
OpenCoder: The Open Cookbook for Top-Tier Code
Large Language Models

Anonymous ACL submission

Abstract

Code LLMs have been widely used in various001
domains, including code generation, logical002
reasoning, and agent systems. However, open-003
access code LLMs mostly only release weights,004
lacking key features such as reproducible data005
pipelines and transparent training protocols,006
which are crucial for advancing deeper and007
more reliable investigations. To address the008
gap, we introduce OpenCoder, a top-tier code009
LLM that not only achieves performance com-010
parable to industrial leading models but also011
serves as an “open cookbook” for the research012
community. Unlike most prior efforts, we re-013
lease not only model weights and inference014
code, but also the reproducible training data,015
complete data processing pipeline, rigorous ex-016
perimental ablation results, and detailed train-017
ing protocols for open scientific research. Our018
work identifies the key ingredients for build-019
ing a top-tier code LLM are: language-specific020
filtering rules, file-level deduplication , high-021
quality synthetic data and two-stage supervised022
fine-tuning strategy. By offering high level of023
openness, we aim to broaden access to all as-024
pects of a top-tier code LLM, with OpenCoder025
serving as both a powerful model and an open026
foundation to accelerate research, enabling re-027
producible advancements in code intelligence.028

1 Introduction029

Large Language Models (LLMs) have achieved sig-030

nificant success in various domains (Wang et al.,031

2023; Que et al., 2024; Liu et al., 2024a,b; Wu032

et al., 2024), particularly in code-related tasks, rev-033

olutionizing the current paradigm of software de-034

velopment (Qian et al., 2024; Wang et al., 2024).035

Code-specific LLMs have emerged as a critical area036

within LLM research, with tools such as ChatGPT,037

Copilot, and Cursor reshaping the workflows of038

developers. Despite this, the performance of open-039

source LLMs focused on code (Li et al., 2023; Tao040

Efficient Pre-training

3× faster

RefineCode

3.5M high-quality
examples

Pre-training

Supervised Fine-tuning

130 rules for
filtering code filesThe Stack V2

75B code related
web tokensCommonCrawl

Pushing the Frontier of Fully Open Models
2023-05 2024-11

HumanEval (Zero-shot Pass@1)
of 6B+ Base Models

CodeLlama-7B
33.5

DS-Coder-6.7B
47.6 Yi-Coder-9B

53.7

Qwen2.5-Coder-7B
61.6

OpenCoder-8B
64.6

2024-02

CodeGemma-7B
39.0

CodeQwen-1.5-7B
51.8

DS-Coder-V2-Lite-16B(MoE)
40.9

StarCoder2-7B
35.4

StarCoder-7B
28.4

Figure 1: OpenCoder surpasses all previous fully open
models (i.e., with open model weights and reproducible
datasets) and other open-access models (i.e., with open
model weights only) at the 6B+ parameter scale, push-
ing the frontier of fully open models to new heights.

et al.; Lozhkov et al., 2024a) still falls short com- 041

pared to state-of-the-art LLMs (Hui et al., 2024; 042

Zhu et al., 2024), largely because these leading 043

models keep their training datasets—an essential 044

factor in LLM development—proprietary. This 045

lack of transparency hinders the research commu- 046

nity from establishing strong baselines and gaining 047

deeper insights into top-tier code LLMs. 048

To remedy the gap, we set three primary goals by 049

releasing OpenCoder and its development materi- 050

als: (i) We aim to provide scholars with a meticu- 051

lously curated and fully transparent strong baseline 052

code LLM for research on mechanical interpretabil- 053

ity and the data distribution of code LLMs. (ii) We 054

intend to conduct in-depth investigations into the 055

pretraining and instruction data curation pipeline 056

1

for the development of stronger code LLMs. (iii)057

By enabling a detailed review of the development058

of the models, we hope to unlock more diverse cus-059

tomized solutions based on transparent code LLM.060

Through OpenCoder, we strive to stimulate and ac-061

celerate the growth of the open-source code LLM062

community.063

Our comprehensive set of controlled experi-064

ments highlights key design choices for data cu-065

ration for advanced code LLMs in different train-066

ing stages. During pre-training Stage: (i) Effec-067

tive data cleaning is crucial (Zhou et al., 2024),068

requiring well-designed heuristic rules to process069

large-scale corpora under limited resources and vi-070

sualization to perceive data distribution. (ii) The071

impact of deduplication is significant, with file-072

level deduplication proving to be more effective073

than repository-level deduplication by maintaining074

data diversity and enhancing model performance075

on downstream tasks (Li et al., 2023). (iii) The in-076

fluence of GitHub stars is also examined, revealing077

that filtering data based on Github star count can078

possibly reduce data diversity and affect the over-079

all data distribution, contributing to a suboptimal080

result (Allal et al., 2023). Moreover, in the anneal-081

ing phase, high-quality data is crucial for further082

enhancing the model’s capabilities, indicating that083

data quality is more important than quantity in the084

later stages of model training. Finally, during in-085

struction tuning phase, a two-stage instruction086

tuning strategy allows the model to acquire broad087

capabilities initially and then refine them with code-088

specific tasks, resulting in improved performance089

on both theoretical and practical coding tasks.090

Our contribution is summarized below:091

• We present OpenCoder, a top-tier code llm092

archieving competitive performance with lead-093

ing models across multiple benchmarks.094

• We provide an full-stack open cookbook for095

code LLMs, including pipeline, training sets096

and middle checkpoints as detailed in Table 1.097

• We identify the key ingredients for build-098

ing a top-tier code LLM, including language-099

specific heuristic rules, file-level duplication,100

synthetic-data and two-stage SFT.101

2 Pretraining Data102

Pretraining data plays a crucial role in the devel-103

opment of LLMs, where the scale, quality, and104

Model Pipe
PT-data

SFT-data

M
id-ck

pts

Tok
en

s

HE

Open Model Weights & Reproducible Datasets
OpenCoder-8B ✓ ✓ ✓ ✓ 2.5 83
StarCoder2-15B ✓ ✓ ✗ ✗ 4.1 72
Crystal-7B ✗ ✓ ✗ ✓ 1.3 34

Open Model Weights
CodeLlama-7B ✗ ✗ ✗ ✗ 2.5 34
CodeGemma-7B ✗ ✗ ✗ ✗ 6.5 56
DS-Coder-V2-Lite ✗ ✗ ✗ ✗ 10.2 81
Yi-Coder-9B ✗ ✗ ✗ ✗ 6.0 85
Qwen2.5-Coder-7B ✗ ✗ ✗ ✗ 23.5 88

Table 1: Comparison of open-source resources among
code LLMs. Pipe: pretraining data cleaning pipeline;
PT-data: reproducible pretraining data; SFT-data:
large-scale SFT corpus (>1M samples); Mid-ckpt: inter-
mediate pretraining checkpoints; Tokens: total training
tokens(B);HE: HumanEval scores for chat models.

diversity of the data greatly affect the model’s over- 105

all performance. To this end, we present how to 106

process massive datasets with fine-grained heuris- 107

tic rules under limited computational resources, 108

and analyze the overall data distribution through 109

visualization. This section will comprehensively 110

illustrate the data processing strategies used in the 111

general pretraining stage and the annealing stage. 112

2.1 RefineCode 113

Pretraining data forms the foundation for the capa- 114

bilities of LLM. While The Stack v2 (Lozhkov 115

et al., 2024a) has been a valuable resource for 116

training code LLMs in the open-source commu- 117

nity, its quality is insufficient for top-tier model 118

performance. 119

To address this, we introduce RefineCode, a 120

high-quality, reproducible dataset of 960 billion 121

tokens across 607 programming languages, com- 122

prising raw code and code-related web data. Re- 123

fineCode is the first pre-training code dataset that 124

performs language-specific refinement, employ- 125

ing customized cleaning thresholds and domain- 126

adapted rules for each programming language. A 127

comparison between RefineCode and all versions 128

of The Stack is provided in Table 2. 129

2.1.1 Raw Code 130

We collect raw code primarily from GitHub reposi- 131

tories up to November 2023 and non-GitHub data 132

from The Stack v2. To ensure the curation of high- 133

quality raw code data, we have developed the code- 134

specific data processing pipeline including modules 135

2

Total

Web
Programs

Rules

LS Rules

The Stack v1 200 B \ 88 ~15 ✗
The Stack v2 900 B ~30 B 619 ~15 ✗
RefineCode 960 B ~75 B 607 ~130 ✓

Table 2: Comparison of training data between Re-
fineCode and The Stack series. “Total" represents the
total tokens, “Web" indicates tokens from web-related
texts, “Programs" refers to programming languages,
“Rules" denotes filtering rules applied, and “LS Rules"
represents the language-specific filtering rules.

(b) Processing pipeline of Code-related WebCode Seed

FastText
Train

stackoverflow.com
stackoverflow.com/users
stackoverflow.com/jobs
stackoverflow.com/questions
stackoverflow.com/discussions

Positive Negative

classifier
Recall From

Common Crawl
Recall From

Common
CrawlUrl

Annotation

Raw Code

Proprocessing Deduplication Transformation

TransformationData Sampling

Code Corpus (a) Processing pipeline of Raw Code Data

Figure 2: Illustration of RefineCode pipeline

of preprocessing, deduplication, transformation,136

filtering, and data sampling. We briefly outline137

the pipeline, with additional details provided in138

Appendix A.139

Preprocessing To optimize resources, we ex-140

clude files larger than 8 MB, as they are typically141

non-text and resource-intensive. We then filter for142

files related to programming languages based on143

their extensions, as defined by linguist (Linguist,144

2024), and discard those with low capacity or qual-145

ity. This results in a final selection of 607 distinct146

programming language file types.147

Deduplication Deduplication is a crucial mod-148

ule in the data pipeline to enhance both pretraining149

efficiency and efficacy (Lee et al., 2021). We first150

perform exact deduplication using SHA256 to elim-151

inate fully duplicate files, then apply fuzzy dedu-152

plication. For the latter, we use MinHash (Broder,153

1997) and LSH (Leskovec et al., 2014) to remove154

near-identical files.155

Transformation To address minor issues without156

discarding entire files, we apply two transforma-157

tion rules before filtering: (1) we remove repetitive158

Category Source # Tokens Per.

Raw Code
Github 755 B 78.4%
Jupyter Notes 11 B 1.1%
The Stack v2 120 B 12.5%

Code-related Web
CC 13 B 1.4%
SkyPile 3 B 0.3%
FineWeb 55 B 5.7%

OpenSource AutoMathText 3 B 0.3%

Table 3: The Composition of RefineCode.

and irrelevant copyright notices from the begin- 159

ning of over 15% of code files; and (2) to miti- 160

gate privacy risks, we detect and replace Personally 161

Identifiable Information (PII)—such as passwords 162

and emails—with placeholders like “<name>” and 163

“<password>” using regular expressions. 164

Filtering The quality of code files on GitHub 165

varies significantly, with lower-quality code poten- 166

tially hindering LLM pretraining. We propose the 167

first heuristic filtering framework tailored to code 168

pretraining data by considering the unique charac- 169

teristics of different programming languages. This 170

framework provides over 130 heuristic rules with 171

customized weight assignments across three cate- 172

gories, resulting in more precise and higher-quality 173

data cleansing. Detailed heuristic rules and high- 174

level design principles are provided in Appendix B. 175

Data Sampling Structured data formats with spe- 176

cific syntax (e.g., JSON/HTML) present a unique 177

challenge in code pretraining. While these formats 178

represent a substantial portion of publicly avail- 179

able code corpora, their disproportionate represen- 180

tation in pre-training data may paradoxically under- 181

mine model generalization capacity through pattern 182

memorization. Similar to modern code process- 183

ing methods (Lozhkov et al., 2024a,b) we perform 184

downsampling on programming languages (e.g., 185

HTML, Java). 186

2.1.2 Code-Related Web Data 187

Inspired by DeepSeekMath (Shao et al., 2024), we 188

collect high-quality code-related data corpus from 189

the Common Crawl dataset, Fineweb (Penedo et al., 190

2024), skyPile (Wei et al., 2023a) and web part of 191

AutoMathText Dataset (Zhang et al., 2024b). Due 192

to the lack of open-source fine-gained code corpus, 193

we first annotate 500k high-quality code-like data 194

from CommonCrawl using the Autonomous Data 195

Selection (Zhang et al., 2024b) method as seed. 196

3

2.2 Annealing Data197

Following the training strategy in MiniCPM (Hu198

et al., 2024), our model undergoes a rapid learn-199

ing rate annealing phase after the general pretrain-200

ing stage, where very high-quality training data is201

used to further enhance the model’s capabilities.202

In addition to the RefineCode from the original203

distribution, we further incorporated the Algorith-204

mic Corpus and synthetic data during the annealing205

phase.206

RefineCode During the annealing stage, we207

maintain distribution consistency with the pre-208

training phase to prevent catastrophic forget-209

ting (Hu et al., 2024; Shen et al., 2024). 84% of210

the annealing data is drawn from the original Re-211

fineCode.212

Algorithmic Corpus Algorithmic code files ex-213

hibit strong code logic and minimal dependency214

on external files, demonstrating excellent self-215

containment. They align well with the smaller,216

independent tasks typical of real-world interactive217

scenarios. Therefore, we extract a subset of the218

pretraining data containing keywords like "def so-219

lution" or "class solution" to construct this corpus.220

We also use model-based method, the results in221

section shows that rule is better.222

High Quality Code Snippet Inspired by the syn-223

thetic CodeExercises dataset in Gunasekar et al.224

(2023), we utilized the algorithmic corpus as seeds225

and employed LLM to synthesize self-contained in-226

dependent functions along with corresponding test227

cases. We only retained the data that successfully228

passed the test cases. We extend this pipeline to229

support multiple program languages.230

Code Textbook Pretraining data with a clear se-231

mantic mapping between code and natural lan-232

guage is scarce. (Song et al., 2024). To address233

this issue, we utilize a powerful LLM to extract234

and elaborate on abstract code knowledge from235

high-quality datasets like HQCode (Yuxiang630,236

2024). This approach is designed to help the model237

learn code from diverse perspectives.238

2.3 Visual Inspection239

The pretraining data processing pipeline (e.g., dedu-240

plication, filtering) involves numerous hyperparam-241

eters, making ablation studies for each economi-242

cally infeasible. Instead, we use PCA to visualize243

embeddings extracted from CodeBERT (Feng et al.,244

Category Dataset # Token

Original Data RefineCode 83.94 B
Algorithmic Corpus 12.44 B

Synthetic Data High Quality Code Snippet 2.71 B
Code Textbooks 0.91 B

Table 4: Detailed data mixture for annealing data.

Low Quality: Too Short Code
print('newprogram')

High Quality: Educational Code
def extract_embeddings(texts):

tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModel.from_pretrained(path)
…

Low Quality: Pure Text
//This is file is for
//. . .

Figure 3: Visualization on the python of RefineCode
and The Stack v2.

2020) and perform spot checks on outliers, provid- 245

ing an effective way to understand the distribution 246

of cleaned pretraining data. 247

Interestingly, visualization reveals the quality 248

gap between RefineCode and The Stack v2 even 249

before pretraining. As shown in Figure 4, The 250

Stack V2 data shows a greater number of out- 251

liers, while the embeddings of RefineCode appear 252

more tightly clustered. Besides, after analyzing 253

the outlier data, we observe the outliers usually 254

show many low-quality patterns, such as pure text 255

comments, hexadecimal-only data, and excessively 256

short code lacking computational logic, which can 257

distort the distribution of the pretraining dataset 258

and ultimately hurt the efficiency of pretraining. 259

3 Pretraining 260

3.1 Model Architecture 261

OpenCoder follows the architecture of LLaMA 262

3 (Dubey et al., 2024) and is in two sizes: 1.5B and 263

8B parameters. The 1.5B model features 24 layers, 264

a hidden size of 2240, and 14 attention heads, with 265

a context window size of 4096. The 8B model has 266

32 layers, a hidden size of 4096, 32 attention heads, 267

and grouped query attention with 8 key-value heads. 268

Both models employ SwiGLU (Shazeer, 2020) and 269

utilize the tokenizer proposed by INF-Team (2024). 270

Detailed configurations are presented in Table 5. 271

4

1.5B 8B

Layers 24 32
Model Dimension 2240 4096
Attention Heads 14 32
Key / Value Heads 14 8
Activation Function SwiGLU
Vocab Size 96640
Positional Embedding (θ) 10,000 500,000
Context Window Size 4096 8192

Table 5: Overview of the key hyperparameters of Open-
Coder, including 1.5B and 8B. RoPE is selected for
Positional Embedding.

3.2 Training Details272

Optimizer Both models employ the WSD learn-273

ing schedule (Hu et al., 2024). The schedule in-274

clude a warm-up phase of 2,000 steps over 8B275

tokens, followed by a peak learning rate of 3e-4,276

which remained constant after the warm-up. Dur-277

ing the final 100B token annealing phase, the learn-278

ing rate decayed exponentially from 3e-4 to 1e-5.279

Training Framework The training for both mod-280

els was conducted using Megatron-LM (Shoeybi281

et al., 2020) with distributed optimization and DDP282

gradient overlap. The 1.5B model was trained on283

2 trillion tokens with a sequence length of 4096,284

a micro-batch size of 4, and a global batch size285

of 1024. The training process was conducted on286

a cluster of 256 H800 GPUs over a duration of287

109.5 hours, totaling 28,034 GPU hours. For the288

8B model, training was performed on 2.5 trillion to-289

kens with a sequence length of 8192, a micro-batch290

size of 1, tensor parallelism (TP) of 2, and a global291

batch size of 1024. This training was executed on292

512 H100 GPUs over 187.5 hours, resulting in a293

total of 96,000 GPU hours.294

4 Post Training295

We constructed a diverse dataset of over 1 million296

instructions to fine-tune opencoder. In addition to297

open-source data, we employ multiple synthetic298

approaches to construct code instruction datasets.299

Full details are provided in appendix H.300

4.1 Data Collection301

Open-source Training Data We curate a col-302

lection of high-quality open-source code instruc-303

tion datasets, including Evol-Instruct (Luo et al.,304

2024), Infinity-Instruct (BAAI, 2024), and McE-305

val (Chai et al., 2024). Furthermore, we extract real306

user queries from WildChat (Zhao et al., 2024) and307

(c) Large-scale Diverse Instruction Synthesis

Filtered Web
corpus

Task-Specific
Prompt Engineer

Diverse Instruction Answer
Generation

Large-scale
Diverse Instruct

(b) Package Instruction Synthesis

Code
Corpus

Package
Retrieval

Reference
Library

LLM Prompt
Engineer

Package
Instruct

(a) Verified Instruction Synthesis

Seed
Corpus

LLM Prompt
Engineer

Testcase
Generation

Code
Verification

Verified
Instrut

Figure 4: Illustration of synthetic instruction workflow

Code-290k-ShareGPT (Computations, 2023), and 308

employ LLM to identify code-related dialogue his- 309

tories, followed by rigorous data cleaning. The re- 310

sulting dataset, termed RealUser-Instruct, not only 311

demonstrates high diversity but also closely mir- 312

rors real-world problem complexity, aligning to 313

authentic scenarios. 314

Verified Instruction Synthesis Following oss- 315

instruct (Wei et al., 2023b), we utilizes raw code 316

as initial seed to generate question-answer pairs. 317

To further enhance code quality, we implement a 318

rigorous verification process through test case ex- 319

ecution. Our methodology involves: (1) sampling 320

high-quality code from RefineCode; (2) using a 321

teacher model to generate question-answer pairs 322

with chain-of-thought reasoning and multiple test 323

cases for code segments; (3) executing these test 324

cases using code interpreter. (4) retain codes pass- 325

ing over 80% test executions. 326

Package Instruction Synthesis Package instruc- 327

tion data are generated to further enhance profi- 328

ciency of code LLM with common packages. Our 329

methodology involves a four-step process: (1) ex- 330

tracting high-quality code snippets using packages 331

from RefineCode; (2) retrieving the corresponding 332

API documentation and usage guidelines from Py- 333

Doc; (3) prompting a teacher model to generate 334

QA data based on the snippets and documentation; 335

(4) prompting a strong model to verify if the QA 336

data adhere to the API usage guidelines. 337

5

Large-scale Diverse Instruction Synthesis Pre-338

training web corpus contains a vast and diverse col-339

lection of reasoning data (Yue et al., 2024). We de-340

velop a large-scale instruction framework compris-341

ing four key components: (1) Context refinement,342

where an LLM filters irrelevant web content and343

extracts meaningful sentences as question seeds;344

(2) Task specification, which defines programming345

languages, difficulty levels, and task types through346

a configurable module, with prompt engineering347

generating diverse, context-rich templates; (3) Con-348

tent generation, where an advanced LLM produces349

both questions and corresponding answers, vali-350

dated through automated code execution and unit351

testing; (4) Response refinement, where an LLM352

enhances outputs with code comments and detailed353

explanations.354

4.2 Two-Stage Training Strategy355

To develop a language model proficient in both the-356

oretical and practical aspects of computer science,357

we implement a two-stage instruction fine-tuning358

process. In the first stage, we enhance the model’s359

theoretical understanding with a comprehensive360

and diverse set of domain-specific question-answer361

pairs. This stage covers a wide range of topics,362

including algorithms, and data structures, enabling363

the model to provide accurate responses to complex364

theoretical queries that span both computer science365

theory and real-world user scenarios. The second366

stage is more focused, concentrating on practical367

downstream tasks by refining the model’s code gen-368

eration and error correction capabilities to ensure369

strong performance in real-world applications.370

Stage Data Source # Examples

Stage1
RealUser-Instruct 0.7 M
Large-scale Instruct 2.3 M
Infinity-Instruct 1.0 M

Stage2

McEval-Instruct 36 K
Evol-Instruct 111 K
Educational-Instruct 110 K
Package-Instruct 110 K

Table 6: Detailed data composition of Two-Stage SFT

5 Experimental Results371

This section contains evaluations led to OpenCoder372

with many more multilingual evaluation details pro-373

vided in appendix G.374

Base Evaluation In Table 7 we benchmark375

OpenCoder-base series on common downstream376

tasks. We find that OpenCoder series achieve 377

the best performance among fully open models 378

(green lines), pushing the frontier of open-source 379

code llm. On the widely-used code benchmarks 380

HumanEval(+) and MBPP(+), OpenCoder-base 381

achieve state-of-the-art performance, surpassing 382

leading industrial code llms. 383

Chat Evaluation In Table 8 we benchmark 384

OpenCoder-instruct series on common tasks. 385

OpenCoder-1.5B-instruct maintains leading perfor- 386

mance among all 1.5B models. In BigCodeBench, 387

a benchmark reflecting the comprehensive capabil- 388

ities of code llms, OpenCoder shows strong per- 389

formance. OpenCoder-8B was trained on a total 390

of 2.5 T tokens, significantly fewer than industrial 391

codellm (e.g., Yi-Coder-9B: 6.0T; Qwen2.5-Coder- 392

7B: 23.5T). At 8B scale, OpenCoder’s performance 393

remains in the top tier and maintains a leading po- 394

sition among fully open-source models. 395

6 Ablation Study 396

File-level deduplication outperforms repo-level 397

deduplication for code corpus Data deduplica- 398

tion improves efficiency and reduces overfitting, 399

with both file-level and repo-level methods being 400

applied for code data (Lee et al., 2021; Lozhkov 401

et al., 2024a; Guo et al., 2024). We conduct a 402

detailed comparison of deduplication levels, with 403

experiments details in Appendix C and key findings 404

listed below: (i) File-level deduplication leads to 405

better training efficiency despite more aggressive 406

token reduction. File-level dedup retains only a 407

third of the tokens compared to repo-level dedu- 408

plication but results in higher training efficiency, 409

as shown in Table 9. (ii) Repo-level dedup leaves 410

high redundancy. With further analysis of repo- 411

level dedup results, we find that 52B tokens (52%) 412

exhibits complete character-level equivalence with 413

another file. When conducting file-level dedup as 414

post-processing step, 68B tokens (68%) could be 415

further deduplicated. The performance trending 416

can be found in Figure 5(a). 417

High-quality code data in annealing significantly 418

boosts performance We compared the impact of 419

high-quality data (the Algorithmic Corpus and Syn- 420

thetic Data) during the annealing phase. From Fig- 421

ure 5(b), we observe that the performance drops a 422

lot when the high-quality training data is removed, 423

which demonstrates the effectiveness of our con- 424

structed high-quality data in the annealing phase. 425

6

Model Size HumanEval MBPP BigCodeBench
HE HE+ MBPP MBPP+ 3-shot Full Hard

1B+ Models

DeepSeek-Coder-1.3B-Base 1.3B 34.8 26.8 55.6 46.9 46.2 26.1 3.4
Yi-Coder-1.5B 1.5B 41.5 32.9 27.0 22.2 51.6 23.5 3.4
CodeGemma-2B 2B 31.1 16.5 51.1 43.1 45.4 23.9 7.4
Qwen2.5-Coder-1.5B 1.5B 43.9 36.6 69.2 58.6 59.2 34.6 9.5
StarCoder2-3B 3B 31.7 27.4 60.2 49.1 46.4 21.4 4.7
OpenCoder-1.5B-Base 1.5B 54.3 49.4 70.6 58.7 51.8 24.5 5.4

6B+ Models

CodeLlama-7B 7B 33.5 26.2 55.3 46.8 41.4 28.7 5.4
CodeGemma-7B 7B 39.0 32.3 50.5 40.7 55.0 38.3 10.1
DS-Coder-6.7B-Base 6.7B 47.6 39.6 70.2 56.6 60.6 41.1 11.5
DS-Coder-V2-Lite-Base (MoE) 16B 40.9 34.1 71.9 59.4 62.6 30.6 8.1
CodeQwen1.5-7B 7B 51.8 45.7 72.2 60.2 61.8 45.6 15.6
Yi-Coder-9B 9B 53.7 46.3 48.4 40.7 69.4 42.9 14.2
Qwen2.5-Coder-7B 7B 61.6 53.0 76.9 62.9 68.8 45.8 16.2
Crystal-7B 7B 22.6 20.7 38.6 31.7 31.0 10.8 4.1
StarCoder2-7B 7B 35.4 29.9 54.4 45.6 55.2 27.7 8.8
StarCoder2-15B 15B 46.3 37.8 66.2 53.1 15.2 38.4 12.2
OpenCoder-8B-Base 8B 66.5 63.4 79.9 70.4 60.6 40.5 9.5

Table 7: Performance of various base models on HumanEval, MBPP, and the “complete” task of BigCodeBench.
Models trained on reproducible datasets are marked with green.

Model Size HumanEval MBPP BigCodeBench LiveCodeBench
HE HE+ MBPP MBPP+ Full Hard Avg

1B+ Models

DS-coder-1.3B-Instruct 1.3B 65.2 61.6 61.6 52.6 22.8 3.4 9.3
Qwen2.5-Coder-1.5B-Instruct 1.5B 70.7 66.5 69.2 59.4 32.5 6.8 15.7
Yi-Coder-1.5B-Chat 1.5B 67.7 63.4 68.0 59.0 24.0 6.8 11.6
OpenCoder-1.5B-Instruct 1.5B 72.5 67.7 72.7 61.9 34.6 11.5 12.8

6B+ Models

DS-Coder-V2-Lite-Instruct 16B 81.1 75.0 82.3 68.8 36.8 16.2 24.3
CodeLlama-7B-Instruct 7B 45.7 39.6 39.9 33.6 21.9 3.4 2.8
CodeGemma-7B-It 7B 59.8 47.0 69.8 59.0 32.3 7.4 14.7
DS-Coder-6.7B-Instruct 6.7B 78.6 70.7 75.1 66.1 35.5 10.1 20.5
Yi-Coder-9B-Chat 9B 82.3 72.6 81.5 69.3 38.1 11.5 23.4
CodeQwen1.5-7B-Chat 7B 86.0 79.3 83.3 71.4 39.6 18.9 20.1
Qwen2.5-Coder-7B-Instruct 7B 88.4 84.1 83.5 71.7 41.0 18.2 37.6
CrystalChat-7B 7B 34.1 31.7 39.1 32.7 26.7 2.3 6.1
StarCoder2-15B-Instruct-v0.1 15B 72.6 63.4 75.2 61.2 37.6 12.2 20.4
OpenCoder-8B-Instruct 8B 83.5 78.7 79.1 69.0 42.9 16.9 23.2

Table 8: Performance of various chat models on HumanEval, MBPP, the “instruct” task of BigCodeBench and
LiveCodeBench. Models trained on reproducible datasets are marked with green.

GitHub star filtering limits diversity, reduc-426

ing effectiveness Github stars deteriorate perfor-427

mance (Allal et al., 2023). We further validate428

this conclusion and provide analysis from a visu-429

alization perspective. Specifically, we train two430

1.5B LLMs, where one is trained original data431

and another is trained by data filtered by stars 432

(stars>=5). As shown in Figure 5(c), star filter 433

leads to decreased performance. We attribute this 434

performance decline to the star filter’s potential 435

reduction of data diversity. As dedicated in Fig- 436

ure 5(d) and Figure 5(e), data applied star filter 437

7

20 40 60 80 100

0.3

0.35

0.4

0.45

W High-Quality Data
W/O High-Quality Data

(b) Impact of High Quality Data
in Annealing Stage

Number of Tokens (Billions)
H

um
an

Ev
al

-P
as

s@
1

0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

File-Level
Repo-Level

(a) Impact of Deduplication
Strategies

Number of Tokens (Billions)

H
um

an
Ev

al
-P

as
s@

1

0 20 40 60 80 100

0

0.05

0.1

0.15

Original Data
Filtered Data

(c) Impact of Star-based
Data Filtering

Number of Tokens (Billions)

H
um

an
Ev

al
-P

as
s@

1

Original Data
Filtered Data

(e) Impact of Star-based
Data Filtering

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Original Data
Filtered Data

(d) Training Loss of Using
Star-based Data Filtering or Not

Number of Tokens (Billions)

Lo
ss

Figure 5: (a-c) shows 1.5B Code LLM performance across applying different ablation settings. (d) shows the
comparison of training loss using star-based data filtering or not. (e) shows the distribution of data processed
star-based data filtering or not.

Dedup Level Token(ratio) HE MBPP

File-Level 32.7 (2.4%) 18.9 19.4
Repo-Level 99.5 (7.3%) 17.0 13.6

Table 9: Token counts and benchmark results us-
ing different deduplication strategies on RefineCode
Python(1364B). HE/MBPP are obtained by training a
1.5B model for one epoch on all deduplicated tokens.

reflects a lower training loss and a more concen-438

trated distribution, indicating that star filter signif-439

icantly compromises data diversity. Upon closer440

examination of the filtered data, we find that it still441

contains a considerable amount of well-structured,442

algorithmically rich code. Therefore, we argue that443

using stars as a filtering criterion is not an optimal444

choice.445

Two-Stage SFT Strategy: First Broaden Knowl-446

edge, Then Sharpen Skills Stage1 data ex-447

hibits significant diversity, while stage2 data shows448

higher quality. We believe this two-stage strat-449

egy enables the acquisition of broad capabilities450

in Stage 1, followed by targeted enhancement of451

code-related tasks in Stage 2. Besides, separating452

high-quality data can also prevent the gradient di-453

lution problem that occurs when mixing datasets,454

maximizing the utilization of high-quality data. As455

shown in table 10, two-stage sft strategy can bring456

consistent improvement in both public benchmarks457

and real-word scenarios.458

7 Related Work459

Open Large Language Models. Recently, numer-460

ous open-sourced LLMs, such as LLaMA (Tou-461

vron et al., 2023), Mistral (Jiang et al., 2023),462

and Qwen (Bai et al., 2023), have empowered463

the research community, fostering innovation.464

Open datasets like RedPajama (Computer, 2023)465

and SlimPajama (Soboleva et al., 2023), Map-466

HE(+) MBPP(+) BCB Arena

S1 52.4(48.1) 68.7(57.4) 22.1 5.3
S2 69.1(64.0) 69.5(60.3) 32.6 5.8
S1+2 72.5(67.7) 72.7(61.9) 34.6 6.9
Mix 55.5(51.2) 52.0(58.7) 23.9 3.8

Table 10: Performance of different training strategies
across benchmarks. Mix Training refers to the process
of combining and shuffling the data from Stage 1 and
Stage 2 for joint training.

Neo (Zhang et al., 2024a) alongside chat datasets 467

such as WildChat (Zhao et al., 2024), further ac- 468

celerate LLM advancements. Notably, fully open 469

LLMs like OLMo (Groeneveld et al., 2024), OL- 470

MoE (Muennighoff et al., 2024), and LLM360 (Liu 471

et al., 2023) provide comprehensive reproduction 472

details, including data pipelines and checkpoints. 473

In the realm of code LLMs, StarCoder (Allal et al., 474

2023) and StarCoderV2 (Lozhkov et al., 2024a) 475

share high-quality pretraining corpora. 476

8 Conclusion 477

In this paper, we present OpenCoder, an open 478

LLM specialized in code intelligence that achieves 479

top-tier performance. To advance research trans- 480

parency and reproducibility, we release our com- 481

plete training materials, including: the complete 482

data processing pipeline, the reproducible pretrain- 483

ing dataset, the synthetic dataset, the open code 484

SFT dataset, rigorous experimental ablation results, 485

detailed training protocols and intermediate check- 486

points. The performance of OpenCoder is on par 487

with leading proprietary models, and it surpasses 488

most previous open-source models at the 1B+ and 489

6B+ parameter scale. We hope the release of Open- 490

Coder can democratize access to all aspects of a top- 491

tier code LLM, serving as both a powerful model 492

and an open foundation to accelerate research and 493

enable reproducible advancements in code AI. 494

8

9 Limitations495

Although OpenCoder has explored the entire work-496

flow for building a code LLM, our project still has497

several limitations. First, during the pretraining498

data filtering process, we focused exclusively on499

developing rule-based filtering rules but did not500

explore model-based filtering approaches. In addi-501

tion, due to resource constraints, we only utilized502

raw code and code-related text data in the training503

process, without considering the potential promo-504

tion of general natural language data on the perfor-505

mance of code LLMs. Finally, in the post-training506

phase, we performed only supervised fine-tuning507

(SFT) on the base model, without considering rein-508

forcement learning from human feedback (RLHF)509

for better alignment with human preferences.510

References511

Loubna Ben Allal, Raymond Li, Denis Kocetkov,512
Chenghao Mou, Christopher Akiki, Carlos Munoz513
Ferrandis, Niklas Muennighoff, Mayank Mishra,514
Alex Gu, Manan Dey, et al. 2023. Santa-515
coder: don’t reach for the stars! arXiv preprint516
arXiv:2301.03988.517

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten518
Bosma, Henryk Michalewski, David Dohan, Ellen519
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.520
2021. Program synthesis with large language models.521
ArXiv preprint, abs/2108.07732.522

BAAI. 2024. Hqcode dataset. Accessed: 2024-02-16.523

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,524
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei525
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,526
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,527
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,528
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong529
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-530
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,531
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,532
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-533
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang534
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang535
Zhu. 2023. Qwen technical report. arXiv preprint536
arXiv:2309.16609.537

Andrei Z. Broder. 1997. On the resemblance538
and containment of documents. In Compression539
and Complexity of SEQUENCES 1997, Positano,540
Amalfitan Coast, Salerno, Italy, June 11-13, 1997,541
Proceedings, pages 21–29. IEEE.542

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-543
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,544
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,545

Molly Q Feldman, et al. 2022. Multipl-e: A scal- 546
able and extensible approach to benchmarking neural 547
code generation. arXiv preprint arXiv:2208.08227. 548

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, 549
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu 550
Ren, Hongcheng Guo, et al. 2024. Mceval: Mas- 551
sively multilingual code evaluation. arXiv preprint 552
arXiv:2406.07436. 553

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 554
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 555
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 556
Greg Brockman, et al. 2021. Evaluating large 557
language models trained on code. arXiv preprint 558
arXiv:2107.03374. 559

Cognitive Computations. 2023. Code-290k 560
sharegpt vicuna dataset. https://huggingface. 561
co/datasets/cognitivecomputations/ 562
Code-290k-ShareGPT-Vicuna. 563

Together Computer. 2023. Redpajama: an open dataset 564
for training large language models. 565

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 566
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 567
Akhil Mathur, Alan Schelten, Amy Yang, Angela 568
Fan, et al. 2024. The llama 3 herd of models. arXiv 569
preprint arXiv:2407.21783. 570

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 571
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 572
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 573
pre-trained model for programming and natural lan- 574
guages. arXiv preprint arXiv:2002.08155. 575

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita 576
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya 577
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, 578
Shane Arora, David Atkinson, Russell Authur, 579
Khyathi Chandu, Arman Cohan, Jennifer Dumas, 580
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, 581
William Merrill, Jacob Morrison, Niklas Muen- 582
nighoff, Aakanksha Naik, Crystal Nam, Matthew 583
Peters, Valentina Pyatkin, Abhilasha Ravichander, 584
Dustin Schwenk, Saurabh Shah, William Smith, 585
Emma Strubell, Nishant Subramani, Mitchell Worts- 586
man, Pradeep Dasigi, Nathan Lambert, Kyle Richard- 587
son, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca 588
Soldaini, Noah Smith, and Hannaneh Hajishirzi. 589
2024. OLMo: Accelerating the science of language 590
models. In Proceedings of the 62nd Annual Meeting 591
of the Association for Computational Linguistics 592
(Volume 1: Long Papers), pages 15789–15809, 593
Bangkok, Thailand. Association for Computational 594
Linguistics. 595

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 596
César Teodoro Mendes, Allie Del Giorno, Sivakanth 597
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 598
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 599
you need. arXiv preprint arXiv:2306.11644. 600

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 601
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 602

9

https://arxiv.org/abs/2108.07732
https://huggingface.co/datasets/BAAI/Infinity-Instruct
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

Bi, Yu Wu, YK Li, et al. 2024. Deepseek-603
coder: When the large language model meets604
programming–the rise of code intelligence. arXiv605
preprint arXiv:2401.14196.606

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu607
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-608
ang Huang, Weilin Zhao, et al. 2024. Minicpm:609
Unveiling the potential of small language models610
with scalable training strategies. arXiv preprint611
arXiv:2404.06395.612

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-613
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,614
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder615
technical report. arXiv preprint arXiv:2409.12186.616

INF-Team. 2024. Inf’s open-source large language mod-617
els.618

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur619
Mensch, Chris Bamford, Devendra Singh Chap-620
lot, Diego de Las Casas, Florian Bressand, Gi-621
anna Lengyel, Guillaume Lample, Lucile Saulnier,622
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre623
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,624
Timothée Lacroix, and William El Sayed. 2023. Mis-625
tral 7b. ArXiv.626

Katherine Lee, Daphne Ippolito, Andrew Nystrom,627
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,628
and Nicholas Carlini. 2021. Deduplicating training629
data makes language models better. arXiv preprint630
arXiv:2107.06499.631

Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ull-632
man. 2014. Mining of Massive Datasets, 2nd Ed.633
Cambridge University Press.634

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas635
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc636
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.637
2023. Starcoder: may the source be with you! arXiv638
preprint arXiv:2305.06161.639

GitHub Linguist. 2024. languages.yml. Accessed:640
2024-11-07.641

Jiaheng Liu, Zhiqi Bai, Yuanxing Zhang, Chenchen642
Zhang, Yu Zhang, Ge Zhang, Jiakai Wang, Haoran643
Que, Yukang Chen, Wenbo Su, et al. 2024a. E2-644
llm: Efficient and extreme length extension of large645
language models. arXiv preprint arXiv:2401.06951.646

Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing647
Zhang, Haoran Que, Ken Deng, Zhiqi Bai, Jie Liu,648
Ge Zhang, Jiakai Wang, et al. 2024b. Ddk: Distill-649
ing domain knowledge for efficient large language650
models. arXiv preprint arXiv:2407.16154.651

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and652
Lingming Zhang. 2024c. Is your code generated by653
chatgpt really correct? rigorous evaluation of large654
language models for code generation. Advances in655
Neural Information Processing Systems, 36.656

Shukai Liu, Linzheng Chai, Jian Yang, Jiajun Shi, 657
He Zhu, Liran Wang, Ke Jin, Wei Zhang, Hualei 658
Zhu, Shuyue Guo, et al. 2024d. Mdeval: Mas- 659
sively multilingual code debugging. arXiv preprint 660
arXiv:2411.02310. 661

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, 662
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, 663
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard 664
Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei 665
He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ran- 666
jan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, 667
Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, 668
Tim Baldwin, and Eric P. Xing. 2023. Llm360: To- 669
wards fully transparent open-source llms. Preprint, 670
arXiv:2312.06550. 671

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 672
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 673
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 674
et al. 2024a. Starcoder 2 and the stack v2: The next 675
generation. arXiv preprint arXiv:2402.19173. 676

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 677
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 678
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 679
et al. 2024b. Starcoder 2 and the stack v2: The next 680
generation. 681

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 682
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 683
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder: 684
Empowering code large language models with evol- 685
instruct. In The Twelfth International Conference 686
on Learning Representations, ICLR 2024, Vienna, 687
Austria, May 7-11, 2024. OpenReview.net. 688

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, 689
Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, 690
Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling 691
Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk, 692
David Wadden, Alexander Wettig, Binyuan Hui, Tim 693
Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, 694
Pang Wei Koh, Amanpreet Singh, and Hannaneh 695
Hajishirzi. 2024. Olmoe: Open mixture-of-experts 696
language models. Preprint, arXiv:2409.02060. 697

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, 698
Margaret Mitchell, Colin Raffel, Leandro Von Werra, 699
Thomas Wolf, et al. 2024. The fineweb datasets: 700
Decanting the web for the finest text data at scale. 701
arXiv preprint arXiv:2406.17557. 702

Jim Plotts and Megan Risdal. 2023. Meta kaggle code. 703

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yu- 704
fan Dang, Jiahao Li, Cheng Yang, Weize Chen, 705
Yusheng Su, Xin Cong, et al. 2024. Chatdev: Com- 706
municative agents for software development. In 707
Proceedings of the 62nd Annual Meeting of the 708
Association for Computational Linguistics (Volume 709
1: Long Papers), pages 15174–15186. 710

Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, 711
Xingwei Qu, Yi Ma, Feiyu Duan, Zhiqi Bai, Jiakai 712
Wang, Yuanxing Zhang, Xu Tan, Jie Fu, Wenbo 713

10

https://s.infly.cn/f/img/pdf/inf_34b_tech_report.pdf
https://s.infly.cn/f/img/pdf/inf_34b_tech_report.pdf
https://s.infly.cn/f/img/pdf/inf_34b_tech_report.pdf
http://www.mmds.org/
https://github.com/github-linguist/linguist/blob/main/lib/linguist/languages.yml
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2312.06550
https://arxiv.org/abs/2312.06550
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://doi.org/10.34740/KAGGLE/DS/3240808

Su, Jiamang Wang, Lin Qu, and Bo Zheng. 2024.714
D-cpt law: Domain-specific continual pre-training715
scaling law for large language models. ArXiv,716
abs/2406.01375.717

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,718
Junxiao Song, Mingchuan Zhang, Y. Wu Y.K. Li, and719
Daya Guo. 2024. Deepseekmath: Pushing the limits720
of mathematical reasoning in open language models.721

Noam Shazeer. 2020. Glu variants improve transformer.722
arXiv preprint arXiv:2002.05202.723

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin.724
2024. Jetmoe: Reaching llama2 performance with725
0.1 m dollars. arXiv preprint arXiv:2404.07413.726

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,727
Patrick LeGresley, Jared Casper, and Bryan Catan-728
zaro. 2020. Megatron-lm: Training multi-billion729
parameter language models using model parallelism.730
Preprint, arXiv:1909.08053.731

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-732
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.733
SlimPajama: A 627B token cleaned and deduplicated734
version of RedPajama.735

Demin Song, Honglin Guo, Yunhua Zhou, Shuhao Xing,736
Yudong Wang, Zifan Song, Wenwei Zhang, Qipeng737
Guo, Hang Yan, Xipeng Qiu, et al. 2024. Code needs738
comments: Enhancing code llms with comment aug-739
mentation. arXiv preprint arXiv:2402.13013.740

Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang,741
William Marshall, Bhargav M Kanakiya, Joel Hest-742
ness, Natalia Vassilieva, Zhiqiang Shen, Eric P Xing,743
et al. Crystal: Illuminating llm abilities on lan-744
guage and code. In First Conference on Language745
Modeling.746

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier747
Martinet, Marie-Anne Lachaux, Timothée Lacroix,748
Baptiste Rozière, Naman Goyal, Eric Hambro,749
Faisal Azhar, et al. 2023. Llama: Open and effi-750
cient foundation language models. arXiv preprint751
arXiv:2302.13971.752

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu,753
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi754
Song, Bowen Li, Jaskirat Singh, et al. 2024. Open-755
devin: An open platform for ai software developers as756
generalist agents. arXiv preprint arXiv:2407.16741.757

Zekun Moore Wang, Zhongyuan Peng, Haoran Que,758
Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,759
Hongcheng Guo, Ruitong Gan, Zehao Ni, Man760
Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu,761
Wenhu Chen, Jie Fu, and Junran Peng. 2023.762
Rolellm: Benchmarking, eliciting, and enhancing763
role-playing abilities of large language models. arXiv764
preprint arXiv: 2310.00746.765

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,766
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,767
Weiwei Lü, Rui Hu, et al. 2023a. Skywork: A more768

open bilingual foundation model. arXiv preprint 769
arXiv:2310.19341. 770

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 771
Lingming Zhang. 2023b. Magicoder: Source code is 772
all you need. arXiv preprint arXiv:2312.02120. 773

Yanan Wu, Jie Liu, Xingyuan Bu, Jiaheng Liu, Zhanhui 774
Zhou, Yuanxing Zhang, Chenchen Zhang, Zhiqi Bai, 775
Haibin Chen, Tiezheng Ge, et al. 2024. Conceptmath: 776
A bilingual concept-wise benchmark for measuring 777
mathematical reasoning of large language models. 778
arXiv preprint arXiv:2402.14660. 779

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. 780
2024. Mammoth2: Scaling instructions from the web. 781
arXiv preprint arXiv:2405.03548. 782

Yuxiang630. 2024. Hqcode dataset. Accessed: 2024- 783
02-16. 784

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, 785
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es- 786
ther Cheng, Jie Liu, Qunshu Lin, et al. 2024a. 787
Map-neo: Highly capable and transparent bilin- 788
gual large language model series. arXiv preprint 789
arXiv:2405.19327. 790

Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew Chi- 791
Chih Yao. 2024b. Automathtext: Autonomous data 792
selection with language models for mathematical 793
texts. arXiv preprint arXiv:2402.07625. 794

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, 795
Yejin Choi, and Yuntian Deng. 2024. Wildchat: 796
1m chatGPT interaction logs in the wild. In 797
The Twelfth International Conference on Learning 798
Representations. 799

Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and 800
Pengfei Liu. 2024. Programming every example: 801
Lifting pre-training data quality like experts at scale. 802
arXiv preprint arXiv:2409.17115. 803

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, 804
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo 805
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2: 806
Breaking the barrier of closed-source models in code 807
intelligence. arXiv preprint arXiv:2406.11931. 808

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, 809
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani 810
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. 811
2024. Bigcodebench: Benchmarking code genera- 812
tion with diverse function calls and complex instruc- 813
tions. arXiv preprint arXiv:2406.15877. 814

11

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://huggingface.co/datasets/yuxiang630/hqcode

A Raw Code Processing815

In this section, we delve into the details of the data816

processing pipeline in RefineCode. Specifically,817

we focus on on the design and considerations of818

two crucial modules: deduplication and filtering,819

and talk about their orders.820

A.1 Processing Details821

Deduplication Owing to the extremely high repe-822

tition of the source code in Github, we adopt an ag-823

gressive file-level deduplication strategy (see elabo-824

rate analysis in Appendix C). More specifically, we825

leverage both exact deduplication and fuzzy dedu-826

plication methods to eliminate documents contain-827

ing identical or near-identical code content shown828

as follows:829

Exact Deduplication: Due to the prevalence830

of forking and copy-pasting within the codebase,831

nearly 75% of files are completely duplicated. On832

account of this, differing from general deduplica-833

tion process, Identity removal is applied towards834

code data at the first step in this module. We com-835

pute the SHA256 hash value for each document,836

where files with identical hash values are compared,837

and only the code files with the highest star count as838

well as the latest commit time are retained, in order839

to preserve the highest quality and most up-to-date840

files.841

Fuzzy Deduplication: This step aim to dedupli-842

cate those near-identical files. We split the raw text843

into 5-gram pieces, and then calculate the 2048844

MinHash functions (Broder, 1997). Additionally,845

we utilize LSH (Leskovec et al., 2014) by setting846

bands to 16 and rows to 128, to retain only those847

distinct files with the highest stars and latest com-848

mit time. This process removes 6% file volume.849

Filtering Given the distinct nature of code com-850

pared to natural language, the criteria for high-851

quality code differ significantly from those for natu-852

ral language. Furthermore, different programming853

languages also exhibit distinct properties. Based854

on this, we believe that designing a set of detailed855

heuristic filtering rules tailored specifically to the856

characteristics of pretraining data is important to857

enhance the model’s capabilities. Drawing inspira-858

tion from the principles of high-quality code data859

proposed in Gunasekar et al. (2023), we consider860

the following guidelines when designing our filters:861

1) Filter out files with poor self-containment;862

2) Filter out files with poor or minimal logical863

structure; 3) Remove files that deviate signifi- 864

cantly from standard formatting. 865

Based on these guidelines and the characteristics 866

of our dataset, our work presents the first heuris- 867

tic filtering framework by considering the unique 868

characteristics of different programming languages. 869

Based on RedPajama (Computer, 2023), this frame- 870

work extends and refines the existing rules from 871

StarCoder (Li et al., 2023) to better align with 872

the unique properties of code datasets, resulting 873

in more precise and higher-quality data cleansing. 874

We developed the following three categories of fil- 875

tering rules: 876

1. Natural Language Filtering Rules: These 877

rules filter data based on common properties 878

for all text files, such as file size, number of 879

lines, and other general metrics. Both text and 880

code files share these filtering rules. 881

2. General Code Filtering Rules: These rules 882

apply to all code files by filtering data based 883

on general code characteristics, such as the 884

number of variables, average function length, 885

and other common features. 886

3. Language-Specific Filtering Rules: These 887

rules are designed according to the unique 888

characteristics of specific programming lan- 889

guages, such as the frequency of “pass” state- 890

ments in Python or the use of “goto” state- 891

ments in C. We have developed these rules for 892

the following eight commonly used program- 893

ming languages: Python, C, C++, C#, Java, 894

JavaScript, Go, and HTML. 895

Heuristic rules involve extensive threshold set- 896

ting. When defining these rules and determining 897

thresholds, we consistently follow a guiding prin- 898

ciple: to remove harmful data as much as possi- 899

ble, while ensuring the overall distribution of the 900

dataset is not significantly affected. We outline 901

our motivations for rule design in Appendix B.1, 902

along with a detailed explanation of the tuning pro- 903

cess for the corresponding thresholds. Besides, we 904

show the details of several representative rules in 905

Appendix B.2. 906

A.2 Processing Order 907

Most LLM data processing pipelines adopt a strat- 908

egy where filtering is applied first, followed by 909

deduplication. In contrast, our approach prioritizes 910

deduplication before filtering, which offers advan- 911

tages from two perspectives: 912

12

• Processing Cost and Efficiency: As men-913

tioned earlier, over 90% of files in raw code914

are exact duplicates. Performing deduplica-915

tion upfront helps avoid the computational916

overhead costing by filtering redundant files917

in the subsequent filtering phase. Addition-918

ally, the filtering rules are subject to frequent919

revisions, which means that both the filter-920

ing phase and the stages following it would921

need to be repeated. By conducting deduplica-922

tion before filtering, we can mitigate the extra923

computational demands that arise from these924

repeated adjustments.925

• Data Intuition: The effectiveness of the fil-926

tering stage must be evaluated based on the927

distribution of the processed data. Therefore,928

when filtering is applied last, the resulting929

data distribution directly reflects the distribu-930

tion used during training, allowing for more931

intuitive and rapid adjustments to the filtering932

rules. In contrast, if filtering is applied before933

deduplication, the final data distribution used934

for training will be altered by the deduplica-935

tion process, making it difficult to adjust the936

filtering rules based solely on the post-filtered937

data distribution.938

Given these considerations, we argue that per-939

forming deduplication before filtering is a more940

rational choice for code pretraining data.941

B Filtering Rules942

B.1 Design of Filtering Rules943

Designing heuristic filtering rules is inherently chal-944

lenging, often requiring iterative refinement and945

experimentation to ultimately develop an effective946

set of rules. Given this complexity, in addition to947

providing detailed explanations of our designed948

rules, we will also share the general insights and949

methodologies we have accumulated throughout950

the designing process. We believe that this section951

will offer valuable guidance for designing heuristic952

filtering rules applicable to any dataset, thereby sig-953

nificantly enhancing the efficiency of constructing954

an effective data cleaning pipeline.955

Heuristic rules filter data based on specific char-956

acteristics of a file, which, for each file, are ulti-957

mately expressed as a score representing the file’s958

attribute and a corresponding threshold set by the959

rule. During the rule design process, we found that960

understanding the distribution of scores and the961

impact of different threshold settings on data filter- 962

ing is critical to creating effective rules. Therefore, 963

based on the approach used in RedPajama (Com- 964

puter, 2023), we decompose the heuristic filtering 965

process into two steps: quality signal computa- 966

tion and filtering execution. The quality signal 967

computation calculates the scores for all rules for 968

each file, while the filtering execution module de- 969

cides whether a file is retained based on its quality 970

signal scores and the corresponding thresholds. 971

Additionally, we recommend placing the heuris- 972

tic filtering process as late as possible in the overall 973

data pipeline. Unlike other, more fixed stages of 974

the data processing pipeline, this stage requires fre- 975

quent adjustments based on the final quality of the 976

data. Placing it later in the process allows for more 977

precise control over the data and minimizes the 978

need to repeat subsequent steps after this filtering 979

module. 980

The specific steps for designing our heuristic 981

filtering rules are as follows: 982

1. Quality Signals Designing: Based on the def- 983

inition of low-quality data and the attributes 984

of the dataset, we firstly design a series of 985

quality signals that describe the attributes con- 986

tributing to file quality. 987

2. Coarse Threshold Tuning: Referring to the 988

definition of low-quality data and the distri- 989

bution of quality signal scores, we roughly 990

set filtering thresholds for all rules at once. 991

We then apply the filters to obtain an initial 992

version of the filtered dataset. 993

3. Fine-grained Threshold Tuning: For each 994

rule, we focus on the data that was exclusively 995

affected by that specific rule, meaning it did 996

not trigger other filters. This part of the data is 997

directly influenced by the current rule, so we 998

can examine whether the retention or removal 999

of this data under different threshold settings 1000

aligns with the intended purpose of the rule. 1001

If a rule is effective in improving data quality 1002

based on its target attribute, we select the opti- 1003

mal threshold; otherwise, the rule is discarded. 1004

After evaluating each rule, we apply the filters 1005

again to obtain a more refined filtered dataset. 1006

4. Data Quality Inspection: We then assess 1007

whether the filtered dataset meets our expec- 1008

tations for the quality of pretraining data. In 1009

addition to traditional manual inspection, we 1010

13

introduce a perplexity (PPL)-based method1011

for data quality evaluation. Specifically, we1012

randomly sample a set of data from the fil-1013

tered dataset and use a high-performing LLM1014

to compute the PPL on these samples. We1015

then examine the top-N and bottom-N sam-1016

ples based on PPL. Generally, extremely low1017

PPL suggests that the data is overly simplistic,1018

containing limited valuable knowledge, while1019

extremely high PPL indicates that the data1020

may lack learnable patterns. Both of them are1021

advisable to be filtered out. We closely inspect1022

both sets of samples and, based on their char-1023

acteristics, decide whether to add new rules or1024

adjust existing thresholds. This process can be1025

repeated until the dataset reaches the desired1026

quality.1027

B.2 Examples of Filtering Rules1028

We elaborate several representative examples about1029

general code filtering rules in Table 11 and1030

language-specific filtering rules in Table 12 and1031

explain their rationale. It is essential to note that1032

for general code filtering rules, the threshold values1033

may be slightly adjusted depending on the program-1034

ming language of the file. For specific threshold1035

values, please refer to our implementation details1036

of the data processing pipeline.1037

C Analysis on Chunk-level Deduplication1038

During pretraining, data is first randomly concate-1039

nated and segmented into chunks of context length,1040

followed by full-attention computation within each1041

chunk. We further explored chunk-level dedupli-1042

cation. Specifically, the pretraining data was ran-1043

domly concatenated and segmented into chunks1044

of 4096 tokens, followed by MinHash and LSH1045

deduplication on these chunks. Additionally, we1046

applied chunk-level deduplication after file-level1047

and repo-level deduplication.1048

From the results in table 13, We observe that1049

chunk-level deduplication alone was even less ef-1050

fective than repo-level deduplication, and applying1051

chunk-level deduplication after file-level removed1052

only an additional 0.04B of data. This indicates1053

that chunk-level deduplication is not an effective1054

approach. We pre-trained three 1.5B models on the1055

data retained under file-level, repo-level, and repo-1056

level + chunk-level deduplication strategies. The1057

benchmark results are shown in Figure 6. It is evi-1058

dent that file-level deduplication achieves the high-1059

est training efficiency, while repo-level + chunk-1060

0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

File-Level
Repo-Level
Repo&Chunk-Level

Impact of Deduplication Strategies

Number of Tokens (Billions)

H
um

an
Ev

al
-P

as
s@

1

Figure 6: Comparison of Pass@1 performance on Hu-
manEval & MBPP for different dedup strategies (File-
Level, Repo-Level, and Repo-level + Chunk-Level)
across RefineCode Python corpus.

level deduplication outperforms repo-level alone. 1061

We attribute the superior performance of file-level 1062

deduplication to its higher degree of data removal. 1063

Overall, we conclude that file-level deduplication 1064

is the most suitable method for GitHub data. 1065

D Extra Data Processing 1066

D.1 Chinese Code-Like Domains Annotation 1067

The manual annotation of the URLs of the website 1068

is presented as shown in the table 14. For future 1069

new CC datasets, we can sample pages in these 1070

domains as initial seed corpus. 1071

D.2 Code-Related Data from Github Text 1072

Files 1073

Github Text files primarily consist of content writ- 1074

ten in natural languages, which includes abundant 1075

code-related knowledge. However, we observed 1076

that a substantial portion of the dataset is unrelated 1077

to code, which is detrimental to the model’s ability 1078

to learn code-related knowledge. Therefore, we 1079

employed the following strategies to extract and 1080

retain the code-relevant portions before our filter- 1081

ing module. Firstly, following the strategy used in 1082

starcoder (Li et al., 2023), we retained the files with 1083

"requirement" in the lowercased filename, or if the 1084

filename without the extension is one of "readme", 1085

"notes", "todo", "description", "cmakelists", in or- 1086

der to ensure that only text files pertinent to coding 1087

contexts are preserved. This strategy recalled 3% 1088

14

Table 11: Examples of general code filtering rules.

Description Explanation Filtering Quota

The proportion of lines in strings with a
word count exceeding.

Files with too many long strings
indicate a lack of code logic.

score > 0.2

The proportion of characters in words from
strings with a character count exceeding 20.

String variables containing long
sequences of characters are often
indicative of meaningless content
such as base64 data, Hash encoding,
url, etc.

score > 0.4

The proportion of hexadecimal characters. Files with two many hexadecimal
characters indicate a lack of code
logic.

score > 0.4

The proportion of lines like "you code
here", "TODO" or "FIXME".

We found that these elements tend
to be excessively repeated in the
dataset, which increases the likeli-
hood that the model, during code
completion, will output placehold-
ers like the ones mentioned above
instead of generating actual code.

score > 0.01

The proportion of lines containing an "as-
sert" statement.

Files containing a large number of
’assert’ statements are often test files,
which tend to have relatively simple
and repetitive code patterns.

score > 0.4

Table 12: Examples of python-specific filtering rules.

Description Explanation Filtering Quota

The proportion of the number of python
functions to the total number of lines.

A higher number of Python func-
tions in a file may indicate that the
functions are overly simple, with
limited code logic, or have a bad
code format.

score > 0.2

Whether the file can be parsed into an
python abstract syntax tree (AST).

Files that cannot be parsed into
an AST contain syntax errors and
should be filtered out.

score == False

The proportion of lines that are "import"
statements.

A file with exceeding prportion of
"import" statements indicates to have
sparse code logic.

score > 0.3

volume of the whole text part. Additionally, we1089

trained a fasttext model to recall code-related text1090

files and recalled extra 7% file volume from the1091

original text data.1092

D.3 Jupyter Notebooks1093

Our Jupyter notebook data is sourced from GitHub1094

and Meta Kaggle code (Plotts and Risdal, 2023).1095

We converted this type of data into the Jupyter-1096

structured format used in StarCoder (Li et al.,1097

2023), which consists of a triplet of consecutive1098

markdown, code, and code execution results. How-1099

ever, we discarded the Jupyter-script format men-1100

tioned in StarCoder. Because the code files gen-1101

erated from Jupyter notebook conversions tend to1102

have poor overall code writing standards, and the1103

content in Jupyter-script and Jupyter-structured1104

formats is highly redundant, making it sufficient to 1105

retain only one format. 1106

E Programming Languages Categories 1107

E.1 Included Programming Languages 1108

Included programming languages can be categoried 1109

into three classes: code, data and text. Among 1110

them, the "code" category represents files rich in 1111

code logic, while the "data" category primarily con- 1112

sists of files with structured data, and the "text" cat- 1113

egory refers to files dominated by natural language 1114

content. The threshold settings for the filtering 1115

rules vary slightly depending on the data type. 1116

Code(470 types): 1C Enterprise, 4D, ABAP, 1117

ABAP CDS, AIDL, AL, AMPL, ANTLR, API 1118

15

Table 13: Comparison of deduplication strategies on Python data. At the file-level, "Lines" refers to the number
of lines in individual files; at the repo-level, it indicates the line count of aggregated strings; Note that for all
deduplication strategies involving the Chunk level, "Lines" specifically refers to 4096-token chunks.

Dedup Level # Total Samples # Retained Samples # Retained Tokens

Chunk 333,007,812 79,272,460 324.70 B
File 485,817,123 30,488,834 32.74 B
File+Chunk 333,007,812 7,993,164 32.70 B
Repo 11,037,352 7,480,488 99.47 B
Repo+Chunk 333,007,812 17,675,781 72.40 B

Blueprint, APL, ASL, ASP.NET, ATS, Action-1119

Script, Ada, Agda, Alloy, Alpine Abuild, An-1120

gelScript, Apex, Apollo Guidance Computer, Ap-1121

pleScript, Arc, AspectJ, Assembly, Astro, Asymp-1122

tote, Augeas, AutoHotkey, AutoIt, Awk, BA-1123

SIC, BQN, Ballerina, Batchfile, Beef, Befunge,1124

Berry, Bikeshed, Bison, BitBake, Blade, BlitzBa-1125

sic, BlitzMax, Bluespec, Boo, Boogie, Brain-1126

fuck, Brightscript, C, C#, C++, C2hs Haskell,1127

CAP CDS, CLIPS, CMake, COBOL, CUE, Ca-1128

dence, Cairo, CameLIGO, Cap’n Proto, Ceylon,1129

Chapel, Charity, ChucK, Circom, Cirru, Clar-1130

ion, Clarity, Classic ASP, Clean, Click, Clojure,1131

Closure Templates, CodeQL, CoffeeScript, Cold-1132

Fusion, ColdFusion CFC, Common Lisp, Com-1133

mon Workflow Language, Component Pascal,1134

Coq, Crystal, Csound, Csound Document, Csound1135

Score, Cuda, Curry, Cycript, Cypher, Cython, D,1136

D2, DIGITAL Command Language, DM, Dafny,1137

Dart, DataWeave, Dhall, Diff, Dockerfile, Doge-1138

script, Dylan, E, ECL, EJS, EQ, Earthly, Edge,1139

EdgeQL, Elixir, Elm, Elvish, Emacs Lisp, Em-1140

berScript, Erlang, F#, F*, FIRRTL, FLUX, Fac-1141

tor, Fancy, Fantom, Faust, Fennel, Filebench1142

WML, Fluent, Forth, Fortran, Fortran Free Form,1143

FreeBasic, Futhark, GAML, GAMS, GAP, GDB,1144

GLSL, GSC, Game Maker Language, Genero1145

4gl, Genero per, Genshi, Gentoo Ebuild, Gen-1146

too Eclass, Gherkin, Gleam, Glimmer JS, Glyph,1147

Go, Golo, Gosu, Grace, Grammatical Frame-1148

work, Groovy, Groovy Server Pages, HCL, HLSL,1149

HTML, HTML+ECR, HTML+EEX, HTML+ERB,1150

HTML+PHP, HTML+Razor, Hack, Haml, Han-1151

dlebars, Harbour, Haskell, Haxe, HiveQL, HolyC,1152

Hy, IDL, IGOR Pro, Idris, ImageJ Macro, Imba,1153

Inform 7, Ink, Inno Setup, Io, Ioke, Isabelle, Is-1154

abelle ROOT, J, JCL, JFlex, JSONiq, Janet, Jas-1155

min, Java, Java Server Pages, JavaScript, Jet-1156

Brains MPS, Jinja, Jison, Jison Lex, Jolie, Json-1157

net, Julia, Just, KRL, Kaitai Struct, Kakoune-1158

Script, KerboScript, Kit, Kotlin, LFE, LLVM,1159

LOLCODE, LSL, LabVIEW, Latte, Lean, Less, 1160

Lex, LigoLANG, LilyPond, Limbo, Liquid, Liter- 1161

ate Agda, Literate CoffeeScript, Literate Haskell, 1162

LiveScript, Logos, Logtalk, LookML, Lua, Luau, 1163

M, M4, M4Sugar, MATLAB, MAXScript, MLIR, 1164

MQL4, MQL5, MTML, MUF, Macaulay2, Make- 1165

file, Mako, Marko, Mask, Mathematica, Mercury, 1166

Mermaid, Meson, Metal, MiniD, Mint, Mirah, 1167

Modelica, Modula-3, Module Management Sys- 1168

tem, Mojo, Monkey, MoonScript, Motorola 68K 1169

Assembly, Move, Mustache, Myghty, NASL, NSIS, 1170

NWScript, Nearley, Nemerle, NetLinx, NetLogo, 1171

Nextflow, Nim, Nit, Nix, Nu, NumPy, Nunjucks, 1172

OCaml, Oberon, Objective-C++, Objective-J, Om- 1173

grofl, Opa, Opal, Open Policy Agent, OpenCL, 1174

OpenQASM, OpenSCAD, Ox, Oxygene, Oz, P4, 1175

PDDL, PEG.js, PHP, PLSQL, PLpgSQL, Pact, 1176

Pan, Papyrus, Parrot, Parrot Assembly, Parrot In- 1177

ternal Representation, Pascal, Pawn, Pep8, Perl, 1178

PigLatin, Pike, PogoScript, Polar, Pony, Portugol, 1179

PowerBuilder, PowerShell, Praat, Processing, Proc- 1180

file, Prolog, Promela, Propeller Spin, Pug, Pup- 1181

pet, PureScript, Prover9, Pyret, Python, Q#, QML, 1182

QMake, Qt Script, Quake, R, RAML, REALbasic, 1183

REXX, RPGLE, RUNOFF, Racket, Ragel, Raku, 1184

Rascal, ReScript, Reason, ReasonLIGO, Rebol, 1185

Red, Redcode, RenderScript, Ring, Riot, Robot- 1186

Framework, Roc, Rouge, Ruby, Rust, SAS, SMT, 1187

SQF, SQL, Sage, SaltStack, Sass, Scala, Scaml, 1188

Scenic, Scheme, Scilab, Self, Shell, ShellSession, 1189

Shen, Sieve, Singularity, Slash, Slim, Slint, SmPL, 1190

Smali, Smalltalk, Smarty, Smithy, Snakemake, 1191

SourcePawn, Squirrel, Stan, Standard ML, Starlark, 1192

Stata, Stylus, SugarSS, Svelte, Sway, Swift, Sys- 1193

temVerilog, TI Program, TL-Verilog, TLA, TSX, 1194

TXL, Talon, Tcl, Tcsh, Tea, Terraform Template, 1195

Thrift, Toit, Turing, Twig, TypeScript, Typst, Uni- 1196

fied Parallel C, Uno, UnrealScript, UrWeb, V, VBA, 1197

VBScript, VCL, VHDL, Vala, Velocity Template 1198

Language, Verilog, Vim Script, Vim Snippet, Vi- 1199

sual Basic .NET, Visual Basic 6.0, Volt, Vue, Vyper, 1200

16

Table 14: We manually annotate code-like and math-like Chinese domains, utilizing the ’%’ symbol as a wildcard
in our pattern matching. For example, the URL ’https://my.oschina.net/u/4/blog/11’ is matched by the pattern
’%my.oschina.net%blog%’.

Domain Prefix Tag

cloud.tencent.com %cloud.tencent.com/developer/article% Code
cloud.tencent.com %cloud.tencent.com/ask% Code
cloud.tencent.com %cloud.tencent.com/developer/information% Code
cloud.tencent.com %cloud.tencent.com/document% Code
my.oschina.net %my.oschina.net%blog% Code
ask.csdn.net %ask.csdn.net/questions% Code
www.cnblogs.com %www.cnblogs.com% Code
forum.ubuntu.org.cn %forum.ubuntu.org.cn% Code
q.cnblogs.com %q.cnblogs.com/q% Code
segmentfault.com %segmentfault.com/q% Code
segmentfault.com %segmentfault.com/a% Code
woshipm.com %woshipm.com/data-analysis% Code
zgserver.com %zgserver.com/server% Code
zgserver.com %zgserver.com/linux% Code
zgserver.com %zgserver.com/ubuntu% Code
juejin.cn %juejin.cn/post% Code
jiqizhixin.com %jiqizhixin.com/articles% Code
help.aliyun.com %help.aliyun.com/zh% Code
jyeoo.com %jyeoo.com% Math
www.haihongyuan.com %haihongyuan.com%shuxue% Math
www.03964.com %www.03964.com% Math
www.nbhkdz.com %www.nbhkdz.com% Math
9512.net %9512.net% Math
lanxicy.com %lanxicy.com% Math
bbs.emath.ac.cn %bbs.emath.ac.cn% Math
math.pro %math.pro% Math
mathschina.com %mathschina.com% Math
shuxue.chazidian.com %shuxue.chazidian.com% Math
shuxue.ht88.com %shuxue.ht88.com% Math

WDL, WGSL, WebAssembly, WebIDL, Whiley,1201

Witcher Script, Wollok, Wren, X10, XC, XProc,1202

XQuery, XS, XSLT, Xojo, Xonsh, Xtend, YARA,1203

YASnippet, Yacc, Yul, ZAP, ZIL, Zeek, ZenScript,1204

Zephir, Zig, Zimpl, eC, fish, hoon, kvlang, mIRC1205

Script, mcfunction, mupad, nesC, ooc, templ, wisp,1206

xBase1207

Data(115 types): ABNF, ASN.1, Adobe Font1208

Metrics, Altium Designer, Ant Build System,1209

ApacheConf, Avro IDL, BibTeX, Browserslist,1210

CIL, CODEOWNERS, CSON, CSS, Cabal Con-1211

fig, Caddyfile, CartoCSS, Cloud Firestore Secu-1212

rity Rules, CoNLL-U, DNS Zone, Darcs Patch,1213

Debian Package Control File, Dotenv, EBNF,1214

Eagle, Easybuild, Ecere Projects, EditorConfig,1215

Edje Data Collection, FIGlet Font, Formatted, 1216

GEDCOM, GN, Gemfile.lock, Gerber Image, Git 1217

Attributes, Git Config, Glyph Bitmap Distribu- 1218

tion Format, Go Checksums, Go Module, Go 1219

Workspace, Godot Resource, Gradle, Gradle Kotlin 1220

DSL, GraphQL, Graphviz (DOT), HAProxy, HO- 1221

CON, HTTP, HXML, INI, Ignore List, JAR Mani- 1222

fest, JSON, JSON with Comments, Jest Snapshot, 1223

Kusto, Lark, Linker Script, Maven POM, NEON, 1224

NL, NPM Config, Nginx, Ninja, ObjDump, Object 1225

Data Instance Notation, OpenStep Property List, 1226

OpenType Feature File, Option List, PlantUML, 1227

PostCSS, Prisma, Protocol Buffer, Protocol Buffer 1228

Text Format, Python traceback, RBS, RON, Read- 1229

line Config, Record Jar, Redirect Rules, Regular 1230

Expression, SCSS, SELinux Policy, SPARQL, SSH 1231

17

Config, STAR, STON, ShellCheck Config, Sim-1232

ple File Verification, Soong, Spline Font Database,1233

TOML, TextMate Properties, Turtle, Type Lan-1234

guage, Valve Data Format, Wavefront Material,1235

Web Ontology Language, WebAssembly Interface1236

Type, Wget Config, Windows Registry Entries,1237

X BitMap, X Font Directory Index, XCompose,1238

XML, XML Property List, XPages, YAML, YANG,1239

cURL Config, crontab, desktop, dircolors, edn,1240

nanorc1241

Text(22 types): AsciiDoc, Creole, Gemini, Get-1242

text Catalog, MDX, Markdown, Muse, Org, Pod,1243

Pod 6, RDoc, RMarkdown, Rich Text Format, Roff,1244

SRecode Template, Sweave, TeX, Texinfo, Text,1245

Textile, Wikitext, reStructuredText1246

E.2 Excluded Programming Languages1247

2-Dimensional Array, AGS Script, Adblock Fil-1248

ter List, Bicep, COLLADA, CSV, Checksums, Di-1249

rectX 3D File, E-mail, G-code, Git Revision List,1250

Gnuplot, IRC log, KiCad Layout, KiCad Legacy1251

Layout, KiCad Schematic, Lasso, Linux Kernel1252

Module, Max, Microsoft Developer Studio Project,1253

Microsoft Visual Studio Solution, POV-Ray SDL,1254

Pic, Pickle, PostScript, Public Key, Pure Data, Pure-1255

Basic, Raw token data, Roff Manpage, STL, SVG,1256

SubRip Text, TSV, Unity3D Asset, Wavefront Ob-1257

ject, WebVTT, X PixMap, robots.txt1258

F Raw Code Data Composition1259

Figure 15 shows the composition of raw code1260

data for top 85 programming languages in the Re-1261

fineCode dataset, both after deduplication and fil-1262

tering process, and Figure 7 unveil the training1263

data compsition trending without data sampling.1264

It can be observed that, after filtering, the propor-1265

tion of data for different programming languages1266

has shifted significantly, with a notable increase in1267

the representation of commonly used programming1268

languages.1269

G Benchmark1270

G.1 Benchmark for Base Models1271

HumanEval & MBPP We selected two widely1272

used code completion benchmarks to evaluate1273

OpenCoder, HumanEval (Chen et al., 2021)and1274

MBPP (Austin et al., 2021). To further enhance the1275

accuracy of the evaluation, EvalPlus (Liu et al.,1276

2024c) extends HumanEval and MBPP to Hu-1277

manEval Plus and MBPP Plus by adding unique1278

and challenging test cases and correcting for inac- 1279

curate ground truth solutions. These results can 1280

be used to indicate the model’s ability to under- 1281

stand and apply basic Python data structures and 1282

knowledge of algorithms. For HumanEval, we 1283

report the 0-shot results. For MBPP, we report 3- 1284

shots’ results on 500 questions in the test split from 1285

MBPP (Austin et al., 2021), while the base and the 1286

plus results following EvalPlus (Liu et al., 2024c) 1287

report results on 378 questions in the sanitized part. 1288

Therefore, these results are not comparable and 1289

evaluated based on different data splits. 1290

BigCodeBench BigCodeBench (Zhuo et al., 1291

2024) is a challenging benchmark for code comple- 1292

tion, designed to assess the models’ ability to han- 1293

dle complex instructions and make accurate func- 1294

tion calls across diverse external libraries. In the 1295

Completion setup, models are provided with a func- 1296

tion signature, related documentation to generate 1297

appropriate code, and a unit test for the completed 1298

function. Covering a range of practical program- 1299

ming tasks, it evaluates the ability of the models 1300

to handle real-world scenarios involving complex, 1301

task-specific libraries. 1302

G.2 Benchmark for Instruct Model 1303

LiveCodeBench LiveCodeBench is a compre- 1304

hensive, contamination-free benchmark assessing 1305

highly complex algorithmic tasks’ reasoning and 1306

problem-solving abilities. The benchmark is con- 1307

tinuously updated with new problems from plat- 1308

forms such as LeetCode, AtCoder, and CodeForces, 1309

ensuring the challenges remain current and diverse. 1310

LiveCodeBench provides a robust measure of a 1311

model’s ability to handle sophisticated logical pro- 1312

cesses, which is essential in competitive program- 1313

ming contexts. The instruct models are evaluated 1314

on the 2305-2409 data split. 1315

We follow the Qwencoder evaluation code 1 to 1316

systematically measure performance in MultiPL- 1317

E (Cassano et al., 2022), providing insight into 1318

the adaptability and precision of the generation of 1319

LLM codes in Table 16. In addition, we evaluate 1320

our model using two more comprehensive bench- 1321

marks: McEval (Chai et al., 2024) in Table 8, and 1322

MdEval (Liu et al., 2024d) in Table 9. 1323

MultiPL-E MultiPL-E extends the HumanEval 1324

benchmark to evaluate the code generation capa- 1325

bilities of large language models across multiple 1326

1https://github.com/QwenLM/Qwen2.5-Coder

18

https://github.com/QwenLM/Qwen2.5-Coder

languages. MultiPL-E translates tasks into lan-1327

guages such as C++, Java, PHP, TypeScript, C#,1328

Bash, and JavaScript, providing a consistent basis1329

for assessing how models apply their programming1330

skills across different syntaxes and paradigms. We1331

follow the evaluation code of Qwencoder2 to sys-1332

tematically measure performance in each language,1333

providing insights into the adaptability and code1334

generation accuracy of LLMs in a multilingual con-1335

text.1336

McEval The comprehensive multilingual code1337

evaluation benchmark McEval (Chai et al., 2024)1338

employed a detailed assessment of OpenCoder’s1339

programming capabilities across 40 languages. In1340

contrast to MultiPL-E, this benchmark is not de-1341

rived from HumanEval or MBPP. Figure 8 depicts1342

the results of the multilingual generation task for1343

OpenCoder-8B-Instruct, which comprises nearly1344

2,000 samples. The figure illustrates that the model1345

exhibits superior multilingual performance com-1346

pared to other open-source models of comparable1347

size.1348

MdEval OpenCoder is also evaluated on the com-1349

prehensive multilingual code debugging bench-1350

mark MdEval (Liu et al., 2024d) across 18 lan-1351

guages. In contrast to McEval, this benchmark1352

focuses on the assessment of code debugging, espe-1353

cially for language-specific bugs. Figure 9 shows1354

the results of the multilingual automated program1355

repair task for OpenCoder-8B-Instruct, which com-1356

prises nearly 1.2K samples, which demonstrates1357

that OpenCoder can effectively find the bugs and1358

fix them compared to other open-source models of1359

comparable size.1360

H Prompts For SFT Synthetic Data1361

Prompts for generating synthetic code SFT data are1362

shown below.1363

2https://github.com/QwenLM/Qwen2.5-Coder

19

https://github.com/QwenLM/Qwen2.5-Coder

Table 15: Overview of the data composition of in RefineCode. The items in the table are sorted in descending order
according to the file volume after filtering.

Language After deduplication After filtering
Files Vol(GB) Ratio(%) # Files Vol(GB) Ratio(%)

html 141,081,897 3,175.4 8.56 45,100,466 582.4 18.08
java 215,177,833 706.8 1.90 124,751,295 474.3 14.72
python 109,725,362 493.3 1.33 58,640,346 271.1 8.41
csharp 88,825,202 364.2 0.98 57,910,485 232.4 7.21
javascript 190,670,421 1,925.0 5.19 69,579,517 226.9 7.04
php 84,378,361 374.4 1.01 60,089,397 222.7 6.91
cpp 51,362,503 375.2 1.01 38,037,406 176.9 5.49
go 35,649,865 301.1 0.81 26,723,829 153.7 4.77
typescript 40,211,985 287.4 0.77 20,621,755 140.4 4.35
ruby 15,735,042 244.5 0.66 8,285,561 122.7 3.81
perl 16,354,543 121.7 0.33 9,532,620 65.6 2.04
rust 10,605,421 63.6 0.17 6,086,150 39.9 1.24
r 6,132,978 92.5 0.25 4,803,109 34.7 1.08
swift 4,238,754 47.9 0.13 2,938,498 31.8 0.99
kotlin 4,493,548 56.4 0.15 3,123,156 29.8 0.94
dart 4,087,329 33.0 0.09 2,161,462 18.5 0.57
java-pages 6,174,654 31.0 0.08 4,145,336 15.4 0.48
css 39,822,744 241.5 0.65 15,771,061 15.3 0.47
lua 4,027,221 116.0 0.31 2,538,234 14.4 0.45
xml 61,171,289 1,934.2 5.21 3,173,128 12.8 0.40
scala 5,897,567 19.7 0.05 4,204,979 11.7 0.36
shell 12,054,632 23.0 0.06 6,043,070 11.2 0.35
pascal 1,306,130 27.8 0.07 960,497 9.5 0.29
fortran 2,274,663 39.7 0.10 1,218,491 8.6 0.27
perl6 1,943,430 16.4 0.04 1,034,748 8.6 0.27
rmarkdown 1,317,760 14.0 0.04 827,951 7.9 0.25
html+erb 7,618,377 11.4 0.03 4,452,355 7.8 0.24
smali 3,457,531 37.9 0.10 1,408,274 7.4 0.23
scss 18,061,278 35.6 0.10 7,705,822 7.4 0.23
gettext catalog 1,100,044 51.3 0.14 442,385 6.3 0.19
haskell 1,746,444 24.0 0.06 1,218,491 6.8 0.27
tcl 253,345 4.2 0.01 136,171 1.0 0.03
gradle 2,431,985 2.9 0.01 724,609 1.0 0.03
scheme 357,909 4.7 0.01 201,170 1.0 0.03
qml 354,756 1.8 0.01 252,621 1.0 0.03
mdx 795,525 6.4 0.17 222,013 1.0 0.03
classic asp 220,344 2.8 0.08 141,236 0.9 0.03
xbase 192,780 2.5 0.07 80,396 0.9 0.03
ini 7,232,136 19.1 0.05 1,517,099 1.3 0.04
objective-c++ 197,416 2.4 0.01 149,223 1.3 0.04
motorola68k 1,066,095 26.5 0.07 220,218 1.2 0.04
gap 752,261 2.6 0.01 510,420 1.2 0.04

20

HTM
L
Jav

a C# PH
P

Jav
aS

cri
pt

Pyt
ho

n
Cpp C

Mark
do

wn

Typ
eS

cri
pt Vu

e
Lim

bo Tsx Go
Ko

tlinJSO
N

DartSw
ift
Ru

byRu
st R

SQ
L

Tex
t
CSS

Jav
a s

erv
er

pa
ge

s
LuaSca

la
Sh

ell XML
Pas

cal

101

102

To
ta

l F
ile

 S
iz

e
(G

B)

106

107

108

N
um

be
r

of
 F

ile
s

Programming Language Distribution (Sorted by File Size)

Total File Size (GB)
Number of Files

Figure 7: The distribution of top program languages in RefineCode (before data sampling).

Model Size Python Java C++ C# TS JS PHP Bash Average

1B+ Models

DS-Coder-1.3B-Instruct 1.3B 65.2 51.9 45.3 55.1 59.7 52.2 45.3 12.7 48.4
Yi-Coder-1.5B-Chat 1.5B 67.7 51.9 49.1 57.6 57.9 59.6 52.2 19.0 51.9
Qwen2.5-Coder-1.5B-Instruct 1.5B 71.2 55.7 50.9 64.6 61.0 62.1 59.0 29.1 56.7
OpenCoder-1.5B-Instruct 1.5B 72.5 64.6 50.9 61.4 63.5 62.1 55.3 29.7 57.5

6B+ Models

DS-Coder-6.7B-Instruct 6.7B 78.6 68.4 63.4 72.8 67.2 72.7 68.9 36.7 66.1
DS-Coder-V2-Lite-Instruct 16B 81.1 76.6 75.8 76.6 80.5 77.6 74.5 43.0 73.2
CodeLlama-7B-Instruct 7B 45.7 32.2 28.6 32.9 39.0 43.5 31.7 10.1 33.0
CodeGemma-7B-It 7B 59.8 48.1 46.6 51.9 54.7 54.0 46.6 10.1 46.5
CodeQwen1.5-7B-Chat 7B 83.5 70.9 72.0 75.9 76.7 77.6 73.9 41.8 71.6
Yi-Coder-9B-Chat 9B 85.4 76.0 67.7 76.6 72.3 78.9 72.1 45.6 71.8
Qwen2.5-Coder-7B-Instruct 7B 87.8 76.5 75.6 80.3 81.8 83.2 78.3 48.7 76.5
OpenCoder-8B-Instruct 8B 83.5 72.2 61.5 75.9 78.0 79.5 73.3 44.3 71.0

Table 16: Performance of various chat models on the MultiPL-E benchmark across different programming languages.

21

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir
0

50

OpenCoder-8B-Instruct

CodeLlama-7B-Instruct

CodeGemma-7B-It

CodeQwen1.5-7B-Chat

DS-Coder-V1-6.7B-Instruct

Qwen2.5-Coder-7B-Instruct

Erlang F# Fortran Go Groovy Haskell Html JS Java Json
0

50

Julia Kotlin Lua PHP Pascal Perl Power Python R Racket
0

50

Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL
0

50

1Figure 8: The McEval performance of OpenCoder-8B-Instruct in comparison to other open-source code models of
comparable size.

Average C C# Clisp C++ F# Go JS Java Json
0

50

OpenCoder-8B-Instruct

CodeLlama-7B-Instruct

Yi-Coder-1.5B-Chat

DS-Coder-1.3B-Instruct

Qwen2.5-Coder-7B-Instruct

Julia PHP Pascal Python R Ruby Rust Scala Swift
0

50

1Figure 9: The MdEval performance of OpenCoder-8B-Instruct in comparison to other open-source code models of
comparable size.

22

Prompt for Educational Instruction Synthesis

You are a teaching assistant helping to create a Python programming task from a given code
snippet. You must provide the best response to the Python programming task, including reasoning
thought, reference solutions, explanation of test cases, and test code.
[Code Snippet]
{Code}

Your response must have these parts:

[Task]
{Create an independent and detailed Python programming task}

[Analysis]
{Analyze the task and reason about the given task step by step}

[Solution]
{Write a high-quality reference solution in a self-contained script that solves the task}

[Test]
{Provide ten assert statements to check the correctness of your solution}

23

Prompt for Package-related Instruction Synthesis

You are exceptionally skilled at crafting high-educational level problems and offering precise
solutions. Please gain inspiration from the following code snippet to create a high-quality
programming problem, which is beneficial for learning the use of corresponding libraries. Present
your output in two distinct sections: [Problem Description] and [Solution].

[Code Snippet]
{Code}

[Library Api Requirements]
{Api Requirements}

[Library Api Doc]
{Api Doc}

Guidelines for each section:
1. [Problem Description]: This should be **completely self-contained**, providing all the
contextual information one needs to understand and solve the problem. Assume common
programming knowledge, but ensure that any specific context, variables, or code snippets pertinent
to this problem are explicitly included. This problem should be **educational for learning the
provided Library api, and please explicitly request the use of the relevant package in the question.
This question should only concern the writing of **one function**, and you need to be clear about
the function name and role of this function.

2. [Solution]: Offer a comprehensive, **correct** solution that addresses the [Problem Descrip-
tion] you provided. This solution should follow the standard of corresponding Library Api doc.
Please ensure that the Solution only involves answering the Problem, **without addressing the
requirements I provided!** Please provide essential explanation abouth this solution, especially
the use of requiremed Library Api.

Prompt for Large-scale Diverse Instruction Synthesis

You are an expert in designing high-quality programming questions based on the given text.

[Guidelines]
- You can draw inspiration from the given text to create the programming questions.
- The created question should be a self-contained question, which does not depend on any external
context.
- The created response must contain the complete code snippet.

[Given Text]
{Given Text}

[Created Question]
{Created Question}

24

	Introduction
	Pretraining Data
	RefineCode
	Raw Code
	Code-Related Web Data

	Annealing Data
	Visual Inspection

	Pretraining
	Model Architecture
	Training Details

	Post Training
	Data Collection
	Two-Stage Training Strategy

	Experimental Results
	Ablation Study
	Related Work
	Conclusion
	Limitations
	Raw Code Processing
	Processing Details
	Processing Order

	Filtering Rules
	Design of Filtering Rules
	Examples of Filtering Rules

	Analysis on Chunk-level Deduplication
	Extra Data Processing
	Chinese Code-Like Domains Annotation
	Code-Related Data from Github Text Files
	Jupyter Notebooks

	Programming Languages Categories
	Included Programming Languages
	Excluded Programming Languages

	Raw Code Data Composition
	Benchmark
	Benchmark for Base Models
	Benchmark for Instruct Model

	Prompts For SFT Synthetic Data

