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Abstract

A longstanding problem in adversarial robustness has been defending against at-
tacks beyond standard ℓp threat models. However, the space of possible non-ℓp
attacks is vast, and existing work has only developed a small number of attacks,
due to the manual effort required to design and implement each individual at-
tack. Building on recent progress in differentiable material rendering, we propose
RenderAttack, a scalable framework for developing large numbers of structurally
diverse, non-ℓp adversarial attacks. RenderAttack leverages vast, existing repos-
itories of hand-designed image perturbations in the form of procedural texture
generation graphs, converting them to differentiable transformations amenable to
gradient-based optimization. In this work, we curate 160 new attacks and introduce
the ImageNet-RA benchmark. In experiments, we find that ImageNet-RA poses a
challenge for existing robust models and exposes new regions of attack-space. By
comparing state-of-the-art models and defenses, we identify promising directions
for future work in ensuring robustness to a wide range of test-time adversaries.

1 Introduction

Recent work in adversarial robustness has greatly improved defenses against imperceptible ℓp attacks
[Wang et al., 2023, Fort and Lakshminarayanan, 2024]. However, relatively little progress has
been made against attacks beyond the standard ℓp threat model. This is concerning, as real-world
adversaries are often not bound by perceptibility constraints [Gilmer et al., 2018]. For example,
jailbreaking attacks on multimodal AI agents can make use of large perturbations to input images
[Bailey et al., 2023], highlighting the importance of studying and improving robustness to the vast set
of non-ℓp attacks.

Studying robustness beyond the ℓp threat model is challenging. This is because the space of attacks is
far greater, requiring considerable effort to even set up evaluations. Structurally diverse and visually
interesting attacks are hard to make, requiring manual labor and bespoke implementations. As a
result, the research community has only developed a small number of non-ℓp attacks, limiting our
ability to study the space of attacks and develop defenses.

To address this problem, we propose RenderAttack, a framework for generating large numbers of
diverse, high-quality attacks. We leverage progress in computer graphics on differentiable textures
along with repositories of hand-designed procedural texture graphs to create vast quantities of diverse,
visually interesting, non-ℓp adversarial attacks. While many prior works propose individual attacks
or a handful of attacks (e.g., [Xiao et al., 2018, Bhattad et al., 2019, Kaufmann et al., 2019]),
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Figure 1: ImageNet-RA is the largest set of adversarial attacks in the literature. By leveraging
vast repositories of high-quality procedural textures, we develop 10× more attacks than Kaufmann
et al. [2019], which is the current largest set of attacks available in the literature. Pictured above are
attacks from ImageNet-RA (high severity). Visually, our attacks exhibit a high degree of variation.

we leverage our framework to introduce 160 new attacks. Using these attacks, we introduce the
ImageNet-RA benchmark, which provides three levels of severity calibrated to challenge current
and future models while preserving semantic information. Compared to the largest existing suite of
attacks, this represents a nearly tenfold increase in the number of attacks.

We analyze the statistics of our new attacks and characterize their performance in extensive evaluations
against a large suite of models. Our results reveal various factors that contribute to improved
robustness on ImageNet-RA and demonstrate that our attacks cover a broader range of attack space
compared to prior work. This suggests that ImageNet-RA could serve as a valuable tool for work
requiring multiple diverse attacks, including research multi-attack robustness and robustness to
unforeseen adversaries. We hope that these results and our new attacks enable future work on
studying and improving robustness to attacks beyond the standard ℓp threat model.

2 Related work

Moving beyond ℓp-based robustness evaluations. Most of the classical work in the adversarial
robustness literature of previous work in adversarial robustness has been on the ℓp-ball, either directly
measuring robustness to ℓp-based attacks [Croce and Hein, 2020], or trying to place bounds on the ℓp
robustness of classifiers [Moosavi-Dezfooli et al., 2016, Weng et al., 2018]. Many previous works
have pointed out the need to go further than these ℓp-based evaluations of robustness, highlighting the
need to (1) provide a much more comprehensive multi-attack measure of robustness [Dai et al., 2023,
2024, Maini et al., 2020], and (2) testing robustness against adversaries which are not available during
training[Kaufmann et al., 2019, Laidlaw et al., 2020]. However, most of these works create their own
adversarial attacks [Kaufmann et al., 2019, Xiao et al., 2018, Dai et al., 2023], which is highly time
consuming [Kaufmann et al., 2019]. Instead of relying solely on a small pool of researcher efforts,
we leverage the work of Shi et al. [2020] to create a pipeline for turning non-differentiable procedural
textures into differentiable adversarial attacks, allowing us to create much larger sets of adversarial
attacks than what is currently available in the literature.
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Figure 2: Our attacks leverage hand-designed, differentiable texture graphs. We depict our
RenderAttack framework for designing attacks in the above figure. Our attacks leverage hand-
designed texture graphs available online. We then use the DiffMatt library to turn these texture graphs
into differentiable operators that apply realistic, optimizable textures to input images. This enables
the use of high-quality textures for adversarial attacks.

Differentiable rendering for generating adversarial attacks. Rendering is the process of converting
a description of some scene in terms of objects and lighting sources into an image of that scene.
Differentiable renderers can be used to backpropagate through the rendering process—allowing
underlying scenes to be optimized with respect to properties of the output images. Previous works,
such as those by Liu et al. [2018] and Jain et al. [2019], utilize such differentiable renderers to create
adversarial attacks. However, these works focus solely on spatial transformations of 3D objects, or
simple lighting changes. In contrast we leverage the work of Shi et al. [2020] to turn hand-designed
procedural textures into end-to-end differentiable graphs, into which we can optimize the latent
noise variables to create an adversarial attack. Compared to these previous works, our attacks allow
variations across whatever features designers parameterize: including color, textures, and reflective
properties—leading to much higher variety of adversaries.

3 RenderAttack

3.1 The need for new measures of adversarial robustness

Several existing works [Kaufmann et al., 2019, Dai et al., 2024, 2023] have pointed out the limitations
of the classic ℓp adversarial robustness [Madry et al., 2019], namely that:

1. Adversaries may be unforeseen: it is unlikely that we will have train-time access to the
adversaries to which we need to be robust to at deployment time.

2. Adversaries may be non-ℓp: attackers do not need to constrain themselves to the ℓp ball.
3. Adversaries may be diverse: motivated attackers are likely to find and use a diverse range of

worst-case inputs to circumvent various defense mechanisms.

To model these properties of real-world adversaries, we follow Kaufmann et al. [2019] and consider
measuring the robustness of our classifiers f robustness against a population of adversaries, defined
as:

E(x,y),A∼D,A

[
min

xadv∈SA
x

{1f(xadv)=y}
]

(1)

where D is the data distribution, A is our distribution of adversaries, and SA
x is the set of potential

adversarial examples set for a particular A ∈ Dom(A).
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Under this definition, asking for attacks to be unforeseen places the constrains that any defence
mechanism must not make use of information from the distribution A during training. To create
non-ℓp and diverse adversaries, we must select a suitable adversarial population A—this is what our
work focuses on.

3.2 Differentiable procedural materials for adversarial attacks
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3 RenderAttack (Ours)
[Kaufmann et al. 2019]

Figure 3: Our attacks produce more diverse
model behaviors than existing literature. Com-
pared to prior suites of non-ℓp attacks, the space of
attacks is covered far more extensively by our new
RenderAttack adversaries. Each point corresponds
to an attack. For each attack, we take the corre-
sponding vector of model accuracies across a suite
of 18 models. We normalize these vectors so that
each dimension has mean 0 and variance 1, then
plot the first two principal components. This illus-
trates the space of different accuracy profiles that
attacks have, independent of their relative strength.

Procedural textures are textures which are gen-
erated by mapping randomly generated noise to
output texture, rather than being defined by a
fixed artist-drawn image. They are widely used
in a variety of computer graphics applications,
offering low storage costs, more realistic results
and flexible resolution. It is most common to
represent procedural textures as procedural ma-
terial graphs, which apply a series of image
transformations on input noise to produce the
desired texture In Shi et al. [2020], the authors
leverage the key property that these transforms
are often differentiable to map these graphs into
torch.nn.Module. We use this technique to
turn a set of material graphs into visually diverse,
highly optimizable and effective adversarial at-
tacks.

We now describe our method for generating ad-
versarial attacks using differentiable material
graphs. For our purposes, we will encapsulate
the evaluation and rendering of a material graph
G as a differentiable function MG that takes in-
put noises σ and produces an output texture im-
age. To corrupt a clean image x, we blend it
with the output colour map of G and then render
the resulting texture:

x′ = AG(x, σ). (2)

AG is the combination of texture generation, and
blending with the image—outputting a fully cor-
rupted image x′. See Appendix B for details.

To find the worst-case versions of this corruption in xadv, we will optimise our latent variables σ to
maximise the loss of our model f , subject to an Lp-based constraint on our latent variables:

σadv = argmin
σ:∥σ∥p≤ε

{L(f(AG(x, σ)), y)}

xadv = AG(x, σadv).

As originally done in Madry et al. [2019] we use the popular PGD (Projected Gradient Descent)
algorithm to find xadv.

A scalable path towards potentially thousands of adversarial attacks. When creating a new set of
diverse adversarial attacks, adversarial robustness researchers must hand-design a visually diverse and
interesting set of optimizable transformations which can be applied to images [Kaufmann et al., 2019,
Xiao et al., 2018, Dai et al., 2023]. This takes large amounts of creativity and effort, fundamentally
limiting how many attacks can be introduced by any one paper in the literature. In contrast, our
pipeline allows us to use large, community-created repositories of procedural textures and turn them
into adversarial attacks. This unlocks a huge new set of potential adversaries for the community to
experiment with.

160 new attacks for the adversarial robustness community. We use our generation pipeline to
create 160 adversarial attacks, which is an order of magnitude more than any other works in the
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(b) Performance with increasing attack epsilon levels.

Figure 4: Our attacks improve with more optimisation power. In Figure 4a, we plot model
accuracy as we increase number of optimization steps and in Figure 4b we plot how increasing the
epsilon budget which limits the adversary improves performance. Experiments in Figure 4a are across
all the ResNet50s in our baseline models, and Figure 4b is across all of our baseline models. In both
cases, we see that our attacks are sensitive to optimisation power.
literature (the closest, that of Kaufmann et al. [2019], presents 19 novel attacks). We hope that
these can be used both to evaluate defence techniques against a large and varied pool of adversaries,
but also as a resource to help carry out more fundamental research on the adversarial robustness of
models. We further note that 160 was an arbitrary cutoff point—if needed, future work can use our
pipeline to generate even more novel attacks.

3.3 ImageNet-RA: a new benchmark for comparing multi-attack robustness

To demonstrate the usefulness of our attack generation pipeline, we introduce a new benchmark
ImageNet-RA (ImageNet-RenderAttack), and a new metric RA2 (RenderAttack Accuracy). We
construct this metric by considering the population of adversaries in Equation (1) to be a uniform
choice out of the 160 adversaries we gathered using our pipeline. This leads a single number accuracy,
corresponding to the average model accuracy against one of the attacks on our suite. In line with
previous work [Kaufmann et al., 2019], we also select three difficulty levels for the benchmark:
RA2low, RA2med, RA2high, corresponding to three different hand-picked per-attack ϵ optimisation
budgets. In this work, we focus our results around RA2med, which we simply call RA2.

4 Experiments

We evaluate a suite of 18 baseline models on ImageNet-RA. These allow us to better characterize
how our metric behaves, and hence find a range of promising defence techniques

4.1 How does RA2 compare to other measures of robustness?

RA2 is a measure of worst-case robustness. Benchmarks such as ImageNet-C [Hendrycks and
Dietterich, 2019] measure average-case robustness. As can be seen in Table 1, ImageNet-RA behaves
like a measure of worst-case robustness—adversarially trained models perform much better on
ImageNet-RA than models trained against fixed augmentations. In contrast, models trained with
augmentations perform better on ImageNet-C.

RA2 does not behave like ℓp robustness metrics. In Table 2, we show how adversarial training
affects performance on ImageNet-RA. Adversarial training improves RA2, from 4.1 to the mid-20
percent range. Intuitively, one might expect that adversarial training with higher epsilon would further
improve robustness to perceptible attacks, since the training perturbations are larger. However, we
find that adversarial training with higher epsilons does not yield further gains in RA2. This suggests
that new techniques are needed to improve robustness to RenderAttack adversaries.

To further gauge differences between our attacks and standard ℓp attacks, we compare RA2 to ℓ∞ PGD
accuracy across our suite of models. We find weak correlation between the two metrics (r = 0.526),
with many models achieving high RA2 while not being ℓ∞-robust (see Figure 7a). Instead, as can be
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Model RAzero ↑ (no optimization) mCE ↓ RA2 ↑
Resnet50 42.0 76.7 4.1
Resnet50 + AugMix 47.0 65.7 9.3
Resnet50 + DeepAug 50.8 61.1 7.4
Resnet50 + PixMix 54.4 65.8 10.4

Resnet50 + L2, (ε = 5) 35.1 89.0 20.6
Resnet50 + L∞, (ε = 8/255) 35.6 85.1 24.9

Table 1: Common corruptions and RA2 We compare performance on the ImageNet-C benchmark
(mCE) to performance against both non-optimized and optimized versions of our attacks. We find
that after optimization, RA2 behaves like worst-case measure of robustness—best performing models
are those which have been adversarially trained, not those with image augmentations.

seen in Figure 7b our metric behaves more like existing measures of multi-attack robustness, showing
a much stronger correlation (r = 0.704) with the UA2 metric of Kaufmann et al. [2019].

RenderAttack elicits a more diverse set of model behaviours. We are interested to see if our higher
number of attacks leads to different sets of model behaviours across our benchmark. In Figure 3,
we give each attack a model accuracy profile (the vector of the accuracies of our baselines on that
attack), and compare whether these show more variety than the accuracy profiles of Kaufmann et al.
[2019]. We perform dimensionality reduction with PCA and plot the first two principle components.
This visualization shows that our attacks encompass the range of attacks proposed by Kaufmann
et al. [2019] while having much denser coverage of the space. This suggests that our attacks cover a
broader range of behaviour profiles across models.

4.2 How do different defence techniques affect RA2?

Training Train ε Clean Acc. RA2

Standard - 75.9 4.1

L2

1 67.2 17.3
3 62.8 20.8
5 56.1 20.6

L∞

2/255 69.1 24.3
4/255 63.9 26.6
8/255 54.5 24.9

Table 2: ℓp training. We evaluate a range of
ResNet-50 models trained against ℓp adversaries
on ImageNet-RA. Adversarial training on ℓp at-
tacks provides limited benefit, and training on
larger perturbations is not an effective way to im-
prove robustness to our diverse, perceptible attacks.
This suggests that new methods are needed to im-
prove performance on ImageNet-RA.

Model scale improves RA2. Some prior work
has found that larger models tend to be more ro-
bust [Mao et al., 2022]. We check whether this
property also holds for our attacks in Figure 5.
We evaluate RA2 across the ConvNeXt-V2 fam-
ily of models, finding that larger models indeed
perform better on ImageNet-RA. This corrobo-
rates the findings of earlier works in the adver-
sarial robustness literature and suggests that this
is a consistent property that extends to non-ℓp
attacks.

The best-performing model is not adversar-
ially trained. We show RA2 for all models
in Figure 6. The best-performing model is
DinoV2-Large with registers. This is surprising,
as this model was not explicitly adversarially
trained, but is instead the product of large-scale
self-supervised pretraining objective—this is in
contrast with classical adversarial benchmarks,
where models trained outside of robustness do not perform well. However, we can see in Table 2,
adversarial training still largely improves on standard models. Unifying pre-training and adversarial
training might be a promising avenue for high performance against such a diverse set of adversaries.

5 Conclusion

We present ImageNet-RA, a robustness benchmark with 160 novel, hand-designed attacks—by far
the largest number of attacks in the literature. Our RenderAttack framework leverages differentiable
rendering techniques and online collections of hand-designed texture graphs to create large numbers
of high-quality attacks. We hope these new attacks foster future work on studying robustness beyond
the standard ℓp threat model and improving defence techniques.
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Figure 5: We measure performance of ConvNext-V2 models of varying sizes, observing that larger
models obtain higher performance on ImageNet-RA.

B Further Details on Attack Generation

Formally, a procedural material graph G is modelled as a directed acyclic graph with generator or
filter nodes. Generator nodes take no input and create spatial textures, like noise or structural patterns,
which we refer to with σ. This initial data is passed through filter nodes, which perform operations
on such as HSL edits, interpolation, or blurs on their inputs and pass their output along the edges of
the graph. This process terminates at the final output nodes, which produce per-pixel parameter maps
of a spatially-varying bidirectional reflectance distribution function (SV-BRDF). We encapsulate
graph evaluation with a function TG . We follow the DiffMat implementation and use four output
maps: albedo/color, normals, roughness and metallicity. These maps can then be rendered under
some lighting conditions to produce the final output image, which we encapsulate as R.

In our work, we blend the color map produced by our material graph with our clean image x with
some blend function B, and then render the result. Hence our process for generating an adversarial
example is

(x, σ)
T−→ (x, . . . )

B−→ (x̃, . . . )
R−→ xadv

We use “soft light” where B(a, b) = (1− 2b)a2 + 2ba. We tested other blend modes, and we found
“soft light” tended to visually preserve the most information.
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Figure 6: Here, we show RA2 for each model in our evaluations. All values are percentages.
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(a) Correlation between PGD accuracy and RA2
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Figure 7: Performance on ImageNet-RA is a broad measure of robustness. We plot the correlation
of model performance on ImageNet-RA and existing works in the literature (L∞ attacks (r = 0.526)
and ImageNet-UA (r = 0.704). Each point corresponds to a different model. Our results show that it
behaves like other general measures of robustness.
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