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Abstract. We present HAHA - a novel approach for animatable human
avatar generation from monocular input videos. The proposed method
relies on learning the trade-off between the use of Gaussian splatting and
a textured mesh for efficient and high fidelity rendering. We demonstrate
its efficiency to animate and render full-body human avatars controlled
via the SMPL-X parametric model. Our model learns to apply Gaus-
sian splatting only in areas of the SMPL-X mesh where it is necessary,
like hair and out-of-mesh clothing. This results in a minimal number of
Gaussians being used to represent the full avatar and reduced rendering
artifacts. This allows us to handle the animation of small body parts,
such as fingers, that are traditionally disregarded. We demonstrate the
effectiveness of our approach on two open datasets: SnapshotPeople and
X-Humans. Our method demonstrates on par reconstruction quality to
the state-of-the-art on SnapshotPeople, while using less than a third of
Gaussians. HAHA outperforms previous state-of-the-art on novel poses
from X-Humans both quantitatively and qualitatively.
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1 Introduction

The task of creating photo-realistic animated objects has always been of paramount
importance in 3D computer vision. High-fidelity animated objects are widely
used in real-time applications, ranging from computer games to online telepres-
ence systems [3,12]. In recent years the interest in the field has increased due to
the emergence of devices for virtual [1] and augmented [2] reality. Traditionally,
the central aspect of the task is the creation of a human avatar as it has a wide
range of uses and digital replicas are essential for online human-to-human inter-
action. Therefore, our work concentrates on rendering animated photo-realistic
human avatars.

In this work, we introduce Highly Articulated Gaussian Human Avatars with
Textured Mesh Prior (HAHA). While existing approaches focus on using the
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Fig. 1: Optimizing the number of Gaussians. HAHA jointly optimizes a Gaussian
splatting model with a textured mesh to improve the photometric quality of the avatars.
The method filters out superfluous Gaussians in a learnable, unsupervised manner. As
a result, we can more efficiently and better animate highly articulated parts of a body.

mesh-based approach [27] or Gaussian-based approach [19], we target to take
the best from both representations. Our main idea is to learn to use the
appropriate number of Gaussians relying on a textured mesh where
possible (Fig. 1). We attach Gaussians to the mesh surface only at the points
where it is necessary to represent out-of-mesh details. For the mesh, we use
SMPL-X [20] parametric human model with articulated fingers and face, and in
contrast with previous approaches that use SMPL [17] we aim to control fingers
animation as well as the bigger joints. Areas not covered with the Gaussians
are represented as a textured mesh surface that is more efficient to store. Using
such a mesh, we significantly reduce the number of Gaussians in the areas of
the hands and face (Fig. 1). Overall, we reduce the amount of Gaussians up to
three times for the whole avatar, resulting in ×2.3 reduced storage costs.

We obtain an avatar with a three-stage pipeline. During the first two stages,
we learn Gaussian and textured mesh representation of the avatar. In the final
stage, we estimate which Gaussians to remove in an unsupervised manner. We
proposed the mechanism for the combined differentiable rendering of Gaussians
and a mesh, which allows us to adjust Gaussians’ parameters based on the final
rendering of the avatar.

We propose several regularization techniques to encourage HAHA to remove
as many Gaussians as possible without affecting the quality of the avatar. Fol-
lowing 3DGS [14] our Gaussians have trainable opacity and we delete them when
it is lower than a threshold. We use two regularizations balancing each other to
control Gaussians’ opacity during training. While the first pushes opacity down,
the second controls out-of-mesh detail preservation. This way, we find a learn-
able trade-off in using Gaussians and a textured mesh. To train HAHA in such a
manner, we only need input video frames with the provided SMPL-X fits without
any additional labels.
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In our experiments, we show that HAHA reaches quantitative metrics on par
with state-of-the-art methods [11,16,22] on the open SnapshotPeople dataset [6],
while better generalizing to novel poses and views. Using videos from the X-
Humans dataset [23], we demonstrated that HAHA allows us to animate fingers
with higher quality than state-of-the-art. We demonstrate that our method, both
qualitatively and quantitatively, outperforms state-of-the-art methods on agile
X-Humans data, while at the same time, it allows us to reduce the number of
Gaussians.

The main contributions of the work are the following:

– We first propose the use of Gaussians in combination with textured mesh to
increase the efficiency of rendering human avatars;

– We develop an unsupervised method for significantly reducing the amount
of Gaussians in the scene through the use of textured mesh;

– We demonstrate that our method can efficiently handle the animation of
hands and other highly articulated parts without the need for any additional
engineering.

2 Method

Our pipeline comprises three stages. In the first (Fig. 2 (a)) stage, we learn a full-
Gaussian representation of the avatar and fine-tune SMPL-X’s poses and shapes
for training frames. As a result, we get an avatar represented with Gaussians
as in previous state-of-the-art approaches having a fixed initial set of Gaussians
(i.e. N = 20908). In the second stage (Fig. 2 (b)), we use resulting SMPL-
X meshes with the provided UV-map to learn RGB texture. Thus we obtain
textured avatars without any out-of-mesh details but efficient to render and
store. In the last stage, we merge these two avatars and learn to remove some
Gaussians without losing quality (Fig. 2 (c)). To figure out which Gaussians
to delete we perform combined rendering of the avatar and fine-tune Gaussians
opacity. Further in this section, we describe these three stages in more detail.

2.1 Gaussian Avatar Preliminaries

First, we describe how we set Gaussians on the SMPL-X mesh surface. For each
mesh’s polygon, we calculate the coordinates of its center Ti, the quaternion
rotation Ri, and the scale ki (Fig. 2 (a)). Then we calculate the parameters
of the N Gaussians ∆i = {µi, ri, si, ci, oi} attached to each SMPL-X’s poly-
gon referred as i. Here µi, ri, si are the Gaussian’s translation, rotation, and
scale offsets relative to i-th polygon parameters {Ti, Ri, ki}, while ci and oi are
the color and opacity properties, respectively. Similar to [21] we perform a sub-
division of Gaussians while maintaining the attachment to the parent polygon:
∆i = {µj

i , r
j
i , s

j
i , c

j
i , o

j
i}

Mi
j=0 (Fig. 2 (a)). Thus, the final Gaussians pose and shape

parameters are calculated as offsets to the corresponding i-th polygon parame-
ters {Ti, Ri, ki} as follows:

r′ = Rr µ′ = kRµ+ T s′ = ks. (1)
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Fig. 2: Scheme of our approach. a) We attach Gaussians to mesh polygons as de-
scribed in Section 2.1 and rasterize them conditioned on depth map D into RGB image
G and alpha map A. b) We train RGB texture for SMPL-X and rasterize mesh to RGB
image M and depth map D. c) During training and inference we merge rasterizations
of Gaussians G and mesh M, based on the trainable transparency map A of Gaussians.

2.2 Monocular Avatar Training

First stage: Gaussian avatar training. In the first stage (Fig. 2 (a)), we
train the 3DGS representation of an avatar by optimizing only local Gaussians
transformations µj

i , r
j
i , s

j
i and color cji . Opacity oji is fixed to 1 during this stage as

we keep all Gaussians untransparent to efficiently back-propagate image space
losses to the SMPL-X parameters. Thus, we force the model to optimize the
pose and shape of the underlying mesh rather than deleting Gaussians. We use
randomly colored backgrounds in this stage to prevent Gaussians from learning
background color.

To optimize Gaussians we use several image space losses as L2 loss, LLPIPS
perceptual loss [25], LSSIM structure similarity loss, and LSobel loss to get sharper
edges. To calculate LSobel loss we measure L2 between results of applying the
Sobel operator [13] to rendered and ground truth images. In other words, we
calculate the distance between discrete derivatives of images to account for high-
frequency details. We follow [16] and apply LKNN, a KNN-based regularization
to get smoother results with fewer artifacts. In KNN-regularization we minimize
the standard deviation of properties of neighboring Gaussians. The final loss is
as follows:

LGaussian = L2+λLPIPSLLPIPS+λSSIMLSSIM+λSobelLSobel+λKNNLKNN. (2)

Second stage: RGB texture training. In the second stage we render an
avatar as rasterized SMPL-X mesh with a texture (Fig. 2 (b)). We disable 3DGS
and rasterize SMPL-X mesh with trainable texture using Nvdiffrast [15]. The use
of the differentiable rasterizer lets us back-propagate to the avatar’s parameters.
We optimize only the texture keeping SMPL-X’s parameters frozen during the
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whole stage. Similar to classic avatar approaches [4–6] we utilize three-channeled
RGB texture.

Following [7], we utilize TV-regularization (LTV) [8] to produce smoother
results. But we apply LTV in the texture space instead of the image space as we
aim to reduce texture artifacts. The final loss for this stage is as follows:

Ltexture = L2 + λLPIPSLLPIPS + λSSIMLSSIM + λTV LTV. (3)

Third stage: Filtering out Gaussians. Textured mesh from the previous
stage can replace close-to-surface Gaussians on the avatar (e.g . hands and face).
Therefore, we can learn which Gaussians to remove in an unsupervised manner
and reduce rendering and storage costs. To achieve this, we merge the differen-
tiable rendering of the textured mesh and the differentiable 3DGS process.

In Figure 2 (c), we render the merged SMPL-X mesh-based and Gaussian
avatar (Section 2.3) and train Gaussians opacity oji and color cji . We delete all
Gaussians with transparency lower than a threshold (0.1). We use two regular-
izations to encourage optimization to find a trade-off between Gaussians amount
and image quality. One reduces the transparency of Gaussians to remove as much
of them as possible, while the second preserves Gaussians with a segmentation
loss. Using both of them allows us to remove only unnecessary Gaussians.

The transparency regularization pushes opacity oi of Gaussians down as fol-
lows:

Lopacity =

N∑
i=0

Mi∑
j=0

∥oji∥
2
2. (4)

Optimising only this loss would aggressively remove several Gaussians, and
for this reason, we add a “counterweight”. We propose to use silhouette Dice loss
(Ldice) [18] to encourage the training to preserve out-of-mesh details. As ground
truth, we use human silhouettes SGT that can be predicted by from-the-shelf
segmentation models [10, 24]. We summarize alpha map A and binarized depth
map bin(D) to generate silhouette masks for Ldice. With these terms, the loss
for the third stage is the following:

Lfiltering = LGaussian + λopacityLopacity + λdiceLdice(SGT, bin(D)||A). (5)

As a result of such training, we remove only Gaussians that could be replaced
with the underlying mesh.

2.3 Merging Gaussians with Mesh Representation

Here we describe how to simultaneously render 3DGS and textured mesh in a
differentiable way. When rendering the textured mesh in Figure 2 (b), we calcu-
late its depth map D as the distance from the camera. We use this depth map as
additional input to our modified 3DGS rasterizer G2D(D,K,M, {r′, µ′, s′, c, o}),
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that also accepts camera intrinsic K and extrinsic M matrices and optimized
Gaussians parameters.

During rasterization, we calculate the distance Di from the camera to each
point of i-th Gaussian in the scene. The corresponding value of Di can be ad-
dressed via its screen space coordinates [x, y]. Our modification of splatting takes
into account the distance Di in each pixel and compares it to the depth map D
i.e. we check if the Gaussians are under the mesh or behind it. We set Gaussian’s
transparency at each pixel to zero if the distance to Gaussian at this point is
more than the depth map value:

α′
i[x, y] =

{
0 , ifDi[x, y] > D[x, y]
αi[x, y] , else

, (6)

where αi[x, y] initially calculates based on the opacity oji and the Gaussian at-
tenuation. We also store the final Gaussians transparency map for each pixel to
the alpha map A. To do this, we accumulate transparency at each [x, y] pixel
during 3DGS rasterization [14]:

A[x, y] = 1−
N [x,y]∏
i=0

(1− α′
i[x, y]). (7)

We then use alpha map A to mix rasterization M of the textured mesh with
Gaussians rasterization G to get final avatar. To obtain the final rasterization,
we mix them as shown in Figure 2:

I = GA+M(1−A). (8)

3 Experiments

In our experiments, we compared HAHA to the state-of-the-art Gaussian meth-
ods, namely: GART [16], 3DGS-Avatar [22], and GaussianAvatar [11]. All these
methods represent the human body as a set of Gaussians. We used two open
datasets to evaluate our approach: X-Humans [23] and SnapshotPeople [6]. From
both datasets, we used monocular RGB videos as input to our method. In the
following section, we show both qualitative and quantitative results.

3.1 X-Humans

We report the following metrics: PSNR, SSIM, and LPIPS [26] (Table 1). PSNR
and SSIM measure the fidelity of the signal and structural similarity, respec-
tively, while LPIPS correlates with human perception of the image using neural
network features to compare with ground truth. We evaluated metrics on the
renderings with a black background as in 3DGS-Avatar [22] experiments to set
the background value to zero. During inference, we used test time pose optimiza-
tion following GART [16] to reduce the impact of SMPL-X fitting inaccuracies.
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Fig. 3: Comparison on X-Humans dataset. We provide results for three different
poses and views to demonstrate hands animation. HAHA allows us to animate hands
while we use much fewer Gaussians, and it is more robust to the input data while
producing fewer artifacts. While GaussianAvatar [11] also benefits from using SMPL-X
to animate hands, HAHA produces more realistic-looking results.

X-Humans [23] dataset provides a sequence of frames with rendered 3D scans
of a person doing complex movements. The movements are diverse for both
training and testing videos, therefore it is a challenging task to train on such
a dataset. In Table 1 we compare our method with previous state-of-the-art
methods: GART [16], 3DGS-Avatar [22], and GaussianAvatar [11]. The last one,
similar to us, uses SMPL-X and can control fingers animation so we can compare
the animation of hands. We provide metrics for both male and female avatars.

HAHA is more robust and gets better metrics for these complex training
and testing sequences. Besides, our method requires fewer Gaussians. We also
provide qualitative results in Figure 3 demonstrating overall quality and how
our approach handles hands animation.

3.2 PeopleSnapshot

Following the previous literature, we also provide quantitative metrics for the
SnapshotPeople [6] dataset (Table 2). However, SnapshotPeople does not allow
assess quality for novel views and poses since train and test sequences are very
similar-looking.

In all experiments for SnapshotPeople we used SMPL provided by AnimN-
erf [9]. As our method requires a parametric model to have articulated fingers,
we converted the provided SMPL to SMPL-X using a converter from the SMPL
official repository. Then we fine-tuned the resulting SMPL-X hand’s pose and
shape using SMPLify-X [20] to match ground truth frames.

SnapshotPeople evaluation methodology is challenging for our method be-
cause we strongly rely on the underlying mesh geometry. Therefore, in cases
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Table 1: Quantitative metrics for X-Humans [23] dataset. The dataset lets one evaluate
metrics values for novel poses.

00016 (male) 00019 (female)
Gaussians↓ PSNR↑ SSIM↑ LPIPS↓ Gaussians↓ PSNR↑ SSIM↑ LPIPS↓

3DGS-Avatar [22] 42.77k 25.44 0.9315 0.0409 41.12k 27.63 0.9539 0.0471
GART [16] 55.85k 25.71 0.9295 0.0598 55.61k 27.78 0.9512 0.0668
GaussianAvatar [11] 191.58k 25.58 0.9328 0.0518 191.58k 27.54 0.9574 0.0647
HAHA(Ours) 15.13k 25.49 0.9339 0.0507 12.26k 28.49 0.9593 0.0501

00018 (male) 00027 (female)
Gaussians↓ PSNR↑ SSIM↑ LPIPS↓ Gaussians↓ PSNR↑ SSIM↑ LPIPS↓

3DGS-Avatar [22] 26,78k 28.71 0.9521 0.0580 36,82k 26.84 0.9477 0.0445
GART [16] 50,47k 30.98 0.9595 0.0683 47,18k 26.56 0.9449 0.0595
GaussianAvatar [11] 191,58k 29.92 0.9588 0.0744 191,58k 25.69 0.9481 0.0543
HAHA(Ours) 18,57k 31.10 0.9630 0.0579 15,50k 27.26 0.9513 0.0473

Table 2: Quantitative metrics for SnapshotPeople [6] dataset. Our method gets metrics
on par with state-of-the-art approaches while using much fewer Gaussians.

female-3-casual male-3-casual
Gaussians↓ PSNR↑ SSIM↑ LPIPS↓ Gaussians↓ PSNR↑ SSIM↑ LPIPS↓

3DGS-Avatar [22] 53.78k 30.57 0.9581 0.0208 37.22k 34.28 0.9724 0.0149
GART [16] 19.67k 32.73 0.9672 0.0459 21.88k 35.93 0.9767 0.0294
GaussianAvatar [11] 202.73k 25.94 0.9673 0.0434 202.73k 33.59 0.9697 0.0243
HAHA(Ours) 13.67k 32.53 0.9633 0.0403 13.60k 31.46 0.9619 0.0277

when train and test views and poses are similar, we could face metrics value
reduction on the opposite to the methods where rendering does not strongly
depend on the mesh surface. Nevertheless, we demonstrate metrics on par with
state-of-the-art approaches for this dataset while using almost two times fewer
Gaussians (Table 2).

4 Conclusion

We have presented a new method for modeling human avatars using joint repre-
sentation with RGB textured mesh and Gaussian splatting. We use a textured
SMPL-X parametric model to portray the avatar’s areas near the human body
surface while using Gaussians to render out-of-mesh details. Our methods al-
low us to significantly reduce the number of Guassians and memory required
to store avatars. Using textured SMPL-X for body parts representation allows
us to animate small details such as fingers. We demonstrated the efficiency of
our approach both quantitatively and qualitatively on the open datasets. HAHA
outperforms the previous state-of-the-art on challenging X-Humans dataset.
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