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Abstract

Vision-Language Models (VLMs) have shown strong performance in tasks like
visual question answering and multimodal text generation, but their effectiveness
in scientific domains such as materials science remains limited. While some ma-
chine learning methods have addressed specific challenges in this field, there is
still a lack of foundation models designed for broad tasks like polymer property
prediction using multimodal data. In this work, we present a multimodal polymer
dataset to fine-tune VLMs through instruction-tuning pairs and assess the impact
of multimodality on prediction performance. Our fine-tuned models, using LoRA,
outperform unimodal and baseline approaches, demonstrating the benefits of mul-
timodal learning. Additionally, this approach reduces the need to train separate
models for different properties, lowering deployment and maintenance costs.

1 Introduction

Vision-Language Models (VLMs) have demonstrated exceptional capabilities in visio-linguistic tasks
such as visual question answering (VQA), information extraction, and complex multimodal reasoning.
A typical VLM consists of three main components: a vision encoder that extracts visual embeddings
from input images, a large language model (LLM) that generates output tokens, and a multimodal
projector that maps visual embeddings into a textual space processable by the language model. While
both LLMs and VLMs have proven effective for reasoning tasks in general knowledge domains,
applying them to specialized scientific areas, such as materials science, remains an open challenge.

In polymer research, SMILES (Simplified Molecular-Input Line-Entry System) Weininger [1], which
is a text-based representation of molecular structures, has been extended by introducing asterisks
(*) to mark the repeating units, referred to as polymer SMILES (P-SMILES) [2]. Recent studies
have explored fine-tuning LLMs for property prediction [3] and combining LLM embeddings with
conformational features [4]. Yet, these approaches are either unimodal or rely on separate regressors
and therefore lack unified multimodal alignment. Earlier machine learning efforts also contributed to
property prediction but often required training separate models for each task, creating fragmented
pipelines. To overcome these limitations, we introduce a multimodal polymer dataset tailored for
fine-tuning and evaluating VLMs, and investigate their ability to directly predict polymer properties.
Specifically: (1) Our multimodal dataset is built from computational and experimental sources.
Each sample contains a canonicalized P-SMILES, a 2D structure image, molecular descriptors,
and property labels. The dataset is structured as VQA pairs, enabling VLMs to predict properties
from images, P-SMILES, and molecular descriptors with improved reasoning. (2) We evaluate
multimodal VLMs on polymer property prediction by fine-tuning Llama-3.2-11B-Vision-Instruct.
Using instruction tuning with LoRA [5], the fine-tuned model achieves performance on par with
machine learning and deep learning methods that typically require separate models for each property.
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2 Related Works

There have been numerous efforts to integrate AI into materials science research, particularly through
the development of deep learning and foundation models for materials discovery and property
prediction. This is especially relevant for polymers, where the cost of computational simulations
or experimental measurements is often prohibitively high. Huan et al. [6] introduced a dataset of
polymer properties, which laid the foundation for the Polymer Genome platform [7] designed to
efficiently predict and retrieve polymer properties. Building on this, Doan Tran et al. [8] applied
machine learning approaches trained on Polymer Genome data for property prediction. More recently,
BERT-based models [9] have been adapted for polymers: Kuenneth and Ramprasad [2] developed
PolyBERT, a large-scale representation model trained on millions of polymers, whose embeddings
can serve as inputs for property predictors. Similarly, Wang et al. [10] proposed a Transformer-based
architecture capable of extracting both 1D representations from P-SMILES and 3D representations
from molecular conformations to perform multitask learning, including P-SMILES reconstruction,
3D coordinate generation, and cross-modal fusion. In line with recent trends in deep learning, large
language models (LLMs) have also been explored for polymer property prediction [3, 4]. Specifically,
Gupta et al. [3] fine-tuned and evaluated text-only LLMs on P-SMILES inputs, while Zhang and
Yang [4] combined multimodal embeddings, such as LLM-derived representations, from P-SMILES
and Uni-Mol [11] embeddings from polymer structures and then train multilayer perceptrons for
property prediction. Despite these advances, a unified multimodal VLM capable of directly predicting
properties from multimodal inputs such as images, text, and molecular descriptors remains lacking.

3 Multimodal Polymer Data Generation

3.1 Polymer SMILES Data

Kaggle Polymer Challenge (Kaggle). We collect the data from the Kaggle Open Polymer Prediction
2025 [12], including 7,973 P-SMILES with five properties: glass transition temperature (Tg), frac-
tional free volume (FFV), thermal conductivity (Tc), density, and radius of gyration (Rg). Besides the
main dataset, there are four supplementary datasets provided in this challenge, but we only use three
of them: the first with 874 P-SMILES and Tc values, the third with 46 P-SMILES and Tg values, and
the fourth with 862 P-SMILES and FFV values. The second supplementary dataset, having 7,174
P-SMILES without any property values, is not used in our study.

Data preprocessing. To integrate the supplementary datasets with the main Kaggle dataset, we first
canonicalize P-SMILES strings in all datasets to obtain a unique representation for each polymer.
We then remove duplicates from the supplementary datasets by checking against the main dataset.
A polymer is considered a duplicate if it has the same canonical P-SMILES and the same property
values as a polymer already included in the main dataset. Following this process, we sequentially
merge the main dataset with the first, third and fourth datasets. Duplicates are removed if found.

As a result, the final dataset consists of 8,963 P-SMILES, each with a varying number of ground-truth
properties. Table 3 in Appendix B summarizes the data statistics, including missing values across the
five properties. Finally, we split the dataset into training and testing sets in a 90/10 ratio based on
canonical P-SMILES, ensuring no polymer appears in both the training and test sets. The split results
in 7,950 polymers for training and 1,013 for testing.

To evaluate model’s performance on unknown dataset, we use Glass Transition Temperature
dataset (GTT), which contains 662 P-SMILES with Tg values introduced by Choi et al. [13]. We
apply the same preprocessing steps to GTT and then compare it with the final dataset to filter out
duplicates, removing 563 duplicates and retaining 99 polymers with Tg values.

3.2 Multimodal Features Generation

For both the training and testing sets, we generate a 2D image of each polymer from its canonical
P-SMILES using RDKit [14], at a resolution of 1120 × 1120 pixels. We also compute 217 molecular
descriptors from each P-SMILES with the RDKit Python package. Of these, 17 descriptors were
selected by domain experts as meaningful features for LLMs to predict the five target properties.
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Instruction prefix: You are a polymer expert.
Task: Given a polymer image <image>, its P-SMILES string <P-SMILES>, and its molecular descriptors:
<descriptor-1:value>, <descriptor-2:value>, . . . , <descriptor-17:value>.
Predict the <property type> of the polymer in <unit>.
Answer: <property type>:<property value> <unit>

Figure 1: An example of our instruction-tuning sample

3.3 Instruction-tuning Dataset

We construct an instruction-tuning dataset to predict one property type at a time. For polymers
with multiple ground-truth properties, each data sample is decomposed into separate instruction-
tuning samples that share the same canonical P-SMILES representation but are assigned different
prompts, each requesting the prediction of a single property type with an available ground-truth
value. After this decomposition, the training set expands to 9,097 samples and the testing set to 1,442
samples. Each sample is then structured as a question–answer pair, where the question corresponds
to the prompt and the answer contains the ground-truth property value. The prompt is generated by
randomly combining one of 20 instruction prefixes with one of 20 prediction templates, into which
the canonicalized P-SMILES, the 2D image produced with RDKit, the 17 selected descriptors, and
the specific property type to be predicted are inserted. The answer is standardized to a consistent
format for each property type. Figure 1 shows an example of our instruction-tuning sample.

4 Experiments

4.1 Models

Our models. We fine-tune Llama-3.2-11B-Vision-Instruct (LVision) using the LoRA [5] technique
with rank = 16 and α = 16. The model is fine-tuned for 12 epochs with a learning rate of 0.0001
and a batch size of 8.

Baselines. To validate our approach, we compare the fine-tuned LVision against three baseline
groups: (1) LLM-based models, (2) ML models using molecular descriptors, and (3) ML models
using PolyBERT-derived representations [2]. For the LLM baselines, we fine-tune a text-only
version of Llama-3.1-8B-Instruct (LText) using the same settings as LVision and also evaluate the
original (non-fine-tuned) LVision and LText. For the descriptor-based ML group (+RDKit), we train
Multi-layer Perceptron (MLP), Support Vector Regressor (SVR), Random Forest (RF), and Linear
Regression (LinR) models using 17 molecular descriptors. For the PolyBERT-based ML group
(+PolyBERT), we extract representations from a pretrained PolyBERT and train the same ML models.
Each property is predicted using a separate model, resulting in five models for five properties.

4.2 Metrics

In our experiments, we report the Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE), since the task involves predicting continuous property values. To evaluate performance
across multiple properties, we also report the Weighted Mean Absolute Error (wMAE), as introduced
in the Kaggle challenge [12]. Details of how these metrics are calculated are provided in Appendix E.

4.3 Results and Discussion

We evaluate the models on the Kaggle polymer dataset across five property targets (Tg, FFV, Tc,
density, and Rg) and report MAE, MAPE, and wMAE. For external validation, we evaluate Tg
prediction on the GTT dataset. Following our protocol, VLM results are averaged over five inference
runs, while ML baselines are averaged over five independently trained instances. Results for MAE
and wMAE are reported in Table 1, while MAPE results are provided in Table 2. Due to space
limitations, Table 2 is included in Appendix A. Details on fine-tuning resources and execution time
are reported in Appendix C.
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Table 1: Comparison of fine-tuned LVision and LText models with baseline approaches for predicting
five polymer properties. Results are reported as mean and standard deviation of MAE, with the best
performance for each property highlighted in bold.

Model
Kaggle GTT

Tg↓ FFV↓ Tc↓ Density↓ Rg↓ wMAE↓ Tg↓
×10−2 ×10−2 ×10−2 ×10−2

MLP + RDKit 46.53.7 6.61.5 14.64.9 17.94.5 3.70.2 12.11.2 61.47.7

SVR + RDKit 92.80.0 2.30.0 3.80.0 5.90.0 3.30.0 6.60.0 97.90.0
RF + RDKit 55.90.2 1.20.0 3.90.0 7.70.0 3.10.0 5.40.0 67.30.1
LinR + RDKit 54.90.0 1.40.0 3.70.0 6.40.0 3.10.0 5.30.0 62.20.0

MLP + PolyBERT 67.92.0 1.90.3 5.40.7 7.80.6 1.80.0 5.40.2 67.52.7
SVR + PolyBERT 75.20.0 1.90.0 3.60.0 4.70.0 1.80.0 4.90.0 77.90.0
RF + PolyBERT 64.50.3 1.20.0 3.10.0 6.90.0 2.50.0 4.90.0 67.80.2
LinR + PolyBERT 168.80.0 1.00.0 13.10.0 6.70.0 6.10.0 10.10.0 161.10.0

Original LText 100.21.3 4.90.2 7.90.2 14.30.5 5.90.3 12.00.2 104.71.8
Original LVision 90.31.8 4.40.0 8.10.2 9.60.2 7.20.4 11.60.3 97.41.3
Fine-tuned LText 60.03.5 1.00.0 5.70.5 4.00.1 2.80.1 4.80.1 70.73.3
Fine-tuned LVision 58.02.7 1.00.0 3.60.1 3.30.1 2.30.0 4.10.1 67.72.5

Overall, Fine-tuned LVision achieves the best aggregate performance on the Kaggle benchmark,
attaining the lowest wMAE of 0.041 (Table 1) and the best MAPE across FFV, Tc, and Density
(Table 2). Fine-tuned LText performs competitively but trails LVision, underscoring the value of visual
information in this study. ML baselines trained on RDKit descriptors and PolyBERT embeddings
achieve advancements for some targets, yet still underperform compared to Fine-tuned LVision on
the overall wMAE. Specifically, Fine-tuned LVision outperforms the second-best Fine-tuned LText
(0.048), as well as all descriptor-based and embedding-based baselines. Fine-tuned LVision also
achieves the best MAE for FFV (0.010) and Density (0.033), outperforming the next-best entries.

Fine-tuned models substantially improve over their original counterparts. For LVision, wMAE
decreases from 0.117 (Original LVision) to 0.041; for LText, from 0.120 (Original LText) to 0.048.
In terms of multimodal gains, Fine-tuned LText narrows the gap but still lags behind Fine-tuned
LVision across all five MAE metrics, highlighting the added value of visual input beyond P-SMILES
and descriptors. On unseen Tg evaluation (GTT), Fine-tuned LVision achieves an MAE of 67.7,
improving over Fine-tuned LText (70.7). Comparisons to descriptor-based baselines on GTT required
additional checks for unit consistency, data curation, and distribution shift. Compared to training and
deploying five separate regressors (one per property), a single fine-tuned VLM delivers competitive
or superior accuracy through a unified interface, reducing per-property model management while
leveraging multimodal cues (structure image + P-SMILES + descriptors).

The improved performance of Fine-tuned LVision is promising and not unexpected. Prior work
has shown that deep learning on 2D molecular depictions can match or outperform string-based
representations such as SMILES by enabling augmentation, transfer learning, and visual feature
extraction [15, 16]. While a 2D depiction generated by RDKit from a SMILES string does not
inherently contain more chemical information than the SMILES itself [17, 18], it provides a visually
structured representation that appears to enhance how a Vision–Language Model processes and
interprets molecular structure.

5 Conclusion

We present a multimodal instruction-tuning dataset for polymer property prediction and fine-tune
a Vision-Language Model using images, P-SMILES, and molecular descriptors. We compare
its performance to baselines, including traditional ML with RDKit or PolyBERT features, and
Llama-based vision and text-only models. Our fine-tuned Llama-3.2-11B-Vision-Instruct achieves
competitive performance, highlighting the value of multimodal inputs. Moreover, it eliminates the
need for separate per-property models, thereby reducing deployment and maintenance costs.
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A Results on MAPE

Table 2: Comparison of fine-tuned LVision and LText models with baseline approaches for predicting
five polymer properties. Results are reported as mean and standard deviation of MAPE, with the best
performance for each property highlighted in bold.

Model Kaggle GTT

Tg FFV Tc Density Rg Tg

MLP + RDKit 118.28.3 18.23.9 70.123.3 17.44.7 23.01.6 75.44.9

SVR + RDKit 190.50.0 6.30.0 17.10.0 5.70.0 18.80.0 122.40.0
RF + RDKit 116.30.5 3.10.0 18.60.0 7.30.0 18.90.0 86.50.4
LinR + RDKit 147.30.0 3.90.0 16.90.0 6.20.0 18.60.0 87.20.0

MLP + PolyBERT 133.112.6 5.20.8 25.53.6 7.60.7 9.70.1 113.121.8
SVR + PolyBERT 152.10.0 5.10.0 16.90.0 4.50.0 9.90.0 92.20.0
RF + PolyBERT 142.01.2 3.10.0 14.70.0 6.60.0 14.90.0 97.20.3
LinR + PolyBERT 543.20.0 2.70.0 64.10.0 6.90.0 38.70.0 337.20.0

Original LText 178.112.0 13.10.4 34.11.0 14.20.5 33.81.3 100.53.7
Original LVision 142.310.3 11.70.1 36.81.4 9.70.2 45.61.7 105.13.6
Fine-tuned LText 99.822.5 2.60.1 27.32.1 3.80.1 15.90.5 105.16.8
Fine-tuned LVision 119.514.9 2.60.0 14.40.7 3.20.1 12.00.2 78.58.4

B Dataset Statistics

Table 3: Number of samples for each property

Tg FFV Tc Density Rg

Missing count 8400 1071 8106 8350 8349
Missing ratio 93.72% 11.95% 90.44% 93.16% 93.14%

C Fine-tuning Resources and Execution Time

We perform fine-tuning and evaluation on an H200 GPU with 141 GB of RAM. Fine-tuning LVision
takes about 21 hours for 12 epochs with 1120× 1120 images, while fine-tuning LText takes about
one hour under the same settings.

D Molecular Descriptor Features

Here are the 17 molecular descriptors used in our dataset (descriptor descriptions adapted from
[19, 20]):

• MolWt: Molecular weight

• MolLogP: Octanol–water partition coefficient (logP)

• BalabanJ: Balaban’s J topological index

• Chi0: Zero-order molecular connectivity index

• Chi1: First-order molecular connectivity index

• HallKierAlpha: Hall–Kier alpha parameter

• LabuteASA: Labute’s Approximate Surface Area

• TPSA: The polar surface area of a molecule based upon fragments.

• FractionCSP3: The fraction of C atoms that are SP3 hybridized
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• HeavyAtomCount: The number of heavy atoms
• NHOHCount: The number of NHs or OHs
• NOCount: The number of nitrogens and oxygens
• NumAliphaticRings: The number of aliphatic rings
• NumAmideBonds: The number of amide bonds
• NumAromaticRings: The number of aromatic rings
• NumRotatableBonds: The number of rotatable bonds
• NumSaturatedRings: The number of saturated rings

E Metrics

MAE. The Mean Absolute Error (MAE) measures the average absolute difference between the
predicted and ground truth values of a single property type:

MAE =
1

n

n∑
i=1

∣∣ŷi − yi
∣∣, (1)

where n denotes the number of available ground-truth values for a property type under evaluation, yi
and ŷi represent the ground-truth and predicted values of the i-th polymer, respectively.

MAPE. The Mean Absolute Percentage Error (MAPE) measures the average absolute percentage
error between the predicted and ground truth values of a single property type:

MAPE =
100

n

n∑
i=1

|ŷi − yi|
|yi|

(2)

wMAE. Weighted Mean Absolute Error (wMAE) is the evaluation metric used in the Kaggle contest
[12] to evaluate the overall prediction performance across five properties:

wMAE =
1

n

n∑
i=1

Ii∑
k=1

wk ·
∣∣ŷki − yki

∣∣ , (3)

wk =

(
1

rk

)
·

(
K ·

√
1/nk∑K

j=1

√
1/nj

)
, (4)

where Ii denotes the set of property types of the i-th polymer, and ŷki and yki are the predicted and
ground-truth values of the property k of polymer i-th, respectively. Moreover, wk is reweighting
factor for each property where nk denotes the number of samples having k-th property, K is the
number of property types, and rk = max(yk)−min(yk) represents the estimated value range of the
k-th property based on the test data.
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