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Fig. 1: My research makes three key contributions towards interactive robotic systems that can be built, deployed, and verified with safety assurances.
Left: I proposed a game-theoretic framework that allows robots to plan verifiably safe and efficient trajectories around people by closing the computation loop
between interaction and runtime learning [1–6]. Middle: I developed new algorithms for learning robust neural controllers for robots with high-dimensional
dynamics, with theoretical guarantees on their training-time convergence and deployment-time safety [7–12]. Right: I designed novel and scalable game-
theoretic motion planners for complex and uncertain human–robot systems [13–15].

Intelligent robotic systems are becoming more versatile
and widespread in our daily lives. From autonomous vehicles
to companion robots for senior care, these human-centered
systems must demonstrate a high degree of reliability in order
to build trust and, ultimately, deliver social value. How safe
is safe enough for robots to be wholeheartedly trusted by
society? Is it sufficient if an autonomous vehicle can avoid
hitting a fallen cyclist 99.9% of the time (Figure 1)? What if
this rate can only be achieved by the vehicle always stopping
and waiting for the human to move out of the way?

I argue that, for trustworthy deployment of robots in human-
populated space, we need to complement standard statistical
methods (“safety gambits”) with verifiable robust safety as-
surances under a vetted set of operation conditions as well
established as those of bridges, power plants, and elevators.
We need runtime learning to minimize the robot’s performance
loss during safety-enforcing maneuvers by reducing its inher-
ent uncertainty induced by its human peers, for example, their
intent or response. We need to close the loop between the
robot’s learning and decision-making so that it can optimize
efficiency by anticipating how its ongoing interaction with the
human may affect the evolving uncertainty, and ultimately, its
long-term performance.

Related work. Interactive robot motion planning is naturally
modeled as a non-cooperative dynamic game [16] due to
agents’ coupled, heterogeneous objectives as in, e.g., au-
tonomous driving [17, 18], collaborative manipulation [19],
and physical human–robot interaction (HRI) [20]. The in-
teraction uncertainty further complicates the problem as a
partially-observable stochastic game (POSG) [21]. While effi-
cient and scalable solvers have been developed for determin-
istic games [17, 18, 22], extending those to POSG requires
active information gathering to reduce the interaction uncer-

tainty. Existing approaches such as [23–26] rely on heuris-
tic information-gathering mechanisms to reduce uncertainty,
which requires manual tuning to balance with the robot’s
nominal performance, and is oftentimes difficult to scale up.
In addition, these approaches occasionally yield contrived
robot behaviors governed by manually designed cost functions
and may not seamlessly incorporate data-driven policies that
closely mimic realistic human behaviors [27, 28], rendering
the feasibility of their deployment around humans dubious.
Research vision. I aim to develop verifiable decision-making
algorithms that ensure safety for HRI while minimally affect-
ing the robot’s performance. Towards this goal I have devel-
oped new algorithms and theorems centered around dynamic
game theory, integrating insights from control systems safety,
reinforcement learning (RL), and generative AI. The core of
my program is to plan robot motion in the joint space of both
physical and belief states, actively ensuring safety as robots
navigate uncertain, changing environments and interact with
humans. A consistent principle throughout my research is to
ensure that my methods can be validated with hardware tests
and that they are reproducible by independent experts.

I. RESEARCH CONTRIBUTIONS

My research, summarized in Figure 1, advances the theory
and practice of human-centered robotics in three directions:
Robust HRI through belief-space safety filters. Robots that
interact with humans must behave under verifiable safety as-
surances. Strict safety guarantees may be obtained with safety
filters [4, 29], a supervisory control scheme that overrides the
robot’s task policy to safeguard against unlikely, but safety-
critical human behaviors. However, if the robot’s task policy
is solely goal-driven and disregards the safety filter during
“close-call” interactions, it may unwittingly keep triggering
overrides, needlessly hurting the robot’s performance.



To systematically reconcile safety and performance in de-
signing human-centered autonomy, my key idea is to equip
a safety filter with a belief-space game-theoretic task policy
that predicts a wide range of possible human–robot interaction
modes, induced by factors such as the human’s goal or
alertness [1, 2, 5, 6]. These predictions enable the robot to
preempt future costly safety filter interventions and, where
possible, adjust its course of action from early on to avoid
the risk of having to apply an inefficient last-minute maneu-
ver. This approach can complement conventional probabilistic
safety [30, 31] (i.e., gambits), leading to prediction-centric
performance tuning under strict, verifiable safety guarantees.

While effective at ensuring safety, existing safety filters [32–
35] predominantly reason only in the physical space, ignoring
the robot’s ability to learn while interacting, instead assuming
static information throughout safety intervention. This simpli-
fication can lead to overly conservative robot behaviors, such
as the freezing robot problem [36], and—in extreme cases—
catastrophic safety failures. Building on my belief-space game-
theoretic planning framework [2, 6], I developed the first safety
filter that closes the safety–learning loop for (human-centered)
interactive robotics [3]. The key idea is to perform a robust
game-theoretic safety analysis in an augmented state space,
which encompasses both physical interactions and the robot’s
belief encoding the uncertainty about other agents (e.g., its
human peers). Crucially, this method enables, for the first
time, formal reach–avoid safety analysis in closed-loop with
generative AI models (e.g., [28, 37]), which can efficiently
predict multi-modal interaction scenarios at scale.

Provably safe and convergent neural safety filters. Com-
puting a safety-enforcing controller—the key element of a
safety filter—is a fundamental open problem for robots with
high-dimensional, nonlinear dynamics: state-of-the-art finite-
element methods [32] only scale to 4–5 state variables; other
analytical methods require structural assumptions or case-
by-case manual derivation [34]. On the other hand, recent
success in deep learning presents an exciting opportunity to
scale up robot safety analysis. I pioneered one of the first
deep learning approaches to synthesize from scratch a control
barrier function (CBF)—one of the most popular safety filters
used in robotics [8, 9]. For multi-agent problems (e.g., human–
robot interaction), where safety must be analyzed in a robust
sense, interaction-agnostic training can lead to severe oscilla-
tory behaviors, preventing the algorithm from converging to
a useful policy. By integrating deep RL with game theory, I
designed the first multi-agent neural safety synthesis algorithm
that is provably convergent [11]. The resulting safety filter
consistently outperforms the prior state-of-the-art [38, 39] on
a 36-dimensional quadrupedal locomotion task.

Despite their promises in scalability, neural safety filters can
rarely yield safety assurances by design due to their black-
box nature. My insight is that robot safety can be certified
by rapidly validating these “untrusted” neural controllers at
runtime. I developed one of the first polynomial-time al-
gorithms that efficiently computes a strict, reasonably tight

over-estimate of the forward reachable tube for dynamical
systems in closed-loop with neural network controllers [7].
The robot can then use this tube within a model-predictive
safety filter [33, 35] to construct a certified safe “bubble” at
runtime [10, 39], enabling recursive safety assurances.

Scaling up interactive robot decision making. In multi-agent
settings (i.e., N ≫ 2), the increase in agent numbers (N )
generally leads to combinatorially more interaction scenarios.
Leveraging insights from integer programming games [40],
I proposed a leader-follower [16, Sec. 7] algorithm that effi-
ciently computes the socially optimal interaction strategy [14].
For N = 10, the algorithm, on average, yields ∼ 5000 times
faster computation than the brute-force approach and 35%
reduction in task completion time compared to a state-of-the-
art (order-agnostic) dynamic game solver [22].

II. FUTURE DIRECTIONS

With an eye towards a future where humans can unquestion-
ably embrace the presence of robots around them, I envision a
general-purpose safety framework that defines the regulatory
standard and performance benchmarks of next-generation
human-centered robotic and AI systems. Towards this vision,
I plan to explore the following two research directions:

Bridging dynamic games and foundation models. Gen-
erative AI backed by foundation models (FMs) has begun
to revolutionize the traditional decision-making pipelines in
robotics [41]. These models have demonstrated an unprece-
dented capability to generalize across multiple domains zero-
shot. However, the black-box policies built atop FMs pose
significant challenges to verify and guarantee safety in closed-
loop. I plan to leverage dynamic game theory to blend the
robot’s generative pre-trained reference policy with a model-
based game policy, which would allow engineers to encode
safety and prior knowledge (e.g., robot dynamics) through the
design of dynamic game solvers while inheriting the strong
performance provided by the data-driven reference policy. This
approach would also produce realistic and robust policies
without the need to manually define the game cost, thereby
mitigating the notorious issue of reward hacking associated
with hand-crafted costs, rendering more natural robot behavior.

AI safety beyond physical HRI. While generative AI such
as large language models has recently made monumental
successes, ensuring the correct operation of these systems
is equally crucial—there has been increasing social concern
regarding malicious use of these AI systems to manipulate
human minds via, for example, fake news or exaggerating
information [42]. I believe my expertise in human-centered
robotics positions me well to address these emerging AI
safety challenges, as they share some of the key traits already
explored in my research. In particular, I plan to distill insights
from my work on studying deceptive behaviors in HRI [3]
to develop new algorithms that can detect and prevent ma-
nipulative behaviors of generative AI models. In addition, I
plan to leverage aligned AI models for planning complex and
safety-critical HRI tasks in real-world settings.
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