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ABSTRACT

This paper investigates continual learning in the setting of class-incremental learn-
ing (CIL). Although numerous techniques have been proposed, CIL remains to be
a highly challenging problem due to catastrophic forgetting (CF). However, so far
few existing techniques have made use of pre-trained image feature extractors. In
this paper, we propose to use a recently reported strong pre-trained feature extractor
called CLIP and a novel and yet simple pseudo-replay method to deal with CF.
The proposed method is called PLS. Unlike the popular pseudo-replay approach
that builds data generators to generate pseudo previous task data, PLS works in
the latent space by sampling pseudo feature vectors of previous tasks from the last
layer of the pre-trained feature extractor. PLS is not only simple and efficient but
also does not invade data privacy due to the fact that it works in the latent feature
space. Experimental results demonstrate that PLS outperforms state-of-the-art
baselines by a large margin when both PLS and the baselines leverage the CLIP
pre-trained image feature extractor.

1 INTRODUCTION

A primary goal of continual learning (CL) is to learn a sequence of tasks incrementally in a single
neural network without catastrophic forgetting (CF). CF is the phenomenon that occurs when learning
a new task, the system needs to modify the parameters learned for old tasks, which may cause
performance degradation of the tasks learned earlier, i.e., forgetting (McCloskey & Cohen, 1989).
This paper focuses on the challenging CL setting of class-incremental learning (CIL) (van de Ven &
Tolias, 2019). In this setting, each task consists of a set of unique classes to be learned. After learning
a sequence of such tasks, the resulting network can classify a test instance from any class that has
been learned so far with no task related information provided.

Existing research has proposed many techniques to deal with CF. However, not many methods
have used pre-trained feature extractors except those methods used in continual learning of natural
language processing (NLP) tasks because using pre-trained feature extractors (e.g., those language
models like BERT, RoBERTa, BART, GPT-2 and GPT-3) can achieve significantly better results
and thus is a standard approach in NLP. Using pre-trained feature extractors has also been used in
computer vision although to a lesser extent (Hu et al., 2021). However, with strong pre-trained feature
extractors appearing in computer vision, the situation is changing. Recently, a strong pre-trained
multi-modal (image and text) transformer model, called CLIP, has been reported (Radford et al.,
2021). CLIP was trained using contrastive loss on a large set of 400 million image and caption pairs
collected from the Internet. It has been shown that for image classification, using CLIP, a zero-shot
method is as strong as fully supervised learning approaches (Radford et al., 2021). CLIP consists of
an image encoder and a text encoder. In this work, we use the image encoder, which is a pre-trained
feature extractor. We will see that CLIP, together with the proposed method for dealing with CF,
enables CL to achieve remarkably better results than without using it.

The proposed method for dealing with CF is called PLS (Pseudo-replay via Latent space Sampling).
PLS is a pseudo-replay method that generates pseudo feature vectors of the previous classes by
sampling from the final layer of CLIP’s image encoder. This is entirely different from existing
pseudo-replay methods that train a data generator to generate pseudo past data. Building such data
generators incrementally often need to handle CF too, which make generators complex (Lesort et al.,
2019). With a pre-trained feature extractor, entirely different pseudo-data generation methods can
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be designed. The generation process of PLS involves only sampling from the pre-trained feature
extractor and thus has no CF problem itself, which is a major advantage (see more advantages below).
The sampled feature vectors and the new task data are used together to train the new task and to deal
with CF. PLS assumes that the feature vectors of a class follow a multivariate Gaussian distribution
in the latent feature space, which is identified by the mean vector and covariance matrix for a class.
However, a covariance matrix can be very large. For example, given a d dimensional latent feature
space, the number of entries needed to store the covariance matrix of a class is d × d, which is
not scalable for learning involving a large number of classes, e.g., 1000 classes in the ImageNet
dataset. To deal with the problem, this paper proposes to compute and save a small number of
eigenpairs, (eigenvalue, eigenvector), and use them to directly sample pseudo-replay feature vectors.
Our experimental results show that this simple approach works very well.

Using a pre-trained feature extractor has at least three major advantages: (1) Due to the rich features
in the feature extractor, it enables a CIL method to produce much better results than without using
it (see Section 4.2). (2) It makes the system much more efficient because the pre-trained feature
extractor is fixed in learning. Thus, learning a new task involves only training the final classification
layer(s). (3) It does not invade data privacy as it samples replay data in the latent feature space. Two
existing families of approaches related to PLS are replay and pseudo-replay. In a replay method, the
system memorizes a small number of training samples from each previous task or class in a memory
buffer. In a pseudo-replay method, the system typically learns a data generator from the previous
tasks to generate pseudo-samples of the previous tasks. The replay approach is not suitable for
applications that have data privacy concerns, e.g., the data of each task might be owned by a different
user, and the user does not want his/her private data seen/shared by any other users or transferred to a
central server. However, sharing the learned models is acceptable and is a common practice, e.g., in
federated learning (Zhang et al., 2021). Pseudo-replay methods are also problematic because they
generate pseudo raw data of each task, which can be too similar to the real data. Using a pre-trained
feature extractor makes it possible for both replay and pseudo-replay to work in the latent feature
space because the pre-trained feature extractor is fixed during learning. Without a pre-trained feature
extractor, both replay and pseudo-replay need to use the raw data or the generated pseudo raw data
in learning because in both cases, the feature extractor needs to be updated in incremental learning
of each task using the save raw data or the generated pseudo raw data. PLS samples feature vectors
from the final layer of the pre-trained feature extractor, but does not generate pseudo raw data. Thus,
PLS involves no raw data after a task is trained, and does not invade the users’ data privacy.

Experimental results show that the proposed method PLS markedly outperforms the latest baselines
by a large margin. On average over 8 sets of experiments, its accuracy is better than the best baseline
by 6.5%, where both PLS and the baselines use the pre-trained CLIP feature extractor. We will also
see that baselines using the pre-trained CLIP feature extractor markedly outperforms their original
versions without using a pre-trained feature extractor or using a weaker feature extractor.

2 RELATED WORK

There are a large number of approaches that have been proposed for CL to overcome CF. The
main techniques can be categorized into a few families. The first family of approaches is based
regularizations (Kirkpatrick et al., 2017) and knowledge distillation (Li & Hoiem, 2016). They aim
to minimize changes to previous learned knowledge or models (Jung et al., 2016; Camoriano et al.,
2017; Fernando et al., 2017; Rannen Ep Triki et al., 2017; Seff et al., 2017; Zenke et al., 2017;
Kemker & Kanan, 2018; Ritter et al., 2018; Schwarz et al., 2018; Xu & Zhu, 2018; Castro et al.,
2018; Dhar et al., 2019; Hu et al., 2019; Lee et al., 2019; Liu et al., 2020b).

The second family of approaches, called experience replay, or replay, memorizes a small number of
training samples of the previous tasks. In learning a new task, the saved samples are added to the
samples of the new task to train the model to adapt the previous knowledge to suit both the new task
and the previously learned tasks (Rusu et al., 2016; Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017;
Chaudhry et al., 2019; de Masson d’Autume et al., 2019; Hou et al., 2019; Wu et al., 2019; Rolnick
et al., 2019; Buzzega et al., 2020; Zhao et al., 2020; Rajasegaran et al., 2020; Liu et al., 2021). The
proposed PLS does not save any samples from previous tasks. As mentioned in the introduction
section, replay-based methods are not suitable for applications that have privacy concerns, which do
not allow memorizing any raw data from a task.
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Instead of saving some samples, the third family of approaches, called pseudo-replay, builds data
generators of the previous tasks to generate pseudo training data of previous tasks and use them to
jointly train the new task (Gepperth & Karaoguz, 2016; Kamra et al., 2017; Shin et al., 2017; Wu
et al., 2018; Seff et al., 2017; Wu et al., 2018; Kemker & Kanan, 2018; Hu et al., 2019; Hayes et al.,
2019; Rostami et al., 2019; Ostapenko et al., 2019; Ayub & Wagner, 2021). If privacy is a concern,
this approach is also problematic as we discussed in the Introduction section. The PASS system (Zhu
et al., 2021) saves feature prototypes and replay them by adding random noise. PLS is different as it
draws feature vectors from the latent space and performs markedly better than PASS (see Sec. 4.2).

The fourth family of approaches uses parameter isolation. This approach is exemplified by the
HAT (Serrà et al., 2018) system, which trains hard attentions or masks to protect the learned model
for each task. This is a highly effective approach for task-incremental learning (TIL), but not suitable
for CIL (class-incremental learning), which is our focus. This method is also used in some other TIL
systems (Fernando et al., 2017; Ke et al., 2020). Another set of related methods finds a sub-network
for each task by pruning (Mallya & Lazebnik, 2017; Wortsman et al., 2020; Hung et al., 2019).
However, these methods are mainly for TIL and they require the task-id to be provided for each test
sample. There are also several TIL systems that do not use this approach, e.g. UCL (Ahn et al.,
2019), ADP (Yoon et al., 2020), CCLL (Singh et al., 2020), HyperNet (von Oswald et al., 2020),
PackNet Mallya & Lazebnik (2017), CPG (Hung et al., 2019), and SupSup (Wortsman et al., 2020).
Our approach is for CIL and no task-id is needed during testing.

Beyond those popular methods discussed above, there is a long list of other CL approaches, e.g.,
a network of experts (Aljundi et al., 2016), orthogonal projection or subspace (Zeng et al., 2019;
Chaudhry et al., 2020), generalized CL (Mi et al., 2020), bilevel optimization (Liu et al., 2020a),
reinforcement learning (Xu & Zhu, 2018), conceptor-aided backprop (He & Jaeger, 2018), gating
networks (Masse et al., 2018; Abati et al., 2020), incremental moment matching (Lee et al., 2017),
expandable networks (Li et al., 2019), online Laplace approximation (Ritter et al., 2018), etc. None
of them uses pseudo-replay or pre-trained models.

Several existing systems have used pre-trained feature extractors. Almost all existing methods for
continual learning of natural language processing tasks use pre-trained language models as feature
extractors as using pre-trained feature extractors is a standard approach in NLP for almost any task and
results in huge improvement in performance. However, we are not aware of any existing CL methods
for NLP tasks use pseudo-replay. Some recent works in computer vision have used pre-trained feature
extractors. For example, Hayes et al. (2019) and Hayes & Kanan (2020) used a pre-trained feature
extractor for online continual learning with streaming data. Our work is not about online continual
learning. PCL (Hu et al., 2021) uses a fixed feature extractor to build individual classifier for each
class under the batch training scenario. None of these methods use pseudo-replay as our approach
PLS. We will compare it with the proposed method PLS in the experiment section.

3 PROPOSED PLS TECHNIQUE

As mentioned earlier, the proposed method PLS is a pseudo-replay method for class-incremental
learning (CIL). It uses a pre-trained feature extractor, i.e., CLIP in our experiment. Unlike most
previous pseudo-replay methods, which learn a data generator to generate pseudo raw data to deal
with catastrophic forgetting (CF), PLS only samples feature vectors from the final layer of the pre-
trained feature extractor and use them to represent features of previous task data in training the new
task and to deal with CF.

Briefly, PLS works as follows. It assumes that the feature vectors obtained from the pre-trained
feature extractor are drawn from a multivariate Gaussian distribution. In addition to training the
model on a task, the mean µc and covariance Σc of the feature vectors of each class c in the task
can be estimated. Consequently, these estimates can be used to sample feature vectors of the class in
pseudo-replay. However, saving the full covariance matrix for each class is very memory inefficient.
For example, a feature extractor with d dimensional output requires d× d entries for the covariance
matrix of each class. The total entries required for learning a dataset with |C| classes is d× d× |C|.
In our experiment, d is 512 and |C| is 1000 for the largest dataset (i.e. 262M entries). This may not
be feasible for appliances with a small on-device memory. The proposed method PLS solves it by
saving only a few eigenvalue-eigenvector pairs with limited memory budget. These eigenpairs are
directly used to sample feature vectors. Below, we present the technique and describe a few variations.
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In our experiment in Section 4.2, we save only 5 eigenpairs and 1 sample mean per class on average.
The system already works very well.

3.1 APPROXIMATING COVARIANCE MATRIX

Given the data of a task, we compute the sample mean and sample covariance matrix of each class
via singular value decomposition (SVD). For simplicity, we omit the task-id t and class-id c unless
necessary since this discussion is about computing the statistics for each class in a task data.

Suppose we receive nc feature vectorsX = [x1 · · ·xnc ] of class c from a task after feature extractor.
We compute the sample mean µ as

µ =

nc∑
i=1

xi/nc (1)

and the SVD of centered data

UΛ̃V T svd
= [X − µ] (2)

where T means transpose. The columns of U and diagonals of Λ̃2 are eigenvectors and eigenvalues
of unnormalized sample covariance matrix (nc − 1)Σ since [X − µ][X − µ]T = UΛ̃2UT . Note
that the total variance is explained by the sum of eigenvalues, (nc − 1)

∑d
i=1 σ

2
ii =

∑d
i=1 λ̃

2
i , where

σ2
ii is the ith diagonal element of Σ and λ̃21 ≥ · · · ≥ λ̃2d are the diaginal elements of Λ̃2. Denote the

diagonal matrix with eigenvalues of normalized covariance by

Λ2 = Λ̃2/(nc − 1) (3)

We keep the first k eigenpairs and discard the rest d − k pairs that least explain the total variance.
Denote the reduced size matrices by the same notations U and Λ2. We save the sample mean µ and
(U ,Λ2) in memoryM and discard V since it is not necessary for approximating the covariance.

In the actual implementation and for fair comparison, we follow the existing replay-based approach
by having a fixed memory budget and adjust k to fit the memory buffer. That is, k varies according to
the memory budget available at the time of learning the class c. As more tasks are learned, k becomes
smaller. After a new task is learned, the number of saved eigenpairs k for old classes is reduced to
accommodate the eigenpairs of the new class c.

In the following, we discuss how to draw pseudo feature vectors from the sample mean and eigenpairs.

3.2 PSEUDO REPLAY FROM THE FEATURE SPACE

Suppose we have obtained the sample mean µc and k eigenpairs (Uc,Λ
2
c) for each class c, where

Uc ∈ Rd×k and Λc ∈ Rk×k. We draw random features of class c from the Gaussian distribution with
mean µc and covariance Σc for pseudo-replay. Given a random sample z ∈ Rk from the standard
normal distribution, we draw a random feature and apply linear transformation (Gentle, 2009) as

x = µc +UcΛcz (4)

Note that we do not need to explicitly compute the covariance matrix Σc to draw sample feature
vectors.

In training, we train the classifier with the current batch and generate feature vectors of classes of
previous tasks in each training iteration for replay. Algorithm 1 describes the training process, where
we have put comments with the symbol “//”.

3.3 TYPES OF COVARIANCE

We have discussed our approach based on the estimation of sample covariance matrix for each class.
In the following discussion, we propose another 2 estimations with more efficient memory usage in
modeling the latent feature space. In Section 4.3, we show the performance difference between the
estimations and discuss suitability of each method in various scenarios.
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Algorithm 1 PLS training algorithm (Σc ver-
sion)

Require: feature extractor f , classifier g, mem-
oryM, sequence of tasksD = {Dt}t=1

// CL starts
1: for each task dataDt ∈D do
2: Obtain featuresXt ← f(Dt)

// Compute statistics
3: for all class dataXc ofXt do
4: Compute µc using Eq. 1
5: ComputeUc, Λ2

c using Eq. 2, Eq. 3
6: M← Update(M(µc,Uc,Λ

2
c))

7: end for
// Train a task

8: for (Xt,i,y) inXt, until converge do
9: Xs = sample(M) using Eq. 4

10: minimize CE(g(Xt,i ∪Xs),y)
11: end for
12: end for

One method is to share the sample covariance
across the classes within the same task. Given the
eigenpairs {(Ucj ,Λ

2
cj )}

r
j=1 of class c1, · · · , cr of

task t, we combine the sample covariance

Σt =
1

r

r∑
j=1

k∑
i=1

λ2i,cjui,cju
T
i,cj (5)

where λ2i,cj and ui,cj are the ith eigenvalue and
eigenvector of class cj of task t, respectively. We
save the leading k eigenpairs of the shared covari-
ance matrix Σt after singular value decomposition,
and discard Σt to save memory as it is not neces-
sary for sampling. We adjust the number of saved
eigenpairs of the previous tasks accordingly and
draw sample features of class cj from N(µcj ,Σt)
by the sampling method discussed in Section 3.2.

Another approach is to incrementally compute a
single shared covariance for all classes of the pre-
vious tasks. Given k eigenpairs {(ui, λ

2
i )}ki=1 of

the previously shared covariance and the eigenpairs
{(ui,c, λ

2
i,c)}ki=1 of a new class c, approximate the

sample covariance by

Σ =
1

|C|+ 1

k∑
i=1

λiuiu
T
i + λi,cui,cu

T
i,c (6)

where |C| is the number of previous classes. We take the leading k eigenpairs and draw sample
features as discussed in Section 3.2. This approach is most memory efficient in learning scenarios
where the number of classes or tasks is larger.

We have discussed the methods for computing the sample mean and covariance in the traditional
batch learning scenario where a task data are available and loaded on the machine in the beginning of
training. However, we can also compute the statistics incrementally (see below).

3.4 INCREMENTAL APPROXIMATION OF THE STATISTICS

The above methods need the full data of each task to compute the eigenpairs. When the training
data is very large and/or the device’s memory size is small, the above approaches may have some
difficulty. Here we also propose an incremental version of the approach.

We take ideas from the algorithms developed for incremental principal component analysis
(iPCA) (Levy & Lindenbaum, 1998; Ross et al., 2008). In iPCA, we incrementally update the
singular value decomposition of the entire data from the current batch without having access to the
previous data. We explain how to update the statistics of each class, but the same method can be
applied to the shared covariance Σt and Σ. We omit the task-id t and class label c unless necessary.

Suppose we receive a batch of m feature vectorsXnew = [xn+1 · · ·xn+m] of class c, where n is the
number of seen samples of class c. Given the previously computed sample mean µ, we update it as

µ̃ =
1

n+m
(nµ+mµnew) (7)

where µnew is the sample mean computed on the current samplesXnew. This is the sample mean for
class c on the data including previous and current samples.

Given the previous sample mean µ obtained in Eq. 1, and k leading eigenpairs Λ ∈ Rd×k and
U ∈ Rd×k obtained in Eq. 2 and Eq. 3, construct a block matrix [

√
n− 1UΛ B̂], where B̂ =

[Xnew − µnew
√
nm/(n+m)(µnew − µ)] ∈ Rd×m+1 is the centered data with one additional

column. We compute SVD of the block matrix

ŨΛ̃Ṽ T svd
= [
√
n− 1UΛ B̂] (8)
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As discussed previously, we keep k leading pairs of singular values and orthonormal vectors and
discard Ṽ to save memory. The columns of Ũ and diagonals of Λ̃2 are k eigenvectors and eigenvalues
of unnormalized sample covariance matrix (n+m− 1)Σ with some constant (refer to Appendix C
for details). We sample pseudo-features with the new k eigenpairs and sample mean as Section 3.2.

4 EXPERIMENTS

Evaluation Datasets: Three image classification benchmark datasets are used in our experiments.

(1). CIFAR-10 (Krizhevsky & Hinton, 2009)1: This dataset consists of 60,000 32x32 color images
of 10 classes. 50,000 images are used for training and 10,000 are used for testing.

(2). CIFAR-100 (Krizhevsky & Hinton, 2009)2: This dataset consists of 60,000 samples of 32x32
color images of 100 classes with 500 and 100 images per class for training and testing, respectively.

(3). ImageNet-1000 (Russakovsky et al., 2015)3: This dataset consists of 1,281,167 natural images
of 1,000 classes for training. Since the test data do not have labels, we use the validation data as in
(Rebuffi et al., 2017) for testing.

Baseline Systems: We consider 10 class-incremental learning (CIL) baselines of different types as
the proposed PLS is a CIL system. For CIL approaches that do not save or generate any samples
from previous tasks, we compare against OWM (Zeng et al., 2019). For replay-based methods, we
compare with LwF (Li & Hoiem, 2017) improved by (Liu et al., 2020a), iCaRL (Rebuffi et al.,
2017), A-GEM (Chaudhry et al., 2018), BiC (Wu et al., 2019), DER++ (Buzzega et al., 2020),
and HAL (Chaudhry et al., 2021). For pseudo-replay methods, we compare with the latest systems
EEC (Ayub & Wagner, 2021) and PASS (Zhu et al., 2021). For methods that use a pre-trained feature
extractor, we compare with the latest system PCL (Hu et al., 2021).

4.1 TRAINING DETAILS

We run public codes for the baselines (links are in Appendix E). For all baselines and our system
PLS, we use CLIP (Radford et al., 2021) pre-trained network except for PCL (Hu et al., 2021) as
PCL works better using its own pre-trained network trained using the ImageNet data. The other
baselines work markedly better with the fixed CLIP feature extractor. For PLS, we fine-tune the linear
classifier on top of the fixed CLIP (512 dimensions) for each task. For each dataset of |C| classes, we
conduct experiments using two different memory sizes |M| = (5 + 1)|C| and |M| = (10 + 1)|C|,
i.e., saving 5 eigenpairs and 1 sample mean and 10 eigenpairs and 1 sample mean per class when the
last task is learned, respectively. This is equivalent to saving 6|C| and 11|C| feature vectors for the
replay-based baselines. For PLS and pseudo-replay baselines, we sample feature vectors as many as
the batch size following the pseudo-replay methods in (Ayub & Wagner, 2021; Zhu et al., 2021). We
use 10% of training data for hyper-parameter search to select a good set of hyper-parameters for all
methods. Additional training details are as follow.

For CIFAR-10, we use the memory size of |M| = 60 or 110 based on the memory size allocation
scheme described above. We split 10 classes into 5 tasks, where each task has 2 consecutive classes.
We train our system for 1 epochs with batch size of 16. We use Adam optimization (Kingma & Ba,
2014) with learning rate 0.001.

For CIFAR-100, we use the memory size |M| = 600 or 1100, again based on the memory size
allocation scheme described above. We conduct experiments for 10 tasks and 20 tasks. We split the
classes in consecutive order. For 10 and 20 tasks, we train for 10 and 5 epochs, respectively. For both
tasks, we use batch size of 16 and Adam optimization with learning rate 0.1.

For ImageNet-1000, we set the memory size as |M| = 6000 or 11000 also based on the memory size
allocation scheme described above. We split 1000 classes into 10 tasks with 100 classes per task. We
train our system for 1 epoch with batch size of 256, and use Adam optimizer with learning rate 0.1.

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://www.cs.toronto.edu/ kriz/cifar.html
3https://image-net.org
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4.2 TEST RESULTS AND COMPARISONS

We compare our method against the baselines by two metrics: average classification accuracy
and average forgetting rate. We compute the average classification accuracy of a network on all
the classes learned after training the last task. The average forgetting rate is defined as F t =∑t−1

j=1(A
init
j − At

j)/(t − 1) where Ainit
j is the classification accuracy of task jth data right after

learning it and At
j is the accuracy of jth task after learning the final task t. We report the average

result over 3 runs with different random seed. In Appendix A, we also report average incremental
accuracy of the systems.

Using Pre-Trained Feature Extractor by PSL and baselines. Table 1 shows that PLS and and its
incremental version, iPLS, consistently outperform the baselines on all datasets by large margins in
both memory sizes. The Diff. row shows the performance difference between our approach and the
best baseline. PLS and iPLS performs similarly. The average column shows that on average, PLS
improves the best baseline by 6.5%. The smallest performance gap, 2.3%, between PSL and the best
baseline occurs in CIFAR10-5T, where PLS achieves 93.0% accuracy. The gap becomes greater for
more challenging datasets. With a larger memory (i.e., |M| = (10 + 1)|C|), PLS achieves 72.3%
and 67.0% and the best baseline methods do 65.4% and 60.3% in CIFAR100-20T and ImageNet-10T,
respectively.

The pseudo-replay baseline EEC displays strong performance in relatively easier datasets such as
CIFAR10 and CIFAR100. However, when it is trained for the challenging dataset (i.e. ImageNet), its
accuracy drops significantly as training a generative model is difficult in continual learning as noted
in (Lesort et al., 2019). In fact, we could not get EEC to work with 1000 classes. The reported results
in the table are for only 50 classes. PLS, on the other hand, does not need to train a generative model
as it directly samples features from multivariate Gaussian distributions. This allows PLS and iPLS to
have consistent performances throughout the data settings. Note that OWM, EEC, PASS, and PCL
have only one result for each data setting as they do not use a memory buffer. For PCL, we use its
own pre-trained feature extractor as it works poorly with CLIP. As PCL mainly works in the one
class per task setting, it does not work well when there are many classes in a task. We thus copied its
results of one-class per task, which covers the case of multiple classes per task. For ImageNet, there
is no result because PCL’s feature extractor is trained using ImageNet supervised data.

Without using Pre-trained Feature Extractor. We run the original code of baselines without using
the CLIP pre-trained feature extractor to motivate the benefits of using pre-trained network. We use
ResNet-18 (He et al., 2016) as the backbone architecture and train the network using memory size
2000 on CIFAR100-10T (10 tasks). The results are reported on the rightmost column in Table 1. All
the baselines perform significantly poorer without the pre-trained feature extractor. There are no
results for PCL, PLS, and iPLS here as they were designed for use with pre-trained feature extractor.

Figure 1: Average forgetting rate (%). The
lower the rate, the better the method is.

Forgetting Rate. We compare the forgetting rate using
CIFAR10-5T and CIFAR100-10T with the smaller mem-
ory size (i.e. |M| = 5|C|+ 1). Figure 1 shows that our
methods PLS and iPLS have the smallest forgetting rates
on CIFAR10-5T. Although iCaRL and BiC suffer less
from forgetting than PLS and iPLS on CIFAR100-10T,
their accuracies are 61.4 and 66.9, respectively, which
are much lower than that of PLS (71.2%). We provide
forgetting rates on the other datasets in Appendix B.

Comparison between PLS and iPLS. We have pro-
posed PLS and its incremental version, iPLS, for dif-
ferent learning scenarios. In Table 1, the two methods
show similar performance across the datasets. However,
PLS is slightly faster than iPLS as PLS obtains singular
value decomposition once in the beginning of training,
whereas iPLS computes it at each batch. Using NVIDIA
RTX 3090 under the same experiment setting, we mea-
sure the training time spent on CIFAR100-10T. PLS
took 56.6± 0.53 minutes while iPLS took 59.8± 1.56
minutes.
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Table 1: Average classification accuracy after the final task. ‘-XT’ means X tasks. We report the
average incremental accuracy in Appendix A. The column Average indicates the average of results of
each method over the datasets and memory budgets. The row Diff. gives the difference in accuracy
between our method and the best baseline in each column. The results on the rightmost column are
the accuracy without fixed pre-trained feature extractor. We highlight the best result in each column
in bold. EEC† indicates that we follow the original paper for ImageNet experiment, where 50 classes
are split into 5 tasks because we are unable to run the official code for 1000 classes on our system.
With CLIP pre-trained feature extractor, the incremental average accuracy improves to 42% which is
greatly higher than 35.2% in the original paper. Cells without results are explained in the text.

CIFAR10-5T CIFAR100-10T CIFAR100-20T ImageNet-10T Average CIFAR100-10T
|M| = 60 110 600 1100 600 1100 6000 11000 2000

OWM 79.4±3.38 56.9±2.23 56.6±1.67 17.1±2.67 52.5 29.0±0.7
LwF.R 72.1±0.11 71.2±1.45 61.1±1.94 61.6±2.29 65.6±0.20 62.6±2.63 54.4±0.02 54.3±0.05 62.9 45.3±0.8
iCaRL 89.4±0.00 89.2±0.00 61.4±0.20 63.6±0.05 61.4±0.23 63.8±0.08 58.7±0.00 60.3±0.01 68.5 51.4±1.0
A-GEM 82.0±1.42 81.2±1.22 55.6±0.06 61.2±0.04 55.7±0.05 61.1±0.17 21.4±0.27 21.0±0.18 54.9 9.4±0.2
BiC 78.0±1.94 82.5±3.71 66.9±2.70 68.8±1.60 62.2±4.58 64.2±1.18 60.5±0.25 60.3±1.17 67.9 51.3±0.6
DER++ 88.6±0.64 90.8±0.46 63.4±0.40 66.5±0.30 63.0±1.74 65.4±1.92 56.6±0.70 59.4±0.37 69.2 55.3±0.1
HAL 86.2±0.88 88.1±0.73 53.2±0.13 57.4±0.64 53.9±0.81 56.9±0.31 48.4±0.22 52.9±0.31 62.1 11.9±0.7
EEC† 86.8±0.34 64.2±0.46 62.5±0.23 18.1±0.06 57.9 10.9±0.4
PASS 86.8±0.65 62.0±0.97 63.1±1.11 59.0±0.34 67.7 35.8±0.3
PCL 84.9 63.6 63.6
PLS 93.0±0.12 93.1±0.08 71.2±0.38 72.5±1.00 71.7±0.28 72.0±1.18 65.6±0.22 66.8±0.12 75.7
iPLS 93.0±0.09 93.0±0.08 70.6±0.42 72.8±0.56 70.8±0.60 72.3±0.83 65.5±0.17 67.0±0.38 75.6
Diff. +3.6 +2.3 +4.3 +4 +6.1 +6.9 +5.1 +6.7 +6.5

Table 2: Comparison of proposed covariances. Σc is the covariance used in Table 1. Σt is the shared
covariance across classes within a task. Σ is the shared covariance across all classes. Each accuracy
is the average classification accuracy after the final task is learned. The accuracy of Σ in ImageNet
with |M| = 11000 is copied from |M| = 6000 as its actual memory usage (1512) is the same.

CIFAR10-5T CIFAR100-10T CIFAR100-20T ImageNet-10T Average
M = 60 110 600 1100 600 1100 6000 11000

PLS
Σc 93.0±0.12 93.1±0.08 71.2±0.38 72.5±1.00 71.7±0.28 72.0±1.18 65.6±0.22 66.8±0.12 75.7
Σt 92.6±0.02 92.3±0.16 71.4±0.62 71.8±0.11 72.2±0.49 72.2±0.11 66.1±0.03 66.2±0.18 75.6
Σ 92.4±0.23 92.5±0.15 71.1±0.42 71.1±0.71 70.4±0.71 69.6±0.41 65.2±0.13 65.2±0.13 74.7

iPLS
Σc 93.0±0.09 93.0±0.08 70.6±0.42 72.8±0.56 70.8±0.60 72.3±0.83 65.5±0.17 67.0±0.38 75.6
Σt 90.8±0.07 91.7±0.02 71.9±0.76 72.3±0.96 69.5±0.95 71.1±0.62 66.3±0.09 66.5±0.39 75.0
Σ 91.7±0.31 92.2±0.12 71.9±0.30 72.0±0.71 71.2±0.32 71.1±0.71 65.9±0.09 65.9±0.09 75.2

4.3 ANALYSIS AND ABLATION STUDY

Comparison of Covariances. We have proposed three methods to approximate sample covariances,
where each method assumes different property in the latent space. We compare the performance of
proposed methods in Table 2. In terms of performance, the three methods are similar. Σc outperforms
the other methods on average, but the difference between the second best method is only 0.1% in
PLS and 0.4% in iPLS. In terms of memory usage, some methods consume less than the others.
We fix the memory size and reduce the number of eigenpairs after each task to accommodate the
statistics of new classes. When the number of classes |C| is larger than d (feature dimension), Σ
consumes less memory than Σc as Σc requires at least |C| eigenpairs to approximate each covariance
while Σ requires at most d eigenpair. For instance, in ImageNet, Σc uses all the memory 6000 (i.e.
5× 1000 + 1000, where 5 is the number of eigenpairs saved per class in learning the last task and
1000 is the number of classes). On the other hand, Σ uses only 1512 (i.e. 512 + 1000, where 512 is
the feature dimension d and 1000 is the number of classes). For a similar reason, Σt consumes more
memory than Σ when the number of tasks is larger than d.

Effect of Shared Covariance Matrix. We have proposed two types of covariances: 1) individual
covariance for each class Σc and 2) a shared covariance Σt or Σ. Σt assumes that every class in a
task shares the same covariance matrix while Σ assumes a single shared covariance throughout the
training process. These assumptions may not be true in some applications. Thus, despite PLS/iPSL
shows similar performance in the datasets regardless of covariance types in Table 2, it can perform
differently depending on the covariance type. We construct a synthetic dataset of two classes that
follow distributions N(µ1,Σ1) and N(µ2,Σ2) to explain PLS performance when one type of
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(a) (b) (c)

Figure 2: (a) and (b) show decision boundaries for two classes (best viewed in color). The solid line
and dashed line are decision boundaries found using individual covariance per class Σc and shared
covariance Σ, respectively. (a) shows that the decision line by shared covariance (i.e. dashed line) is
severely shifted when the covariances construct different shapes whereas the solid line separates the
clusters properly. (b) shows that the two decision lines are equally good when class covariances form
a similar shape. (c) shows accuracy change over the number of saved eigenpairs per class.

covariance is more advantageous than the others. In Figure 2(a), we display the datasets and overlay
the contours of their covariances Σ1, Σ2 and the shared covariance Σ. The decision boundary (solid
line) found by PLS using individual covariances properly separates the two classes. However, PLS
finds a boundary (dashed line) shifted toward the blue class when Σ is used as Σ does not reflect
the true distributions. The accuracy by the solid line is 97.3% while that of the dashed line is 93.7%.
In Figure 2(b), the two classes follow similar covariances (i.e. Σ1 ' Σ2). PLS finds decision
boundaries that properly separate the two classes, in which the solid line achieves 100% accuracy
and the dashed line achieves 99.7%.

Number of Eigenpairs and Performance. We study the number of eigenpairs and its impact on
classification accuracy. In the preceding experiments, we fix the memory size and change the number
of eigenpairs (k) in memory after each task is learned like in the replay-based baselines. In this
experiment, we fix the number of pairs per class and study how accuracy changes over k in CIFAR10-
5T. We first train PLS without saving any eigenpairs (i.e. k = 0), but sampling from N(µc, I) with
unit covariance matrix I whose diagonal entries are 1 and the rest are 0. By simply distinguishing the
sample means, we obtain 47.1% accuracy. Figure 2(c) shows the classification accuracy as a function
of k = 1, · · · , 512. PLS greatly improves and already achieves 91.3% accuracy with 1 eigenpair per
class. This leading pair explains 9.8% of total variance. The first 5 eigenpairs explain 30.7% of the
total variance and the accuracy stabilizes at 93.1%. With full eigenpairs (i.e,. k = 512), the accuracy
is 93.37%. This implies that PLS requires little memory to perform very well.

PLS and Zero-Shot Property of CLIP. CLIP has been shown to work well in the zero-shot set-
ting (Radford et al., 2021). We show that PLS achieves much higher accuracy on all the datasets than
CLIP zero-shot accuracy, which demonstrates that the strong performance of PLS is not due to the
zero-shot property of CLIP. The details are given in Appendix D.

5 CONCLUSION

This paper proposes a simple and highly effective method (called PLS) working with a pre-trained
feature extractor to perform class-incremental learning (CIL) and to deal with catastrophic forgetting
(CF). PLS is a pseudo-replay method, but it is very different from existing pseudo-replay methods
that train a data generator to generate pseudo replay data. Instead, PLS works in the latent feature
space by sampling feature vectors of previous classes. As explained in the introduction section, this
makes the system suitable for applications that have data privacy concerns which prohibit the system
from building data generators. Experimental results show that PLS outperforms both the classic and
state-of-the-art recent baselines by a large margin even when both baselines and PLS leverage the
pre-trained CLIP feature extractor.
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A AVERAGE INCREMENTAL ACCURACY

In the main paper, we report the average classification accuracy At after the final task t. Here, we
report the average incremental accuracy A =

∑t
k=1Ak/t, where Ak is the average classification

accuracy over all the learned tasks until task k. Average incremental accuracy measures the model
performance throughout the learning process. Table 3 shows that PLS and iPLS outperform the
baselines by large margin, especially in more challenging datasets such as CIFAR100 and ImageNet.
Note that PCL is not included here because we cannot run the system as the official code does not
provide the pre-trained feature extractor. EEC on CIFAR100-10T without pre-trained CLIP is lower
(31.3%) than the original paper (65.6%, which is still much lower than with CLIP (76.2%)) as we
cannot reproduce the result from the official code despite extensive hyper-parameter search.

Table 3: Average incremental learning. The best result in each column is highlighted in bold.

CIFAR10-5T CIFAR100-10T CIFAR100-20T ImageNet-10T Average CIFAR100-10T
|M| = 60 110 600 1100 600 1100 6000 11000 2000

OWM 86.9±1.97 68.9±2.14 69.3±1.78 30.8±0.70 64.0 41.9
LwF.R 69.1±0.03 68.5±1.09 64.0±0.33 63.4±2.56 69.2±1.94 66.0±1.80 52.0±0.24 51.9±0.19 63.0 65.4
iCaRL 93.0±0.00 93.1±0.00 73.1±0.08 73.8±0.02 73.9±0.07 74.7±0.03 63.0±0.00 63.6±0.00 76.2 68.4
A-GEM 85.8±0.50 83.8±0.44 67.7±0.02 72.2±0.02 68.3±0.05 72.8±0.07 34.0±0.10 34.1±0.20 64.8 22.3
BiC 84.4±1.53 86.6±2.61 77.7±2.76 79.7±0.87 71.3±4.05 77.4±0.77 64.2±0.55 64.0±2.01 75.7 68.7
DER++ 92.0±0.47 93.0±0.26 77.4±0.15 78.8±0.22 75.9±0.11 78.7±0.29 63.7±0.21 65.2±0.24 78.1 67.6
HAL 89.8±0.71 91.4±0.33 67.7±0.71 70.0±0.64 67.8±0.56 70.0±0.39 60.0±0.13 62.2±0.08 73.4 23.6
EEC† 93.4±0.20 76.2±0.28 78.1±0.10 42.0±0.89 72.4 31.3
PASS 91.1±0.13 72.4±0.22 71.7±0.14 60.8±0.09 74.0 52.0
PLS 95.2±0.06 95.4±0.07 81.1±0.09 82.2±0.29 80.9±0.05 81.8±0.23 70.2±0.11 71.1±0.05 82.2
iPLS 95.1±0.03 95.4±0.07 80.8±0.20 82.0±0.17 81.0±0.32 82.1±0.04 70.1±0.11 71.1±0.10 82.2
Diff. +1.8 +2.3 +3.4 +2.5 +2.9 +3.4 +6.0 +5.9 +4.1

B FORGETTING RATE

In the main content, we show the forgetting rate of each system on CIFAR10-5T and CIFAR100-10T.
This section presents the results on the other two settings that are not reported in the main paper due to
space limitation. We can make a similar observation in Figure 3 as in the main paper. Some baseline
methods such as LwF.R, iCaRL, BiC, and PASS forget less, but their accuracy values are much lower
(refer to Table 1 in the main paper) as they are not able to adapt to new tasks. PLS and iPLS, however,
show competitive results in preventing forgetting while achieving much higher accuracies than the
baselines. Our approaches are flexible to learn new tasks while preventing forgetting effectively.

C ADDITIONAL DERIVATION DETAILS

We have claimed that the orthonormal matrix Ũ and a diagonal matrix Λ̃2 obtained from Eq. 8
are eigenvectors and eigenvalues of unnormalized sample covariance (n +m − 1)Σ + r, where
r is a constant. Denote the previous sample mean by µ and the eigenpairs of previous covariance
Σold by (U ,Λ2). Following (Ross et al., 2008), we provide more details about the claim. Since
B̂ = [Xnew − µnew

√
nm/(n+m)(µnew − µ)] and UΛUT = Σold,

ŨΛ̃2ŨT = ŨΛ̃Ṽ T [ŨΛ̃Ṽ T ]T (9)

= [
√
n− 1UΛ B̂][

√
n− 1UΛ B̂]T (10)

= (n− 1)UΛ2UT + B̂B̂T (11)

= (n− 1)Σold + (m− 1)Σnew +
nm

n+m
(µnew − µ)(µnew − µ)T (12)

= (n+m− 1)Σ+ r (13)

where r = nm/(n+m)(µnew − µ)(µnew − µ)T .
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Figure 3: Average forgetting rate (%) on CIFAR100-20T and ImageNet-10T. The lower the value,
the better the system is.

D ZERO-SHOT ACCURACY OF CLIP

The multi-modal pre-trained network CLIP is proposed for zero-shot transfer. Given that the text
labels of training data are provided, the CLIP text encoder generates weights, and the network predicts
the classes based on the pairwise cosine similarity between the feature outputs and the generated
weights. Continual learning does not assume that the text information of training data is available.
In continual learning, the learners sequentially acquire a new set of knowledge rather than just
associating the encoded information as in zero-shot classification. However, we report the zero-shot
accuracy of CLIP on the datasets we used in the experiments to demonstrate that our proposed method
PLS is not just because of the zero-shot property of CLIP. We run CLIP zero-shot prediction using
the official code and report the results in Table 4. The result shows that PLS and iPLS are better than
CLIP zero-shot classification despite that PLS and iPLS do not require text information.

Table 4: Zero-shot accuracy of CLIP when the feature extractor, ViT-B/32, is used and the text labels
of training data are available.

CIFAR10 CIFAR100 ImageNet

CLIP 88.8 61.7 59.7

PLS 93.1 72.5 66.8
iPLS 93.0 72.8 67.0

E PUBLIC CODES USED FOR BASELINES

The links below are the public codes we used to produce the baseline results in our experiments.

• OWM: https://github.com/beijixiong3510/OWM
• LwF.R: https://github.com/yaoyao-liu/class-incremental-learning/tree/main/mnemonics-

training
• iCaRL: https://github.com/yaoyao-liu/class-incremental-learning/tree/main/mnemonics-

training
• A-GEM: https://github.com/aimagelab/mammoth
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• BiC: https://github.com/yaoyao-liu/class-incremental-learning/tree/main/mnemonics-
training

• DER++: https://github.com/aimagelab/mammoth
• HAL: https://github.com/aimagelab/mammoth
• PASS: https://github.com/Impression2805/CVPR21 PASS
• EEC: https://github.com/aliayub7/EEC
• PCL: https://github.com/morning-dews/PCL
• CLIP zero-shot: https://github.com/openai/CLIP
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