on the predictor
µθ but also the choice of sampler. Most popular samplers (Ho et al., 2020; Song et al., 2021) use an isotropic Gaussian
reverse process with a fixed timestep-dependent variance:

pθ(xt−1 | xt, c) = N (xt−1 | µθ (xt, t, c) , σ
2
t I). (2)

B.2. Markov Decision Processes and Reinforcement Learning

A Markov decision process (MDP) is a formalization of sequential decision-making problems. An MDP is defined by a
tuple (S,A, ρ0, P,R), in which S is the state space, A is the action space, ρ0 is the distribution of initial states, P is the
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transition kernel, and R is the reward function. At each timestep t, the agent observes a state st ∈ S , takes an action at ∈ A,
receives a reward R(st,at), and transitions to a new state st+1 ∼ P (· | st,at). An agent acts according to a policy π(a | s).
As the agent acts in the MDP, it produces trajectories, which are sequences of states and actions τ =
(s0,a0, s1,a1, . . . , sT ,aT ). The reinforcement learning (RL) objective for the agent is to maximize JRL(π), the expected
cumulative reward over trajectories sampled from its policy:

JRL(π) = Eτ∼p(·|π)

[ ∑T
t=0 R(st,at)

]
.

C. Algorithm Details
We now describe how RL algorithms can be used to train diffusion models. We present two classes of methods, one based
on prior work and one novel, and show that each corresponds to a different mapping of the denoising process to the MDP
framework.

C.1. Problem Statement

We assume a pre-existing diffusion model, which may be pretrained or randomly initialized. If we choose a fixed sampler,
the diffusion model induces a sample distribution pθ(x0 | c). The denoising diffusion RL objective is to maximize a reward
signal r defined on the samples and contexts:

JDDRL(θ) = Ec∼p(c), x0∼pθ(·|c) [r(x0, c)]

for some context distribution p(c) of our choosing.

C.2. Reward-Weighted Regression

To optimize JDDRL with minimal changes to standard diffusion model training, we can use the denoising objective LDDPM
(Equation 1), but with training data sampled from the model itself and a per-sample loss weighting that depends on the
reward r(x0, c). Lee et al. (2023) describe a single-round version of this procedure for diffusion models, but in general this
approach can be performed for multiple rounds of alternating sampling and training, leading to a simple RL method. We
refer to this general class of algorithms as reward-weighted regression (RWR) (Peters & Schaal, 2007).

A standard weighting scheme uses exponentiated rewards to ensure nonnegativity,

wRWR(x0, c) =
1

Z
exp

(
βR(x0, c)

)
,

where β is an inverse temperature and Z is a normalization constant. We also consider a simplified weighting scheme that
uses binary weights,

wsparse(x0, c) = 1
[
R(x0, c) ≥ C

]
,

where C is a reward threshold determining which samples are used for training. The sparse weights may be desirable
because they eliminate the need to retain every sample from the model.

Within the RL formalism, the RWR procedure corresponds to the following one-step MDP:

s ≜ c a ≜ x0 π(a | s) ≜ pθ(x0 | c) ρ0(s) ≜ p(c) R(s,a) ≜ r(x0, c)

with a transition kernel P that immediately leads to an absorbing termination state. Therefore, maximizing JDDRL(θ) is
equivalent to maximizing JRL(π) in this MDP.

Weighting a maximum likelihood objective by wRWR approximately optimizes JRL(π) subject to a KL divergence constraint
on the policy (Nair et al., 2020). However, LDDPM is not an exact maximum likelihood objective, but is derived from a
reweighted variational bound. Therefore, RWR algorithms applied to LDDPM optimize JDDRL via two levels of approximation.
Thus, this methodology provides us with a starting point, but might underperform for complex objectives.
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C.3. Denoising Diffusion Policy Optimization

RWR relies on an approximate maximum likelihood objective because it ignores the sequential nature of the denoising
process, only using the final samples x0. In this section, we show that when the sampler is fixed, the denoising process can
be reframed as a multi-step MDP. This allows us to directly optimize JDDRL using policy gradient estimators. We refer to
the resulting class of algorithms as denoising diffusion policy optimization (DDPO) and present two variants.

Denoising as a multi-step MDP. We map the iterative denoising procedure to the following MDP:

st ≜ (c, t,xt) π(at | st) ≜ pθ(xt−1 | xt, c) P (st+1 | st,at) ≜
(
δc, δt−1, δxt−1

)
at ≜ xt−1 ρ0(s0) ≜

(
p(c), δT ,N (0, I)

)
R(st,at) ≜

{
r(x0, c) if t = 0

0 otherwise

in which δy is the Dirac delta distribution with nonzero density only at y. Trajectories consist of T timesteps, after which
P leads to a termination state. The cumulative reward of each trajectory is equal to r(x0, c), so maximizing JDDRL(θ) is
equivalent to maximizing JRL(π) in this MDP.

The benefit of this formulation is that, if we use a standard sampler parameterized as in Equation 2, the policy π becomes an
isotropic Gaussian as opposed to an arbitrarily complicated distribution induced by the entire denoising procedure. This
simplification allows for the evaluation of exact action likelihoods and gradients of these likelihoods with respect to the
diffusion model parameters.

Policy gradient estimation. With access to likelihoods and likelihood gradients, we can make Monte Carlo estimates
of the policy gradient ∇θJDDRL. DDPO alternates collecting trajectories {xT ,xT−1, . . . ,x0} via sampling and updating
parameters via gradient ascent on JDDRL.

The first variant of DDPO, which we call DDPOSF, uses the score function policy gradient estimator, also known as the
likelihood ratio method or REINFORCE (Williams, 1992; Mohamed et al., 2020):

ĝSF = E

[
T∑

t=0

∇θ log pθ(xt−1 | c, t,xt) r(x0, c)

]
(3)

where the expectation is taken over denoising trajectories generated by the current policy pθ.

This estimator is unbiased. However, it only allows for one step of optimization per round of data collection, as the gradients
must be estimated using data from the current policy. To perform multiple steps of optimization, we may use an importance
sampling estimator (Kakade & Langford, 2002):

ĝIS = E

[
T∑

t=0

pθ(xt−1 | c, t,xt)

pθold(xt−1 | c, t,xt)
∇θ log pθ(xt−1 | c, t,xt) r(x0, c)

]
(4)

where θold are the parameters used to collect the data, and the expectation is taken over denoising trajectories generated
by the corresponding policy pθold . This estimator also becomes inaccurate if pθ deviates too far from pθold , which can be
addressed using trust regions (Schulman et al., 2015) to constrain the size of the update. In practice, we implement the trust
region by clipping the importance weights, as introduced in proximal policy optimization (Schulman et al., 2017). We call
this variant DDPOIS.

D. Reward Function Details
In this work, we evaluate our methods on text-to-image diffusion. Text-to-image diffusion serves as a valuable test
environment for reinforcement learning experiments due to the availability of large pretrained models and the versatility of
using diverse and visually interesting reward functions.

The choice of reward function is one of the most important decisions in practical applications of RL. In this section, we
outline our selection of reward functions for text-to-image diffusion models. We study a spectrum of reward functions of
varying complexity, ranging from those that are straightforward to specify and evaluate to those that capture the complexity
of real-world downstream tasks.
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“a monkey is...”

BERTScore

“a monkey washing dishes...”

“what is happening 
in this image?” LLaVA

Diffusion
Model

similarity-based 
reward

Figure 5 (VLM reward function) Illustration of the VLM-based reward function for prompt-image alignment. LLaVA
(Liu et al., 2023) provides a short description of a generated image; the reward is the similarity between this description and
the original prompt as measured by BERTScore (Zhang et al., 2020).

D.1. Compressibility and Incompressibility

The capabilities of text-to-image diffusion models are limited by the co-occurrences of text and images in their training
distribution. For instance, images are rarely captioned with their file size, making it impossible to specify a desired file
size via prompting. This limitation makes reward functions based on file size a convenient case study: they are simple to
compute, but not controllable through the conventional workflow of likelihood maximization and prompt engineering.

We fix the resolution of diffusion model samples at 512x512, such that the file size is determined solely by the compressibility
of the image. We define two tasks based on file size: compressibility, in which the file size of the image after JPEG
compression is minimized, and incompressibility, in which the same measure is maximized.

D.2. Aesthetic Quality

To capture a reward function that would be useful to a human user, we define a task based on perceived aesthetic quality. We
use the LAION aesthetics predictor (Schuhmann, 2022), which is trained on 176,000 human image ratings. The predictor is
implemented as a linear model on top of CLIP embeddings (Radford et al., 2021). Annotations range between 1 and 10, with
the highest-rated images mostly containing artwork. Since the aesthetic quality predictor is trained on human judgments,
this task constitutes reinforcement learning from human feedback (Ouyang et al., 2022; Christiano et al., 2017; Ziegler et al.,
2019).

D.3. Automated Prompt Alignment with Vision-Language Models

A very general-purpose reward function for training a text-to-image model is prompt-image alignment. However, specifying
a reward that captures generic prompt alignment is difficult, conventionally requiring large-scale human labeling efforts. We
propose using an existing VLM to replace additional human annotation. This design is inspired by recent work on RLAIF
(Bai et al., 2022b), in which language models are improved using feedback from themselves.

We use LLaVA (Liu et al., 2023), a state-of-the-art VLM, to describe an image. The finetuning reward is the BERTScore
(Zhang et al., 2020) recall metric, a measure of semantic similarity, using the prompt as the reference and the VLM
description as the candidate. Samples that more faithfully include all of the details of the prompt receive higher rewards, to
the extent that those visual details are legible to the VLM.

In Figure 5, we show one simple question: “what is happening in this image?”. While this captures the general task of
prompt-image alignment, in principle any question could be used to specify complex or hard-to-define reward functions for
a particular use case. One could even employ a language model to automatically generate candidate questions and evaluate
responses based on the prompt. This framework provides a flexible interface where the complexity of the reward function is
only limited by the capabilities of the vision and language models involved.
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E. Additional Experiments
E.1. Generalization

RL finetuning on large language models has been shown to produce interesting generalization properties; for example,
instruction finetuning almost entirely in English has been shown to improve capabilities in other languages (Ouyang et al.,
2022). It is difficult to reconcile this phenomenon with our current understanding of generalization; it would a priori seem
more likely for finetuning to have an effect only on the finetuning prompt set or distribution. In order to investigate the same
phenomenon with diffusion models, Figure 6 shows a set of DDPO-finetuned model samples corresponding to prompts
that were not seen during finetuning. In concordance with instruction-following transfer in language modeling, we find
that the effects of finetuning do generalize, even with prompt distributions as narrow as 45 animals. We find evidence of
generalization to both animals outside of the training distribution and to non-animal everyday objects.

Pretrained (New Animals) Aesthetic Quality (New Animals)

Pretrained (Non-Animals) Aesthetic Quality (Non-Animals)

Pretrained (New Animals and Activities) Alignment (New Animals and Activities)

Figure 6 (Generalization) For aesthetic quality, finetuning on a limited set of 45 animals generalizes to both new animals
and non-animal everyday objects. For prompt alignment, finetuning on the same set of animals and only three activities
generalizes to both new animals, new activities, and even combinations of the two. The prompts for the bottom row (left
to right) are: “a capybara washing dishes”, “a crab playing chess”, “a parrot driving a car”, and “a horse typing on a
keyboard”. More samples are provided in Appendix H.

E.2. Overoptimization

Section 2.1 highlights the optimization problem: given a reward function, how well can an RL algorithm maximize
that reward? However, finetuning on a reward function, especially a learned one, has been observed to lead to reward
overoptimization or exploitation (Gao et al., 2022) in which the model learns to achieve high reward while moving too far
away from the pretraining distribution to be useful.

Our setting is no exception, and we provide two examples of reward exploitation in Figure 7. When optimizing the
incompressibility objective, the model eventually stops producing semantically meaningful content, degenerating into
high-frequency noise. Similarly, we observed that VLM reward pipelines are susceptible to typographic attacks (Goh et al.,
2021). When optimizing for alignment with respect to prompts of the form “n animals”, DDPO exploited deficiencies in the
VLM by instead generating text loosely resembling the specified number. There is currently no general-purpose method for
preventing overoptimization (Gao et al., 2022). We highlight this problem as an important area for future work.
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Incompressibility

DDPODDPO

RWRRWR

Counting Animals

Figure 7 (Reward model overoptimization) Examples of RL overoptimizing reward functions. (L) The diffusion model
eventually loses all recognizable semantic content and produces noise when optimizing for incompressibility. (R) When
optimized for prompts of the form “n animals”, the diffusion model exploits the VLM with a typographic attack (Goh et al.,
2021), writing text that is interpreted as the specified number n instead of generating the correct number of animals.

F. Implementation Details
For all experiments, we use Stable Diffusion v1.4 (Rombach et al., 2022) as the base model and finetune only the UNet
weights while keeping the text encoder and autoencoder weights frozen.

F.1. DDPO Implementation

We collect 256 samples per training iteration. For DDPOSF, we accumulate gradients across all 256 samples and perform
one gradient update. For DDPOIS, we split the samples into 4 minibatches and perform 4 gradient updates. Gradients are
always accumulated across all denoising timesteps for a single sample. For DDPOIS, we use the same clipped surrogate
objective as in proximal policy optimization (Schulman et al., 2017), but find that we need to use a very small clip range
compared to standard RL tasks. We use a clip range of 1e-4 for all experiments.

F.2. RWR Implementation

We compute the weights for a training iteration using the entire dataset of samples collected for that training iteration. For
wRWR, the weights are computed using the softmax function. For wsparse, we use a percentile-based threshold, meaning C is
dynamically selected such that the bottom p% of a given pool of samples are discarded and the rest are used for training.

F.3. Reward Normalization

In practice, rewards are rarely used as-is, but instead are normalized to have zero mean and unit variance. Furthermore, this
normalization can depend on the current state; in the policy gradient context, this is analogous to a value function baseline
(Sutton et al., 1999), and in the RWR context, this is analogous to advantage-weighted regression (Peng et al., 2019). In
our experiments, we normalize the rewards on a per-context basis. For DDPO, this is implemented as normalization by
a running mean and standard deviation that is tracked for each prompt independently. For RWR, this is implemented by
computing the softmax over rewards for each prompt independently. For RWRsparse, this is implemented by computing the
percentile-based threshold C for each prompt independently.

F.4. JPEG Encoding Code

i m p o r t i o
from PIL i m p o r t Image

d e f e n c o d e _ j p e g ( x , q u a l i t y = 9 5 ) :
’ ’ ’

x : np a r r a y o f shape (H, W, 3) and d t y p e u i n t 8
’ ’ ’
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img = Image . f r o m a r r a y ( x )
b u f f e r = i o . BytesIO ( )
img . save ( b u f f e r , ‘ JPEG ’ , q u a l i t y = q u a l i t y )
j p e g = b u f f e r . g e t v a l u e ( )
b y t e s = np . f r o m b u f f e r ( jpeg , d t y p e =np . u i n t 8 )
r e t u r n l e n ( b y t e s ) / 1000

F.5. Resource Details

RWR experiments were conducted on a v3-128 TPU pod, and took approximately 4 hours to reach 50k samples. DDPO
experiments were conducted on a v4-64 TPU pod, and took approximately 4 hours to reach 50k samples. For the VLM-based
reward function, LLaVA inference was conducted on a DGX machine with 8 80Gb A100 GPUs.

F.6. Full Hyperparameters

DDPOIS DDPOSF RWR RWRsparse

Diffusion
Sampler Ancestral Ancestral Ancestral Ancestral
Denoising steps (T ) 50 50 50 50
Guidance weight (w) 5.0 5.0 5.0 5.0

Optimization

Optimizer AdamW AdamW AdamW AdamW
Learning rate 1e-5 1e-5 1e-5 1e-5
Weight decay 1e-4 1e-4 1e-4 1e-4
β1 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999
ϵ 1e-8 1e-8 1e-8 1e-8
Gradient clip norm 1.0 1.0 1.0 1.0

RWR

Inverse temperature (β) - - 0.2 -
Percentile - - - 0.9
Batch size - - 128 128
Gradient updates per iteration - - 400 400
Samples per iteration - - 10k 10k

DDPO

Batch size 64 256 - -
Samples per iteration 256 256 - -
Gradient updates per iteration 4 1 - -
Clip range 1e-4 - - -

F.7. List of 45 Common Animals

This list was used for experiments with the aesthetic quality reward function and the VLM-based reward function.

cat dog horse monkey rabbit zebra spider bird sheep
deer cow goat lion tiger bear raccoon fox wolf

lizard beetle ant butterfly fish shark whale dolphin squirrel
mouse rat snake turtle frog chicken duck goose bee

pig turkey fly llama camel bat gorilla hedgehog kangaroo

G. Additional Design Decisions
G.1. CFG Training

Recent text-to-image diffusion models rely critically on classifier-free guidance (CFG) (Ho & Salimans, 2021) to produce
perceptually high-quality results. CFG involves jointly training the diffusion model on conditional and unconditional
objectives by randomly masking out the context c during training. The conditional and unconditional predictions are then
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mixed at sampling time using a guidance weight w:

ϵ̃θ(xt, t, c) = wϵθ(xt, t, c) + (1− w)ϵθ(xt, t) (5)

where ϵθ is the ϵ-prediction parameterization of the diffusion model (Ho et al., 2020) and ϵ̃θ is the guided ϵ-prediction that
is used to compute the next denoised sample.

For reinforcement learning, it does not make sense to train on the unconditional objective since the reward may depend on
the context. However, we found that when only training on the conditional objective, performance rapidly deteriorated after
the first round of finetuning. We hypothesized that this is due to the guidance weight becoming miscalibrated each time the
model is updated, leading to degraded samples, which in turn impair the next round of finetuning, and so on. Our solution
was to choose a fixed guidance weight and use the guided ϵ-prediction during training as well as sampling. We call this
procedure CFG training. Figure 8 shows the effect of CFG training on RWRsparse; it has no effect after a single round of
finetuning, but becomes essential for subsequent rounds.
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Figure 8 (CFG training) We run the RWRsparse algorithm while optimizing only the conditional ϵ-prediction (without CFG
training), and while optimizing the guided ϵ-prediction (with CFG training). Each point denotes a diffusion model update.
We find that CFG training is essential for methods that do more than one round of interleaved sampling and training.

H. More Samples
Figure 9 shows qualitative samples from the baseline RWR method. Figure 10 shows more samples on seen prompts from
DDPO finetuning with the image-prompt alignment reward function. Figure 11 shows more examples of generalization
to unseen animals and everyday objects with the aesthetic quality reward function. Figure 12 shows more examples of
generalization to unseen subjects and activities with the image-prompt alignment reward function.
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Pretrained Aesthetic Quality

Compressibility Incompressibility

Figure 9 (RWR samples)

a hedgehog riding a bike a dog riding a bike

a lizard riding a bike a shark washing dishes

a frog washing dishes a monkey washing dishes

Figure 10 (More image-prompt alignment samples)
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Pretrained (New Animals) Aesthetic Quality (New Animals)

Pretrained (Non-Animals) Aesthetic Quality (Non-Animals)

Figure 11 (Aesthetic quality generalization)
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a capybara washing dishes a snail playing chess

a dog doing laundry a giraffe playing basketball

a parrot driving a car a duck taking an exam

a robot fishing in a lake a horse typing on a keyboard

a rabbit sewing clothes a tree riding a bike

a car eating a sandwich an apple playing soccer

Figure 12 (Image-prompt alignment generalization)
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