
Under review as a conference paper at ICLR 2024

ARE SPIKING NEURAL NETWORKS MORE EXPRESSIVE
THAN ARTIFICIAL NEURAL NETWORKS?

Anonymous authors
Paper under double-blind review

ABSTRACT

This article studies the expressive power of spiking neural networks with firing-
time-based information encoding, highlighting their potential for future energy-
efficient AI applications when deployed on neuromorphic hardware. The compu-
tational power of a network of spiking neurons has already been studied via their
capability of approximating any continuous function. By using the Spike Re-
sponse Model as a mathematical model of a spiking neuron and assuming a linear
response function, we delve deeper into this analysis and prove that spiking neu-
ral networks generate continuous piecewise linear mappings. We also show that
they can emulate any multi-layer (ReLU) neural network with similar complexity.
Furthermore, we show that the maximum number of linear regions generated by
a spiking neuron scales exponentially with respect to the input dimension, a char-
acteristic that distinguishes it significantly from an artificial (ReLU) neuron. Our
results further extend the understanding of the approximation properties of spik-
ing neural networks and open up new avenues where spiking neural networks can
be deployed instead of artificial neural networks without any performance loss.

1 INTRODUCTION

Despite the remarkable success of deep neural networks (LeCun et al., 2015), the downside of train-
ing and inferring on large deep neural networks implemented on classical digital hardware lies in
their substantial time and energy consumption (Thompson et al., 2021). The rapid advancement in
the field of neuromorphic computing offers both analog and digital computation, energy-efficient
computational operations, and faster inference (Schuman et al., 2022), (Christensen et al., 2022).
Neuromorphic computers, using (artificial) neurons and synapses aim to replicate the human brain
structure and functions (Maan et al., 2017). They are typically programmed with networks of spik-
ing neurons where programs are defined by the structure and parameters of the network rather than
explicit instructions (Schuman et al., 2022). These spiking neurons more realistically model neural
activity compared to other neuron models, enabling brain-like behavior in these computers.

In traditional artificial neural networks (ANNs), both inputs and outputs are analog-valued. In spik-
ing neural networks (SNNs), neurons transmit information in the form of an action-potential or a
spike (Gerstner et al., 2014). Spikes can be considered as point-like events in time, where incoming
spikes received via a neuron’s synapses trigger new spikes in the outgoing synapses. This asyn-
chronous information transmission in SNNs differs from ANNs, where information is propagated
synchronously through the network. Hence, a key difference between ANNs and SNNs lies in the
significance of timing in the operation of SNNs. Moreover, the analog input information needs to be
encoded in the form of spikes, necessitating a spike-based encoding scheme.

Different encoding schemes enable spiking neurons to represent analog-valued inputs, broadly cat-
egorized into rate and temporal coding (Gerstner & van Hemmen, 1993). Rate coding refers to the
number of spikes in a given time period whereas, in temporal coding, the precise timing of spikes
matters (Maass, 2001). The notion of firing rate adheres to neurobiological experiments where it
was observed that some neurons fire frequently in response to some external stimuli (Stein, 1967),
(Gerstner et al., 2014). The latest experimental results indicate that the firing time of a neuron is
essential in order for the system to respond faster to more complex sensory stimuli (Hopfield, 1995),
(Thorpe et al., 1996), (Abeles, 1991). The firing rate results in higher latency and is computationally
expensive due to extra overhead related to temporal averaging. With the firing time, each spike car-

1

Under review as a conference paper at ICLR 2024

ries a significant amount of information, thus the resulting signal can be quite sparse. While there is
no accepted standard on the correct description of neural coding, in this work, we assume that the
information is encoded in the firing time of a neuron. The event-driven, sparse information propaga-
tion, as seen in time-to-first-spike encoding (Gerstner & Kistler, 2002), facilitates system efficiency
in terms of reduced computational power and improved energy efficiency.

It is clear that the differences in the processing of information between ANNs and SNNs should also
lead to differences in the computations performed by these models. Several groups have analyzed
the expressive power of ANNs (Yarotsky, 2017), (Cybenko, 1989), (Gühring et al., 2020), (Petersen
& Voigtlaender, 2018), and in particular provided explanations for the superior performance of deep
networks over shallow ones (Daubechies et al., 2022), (Yarotsky, 2017). In the case of ANNs with
ReLU activation function, the number of linear regions into which the input space is partitioned
into is another property that highlights the advantages of deep networks over shallow ones. Unlike
shallow networks, deep networks divide the input space into exponentially more number of linear
regions (Goujon et al., 2022), (Montúfar et al., 2014) enabling them to express more complex func-
tions. There exists further approaches to characterize the expressiveness of ANNs, e.g., the concept
of VC-dimension in the context of classification problems (Bartlett et al., 1999), (Goldberg & Jer-
rum, 1995), (Bartlett et al., 2019). In this work, we consider the problem of expressiveness from the
perspective of approximation theory and by quantifying the number of linear regions.

Few attempts have been made that aim to understand the computational power of SNNs. In Maass
(1996b), Maass (1996c), it has been shown that spiking neurons can emulate Turing machines, arbi-
trary threshold circuits, and sigmoidal neurons in temporal coding. In Maass (1996a), biologically
relevant functions are depicted that can be emulated by a single spiking neuron but require complex
ANNs to achieve the same task. A common theme is that the model of spiking neurons and the
description of their dynamics varies, i.e., they are chosen and adjusted with respect to a specific goal
or task. Moraitis et al. (2021), Jeffares et al. (2022) provide intriguing insights on superior expres-
sive power of SNNs over ANNs, showcasing their ability to excel in certain settings of temporal
input. Moraitis et al. (2018), Izhikevich (2006) show that spiking neurons can represent multiple
variables simultaneously leading to performance gains in contrast to ANNs. Stöckl & Maass (2021)
aims at generating high-performance SNNs for image classification using a modified spiking neuron
model that limits the number of spikes emitted by each neuron while considering precise spike tim-
ing. The primary challenge in advancing the domain of SNNs has revolved around devising training
methodologies. The typical approach is to either train from scratch (Lee et al., 2020), (Wu et al.,
2018), (Comsa et al., 2020), (Göltz et al., 2021) or convert trained ANNs into SNNs performing the
same tasks (Rueckauer et al., 2017), (Kim et al., 2018), (Rueckauer & Liu, 2021), (Stanojevic et al.,
2022a), (Stanojevic et al., 2022b), (Rueckauer & Liu, 2018). The latter works concentrate on the
algorithmic construction of SNNs approximating or emulating given ANNs. In an attempt to follow
up along the lines of previous works, in particular, the expressivity of SNNs (Maass, 1996a), the lin-
ear region property of ANNs (Montúfar et al., 2014) as well as first strides in that direction in SNNs
(Mostafa, 2018), and the conversion of ReLU-ANNs into SNNs with time-to-first-spike encoding
(Stanojevic et al., 2022b), we aim to extend the theoretical understanding that characterizes the dif-
ferences and similarities in the expressive power between a network of spiking and artificial neurons
employing a piecewise-linear activation function. Our aim is to assess if SNNs under the Spike Re-
sponse Model match the expressiveness of ANNs in approximating different function spaces under
given complexity bounds and in terms of the number of linear regions they can generate.

Contributions In this paper, to analyze SNNs, we employ the noise-free version of the Spike
Response Model (SRM) (Gerstner, 1995). It describes the state of a neuron as a weighted sum
of response and threshold functions. We assume a linear response function, where additionally
each neuron spikes at most once to encode information through precise spike timing. The spiking
networks based on linear SRM are succinctly referred to as LSRM (see Remark 1). This in turn
simplifies the model and also makes the mathematical analysis more feasible for larger networks as
compared to other neuronal models where the spike dynamics are described in the form of differen-
tial equations. In the future, we aim to expand our investigation to encompass multi-spike responses
and refractoriness effects, thus, the selection of this model is appropriate and comprehensive. The
main results are centered around the comparison of expressive power between LSRMs and ANNs:

• Equivalence of Approximation: We prove that LSRMs outputs a continuous piecewise
linear mapping. Moreover, we construct a two-layer LSRM that emulates the ReLU non-

2

Under review as a conference paper at ICLR 2024

linearity. Then, we extend the construction to multi-layer neural networks and show that an
LSRMs has the capacity to effectively reproduce the output of any (ReLU) ANN. Further-
more, we present explicit complexity bounds that are essential for constructing an LSRMs
capable of realizing an equivalent ANN. We also provide insights on the influence of the
encoding scheme and the impact of different parameters on the above approximation re-
sults. These findings imply that LSRMs can approximate any function as accurately as
deep ANNs with piecewise linear activation function.

• Linear Regions: We demonstrate that the maximum number of linear regions that a one-
layer LSRM generates scales exponentially with input dimension. This suggests that a
shallow LSRM can be as expressive as a deep ReLU network in terms of the number of
linear regions required to express certain types of continuous piecewise linear functions.
This is a characteristic of LSRM neurons that sets it apart from a ReLU neuron, thereby
illustrating differences in the structure of computations between LSRMs and ANNs.

Impact The theoretical findings presented herein deepen our understanding of the differences and
similarities between the expressive power of ANNs and SNNs. In theory, our findings prove that
the potential low-power neuromorphic implementation of LSRMs is an energy-efficient alternative
to the computation performed by (ReLU-)ANNs without loss of expressive power. Moreover, it also
enhances our understanding of performing computations where time plays a critical role. We an-
ticipate that the advances in event-driven neuromorphic computing will have a tremendous impact,
especially for edge-computing applications such as robotics, autonomous driving etc. This is accom-
plished while prioritizing energy efficiency — a crucial factor in modern computing landscapes.

Outline In Section 2, we introduce necessary definitions, including spiking neural networks under
the Spike Response Model. We present our main results in Section 3. In Section 4, we discuss related
work and conclude in Section 5 by summarizing the limitations and implications of our results. The
proofs of all the results are provided in the Appendix A.

2 SPIKING NEURAL NETWORKS

In neuroscience literature, several mathematical models exist that describe the generation and prop-
agation of action-potentials. Action-potentials or spikes are short electrical pulses that are the result
of electrical and biochemical properties of a biological neuron (Gerstner et al., 2014). We refer
to Gerstner et al. (2014) for a comprehensive and detailed introduction to the dynamics of spiking
neurons. To study the expressivity of SNNs, the main principles of a spiking neuron are condensed
into a (simplified) mathematical model, where certain details about the biophysics of a biological
neuron are neglected. Following Maass (1996b), we consider the Spike Response Model (SRM)
(Gerstner, 1995) as a formal model for a spiking neuron. It effectively captures the dynamics of
the Hodgkin-Huxley model (Kistler et al., 1997), (Gerstner et al., 2014), the most accurate model
in describing neuronal dynamics, and is a generalized version of the leaky integrate and fire model
(Gerstner, 1995). The SRM leads to the subsequent definition of an SNN (Maass, 1996c).
Definition 1. A spiking neural network Φ under the SRM is a (simple) finite directed graph (V,E)
and consists of a finite set V of spiking neurons, a subset Vin ⊂ V of input neurons, a subset Vout ⊂ V
of output neurons, and a set E ⊂ V × V of synapses. Each synapse (u, v) ∈ E is associated with
a synaptic weight wuv ≥ 0, a synaptic delay duv ≥ 0, and a response function εuv : R+ → R.
Each neuron v ∈ V \ Vin is associated with a firing threshold θv > 0, and a membrane potential
Pv : R → R, which is given by

Pv(t) =
∑

(u,v)∈E

∑
tfu∈Fu

wuvεuv(t− tfu), (1)

where Fu = {tfu : 1 ≤ f ≤ n for some n ∈ N} denotes the set of firing times of a neuron u, i.e.,
times t whenever Pu(t) reaches θu from below.

In general, the membrane potential also includes the threshold function Θv : R+ → R+, that models
the refractoriness effect. That is, if a neuron v emits a spike at time tfv , v cannot fire again for some
time interval immediately after tfv , regardless of how large its potential might be. However, we
assume that each neuron fires at most once, i.e., information is encoded in the firing time of single

3

Under review as a conference paper at ICLR 2024

spikes. Thus, in Definition 1, the refractoriness effect can be ignored and the contribution of Θv is
modelled by the constant θv . Moreover, the single spike condition simplifies (1) to

Pv(t) =
∑

(u,v)∈E

wuvεuv(t− tu), where tu = inf
{
t ≥ min

(z,u)∈E
{tz + dzu} : Pu(t) ≥ θu

}
. (2)

The response function εuv models the impact of a spike from a presynaptic neuron u on the mem-
brane potential of a postsynaptic neuron v (Gerstner, 1995). A biologically realistic approximation
of εuv is a delayed α function (Gerstner, 1995), which is non-linear and leads to intractable prob-
lems when analyzing the propagation of spikes through an SNN. Hence, following Maass (1996b),
we consider a simplified response and only require εuv to satisfy the following condition:

εuv(t) =

{
0, if t /∈ [duv, duv + δ],

s · (t− duv), if t ∈ [duv, duv + δ],
where s ∈ {+1,−1} and δ > 0. (3)

The parameter δ is some constant assumed to be the length of a linear segment of the response
function. The variable s reflects the fact that biological synapses are either excitatory or inhibitory
and the synaptic delay duv is the time required for a spike to travel from u to v. Inserting condition
(3) in (2) and setting wuv := s · wuv , i.e., allowing wuv to take arbitrary values in R, yields

Pv(t) =
∑

(u,v)∈E

1{0<t−tu−duv≤δ}wuv(t− tu − duv). (4)

Remark 1. Note that we denote spiking neural networks (SNNs) based on the simplified SRM model
discussed above as LSRMs and the corresponding spiking neurons as LSRM neurons.

2.1 COMPUTATION IN TERMS OF FIRING TIME

Using (4) enables us to iteratively compute the firing time tv of each neuron v ∈ V \ Vin if we know
the firing time tu of each neuron u ∈ V with (u, v) ∈ E by solving for t in

inf
t≥ min

(u,v)∈E
{tu+duv}

Pv(t) = inf
t≥ min

(u,v)∈E
{tu+duv}

∑
(u,v)∈E

1{0<t−tu−duv≤δ}wuv(t− tu − duv) = θv. (5)

Set E(tU) := {(u, v) ∈ E : duv + tu < tv ≤ duv + tu + δ}, where tU := (tu)(u,v)∈E is a vector
containing the given firing times of the presynaptic neurons. The firing time tv satisfies

θv =
∑

(u,v)∈E

1{0<tv−tu−duv≤δ}wuv(tv − tu − duv) =
∑

(u,v)∈E(tU)

wuv(tv − tu − duv), (6)

i.e., tv =
θv∑

(u,v)∈E(tU) wuv
+

∑
(u,v)∈E(tU) wuv(tu + duv)∑

(u,v)∈E(tU) wuv
. (7)

Here, E(tU) identifies the presynaptic neurons that actually have an effect on tv based on tU . For
instance, if tw > tv for some synapse (w, v) ∈ E, then w did not contribute to the firing of v since
the spike from w arrived after v already fired so that (w, v) /∈ E(tU). Equation (7) shows that tv
is a weighted sum (up to a positive constant) of the firing times of neurons u with (u, v) ∈ E(tU).
Flexibility, i.e., non-linearity, in this model is provided through the variation of the set E(tU).
Depending on the firing time of the presynaptic neurons tU and the associated parameters (weights,
delays, threshold), E(tU) contains a set of different synapses so that tv via (7) alters accordingly.
The dynamics of a neuron in this model is depicted in Figure 1.

Subsequently, we will employ (7) to analyze and construct LSRMs. In particular, we simply assume
that the length δ of the linear segment of the response function introduced in (3) is large enough so
that (7) holds. Informally, a small linear segment requires incoming spikes to have a correspondingly
small time delay to jointly affect the potential of a neuron. Otherwise, the impact of the earlier spikes
on the potential may already have vanished before the subsequent spikes arrive. Consequently,
incorporating δ as an additional parameter in the LSRM model leads to additional complexity since
the same firing patterns may result in different outcomes. However, an in-depth analysis of this effect
is left as future work. When the parameter δ is large, the simplified linear Spike Response Model,
stemming from the linear response function and the constraint of single-spike dynamics, exhibits
similarities to the integrate and fire model. Conversely, if δ is small, it resembles the leaky integrate
and fire model. The final model obtained provides a highly simplified version of the dynamics
observed in biological neural systems. Nevertheless, we attain a theoretical model that, in principle,
can be directly implemented on neuromorphic hardware and moreover, enables us to analyze the
computations that can be carried out by a network of spiking neurons.

4

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 1: (a) A spiking neuron v with five input neurons u1, . . . , u5 that fire at times tu1 , . . . , tu5 ,
respectively. (b) The trajectory in black shows the evolution of the membrane potential Pv(t) of
v as a result of incoming spikes (vertical arrows). Neurons u1 and u2 generate positive responses,
whereas neurons u3 and u5 trigger negative response, with the response magnitudes denoted by
wuiv . The spike from neuron u4 does not influence the firing time tv of v since tv < tu4

+ du4v .

2.2 INPUT AND OUTPUT ENCODING

By restricting our framework of LSRMs to acyclic graphs, we can arrange the underlying graph in
layers and equivalently represent LSRMs by a sequence of their parameters. This is analogous to the
common representation of feedforward ANNs via a sequence of matrix-vector tuples (Berner et al.,
2022), (Petersen & Voigtlaender, 2018).
Definition 2. Let L ∈ N. An (LSRM) Φ associated to the acyclic graph (V,E) is a sequence of
matrix-matrix-vector tuples

Φ = ((W 1, D1,Θ1), (W 2, D2,Θ2), . . . , (WL, DL,ΘL))

where N0, . . . , NL ∈ N and each W l ∈ RNl−1×Nl , Dl ∈ RNl−1×Nl

+ , and Θl ∈ RNl
+ . The matrix

entries W l
uv and Dl

uv represent the weight and delay value associated with the synapse (u, v) ∈ E,
respectively, and the entry Θl

v is the firing threshold associated with node v ∈ V . N0 is the input
dimension and NL is the output dimension of Φ. We call N(Φ) :=

∑L
j=0 Nj the number of neurons

and L(Φ) := L denotes the number of layers of Φ.
Remark 2. In an ANN, the input signal is propagated in a synchronized manner layer-wise through
the network (see Definition 5). In contrast, in any SNN, information is transmitted via spikes, where
spikes from layer l − 1 affect the membrane potential of layer l neurons, resulting in asynchronous
propagation due to variable firing times among neurons.

To employ SNNs, the (typically analog) input information needs to be encoded in the firing times
of the neurons in the input layer, and similarly, the firing times of the output neurons need to be
translated back to an appropriate target domain. We will refer to this process as input encoding and
output decoding. The applied encoding scheme certainly depends on the specific task at hand and
the potential power and suitability of different encoding schemes is a topic that warrants separate
investigation on its own. Our focus in this work lies on exploring the intrinsic capabilities of LSRMs,
rather than the specifics of the encoding scheme. Thus, we can formulate some guiding principles
for establishing a reasonable encoding scheme. First, the firing times of input and output neurons
should encode analog information in a consistent way so that different networks can be concatenated
in a well-defined manner. This enables us to construct suitable subnetworks and combine them
appropriately to solve more complex tasks. Second, in the extreme case, the encoding scheme might
directly contain the solution to a problem, underscoring the need for a sufficiently simple and broadly
applicable encoding scheme to avoid this.
Definition 3. Let [a, b]d ⊂ Rd and Φ be a LSRM with input neurons u1, . . . , ud and output neurons
v1, . . . , vn. Fix reference times Tin ∈ Rd and Tout ∈ Rn. For any x ∈ [a, b]d, we set the firing times
of the input neurons to (tu1

, . . . , tud
)T = Tin + x and the corresponding firing times of the output

neurons (tv1 , . . . , tvn)
T = Tout + y, determined via (7), encode the target y ∈ Rn.

Remark 3. A bounded input range ensures that appropriate reference times can be fixed. Note that
the introduced encoding scheme translates analog information into input firing times in a continuous

5

Under review as a conference paper at ICLR 2024

manner. Occasionally, we will point out the effect of adjusting the scheme and we will sometimes
with a slight abuse of notation refer to Tin, Tout as one-dimensional objects, i.e., Tin, Tout ∈ R which
is justified if the corresponding vectors contain the same element in each dimension.

For the discussion ahead, we distinguish between a network and the target function it realizes. A
network is a structured set of weights, delays and thresholds as defined in Definition 2, and the target
function it realizes is the result of the asynchronous propagation of spikes through the network.

Definition 4. On [a, b]d ⊂ Rd, the realization of an LSRM Φ with output neurons v1, . . . , vn and
reference times Tin ∈ Rd and Tout ∈ Rn, where Tout > Tin, is defined as the map RΦ : Rd → Rn,

RΦ(x) = −Tout + (tv1 , . . . , tvn)
T .

Next, we give a corresponding definition of an ANN and its realization.

Definition 5. Let L ∈ N. An artificial neural network Ψ is a sequence of matrix-vector tuples

Ψ = ((W 1, B1), (W 2, B2), . . . , (WL, BL)),

where N0, . . . , NL ∈ N and each W l ∈ RNl−1×Nl and Bl ∈ RNl . N0 and NL are the input
and output dimension of Ψ. We call N(Ψ) :=

∑L
j=0 Nj the number of neurons of the network

Ψ, L(Ψ) := L the number of layers of Ψ and Nl the width of Ψ in layer l. The realization of Ψ
with component-wise activation function σ : R → R is defined as the map RΨ : RN0 → RNL ,
RΨ(x) = yL, where yL results from

y0 = x, yl = σ(W lyl−1 +Bl), for l = 1, . . . , L− 1, and yL = WLyL−1 +BL. (8)

In the remainder, we always employ the ReLU activation function σ(x) = max(0, x). One can per-
form basic actions on neural networks such as concatenation and parallelization to construct larger
networks from existing ones. Adapting a general approach for ANNs as defined in Berner et al.
(2022), Petersen & Voigtlaender (2018), we formally introduce the concatenation and paralleliza-
tion of networks of spiking neurons in the Appendix A.1.

3 MAIN RESULTS

First, we prove that LSRMs generate Continuous Piecewise Linear (CPWL) mappings, followed by
realizing a ReLU activation function using a two-layer LSRM. Subsequently, we show that LSRMs
can emulate the realization of any multi-layer ANN employing ReLU as an activation function.
Lastly, we analyze the number of linear regions generated by LSRMs and compare the arising pattern
to the well-studied case of ReLU-ANNs. If not stated otherwise, the encoding scheme introduced in
Definition 3 is applied and the results need to be understood with respect to this specific encoding.

3.1 LSRMS REALIZE CONTINUOUS PIECEWISE LINEAR MAPPING

A broad class of ANNs based on a wide range of activation functions such as ReLU generate CPWL
mappings (Dym et al., 2020), (DeVore et al., 2021). In other words, these ANNs partition the input
domain into regions, the so-called linear regions, on which an affine function represents the neural
network’s realization. We show that LSRMs also express CPWL mappings under very general
conditions. The proof of the statement can be found in the Appendix A.2.

Theorem 1. Any LSRM Φ realizes a CPWL function provided that the sum of synaptic weights of
each neuron is positive and the encoding scheme is a CPWL function.

Remark 4. Note that the encoding scheme introduced in Definition 3 is a CPWL mapping. The
positivity of the sum of weights ensures that each neuron in the network emits a spike, in particular it
is a sufficient but not necessary condition to guarantee that spikes are emitted by the output neurons.
In general, if the positivity condition is not met by a neuron, then it does not fire for certain inputs.
Therefore, the case may arise where an output neuron does not fire and the realization of the network
is not well-defined. One could adapt the definition of the realization of an LSRM, however, the CPWL
property described in the theorem may be lost.

6

Under review as a conference paper at ICLR 2024

3.2 EQUIVALENCE OF APPROXIMATION

Despite the fact that ReLU is a very basic CPWL function, it is not straightforward to realize ReLU
via LSRMs; see Appendix A.3 for the proof.
Theorem 2. Let a < 0 < b. There does not exist a one-layer LSRM that realizes σ(x) = max(0, x)
on [a, b]. However, σ can be realized by a two-layer LSRM on [a, b].
Remark 5. We note that the encoding scheme that converts the analog values into the time domain
plays a crucial role. In the proof of the Theorem 2, an LSRM is constructed that realizes σ via the
encoding scheme Tin + · and Tout + ·. At the same time, the encoding scheme Tin − · and Tout − ·
fails in the two-layer case, whereas utilizing an inconsistent input and output encoding enables
us to construct a one-layer LSRM that realizes σ. This shows that not only the network but also
the applied encoding scheme is highly relevant. For details, we refer to Appendix A.3. Moreover,
in a hypothetical real-world implementation, which certainly includes some noise, the constructed
LSRM that realizes ReLU is not necessarily robust with respect to input perturbation. Analyzing the
behaviour and providing error estimations is an important future task.

Next, we extend the realization of a ReLU neuron to the entire network, i.e., realize the output of
any ReLU network using LSRMs. Please refer to Appendix A.4 for detailed proof.
Theorem 3. Let L, d ∈ N, [a, b]d ⊂ Rd and let Ψ be an arbitrary ANN of depth L and fixed width d
employing a ReLU non-linearity, and having a one-dimensional output. Then, there exists an LSRM
Φ with N(Φ) = N(Ψ) + L(2d+ 3)− (2d+ 2) and L(Φ) = 3L− 2 that realizes RΨ on [a, b]d.
Remark 6. The result can be generalized to ANNs with varying widths that employ any type of
piecewise linear activation function. Additionally, the complexity of an LSRM can be captured in
other ways than in terms of the number of computational units and layers, e.g., the total number
of spikes emitted in LSRMs is related to its energy consumption since emitting spikes consumes
energy. Hence, the minimum number of spikes to realize a given function class may be a reasonable
complexity measure with regard to energy efficiency for SNNs. Further research in this direction
is necessary to evaluate the complexity of LSRMs via different measures with their benefits and
drawbacks.

It is well known that ReLU-ANNs not only realize CPWL mappings but that every CPWL func-
tion can be represented by ReLU-ANNs if no restrictions are placed on the number of parameters
or the depth of the networks (Arora et al., 2018), (Daubechies et al., 2022). Thus, ReLU-ANNs
can represent any LSRM with a CPWL encoding scheme. In contrast, our results also imply that
LSRMs can represent every ReLU-ANN and thereby every CPWL function. The key difference in
the realization of arbitrary CPWL mappings is the necessary size and complexity of the respective
ANN and LSRM. Recall that realizing ReLU via LSRMs required more computational units than
the corresponding ANN (see Theorem 3). Conversely, we demonstrate using a toy example that
LSRMs can realize certain CPWL functions with fewer number of computational units and layers
than ReLU-ANNs.
Example 1. For a < 0 < θ < b, consider the CPWL function f : [a, b] → R given by

f(x) = −1

2
σ(−x− θ)− 1

2
σ(−x+ θ) = −1

2
max(−x− θ, 0)− 1

2
max(−x+ θ, 0). (9)

A one-layer LSRM with one output unit and two input units can realize f . However, any ReLU-ANN
requires at least two layers and four computational units to realize f ; see Appendix A.5 for the proof.

These observations illustrate that the computational structure of LSRMs differs significantly from
that of ReLU-ANNs, while neither model is clearly beneficial in terms of network complexity to
express all CPWL functions. To gain a better understanding of this divergent behaviour, in the next
section, we study the number of linear regions that LSRMs generate.

3.3 NUMBER OF LINEAR REGIONS

The number of linear regions can be seen as a measure for the flexibility and expressivity of the cor-
responding CPWL function. Similarly, we can measure the expressivity of an ANN by the number
of linear regions of its realization. The connection of the depth, width, and activation function of an
ANN to the maximum number of its linear regions is well-established, e.g., with increasing depth the

7

Under review as a conference paper at ICLR 2024

number of linear regions can grow exponentially in the number of parameters of an ANN (Montúfar
et al., 2014), (Arora et al., 2018), (Goujon et al., 2022). This property offers one possible explana-
tion for why deep networks tend to outperform shallow networks in expressing complex functions.
Can we observe a similar behaviour for LSRMs? To that end, we first analyze the properties of a
spiking neuron. For the proof, we refer to Appendix A.2.
Theorem 4. Let Φ be a one-layer LSRM with a single output neuron v and d input neurons
u1, . . . , ud such that

∑d
i=1 wuiv > 0. Then Φ partitions the input domain into at most 2d − 1

linear regions. In particular, for a sufficiently large input domain, the maximal number of linear
regions is attained if and only if all synaptic weights are positive.
Remark 7. The parameters of Φ determine the number of linear regions into which the input domain
is divided by Φ. In particular, if wujv ≤ 0, then uj can not cause the firing of v and Φ can not
achieve the maximal number of linear regions. Similarly, one can derive via (7) that any subset of
input neurons {uj1 , . . . , ujk} with net negative weights did not cause a firing of v. The linear region
corresponding to a subset of input neurons with a positive sum of weights is actually realized if the
input domain is suitably large. Finally, the condition

∑d
i=1 wuiv > 0 ensures that the notion of

linear region is well-defined. Otherwise, the input domain is still partitioned into polytopes by Φ but
there exists a region where the realization of the network is not well-defined (see Remark 4).

A one-layer ReLU-ANN with one output neuron will partition the input domain into at most two
linear regions, independent of the dimension of the input. In contrast, for a one-layer LSRM with one
output neuron, the maximum number of linear regions scales exponentially in the input dimension.
In the case of LSRMs, non-linearity is the intrinsic property of the model and emerges from the
subset of neurons that have an effect on the firing time of the output neuron, whereas in the ANN it
is applied on the single output neuron. By shifting the non-linearity and applying it to the input, the
ANN could exhibit the same exponential scaling of the linear regions as the LSRM. However, this
change has rather a detrimental effect on the expressivity since the partitioning of the input domain is
fixed and independent of the parameters of the ANN. The flexibility of LSRMs to generate arbitrary
linear regions is to a certain extent limited, albeit not entirely restricted as in the adjusted ANN.
For LSRMs one can explicitly compute the boundaries of the linear regions. This is exemplarily
demonstrated for a two-dimensional input space in Appendix A.2. It turns out that only specific
hyperplanes are eligible as boundaries of the linear region in this simple scenario. The full power
of ANN comes into play with large numbers of layers, however, our result in Theorem 4 suggests
that a shallow LSRM can be as expressive as a deep ReLU network in terms of the number of linear
regions required to express certain types of CPWL functions. In Dym et al. (2020), the authors
showed that a deep ANN employing any piecewise linear activation function cannot span all CPWL
functions with the number of linear regions scaling exponentially in the number of parameters of
the network. Studying these types of functions and identifying (or excluding) similar behaviour for
LSRMs requires a deeper analysis of the capabilities of LSRMs, providing valuable insights into
their computational power. This aspect is left for future investigation.

4 RELATED WORK

In this section, we mention the most relevant results that investigate the computational or expressive
power of SNNs. One of the central results in this direction is the Universal Approximation Theo-
rem for LSRMs (Maass, 1995), demonstrating the existence of LSRMs that approximates arbitrary
feedforward ANNs employing sigmoidal activation function and thus, approximating any continu-
ous function. In contrast, we show that LSRMs can realize arbitrary ANNs with CPWL activation
and further specify the size of the network to achieve the associated realization, which has not been
previously demonstrated. Moreover, we also study the expressivity of LSRMs in terms of the num-
ber of linear regions and provide new insights on realizations generated by LSRMs. Comsa et al.
(2020) showed that continuous functions can be approximated to arbitrary precision using SRM in
temporal coding. In Zhang & Zhou (2022), the authors investigate self-connection SNNs, demon-
strating their capacity to efficiently approximate discrete dynamical systems. Our approach centers
on precise spike timing, while theirs hinges on firing rates and includes a distinct model featuring
self-connections, further setting their approach apart from ours. A connection between SNNs and
PWL functions was already noted in Mostafa (2018). The author showed that a spiking network
consisting of non-leaky integrate and fire neurons, employing exponentially decaying synaptic cur-
rent kernels and temporal coding, exhibits a PWL input-output relation after a transformation of the

8

Under review as a conference paper at ICLR 2024

time variable. This piecewise relation is continuous unless small perturbations influences the spiking
behaviour, specifically concerning whether the neuron fires or remains inactive.

Another line of research focuses on converting trained ANNs into equivalent SNNs and, thereby
avoiding or facilitating the training process of SNNs. This has been studied for various spike pat-
terns, encoding schemes and spiking neuron models (Stöckl & Maass, 2021), (Stanojevic et al.,
2022b), (Kim et al., 2018), (Rueckauer et al., 2017), (Rueckauer & Liu, 2021), (Yousefzadeh et al.,
2019), (Rueckauer & Liu, 2018), (Zhang et al., 2019), (Yan et al., 2021). By introducing an algorith-
mic conversion from ANNs to SNNs, one also establishes approximation or emulation capabilities
of SNNs in the considered setting. Most related to our analysis are the results in Stanojevic et al.
(2022b). Under certain assumptions, the authors define a one-to-one neuron mapping that converts
a trained ReLU network to a corresponding SNN consisting of integrate and fire neurons by a non-
linear transformation of parameters. However, significant distinctions exist between the approaches,
particularly in terms of the chosen model, objectives, and methodology. Our choice of the model
is driven by our intention to better understand expressivity outcomes. In terms of methodology, we
introduce an auxiliary neuron to ensure the firing of neurons even when a corresponding ReLU neu-
ron exhibits zero activity. This diverges from their approach, which employs external current and a
special parameter to achieve similar outcomes. Moreover, our work involves a fixed threshold for
neuron firing, whereas their model incorporates a threshold that varies with time. Lastly, we study
the differences in the structure of computations between ANNs and SNNs, whereas in Stanojevic
et al. (2022b), only the conversion of ANNs to SNNs is examined and not vice versa.

5 DISCUSSION

The central aim of this paper is to study and compare the expressive power of SNNs and ANNs
employing any piecewise linear activation function. In an ANN, information is propagated across
the network in a synchronized manner. In contrast, in SNNs, spikes are only emitted once a subset
of neurons in the previous layer triggers a spike in a neuron in the subsequent layer. Hence, the im-
perative role of time in biological neural systems accounts for differences in computation between
SNNs and ANNs. Our expressivity result in Theorem 3 implies that LSRMs can essentially approx-
imate any function with the same accuracy and (asymptotic) complexity bounds as (deep) ANNs
employing a piecewise linear activation function, given the response function satisfies some basic
assumptions. Rather than approximating some function space by emulating a known construction
for ReLU networks, one could also achieve optimal approximations by leveraging the intrinsic ca-
pabilities of LSRMs instead. The findings in Theorem 4 indicate that the latter approach may indeed
be beneficial in terms of the complexity of the architecture in certain circumstances. However, we
point out that finding optimal architectures for approximating different classes of functions is not
the focal point of our work. The significance of our results lies in investigating theoretically the
approximation and expressivity capabilities of SNNs, highlighting their potential as an alternative
computational model for complex tasks. Extending the model of a LSRM neuron by incorporating,
e.g., multiple spikes of a neuron, may yield an improvement on our results. However, by increasing
the complexity of the model the analysis also tends to be more elaborate. In the aforementioned case
of multiple spikes the threshold function becomes important so that additional complexity when ap-
proximating some target function is introduced since one would have to consider the coupled effect
of response and threshold functions. Similarly, the choice of the response function and the frequency
of neuron firings will surely influence the approximation results and we leave this for future work.

Limitations We prove that LSRMs are as expressive as ReLU-ANNs in theory. However, achiev-
ing similar results in practice heavily relies on the effectiveness of the employed training algo-
rithms. The implementation of efficient learning algorithms with weights, delays and thresholds
as programmable parameters is left for future work. In this work, our choice of model resides on
theoretical considerations and not on practical considerations regarding implementation. However,
there might be other models of spiking neurons that are more apt for implementation purposes —
see e.g. Stanojevic et al. (2022b) and Comsa et al. (2020). Furthermore, in reality, due to the ubiqui-
tous sources of noise in the spiking neurons, the firing activity of a neuron is not deterministic. For
mathematical simplicity, we perform our analysis in a noise-free case. Generalizing to the case of
noisy spiking neurons is important (for instance with respect to the aforementioned implementation
in noisy environments) and may lead to further insights in the model.

9

Under review as a conference paper at ICLR 2024

REFERENCES

M. Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, 1991.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
ICLR, 2018.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC dimension bounds for piecewise
polynomial networks. Neural Computation, 10, 1999.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019.

Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The modern mathematics of
deep learning. In Mathematical Aspects of Deep Learning, pp. 1–111. Cambridge University
Press, dec 2022. doi: 10.1017/9781009025096.002.

Dennis Valbjørn Christensen, Regina Dittmann, Bernabe Linares-Barranco, Abu Sebastian, Manuel
Le Gallo, Andrea Redaelli, Stefan Slesazeck, Thomas Mikolajick, Sabina Spiga, Stephan Men-
zel, Ilia Valov, Gianluca Milano, Carlo Ricciardi, Shi-Jun Liang, Feng Miao, Mario Lanza,
Tyler J. Quill, Scott Tom Keene, Alberto Salleo, Julie Grollier, Danijela Markovic, Alice Mizrahi,
Peng Yao, J. Joshua Yang, Giacomo Indiveri, John Paul Strachan, Suman Datta, Elisa Vianello,
Alexandre Valentian, Johannes Feldmann, Xuan Li, Wolfram HP Pernice, Harish Bhaskaran,
Steve Furber, Emre Neftci, Franz Scherr, Wolfgang Maass, Srikanth Ramaswamy, Jonathan
Tapson, Priyadarshini Panda, Youngeun Kim, Gouhei Tanaka, Simon Thorpe, Chiara Bar-
tolozzi, Thomas A Cleland, Christoph Posch, Shih-Chii Liu, Gabriella Panuccio, Mufti Mah-
mud, Arnab Neelim Mazumder, Morteza Hosseini, Tinoosh Mohsenin, Elisa Donati, Silvia Tolu,
Roberto Galeazzi, Martin Ejsing Christensen, Sune Holm, Daniele Ielmini, and Nini Pryds. 2022
Roadmap on Neuromorphic Computing and Engineering. Neuromorph. Comput. Eng., 2(2), 2022.

Iulia M. Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo, and
Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function. In
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8529–8533, 2020. doi: 10.1109/ICASSP40776.2020.9053856.

George V. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2:303–314, 1989.

I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear Approximation and
(Deep) ReLU Networks. Constructive Approximation, 55(1):127–172, 2022. doi: 10.1007/
s00365-021-09548-z.

Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation. Acta Numer-
ica, 30:327–444, 2021. doi: 10.1017/S0962492921000052.

Nadav Dym, Barak Sober, and Ingrid Daubechies. Expression of fractals through neural network
functions. IEEE Journal on Selected Areas in Information Theory, 1(1):57–66, 2020. doi: 10.
1109/JSAIT.2020.2991422.

Wulfram Gerstner. Time structure of the activity in neural network models. Phys. Rev. E, 51:738–
758, 1995.

Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press, Cambridge UK, 2002.

Wulfram Gerstner and J. van Hemmen. How to describe neuronal activity: Spikes, rates, or assem-
blies? In Advances in Neural Information Processing Systems, volume 6. Morgan-Kaufmann,
1993.

Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.

10

Under review as a conference paper at ICLR 2024

Paul W. Goldberg and Mark R. Jerrum. Bounding the Vapnik-Chervonenkis dimension of concept
classes parameterized by real numbers. Machine Learning, 18(2):131–148, 1995. doi: 10.1007/
BF00993408.

Alexis Goujon, Arian Etemadi, and Michael A. Unser. The role of depth, width, and activation
complexity in the number of linear regions of neural networks. ArXiv, abs/2206.08615, 2022.

J. Göltz, L. Kriener, Andreas Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer, Dominik Dold,
Akos Kungl, Walter Senn, Johannes Schemmel, Karlheinz Meier, and M. Petrovici. Fast and
energy-efficient neuromorphic deep learning with first-spike times. Nature Machine Intelligence,
3:823–835, 09 2021. doi: 10.1038/s42256-021-00388-x.

Ingo Gühring, Mones Raslan, and Gitta Kutyniok. Expressivity of deep neural networks.
arXiv:2007.04759, 2020.

John Hopfield. Pattern recognition computation using action potential timing for stimulus represen-
tation. Nature, 376:33–6, 08 1995. doi: 10.1038/376033a0.

Eugene M. Izhikevich. Polychronization: Computation with spikes. Neural Comput., 18(2):
245–282, feb 2006. ISSN 0899-7667. doi: 10.1162/089976606775093882.

Alan Jeffares, Qinghai Guo, Pontus Stenetorp, and Timoleon Moraitis. Spike-inspired rank coding
for fast and accurate recurrent neural networks, 2022.

Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
weighted spikes. Neurocomputing, 311:373–386, 2018.

Werner M. Kistler, Wulfram Gerstner, and J. Leo van Hemmen. Reduction of the Hodgkin-Huxley
Equations to a Single-Variable Threshold Model. Neural Computation, 9(5):1015–1045, 1997.
ISSN 0899-7667.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures. Fron-
tiers in Neuroscience, 14, 2020. ISSN 1662-453X. doi: 10.3389/fnins.2020.00119.

Akshay Kumar Maan, Deepthi Anirudhan Jayadevi, and Alex Pappachen James. A survey of mem-
ristive threshold logic circuits. IEEE Transactions on Neural Networks and Learning Systems, 28
(8):1734–1746, 2017. doi: 10.1109/TNNLS.2016.2547842.

Wolfgang Maass. An efficient implementation of sigmoidal neural nets in temporal coding with
noisy spiking neurons. Technical report, Technische Universität Graz, 1995.

Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Electron. Colloquium Comput. Complex., 3, 1996a.

Wolfgang Maass. Noisy spiking neurons with temporal coding have more computational power than
sigmoidal neurons. In Advances in Neural Information Processing Systems, volume 9. MIT Press,
1996b.

Wolfgang Maass. Lower bounds for the computational power of networks of spiking neurons. Neu-
ral Computation, 8(1):1–40, 1996c. doi: 10.1162/neco.1996.8.1.1.

Wolfgang Maass. On the relevance of time in neural computation and learning. Theoretical Com-
puter Science, 261(1):157–178, 2001. ISSN 0304-3975.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, pp. 2924–2932, Cambridge, MA, USA,
2014. MIT Press.

11

Under review as a conference paper at ICLR 2024

Timoleon Moraitis, Abu Sebastian, and Evangelos Eleftheriou. Spiking neural networks enable
two-dimensional neurons and unsupervised multi-timescale learning. In 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2018. doi: 10.1109/IJCNN.2018.8489218.

Timoleon Moraitis, Abu Sebastian, and Evangelos Eleftheriou. Optimality of short-term synaptic
plasticity in modelling certain dynamic environments, 2021.

Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 29(7):3227–3235, 2018. doi: 10.1109/
TNNLS.2017.2726060.

Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions
using deep relu neural networks. Neural Networks, 108:296–330, 2018. ISSN 0893-6080.

Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse
temporal coding. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1–5, 2018. doi: 10.1109/ISCAS.2018.8351295.

Bodo Rueckauer and Shih-Chii Liu. Temporal pattern coding in deep spiking neural networks. In
2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2021. doi: 10.1109/
IJCNN52387.2021.9533837.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in Neuroscience, 11, 12 2017. doi: 10.3389/fnins.2017.00682.

Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and
Bill Kay. Opportunities for neuromorphic computing algorithms and applications. Nature Com-
putational Science, 2(1):10–19, 2022.

Ana Stanojevic, Evangelos Eleftheriou, Giovanni Cherubini, Stanisław Woźniak, Angeliki Pantazi,
and Wulfram Gerstner. Approximating Relu networks by single-spike computation. In 2022
IEEE International Conference on Image Processing (ICIP), pp. 1901–1905, 2022a. doi: 10.
1109/ICIP46576.2022.9897692.

Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi,
and Wulfram Gerstner. An exact mapping from ReLU networks to spiking neural networks.
arXiv:2212.12522, 2022b.

R. B. Stein. The information capacity of nerve cells using a frequency code. Biophysical journal, 7
(6):797–826, 1967.

Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high
accuracy through temporal coding with two spikes. Nature Machine Intelligence, 3:230–238, 03
2021. doi: 10.1038/s42256-021-00311-4.

Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. Deep learning’s
diminishing returns: The cost of improvement is becoming unsustainable. IEEE Spectrum, 58
(10):50–55, 2021.

Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the human visual system.
Nature, 381(6582):520–522, 1996.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 2018. ISSN
1662-453X. doi: 10.3389/fnins.2018.00331.

Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Near lossless transfer learning for spiking neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10577–10584,
May 2021.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.07.002.

12

Under review as a conference paper at ICLR 2024

Amirreza Yousefzadeh, Sahar Hosseini, Priscila Holanda, Sam Leroux, Thilo Werner, Teresa
Serrano-Gotarredona, Bernabe Linares Barranco, Bart Dhoedt, and Pieter Simoens. Conversion
of synchronous artificial neural network to asynchronous spiking neural network using sigma-
delta quantization. In 2019 IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 81–85, 2019. doi: 10.1109/AICAS.2019.8771624.

Lei Zhang, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. Tdsnn: From deep neural net-
works to deep spike neural networks with temporal-coding. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):1319–1326, Jul. 2019. doi: 10.1609/aaai.v33i01.33011319.

Shao-Qun Zhang and Zhi-Hua Zhou. Theoretically provable spiking neural networks. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 19345–19356. Curran Associates, Inc., 2022.

A APPENDIX

Outline We start by introducing the spiking network calculus in Section A.1 to compose and
parallelize different networks. In Section A.2, we show that LSRMs output CPWL functions and
establish a relation between the input dimension of an LSRM and the number of linear regions. The
proof of Theorem 2 is given in Section A.3. Finally, in Section A.4, we prove that an LSRM can
realize the output of any ReLU network.

A.1 SPIKING NEURAL NETWORK CALCULUS

It can be observed from Definition 3 that both inputs and outputs of LSRMs are encoded in a unified
format. This characteristic is crucial for concatenating/parallelizing two spiking network architec-
tures that further enable us to attain compositions/parallelizations of network realizations.

We operate in the following setting: Let L1, L2, d1, d2, d
′
1, d

′
2 ∈ N. Consider two LSRMs Φ1, Φ2

given by
Φi = ((W i

1, D
i
1,Θ

i
1), . . . , (W

i
Li
, Di

Li
,Θi

Li
)), i = 1, 2,

with input domains [a1, b1]
d1 ⊂ Rd1 , [a2, b2]d2 ⊂ Rd2 and output dimension d′1, d

′
2, respectively.

Denote the input neurons by u1, . . . , udi
with respective firing times tiuj

and the output neurons by
v1, . . . , vd′

i
with respective firing times tivj for i = 1, 2. By Definition 3, we can express the firing

times of the input neurons as

t1u(x) := (t1u1
, . . . , t1ud1

)T = T 1
in + x for x ∈ [a1, b1]

d1 ,

t2u(x) := (t2u1
, . . . , t2ud2

)T = T 2
in + x for x ∈ [a2, b2]

d2 (10)

and, by Definition 4, the realization of the networks as

RΦ1
(x) = −T 1

out + t1v(t
1
u(x)) := −T 1

out + (t1v1 , . . . , t
1
vd′1

)T for x ∈ [a1, b1]
d1 ,

RΦ2(x) = −T 2
out + t2v(t

2
u(x)) := −T 2

out + (t2v1 , . . . , t
2
vd′2

)T for x ∈ [a2, b2]
d2 (11)

for some constants T 1
in ∈ Rd1 , T 2

in ∈ Rd2 , T 1
out ∈ Rd′

1 , T 2
out ∈ Rd′

2 .

We define the concatenation of the two networks in the following way.
Definition 6. (Concatenation) Let Φ1 and Φ2 be such that the input layer of Φ1 has the same
dimension as the output layer of Φ2, i.e., d′2 = d1. Then, the concatenation of Φ1 and Φ2, denoted
as Φ1 • Φ2, represents the (L1 + L2)-layer network

Φ1 • Φ2 := ((W 2
1 , D

2
1,Θ

2
1), . . . , (W

2
L2
, D2

L2
,Θ2

L2
), (W 1

1 , D
1
1,Θ

1
1), . . . , (W

1
L1
, D1

L1
,Θ1

L1
)).

Lemma 1. Let d′2 = d1 and fix Tin = T 2
in and Tout = T 1

out. If T 2
out = T 1

in and RΦ2
([a2, b2]

d2) ⊂
[a1, b1]

d1 , then
RΦ1•Φ2

(x) = RΦ1
(RΦ2

(x)) for all x ∈ [a, b]d2

with respect to the reference times Tin, Tout. Moreover, Φ1 •Φ2 is composed of N(Φ1)+N(Φ2)−d1
computational units.

13

Under review as a conference paper at ICLR 2024

Proof. It is straightforward to verify via the construction that the network Φ1 • Φ2 is composed of
N(Φ1) +N(Φ2) − d1 computational units. Moreover, under the given assumptions RΦ1

◦ RΦ2
is

well-defined so that (10) and (11) imply

RΦ1•Φ2
(x) = −Tout + t1v(t

2
v(Tin + x)) = −T 1

out + t1v(t
2
v(T

2
in + x)) = −T 1

out + t1v(t
2
v(t

2
u(x)))

= −T 1
out + t1v(T

2
out +RΦ2(x)) = −T 1

out + t1v(T
1
in +RΦ2(x))

= −T 1
out + t1v(t

1
u(RΦ2

(x))) = RΦ1
(RΦ2

(x)) for x ∈ [a2, b2]
d2 .

In addition to concatenating networks, we also perform parallelization operation on LSRMs.

Definition 7. (Parallelization) Let Φ1 and Φ2 be such that they have the same depth and input
dimension, i.e., L1 = L2 =: L and d1 = d2 =: d. Then, the parallelization of Φ1 and Φ2, denoted
as P (Φ1,Φ2), represents the L-layer network with d-dimensional input

P (Φ1,Φ2) := ((W̃1, D̃1, Θ̃1), . . . , (W̃L, D̃L, Θ̃L)),

where

W̃1 =
(
W 1

1 W 2
1

)
, D̃1 =

(
D1

1 D2
1

)
, Θ̃1 =

(
Θ1

1

Θ2
1

)
and

W̃l =

(
W 1

l 0
0 W 2

l

)
, D̃l =

(
D1

l 0
0 D2

l

)
, Θ̃l =

(
Θ1

l

Θ2
l

)
, for 1 < l ≤ L.

Lemma 2. Let d := d2 = d1 and fix Tin := T 1
in, Tout := (T 1

out, T
2
out), a := a1 and b := b1. If

T 2
in = T 1

in, T 2
out = T 1

out and a1 = a2, b1 = b2, then

RP (Φ1,Φ2)(x) = (RΦ1
(x),RΦ2

(x)) for x ∈ [a, b]d

with respect to the reference times Tin, Tout. Moreover, P (Φ1,Φ2) is composed of N(Φ1)+N(Φ2)−
d computational units.

Proof. The number of computational units is an immediate consequence of the construction. Since
the input domains of Φ1 and Φ2 agree, (10) and (11) show that

RP (Φ1,Φ2)(x) = −Tout + (t1v(Tin + x), t2v(Tin + x)) = (−T 1
out + t1v(T

1
in + x),−T 2

out + t2v(T
2
in + x))

= (−T 1
out + t1v(t

1
u(x)),−T 2

out + t2v(t
2
u(x))) = (RΦ1

(x),RΦ2
(x)) for x ∈ [a, b]d.

Remark 8. Note that parallelization and concatenation can be straightforwardly extended (recur-
sively) to a finite number of networks. Additionally, more general forms of parallelization and con-
catenations of networks, e.g., parallelization of networks with different depths, can be established.
However, for the constructions presented in this work, the introduced notions suffice.

A.2 REALIZATIONS OF LSRMS

In this section, we analyze the realization of LSRMs. We show that a LSRM neuron with arbitrarily
many input neurons generates a CPWL mapping and establish a correspondence between the input
dimension of the LSRM neurons and the number of linear regions of the associated realization. For
simplicity, we perform the analysis without employing an encoding scheme of analog values in the
time domain via the firing time of the input neurons. However, it is straightforward to incorporate
the encoding into the analysis. Moreover, since we show that the firing time of a LSRM neuron is a
CPWL function on the input domain, it immediately follows that any LSRM neuron with a CPWL
encoding scheme, e.g., as defined in Definition 3, realizes a CPWL mapping. The final step is to
extend the analysis from a single LSRM neuron to a network of LSRM neurons.

14

Under review as a conference paper at ICLR 2024

A.2.1 SPIKING NEURON WITH TWO INPUTS

First, we provide a simple toy example to demonstrate the dynamics of a LSRM neuron. Let v
be a LSRM neuron with two input neurons u1, u2. Denote the associated weights and delays by
wuiv ∈ R and duiv ≥ 0, respectively, and the threshold of v by θv > 0. A spike emitted from v
could then be caused by either u1 or u2 or a combination of both. Each possibility corresponds to
a linear region in the input space R2. We consider each case separately under the assumption that
δ in (3) is arbitrarily large and we discuss the implications of this assumption in more detail after
presenting the different cases.

Case 1: u1 causes v to spike before a potential effect from u2 reaches v. Note that this can only
happen if wu1v > 0 and

tu2
+ du2v ≥ tv =

θv
wu1v

+ tu1 + du1v,

where we applied (6) and (7), and tz represents the firing time of a neuron z. Solving for tu2
leads

to
tu2

≥ θv
wu1v

+ tu1
+ du1v − du2v.

Case 2: An analogous calculation shows that

tu2 ≤ − θv
wu2v

+ tu1 + du1v − du2v,

whenever u2 causes v to spike before a potential effect from u1 reaches v.

Case 3: The remaining possibility is that spikes from u1 and u2 influence the firing time of v. Then,
the following needs to hold: wu1v + wu2v > 0 and

tu1
+ du1v < tv =

θv
wu1v + wu2v

+
∑
i

wuiv

wu1v + wu2v
(tui

+ duiv) and

tu2 + du2v < tv =
θv

wu1v + wu2v
+

∑
i

wuiv

wu1v + wu2v
(tui + duiv).

This yields

tu2

> − θv
wu2v

+ tu1
+ du1v − du2v, if wu2v

wu1v+wu2v
> 0

< − θv
wu2v

+ tu1 + du1v − du2v, if wu2v

wu1v+wu2v
< 0

,

respectively

tu2

< θv
wu1v

+ tu1 + du1v − du2v, if wu1v

wu1v+wu2v
> 0

> θv
wu1v

+ tu1
+ du1v − du2v, if wu1v

wu1v+wu2v
< 0

.

Example 2. In a simple setting with θv = wuiv = du2v = 1 and du1v = 2, the above considerations
imply the following firing time of v on the corresponding linear regions (see Figure 2):

tv =

tu1

+ 3, if tu2
≥ tu1

+ 2

tu2 + 2, if tu2 ≤ tu1

1
2 (tu1 + tu2) + 2, if tu1 < tu2 < tu1 + 2

.

Already this simple setting with two-dimensional inputs provides crucial insights. The actual num-
ber of linear regions in the input domain corresponds to the parameter of the LSRM neuron v. In
particular, the maximum number of linear regions, i.e. three, can only occur if both weights wuiv

are positive. Similarly, v does not fire at all if both weights are non-positive. The exact number of
linear regions depends on the sign and magnitude of the weights. Furthermore, note that the linear
regions are described by hyperplanes of the form

tu2 ⋚ tu1 + Cp,u, (12)

15

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 2: Illustration of Example 2. It shows that the output firing time tv(tu1
, tu2

) as a function
of inputs tu1

, tu2
is a CPWL mapping. (a) An illustration of the partitioning of the input space into

three different regions. (b) Each region is associated with an affine-linear mapping.

where Cp,u is a constant depending on the parameter p corresponding to v, i.e., threshold, delays
and weights, and the actual input neuron(s) causing v to spike. Hence, p has only a limited effect
on the boundary of a linear region; depending on their exact value, the parameter only introduces an
additive constant shift.

Remark 9. Dropping the assumption that δ is arbitrarily large in (3) yields an evolved model which
is also biologically more realistic. The magnitude of δ describes the duration in which an incoming
spike influences the membrane potential of a neuron. By setting δ arbitrarily large, we generally
consider an incoming spike to have a lasting effect on the membrane potential. Specifying a fixed δ
increases the importance of the timing of the individual spikes as well as the choice of the parameter.
For instance, inputs from certain regions in the input domain may not trigger a spike any more since
the combined effect of multiple delayed incoming spikes is neglected. An in-depth analysis of the
influence of δ is left as future work and we continue our analysis under the assumption that δ is
arbitrarily large.

A.2.2 SPIKING NEURON WITH ARBITRARILY MANY INPUTS

A significant observation in the two-dimensional case is that the firing time tv(tu1 , tu2) as a function
of the input tu1 , tu2 is a CPWL mapping. Indeed, each linear region is associated with an affine linear
mapping and crucially these affine mappings agree at the breakpoints. This intuitively makes sense
since a breakpoint marks the event when the effect of an additional neuron on the firing time of v
needs to be taken into consideration or, equivalently, a neuron does not contribute to the firing of v
any more. However, in both circumstances, the effective contribution of this specific neuron is zero
(and the contribution of the other neuron remains unchanged) at the breakpoint so that the crossing
of a breakpoint and the associated change of a linear region does not result in a discontinuity. We
can straightforwardly extend the insights of the two-dimensional to a d-dimensional input domain.

Formally, the class of CPWL functions describes functions that are globally continuous and locally
linear on each polytope in a given finite decomposition of Rd into polytopes. We refer to the poly-
topes as linear regions. First, we assess the number of regions the input domain is partitioned by a
spiking neuron.

Proposition 1. Let v be a LSRM neuron with d input neurons u1, . . . , ud. Then Rd is partitioned by
v into at most 2d − 1 regions.

16

Under review as a conference paper at ICLR 2024

Proof. The maximum number of regions directly corresponds to E(tU) defined in (7). Recall that
E(tU) identifies the presynaptic neurons that based on their firing times tU = (tui

)di=1 triggered the
firing of v at time tv . Therefore, each region in the input domain is associated to a subset of input
neurons that is responsible for the firing of v on this specific domain. Hence, the number of regions
is bounded by the number of non-empty subsets of {u1, . . . , ud}, i.e., 2d − 1.

Remark 10. Observe that any subset of input neurons causes a spike in v if and only if the sum of
their weights is positive. Otherwise, the corresponding input region either does not exist or inputs
from the corresponding region do not trigger a spike in v since they can not increase the potential
Pv(t) as their net contribution is negative, i.e., the potential does not reach the threshold θv . Hence,
the maximal number of regions is attained if and only if all weights are positive and thereby the sum
of weights of any subset of input neurons is positive as well.
Remark 11. The observations with regard to the parameter δ in Remark 9 directly transfer from the
two- to the d-dimensional setting.

Next, we show that a LSRM neuron generates a CPWL mapping.
Theorem 5. Let v be a LSRM neuron with d input neurons u1, . . . , ud. The firing time
tv(tu1 , . . . , tud

) as a function of the firing times tu1 , . . . , tud
is a CPWL mapping provided that∑d

i=1 wuiv > 0, where wuiv ∈ R is the synaptic weight between ui and v.

Proof. The condition
∑

i=1 wuiv > 0 simply ensures that the input domain is decomposed into
regions associated with subsets of input neurons with positive net weight. Hence, the situation
described in Remark 10 can not arise and the notion of a CPWL mapping on Rd is well-defined.
Denote the associated delays by duiv ≥ 0 and the threshold of v by θv > 0. We distinguish between
the 2d − 1 variants of input combinations that can cause a firing of v. Let I ⊂ {1, . . . , d} be a
non-empty subset and Ic the complement of I in {1, . . . , d}, i.e., Ic = {1, . . . , d} \ I . Assume that
all ui with i ∈ I contribute to the firing of v whereas spikes from ui with i ∈ Ic do not influence
the firing of v. Then

∑
i∈I wuiv is required to be positive, and by (6) and (7) the following holds:

tuk
+ dukv ≥ tv =

θv∑
i∈I wuiv

+
∑
i∈I

wuiv∑
j∈I wujv

(tui
+ duiv) for all k ∈ Ic (13)

and
tuk

+ dukv < tv =
θv∑

i∈I wuiv
+

∑
i∈I

wuiv∑
j∈I wujv

(tui + duiv) for all k ∈ I. (14)

Rewriting yields

tuk
≥ θv∑

i∈I wuiv
+
∑
i∈I

wuiv∑
j∈I wujv

(tui + duiv)− dukv for all k ∈ Ic (15)

and

tuk

< θv∑

j∈I\k wujv
+
∑

i∈I\k
wuiv∑

j∈I\k wujv
(tui

+ duiv)− dukv, if
∑

i∈I\k wuiv∑
i∈I wuiv

> 0

> θv∑
j∈I\k wujv

+
∑

i∈I\k
wuiv∑

j∈I\k wujv
(tui

+ duiv)− dukv, if
∑

i∈I\k wuiv∑
i∈I wuiv

< 0
∀k ∈ I.

It is now clear that the firing time tv(tu1
, . . . , tud

) as a function of the input tu1
, . . . , tud

is a piece-
wise linear mapping on polytopes decomposing Rd. To show that the mapping is additionally con-
tinuous, we need to assess tv(tu1

, . . . , tud
) on the breakpoints. Let I, J ⊂ {1, . . . , d} be index sets

corresponding to input neurons {ui : i ∈ I},{uj : j ∈ J} that cause v to fire on the input region
RI ⊂ Rd, RJ ⊂ Rd respectively. Assume that it is possible to transition from RI to RJ through
a breakpoint tI,J = (tI,Ju1

, . . . , tI,Jud
) ∈ Rd without leaving RI ∪ RJ . Crossing the breakpoint is

equivalent to the fact that the input neurons {ui : i ∈ I \ J} do not contribute to the firing of v
anymore and the input neurons {ui : i ∈ J \ I} begin to contribute to the firing of v.

Assume first that J ⊂ I . Then, we observe that the breakpoint tI,J is necessarily an element of
the linear region corresponding to the index set with smaller cardinality, i.e., tI,J ∈ RJ . This is an
immediate consequence of (14) and the fact that tI,J is characterized by

tI,Juk
+ dukv = tv(t

I,J) for all k ∈ I \ J. (16)

17

Under review as a conference paper at ICLR 2024

Indeed, if tI,Juk
+ dukv > tv(t

I,J), then there exists εk > 0 such that (15) also holds for tI,Juk
± ε,

where 0 ≤ ε < εk, i.e., a small change in tI,Juk
is not sufficient to change the corresponding linear

region, contradicting our assumption that tI,J is a breakpoint.

The firing time tv(t
I,J) is explicitly given by

tv(t
I,J) =

θv∑
i∈J wuiv

+
∑
i∈J

wuiv∑
j∈J wujv

(tI,Jui
+ duiv)

Using (16), we obtain

0 = − wukv∑
j∈J wujv

(tv(t
I,J)− (tI,Juk

+ dukv)) for all k ∈ I \ J

so that

tv(t
I,J) =

θv∑
i∈J wuiv

+
∑
i∈J

wuiv∑
j∈J wujv

(tI,Jui
+duiv)−

∑
i∈I\J

wuiv∑
j∈J wujv

(tv(t
I,J)−(tI,Jui

+duiv)).

Solving for tv(tI,J) yields

tv(t
I,J) =

(
1 +

∑
i∈I\J

wuiv∑
j∈J wujv

)−1

·
(θv∑

i∈J wuiv
+
∑
i∈I

wuiv∑
j∈J wujv

(tI,Jui
+ duiv)

)
=

∑
i∈J

wuiv∑
j∈I wujv

·
(θv∑

i∈J wuiv
+
∑
i∈I

wuiv∑
j∈J wujv

(tI,Jui
+ duiv)

)
=

θv∑
i∈I wuiv

+
∑
i∈I

wuiv∑
j∈I wujv

(tI,Jui
+ duiv),

which is exactly the expression for the firing time on RI . This shows that tv(tu1 , . . . , tud
) is contin-

uous in tI,J . Since the breakpoint tI,J was chosen arbitrarily, tv(tu1
, . . . , tud

) is continuous at any
breakpoint.

The case I ⊂ J follows analogously. It remains to check the case when neither I ⊂ J nor J ⊂ I .
To that end, let i∗ ∈ I \ J and j∗ ∈ J \ I . Assume without loss of generality that tI,J ∈ RI so that
(13) and (14) imply

tI,Jui∗
+ dui∗v < tv(t

I,J) ≤ tI,Juj∗
+ duj∗v.

Hence, there exists ε > 0 such that
tI,Jui∗

+ dui∗v < tI,Juj∗
+ duj∗v − ε. (17)

Moreover, due to the fact that tI,J is a breakpoint we can find tJ ∈ RJ∩B(tI,J ; ε
3), where B(tI,J ; ε

3)

denotes the open ball with radius ε
3 centered at tI,J . In particular, this entails that

−ε

3
< (tJui∗

− tI,Jui∗
), (tI,Juj∗

− tJuj∗
) <

ε

3
,

and therefore together with (17)

tJui∗
+ dui∗v − (tJuj∗

+ duj∗v) = (tJui∗
− tI,Jui∗

) + (tI,Jui∗
+ dui∗v − (tI,Juj∗

+ duj∗v)) + (tI,Juj∗
− tJuj∗

)

< 0, i.e., tJui∗
+ dui∗v < tJuj∗

+ duj∗v.

However, (13) and (14) require that

tJuj∗
+ duj∗v < tv(t

J) ≤ tJui∗
+ dui∗v

since tJ ∈ RJ . Thus, tI,J can not exist and the case when neither I ⊂ J nor J ⊂ I can not
arise.

Remark 12. We want to highlight some similarities and differences between two- and d-dimensional
inputs. In both cases, the actual number of linear regions depends on the choice of parameter, in
particular, the synaptic weights. However, the d-dimensional case allows for more flexibility in the
structure of the linear regions. Recall that in the two-dimensional case, the boundary of any linear
region is described by hyperplanes of the form (12). This does not hold if d > 2, see e.g. (15).
Here, the weights also affect the shape of the linear region. Refining the connection between the
boundaries of a linear region, its response function and the specific choice of parameter requires
further considerations.

18

Under review as a conference paper at ICLR 2024

An interesting question is what effect width and depth has on the realization of an LSRM and,
in particular, how the number of linear regions scales with the increasing width and depth of the
network. The former problem can be straightforwardly tackled. Any LSRM realizes a CPWL
function under very general conditions; see Theorem 1.

Proof of Theorem 1. In Theorem 5, we showed that the firing time of a LSRM neuron with arbitrar-
ily many input neurons is a CPWL function with respect to the input under the assumption that the
sum of its weight is positive. Since Φ consists of LSRM neurons arranged in layers it immediately
follows that each layer realizes a CPWL mapping. Thus, as a composition of CPWL mappings Φ
itself realizes a CPWL function provided that the input and output encoding are also CPWL func-
tions.

While Theorem 1 together with Proposition 1 and Remark 10 immediately yield Theorem 4, i.e., the
number of linear regions scales at most as 2d − 1 in the input dimension d of a LSRM neuron and
the number is indeed attained under certain conditions, it is not immediate to obtain a non-trivial
upper bound even in the simple case of a one-layer LSRM Φ with din input neurons and dout output
neurons as the following example shows.

Example 3. Via Theorem 4, we certainly can upper bound the number of linear regions generated
by Φ by (2din − 1)dout , i.e., the product of the number of linear regions generated by each individual
output neuron. Unfortunately, the bound is far from optimal. Consider the case when din = dout = 2.
Then, the structure of the linear regions generated by the individual output neurons is given in (12).
In particular, the boundary of the linear regions are described by a set of specific hyperplanes with
common normal vector, where the parameter of the LSRM only induce a shift of the hyperplanes. In
other words, the hyperplanes separating the linear regions are parallel. Hence, each output neuron
generates at most two parallel hyperplanes yielding three linear regions independently (see Figure
2). The number of linear regions generated by the LSRM with two output neurons is therefore given
by the number of regions four parallel hyperplanes can decompose the input domain into, i.e., at
most 5 < 9 = (2din − 1)dout .

A.3 REALIZING RELU WITH LSRMS

Proposition 2. Let c1 ∈ R, c2 ∈ (a, b) ⊂ R and consider f1, f2 : [a, b] → R defined as

f1(x) =

{
x+ c1 , if x > c2
c1 , if x ≤ c2

or f2(x) =

{
x+ c1 , if x < c2
c1 , if x ≥ c2

.

There does not exist a one-layer LSRM with output neuron v and input neuron u1 such that tv(x) =
fi(x), i = 1, 2, on [a, b], where tv(x) denotes the firing time of v on input tu1

= x.

Proof. First, note that a one-layer LSRM realizes a CPWL function. For c2 ̸= 0, fi is not continuous
and therefore can not be emulated by the firing time of any one-layer LSRM. Hence, it is left to
consider the case c2 = 0. If u1 is the only input neuron, then v fires if and only if wu1v > 0 and by
(7) the firing time is given by

tv(x) =
θ

wu1v
+ x+ du1v for all x ∈ [a, b],

i.e., tv ̸= fi. Therefore, we introduce auxiliary input neurons u2, . . . , un and assume without loss
of generality that tui

+ duiv < tuj
+ dujv for j > i. Here, the firing times tui

, i = 2, . . . , n, are
suitable constants. We will show that even in this extended setting tv ̸= fi still holds and thereby
also the claim.

For the sake of contradiction, assume that tv(x) = f1(x) for all x ∈ [a, b]. This implies that there
exists an index set J ⊂ {1, . . . , n} with

∑
j∈J wujv > 0 and a corresponding interval (a1, 0] ⊂

[a, b] such that

c1 = tv(x) =
1∑

i∈J wuiv

(
θv +

∑
i∈J

wuiv(tui + duiv)
)

for all x ∈ (a1, 0],

19

Under review as a conference paper at ICLR 2024

where we have applied (7). Moreover, J is of the form J = {2, . . . , ℓ} for some ℓ ∈ {1, . . . , n}
because (tui

+ duiv)
n
i=2 is in ascending order, i.e., if the spike from uℓ has reached v before v fired,

then so did the spikes from ui, 2 ≤ i < ℓ. Additionally, we know that 1 /∈ J since otherwise tv is
non-constant on (a1, 0] (due to the contribution from u1), i.e., tv ̸= c1 on (a1, 0]. In particular, the
spike from u1 reaches v after the neurons u2, . . . , uℓ already caused v to fire, i.e., we have

x+ du1v ≥ tv(x) = c1 for all x ∈ (a1, 0].

However, it immediately follows that

x+ du1v > du1v ≥ c1 for all x > 0.

Thus, we obtain tv(x) = c1 for x > 0 (since the spike from u1 still reaches v only after v emitted a
spike), which contradicts tv(x) = f1(x) for all x ∈ [a, b].

We perform a similar analysis to show that f2 can not be emulated. For the sake of contradiction,
assume that tv(x) = f2(x) for all x ∈ [a, b]. This implies that there exists an index set I ⊂
{1, . . . , n} with

∑
i∈I wuiv > 0 and a corresponding interval (a2, 0) ⊂ [a, b] such that

x+c1 = tv(x) =
1∑

i∈I wuiv

(
θv+wu1v(x+du1v)+

∑
i∈I\{1}

wuiv(tui
+duiv)

)
for x ∈ (a2, 0),

(18)
where we have applied (7). We immediately observe that 1 ∈ I , since otherwise tv is constant
on (a2, 0). Moreover, by the same reasoning as before we can write I = {1, . . . , ℓ} for some
ℓ ∈ {1, . . . , n}. In order for tv(x) = f2(x) for all x ∈ [a, b] to hold, there needs to exist an index
set J ⊂ {1, . . . , n} with

∑
j∈J wujv > 0 and a corresponding interval [0, b2) ⊂ [a, b] such that

tv = c1 on [0, b2). We conclude that J = {1, . . . ,m} or J = {2, . . . ,m} for some m ∈ {1, . . . , n}.
In the former case, tv is non-constant on [0, b2) (due to the contribution from u1), i.e., tv ̸= c1
on [0, b2). Hence, it remains to consider the latter case. Note that m < ℓ implies that b2 ≤ a2
(as u2, . . . , um already triggered a firing of v before the spike from uℓ arrived) contradicting the
construction a2 < 0 < b2. Similarly, m = ℓ, i.e., J = I \ {1} is not valid because (18) requires that

wu1v∑
i∈I wuiv

= 1 ⇔
∑

i∈I\{1}

wuiv = 0 ⇔
∑
j∈J

wujv = 0.

Finally, m > ℓ also results in a contradiction since

0 <
∑
j∈J

wujv =
∑

i∈I\{1}

wuiv +
∑

j∈J\I

wujv =
∑

j∈J\I

wujv

together with
0 <

∑
i∈I

wuiv =
∑

i∈I\{1}

wuiv + wu1v = wu1v

imply that the neurons {uj : j ∈ {1} ∪ J} also trigger a spike in v. However, the corresponding
interval where the firing of v is caused by {uj : j ∈ {1} ∪ J} is necessarily located between (a2, 0)
and [0, b2), which is not possible.

Remark 13. The proof shows that −f1 also can not be emulated by a one-layer LSRM. Moreover,
by adjusting (18) we observe that a necessary condition for −f2 to be realized is that

wu1v∑
i∈I wuiv

= −1 ⇔ −
∑

i∈I\{1}

wuiv = 2wu1v ⇔ −1

2

∑
i∈I\{1}

wuiv = wu1v.

Under this condition −f2 can indeed be realized by a one-layer LSRM as the following statement
confirms.
Proposition 3. Let a < 0 < b, c and consider f : [a, b] → R defined as

f(x) =

{
−x+ c , if x < 0

c , if x ≥ 0
.

There exists a one-layer LSRM Φ with output neuron v and input neuron u1 such that tv(x) = f(x)
on [a, b], where tv(x) denotes the firing time of v on input tu1 = x.

20

Under review as a conference paper at ICLR 2024

Proof. We introduce an auxiliary input neuron with constant firing time tu2
∈ R and specify the

parameter of Φ = ((W,D,Θ)) in the following manner (see Figure 3a):

W =

(
− 1

2
1

)
, D =

(
d1
d2

)
,Θ = θ,

where θ, d1, d2 > 0 are to be specified. Note that either u2 or u1 together with u2 can trigger a spike
in v since wu1v < 0. Therefore, applying (7) yields that u2 triggers a spike in v under the following
circumstances:

tv(x) = θ + tu2
+ d2 if tv(x) ≤ tu1

+ d1 = x+ d1.

Hence, this case only arises when

θ + tu2
+ d2 ≤ x+ d1 ⇔ θ + tu2

+ d2 − d1 ≤ x.

To emulate f the parameter needs to satisfy

θ + tu2
+ d2 − d1 ≤ x for all x ∈ [0, b] and θ + tu2

+ d2 − d1 > x for all x ∈ [a, 0)

which simplifies to
θ + tu2

+ d2 − d1 = 0. (19)
If the additional condition

θ + tu2
+ d2 = c (20)

is met, we can infer that

tv(x) =

{
2(θ + tu2

+ d2)− (x+ d1) , if x < 0

θ + tu2
+ d2 , if x ≥ 0

=

{
−x+ c , if x < 0

c , if x ≥ 0
.

Finally, it is immediate to verify that the conditions (19) and (20) can be satisfied simultaneously
due to the assumption that c > 0, e.g., choosing d1 = d2 = c and tu2 = −θ is sufficient.

Remark 14. We wish to mention that we can not adapt the previous construction to emulate ReLU
with a consistent encoding scheme, i.e., such that the input and output firing times encode analog
values in the same format with respect to reference times Tin, Tout ∈ R, Tin < Tout. Indeed, it is
obvious that using the input encoding Tin + x and output decoding −Tout + tv , does not realize
ReLU. Similarly, one verifies that the input encoding Tin −x and output decoding Tout − tv also does
not yield the desired function. However, choosing the input encoding Tin − x and output decoding
−Tout + tv gives

RΦ(x) =

{
−Tout − Tin + c+ x , if x > Tin

−Tout + c , if x ≤ Tin
.

Setting Tin = 0 and Tout = c implies that Φ realizes ReLU with inconsistent encoding Tin − x and
Tout +RΦ(x). Nevertheless, we want a consistent encoding scheme that allows us to compose ReLU
(as typically is the case in ANNs) whereby an inconsistent scheme is disadvantageous.

Applying the previous construction and adding another layer is adequate to emulate f1 defined in
Proposition 2 by a two-layer LSRM.
Proposition 4. Let a < 0 < b < 0.5 · c and consider f : [a, b] → R defined as

f(x) =

{
x+ c , if x > 0

c , if x ≤ 0

There exists a two-layer LSRM Φ with output neuron v and input neuron u1 such that tv(x) = f(x)
on [a, b], where tv(x) denotes the firing time of v on input tu1

= x.

Proof. We introduce an auxiliary input neuron u2 with constant firing time tu2 ∈ R and specify the
parameter of Φ = ((W 1, D1,Θ1), (W 2, D2,Θ2)) in the following manner:

W 1 =

(
− 1

2 0
1 2

)
, D1 =

(
d 0
d d

2

)
,Θ1 =

(
θ
2θ

)
,W 2 =

(
− 1

2
1

)
, D2 =

(
d
d

)
,Θ2 = θ, (21)

where d ≥ 0 and θ > 0 is chosen such that θ + tu2
> b. We denote the input neurons by u1, u2,

the neurons in the hidden layer by z1, z2 and the output neuron by v. Note that the firing time of

21

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 3: (a) Computation graph associated with an LSRM with two input neurons and one output
neuron that realizes f as defined in Proposition 3. (b) Stacking the network in (a) twice results in an
LSRM that realizes the ReLU activation function.

z1 depends on u1 and u2. In particular, either u2 or u1 together with u2 can trigger a spike in z1
since wu1z1 < 0. Therefore, applying (7) yields that u2 triggers a spike in z1 under the following
circumstances:

tz1(x) = θ + tu2
+ d if tz1(x) ≤ tu1

+ d = x+ d.

Hence, this case only arises when

θ + tu2
+ d ≤ x+ d ⇔ θ + tu2

≤ x. (22)

However, by construction θ + tu2
> b, so that (22) does not hold for any x ∈ [a, b]. Thus, we

conclude via (7) that

tz1(x) = 2(θ + tu2 + d)− (x+ d) = 2(θ + tu2) + d− x.

By construction, the firing time tz2 = θ + 2tu2
+ d of z2 is a constant which depends on the input

only via u2. A similar analysis as in the first layer shows that

tv(x) = θ + tz2 + d if tv(x) ≤ tz1 + d = 2(θ + tu2
) + d− x+ d = 2(θ + tu2

+ d)− x.

Hence, z2 triggers a spike in v when

θ + θ + 2tu2
+ d+ d ≤ 2(θ + tu2

+ d)− x ⇔ x ≤ 0.

If the additional condition

θ + tz2 + d = c ⇔ 2(θ + d+ tu2
) = c (23)

is met, we can infer that

tv(x) =

{
2(θ + tz2 + d)− (tz1(x) + d) , if x > 0

θ + tz2 + d , if x ≤ 0

=

{
2c− (2(θ + tu2

) + d− x+ d) , if x > 0

c , if x ≤ 0

=

{
x+ c , if x > 0

c , if x ≤ 0
.

Choosing θ, tu2
and d sufficiently small under the given constraints guarantees that (23) holds, i.e.,

Φ emulates f as desired.

22

Under review as a conference paper at ICLR 2024

Remark 15. It is again important to specify the encoding scheme via reference times Tin, Tout ∈ R,
Tin < Tout to ensure that Φ realizes ReLU. The input encoding Tin −x and output decoding Tout − tv
does not yield the desired output since it results in a realization of the type −ReLU(−x). In contrast,
the input encoding Tin + x and output decoding −Tout + tv with Tin = 0 and Tout = c gives

RΦ(x) = −Tout + tv(Tin + x) = −Tout + f(Tin + x) =

{
x , if x > 0

0 , if x ≤ 0
= ReLU(x).

In this case, it is necessary to choose the reference time Tin = 0 to ensure that the breakpoint is
also at zero. Next, we show that there is actually more freedom in choosing the reference time by
analysing the construction in the proof more carefully.
Proposition 5. Let a < 0 < b and consider f : [a, b] → R defined as

f(x) =

{
x , if x > 0

0 , if x ≤ 0

There exists a two-layer LSRM Φ with realization RΦ = f on [a, b] with encoding scheme Tin + x
and decoding −Tout + tv , where v is the output neuron of Φ, Tin ∈ R and Tout = Tin + c for some
constant c > 0 depending on the parameters of Φ.

Proof. Performing a similar construction and the same analysis as in the proof of Proposition 4
yields the claim. First, we slightly adjust Φ = ((W 1, D1,Θ1), (W 2, D2,Θ2)) in comparison to
(21) and consider the network

W 1 =

(
− 1

2 0
1 1

)
, D1 =

(
d 0
d d

)
,Θ1 =

(
θ
θ

)
,W 2 =

(
− 1

2
1

)
, D2 =

(
d
d

)
,Θ2 = θ,

where d ≥ 0 and θ > b are fixed (see Figure 3b). Second, we choose the input reference time
Tin ∈ R and fix the input of the auxiliary input neuron u2 as tu2

= Tin ∈ R. Finally, setting the
output reference time Tout = 2(θ+ d) + Tin is sufficient to guarantee that Φ realizes f on [a, b].

A.4 REALIZING RELU NETWORKS BY SPIKING NEURAL NETWORKS

In this section, we show that an LSRM has the capability to reproduce the output of any ReLU
network. Specifically, given access to the weights and biases of an ANN, we construct an LSRM
and set the parameter values based on the weights and biases of the given ANN. This leads us to
the desired result. The essential part of our proof revolves around choosing the parameters of an
LSRM such that it effectively realizes the composition of an affine-linear map and the non-linearity
represented by the ReLU activation. The realization of ReLU with LSRMs is proved in the previous
Section A.3. To realize an affine-linear function using a LSRM neuron, it is necessary to ensure that
the spikes from all the input neurons together result in the firing of an output neuron instead of any
subset of the input neurons. We achieve that by appropriately adjusting the value of the threshold
parameter. As a result, a LSRM neuron, which implements an affine-linear map, avoids partitioning
of the input space.

Setup for the proof of Theorem 3 Let d, L ∈ N be the width and the depth of an ANN Ψ,
respectively, i.e.,

Ψ = ((A1, B1), (A2, B2), . . . , (AL, BL)), where (Aℓ, Bℓ) ∈ Rd×d × Rd, 1 ≤ ℓ < L,

(AL, BL) ∈ R1×d × R.

For a given input domain [a, b]d ⊂ Rd, we denote by Ψℓ = ((Aℓ, Bℓ)) the ℓ-th layer, where y0 ∈
[a, b]d and

yl = RΨl(yl−1) = σ(Alyl−1 +Bl), 1 ≤ ℓ < L,

yL = RΨL(yL−1) = ALyL−1 +BL (24)

so that RΨ = RΨL ◦ · · · ◦ RΨ1 .

For the construction of the corresponding LSRM we refer to the associated weights and delays
between two LSRM neurons u and v by wuv and duv , respectively.

23

Under review as a conference paper at ICLR 2024

(a) (b) (c) (d)

Figure 4: (a) Computation graph of an ANN with two input and one output unit realizing
σ(f(x1, x2)), where σ is the ReLU activation function. (b) Computation graph associated with
an LSRM resulting from the concatenation of Φσ and Φf that realizes σ(f(x1, x2)). The auxiliary
neurons are shown in red. (c) Same computation graph as in (b); when parallelizing two identical
networks, the dotted auxiliary neurons can be removed and auxiliary neurons from (b) can be used
for each network instead. (d) Computation graph associated with an LSRM as a result of the paral-
lelization of two subnetworks Φσ◦f1 and Φσ◦f2 . The auxiliary neuron in the output layer serves the
same purpose as the auxiliary neuron in the input layer and is needed when concatenating two such
subnetworks Φσ◦f .

Proof of Theorem 3. Any multi-layer ANN Ψ with ReLU activation is simply an alternating com-
position of affine-linear functions Alyl−1 + Bl and a non-linear function represented by σ. To
generate the mapping realized by Ψ, it suffices to realize the composition of affine-linear functions
and the ReLU non-linearity and then extend the construction to the whole network using concatena-
tion and parallelization operations. We prove the result via the following steps; see also Figure 4 for
a depiction of the intermediate constructions.

Step 1: Realizing ReLU non-linearity.
Proposition 5 gives the desired result.

Step 2: Realizing affine-linear functions with one-dimensional range.
Let f : [a, b]d → R be an affine-linear function

f(x) = CTx+ s, CT = (c1, . . . , cd) ∈ Rd, s ∈ R. (25)

Consider a one-layer LSRM that consists of an output neuron v and d input units u1, . . . , ud. Via
(7) the firing time of v as a function of the input firing times on the linear region RI corresponding
to the index set I = {1, . . . , d} is given by

tv(tu1
, . . . , tud

) =
θv∑

i∈I wuiv
+

∑
i∈I wuiv(tui + duiv)∑

i∈I wuiv
provided that

∑
i∈I

wuiv > 0.

Introducing an auxiliary input neuron ud+1 with weight wud+1v = 1 −
∑

i∈I wuiv ensures that∑
i∈I∪{d+1} wuiv > 0 and leads to the firing time

tv(tu1
, . . . , tud+1

) = θv +
∑

i∈I∪{d+1}

wuiv(tui
+ duiv) on RI∪{d+1}.

Setting wuiv = ci for i ∈ I and dujv = d′ ≥ 0 for j ∈ I ∪ {d+ 1} yields

tv(tu1 , . . . , tud+1
) = θv + wud+1v · tud+1

+ d′ +
∑
i∈I

citui on RI∪{d+1} ∩ [a, b]d.

24

Under review as a conference paper at ICLR 2024

Therefore, an LSRM Φf = (W,D,Θ) with parameters

W =

 c1
...

cd+1

 , D =

d′

...
d′

 ,Θ = θ > 0, where cd+1 = 1−
∑
i∈I

ci,

and the usual encoding scheme Tin/Tout + · and fixed firing time tud+1
= Tin ∈ R realizes

RΦf (x) = −Tout + tv(Tin + x1, . . . , Tin + xd, Tin) = −Tout + θ + Tin + d′ +
∑
i∈I

cixi (26)

= −Tout + θ + Tin + d′ + f(x1, . . . , xd)− s on RI∪{d+1} ∩ [a, b]d. (27)

Choosing a large enough threshold θ ensures that a spike in v is necessarily triggered after all the
spikes from u1, . . . , ud+1 reached v so that [a, b]d ⊂ RI∪{d+1} holds. It suffices to set

θ ≥ sup
x∈[a,b]d

sup
xmin≤t−Tin−d′≤xmax

Pv(t),

where xmin = min{x1, . . . , xd, 0} and xmax = max{x1, . . . , xd, 0}, since this implies that the
potential Pv(t) is smaller than the threshold to trigger a spike in v on the time interval associated
to feasible input spikes, i.e., v emits a spike after the last spike from an input neuron arrived at v.
Applying (5) shows that for x ∈ [a, b]d and t ∈ [xmin + Tin + d′, xmax + Tin + d′]

Pv(t) =
∑
i∈I

wuiv(t− (Tin + xi)− duiv) + wud+1v(t− Tin − dud+1v) = t− d′ − Tin +
∑
i∈I

cixi

≤ xmax + d ∥C∥∞ ∥x∥∞ ≤ (1 + d ∥C∥∞)max{|a|, |b|}.

Hence, we set

θ = (1 + d ∥C∥∞)max{|a|, |b|}+ s+ |s| and Tout = θ − s+ Tin + d′

to obtain via (26) that

RΦf (x) = −Tout + tv(Tin + x1, . . . , Tin + xd, Tin) = f(x) for x ∈ [a, b]d. (28)

Note that the reference time Tout = (1 + d ∥C∥∞)max{|a|, |b|} + |s| + Tin + d′ is independent
of the specific parameters of f in the sense that only upper bounds ∥C∥∞ , |s| on the parameters
are relevant. Therefore, Tout (with the associated choice of θ) can be applied for different affine
linear functions as long as the upper bounds remain valid. This is necessary for the composition and
parallelization of subnetworks in the subsequent construction.

Step 3: Realizing compositions of affine-linear functions with one-dimensional range and ReLU.
The next step is to realize the composition of ReLU σ with an affine linear mapping f defined in
(25). To that end, we want to concatenate the networks Φσ and Φf constructed in Step 1 and Step 2,
respectively, via Lemma 1. To employ the concatenation operation we need to perform the following
steps:

1. Find an appropriate input domain [a′, b′] ⊂ R, that contains the image f([a, b]d) so that
parameters and reference times of Φσ can be fixed appropriately (see Proposition 5 for the
detailed conditions on how to choose the parameter).

2. Ensure that the output reference time T f
out of Φf equals the input reference time Tσ

in of Φσ .

3. Ensure that the number of neurons in the output layer of Φf is the same as the number of
input neurons in Φσ .

For the first point, note that

|f(x)| = |CTx+ s| ≤ d ∥C∥∞ · ∥x∥∞ + |s| ≤ d ∥C∥∞ ·max{|a|, |b|}+ |s| for all x ∈ [a, b]d.

Hence, we can use the input domain

[a′, b′] = [−d ∥C∥∞ ·max{|a|, |b|}+ |s|, d ∥C∥∞ ·max{|a|, |b|}+ |s|]

25

Under review as a conference paper at ICLR 2024

and specify the parameters of Φσ accordingly. Additionally, recall from Proposition 5 that Tσ
in can

be chosen freely, so we may fix Tσ
in = T f

out, where T f
out is established in Step 2. It remains to consider

the third point. In order to realize ReLU an additional auxiliary neuron in the input layer of Φσ with
constant input Tσ

in was introduced. Hence, we also need to add an additional output neuron in Φf

with (constant) firing time T f
out = Tσ

in so that the corresponding output and input dimension and their
specification match. This is achieved by introducing a single synapse from the auxiliary neuron in
the input layer of Φf to the newly added output neuron and by specifying the parameters of the
newly introduced synapse and neuron suitably. Formally, the adapted network Φf = (W,D,Θ) is
given by

W =

c1 0
...

...
cd 0

cd+1 1

 , D =

d′ 0
...

...
d′ 0
d′ d′

 ,Θ =

(
θ

T f
out − T f

in − d′

)
,

where the values of the parameters are specified in Step 2.

Then the realization of the concatenated network Φσ◦f is the composition of the individual real-
izations. This is exemplarily demonstrated in Figure 4b for the two-dimensional input case. By
analyzing Φσ◦f , we conclude that a three-layer LSRM with

N(Φσ◦f) = N(Φσ)−N0(Φ
σ) +N(Φf) = 5− 2 + d+ 3 = d+ 6

computational units can realize σ ◦ f on [a, b]d, where N0(Φ
σ) denotes the number of neurons in

the input layer of Φσ .

Step 4: Realizing layer-wise computation of Ψ.
The computations performed in a layer Ψℓ of Ψ are described in (8). Hence, for 1 ≤ ℓ < L the
computation can be expressed as

RΨℓ(yl−1) = σ(Alyl−1 +Bl) =

σ(
∑d

i=1 A
l
1,iy

l−1
i +Bl

1)
...

σ(
∑d

i=1 A
l
d,iy

l−1
i +Bl

d)

 =:

σ(f1(y
l−1))

...
σ(fd(y

l−1))

 ,

where f ℓ
1 , . . . , f

ℓ
d are affine linear functions with one-dimensional range on the same input domain

[aℓ−1, bℓ−1] ⊂ Rd, where [a0, b0] = [a, b] and [aℓ, bℓ] is the range of

(σ ◦ f ℓ−1
1 , . . . , σ ◦ f ℓ−1

d)([aℓ−1, bℓ−1]d).

Thus, via Step 3, we construct LSRMs Φℓ
1, . . . ,Φ

ℓ
d that realize σ ◦ f ℓ

1 , . . . , σ ◦ f ℓ
d on [aℓ−1, bℓ−1].

Note that by choosing appropriate parameters in the construction performed in Step 2 (as described
below (28)), e.g.,

∥∥Al
∥∥
∞ and

∥∥Bl
∥∥
∞, we can employ the same input and output reference time

for each Φℓ
1, . . . ,Φ

ℓ
d. Consequently, we can parallelize Φℓ

1, . . . ,Φ
ℓ
d (see Lemma 2) and obtain net-

works Φℓ = P (Φℓ
1, . . . ,Φ

ℓ
d) realizing RΨℓ on [aℓ−1, bℓ−1]. Finally, ΨL can be directly realized

via Step 2 by an LSRM ΦL (as in the last layer no activation function is applied and the output is
one-dimensional). Although Φℓ already performs the desired task of realizing RΨℓ we can slightly
simplify the network. By construction in Step 3, each Φℓ

i contains two auxiliary neurons in the
hidden layers. Since the input and output reference time is chosen consistently for Φℓ

1, . . . ,Φ
ℓ
d, we

observe that the auxiliary neurons in each Φℓ
i perform the same operations and have the same fir-

ing times. Therefore, without changing the realization of Φℓ we can remove the auxiliary neurons
in Φℓ

2, . . . ,Φ
ℓ
d and introduce synapses from the auxiliary neurons in Φℓ

1 accordingly. This is ex-
emplarily demonstrated in Figure 4c for the case d = 2. After this modification, we observe that
L(Φℓ) = L(Φℓ

i) = 3 and

N(Φℓ) = N(Φℓ
1) +

d∑
i=2

(
N(Φℓ

i)− 2−N0(Φ
ℓ
i)
)
= dN(Φℓ

1)− (d− 1)(2 +N0(Φ
ℓ
1))

= d(d+ 6)− 2(d− 1)− (d− 1)(d+ 1) = 4d+ 3 for 1 ≤ ℓ < L,

whereas L(ΦL) = 1 and N(ΦL) = d+ 2.

26

Under review as a conference paper at ICLR 2024

Step 5: Realizing compositions of layer-wise computations of Ψ.
The last step is to compose the realizations RΦ1 , . . . ,RΦL to obtain the realization

RΦL ◦ · · · ◦ RΦ1 = RΨL ◦ · · · ◦ RΨ1 = RΨ.

As in Step 3, it suffices again to verify that the concatenation of the networks RΦ1 , . . . ,RΦL is
feasible. First, note that for ℓ = 1, . . . , L the input domain of RΦℓ is given by [aℓ−1, bℓ−1] so
that, we can fix the suitable output reference time TΦℓ

out based on the parameters of the network,
the input domain [aℓ−1, bℓ−1], and some input reference time TΦℓ

in ∈ R. By construction in Steps
2 - 4 TΦℓ

in can be chosen freely. Hence setting TΦℓ+1

in = TΦℓ

out ensures that the reference times of
the corresponding networks agree. It is left to align the input dimension of Φℓ+1 and the output
dimension of Φℓ for ℓ = 1, . . . , L − 1. Due to the auxiliary neuron in the input layer of Φℓ+1,
we also need to introduce an auxiliary neuron in the output layer of Φℓ (see Figure 4d) with the
required firing time TΦℓ+1

in = TΦℓ

out . Similarly, as in Step 3, it suffices to add a single synapse from
the auxiliary neuron in the previous layer to obtain the desired firing time.

Thus, we conclude that Φ = ΦL • · · · •Φ1 realizes RΨ on [a, b], as desired. The complexity of Φ in
the number of layers and neurons is given by

L(Φ) =

L∑
ℓ=1

L(Φℓ) = 3L− 2 = 3L(Ψ)− 2

and

N(Φ) = N(Φ1) +

L∑
ℓ=2

(
N(Φℓ)−N0(Φ

ℓ)
)
+ (L− 1)

= 4d+ 3 + (L− 2)(4d+ 3− (d+ 1)) + (d+ 2− (d+ 1)) + (L− 1)

= 3L(d+ 1)− (2d+ 1)

= N(Ψ) + L(2d+ 3)− (2d+ 2)

Remark 16. Note that the delays play no significant role in the proof of the above theorem. Nev-
ertheless, they can be employed to alter the timing of spikes, consequently impacting the firing time
and the resulting output. However, the exact function of delays requires further investigation. The
primary objective is to present a construction that proves the existence of an LSRM capable of
accurately reproducing the output of any ReLU network.

A.5 PROOF OF EXAMPLE 1

Recall the function introduced in Example 1,

f(x) =

x, x ≤ −θ
x−θ
2 , −θ < x < θ

0, x ≥ θ

= −1

2
σ(−x− θ)− 1

2
σ(−x+ θ) for x ∈ [a, b] ⊂ R, θ > 0,

that provides insights under which circumstances LSRMs may express some target function with
lower complexity than any corresponding ReLU-ANN.

Proof of Example 1. First, we realize f using LSRM neurons. Consider an LSRM Φ = (W,D,Θ),

W =

(
1
1

)
, D =

(
d
d

)
,Θ = θ

where d ≥ 0. Denote the input neurons by u1 and u2 and the output neuron by v. We set the input
and output reference times to Tin = a and Tout = θ + Tin + d, respectively. Following the usual
encoding scheme, the input neuron u1 fires at time tu1 = Tin + x and we fix tu2 = Tin. Next, we
consider two cases (1) |x| ≥ θ and (2) |x| < θ.

Case (1) In this case, an isolated spike from either one of the two input neurons causes the output
neuron v to fire at time tv . In particular, if x is negative, then u1 triggers the spike in v, whereas,

27

Under review as a conference paper at ICLR 2024

if x is positive, then u2 triggers the spike in v. Using equation (7), it can be directly verified that
tv = Tout + f(x), i.e, RΦ(x) = f(x) for |x| ≥ θ.

Case (2) In this case, a spike in v will be triggered by both the input neurons. By using equation (7),
we observe that tv = Tout +

x−θ
2 , i.e, RΦ(x) = f(x) for |x| < θ.

Next, observe that f can be realized using a two-layer ReLU-ANN Ψ = ((A1, B1), (A2, B2)) with
two units in the hidden layer and one output unit, where

A1 = (−1 −1) , B1 = (−θ θ) , A2 =

(
−0.5
−0.5

)
, B2 = 0.

Moreover, note that Ψ is optimal in terms of complexity. Indeed, a single ReLU unit with any
number of incoming edges separates the input space into at most two linear regions. Since f has
three different linear regions, it is not possible to capture all the linear regions by a single ReLU unit.
Hence, at least two hidden units, i.e., four units with input and output, and two layers are needed
realize f via a ReLU-ANN.

28

	Introduction
	Spiking neural networks
	Computation in terms of firing time
	Input and output encoding

	Main results
	LSRMs realize continuous piecewise linear mapping
	Equivalence of approximation
	Number of linear regions

	Related work
	Discussion
	Appendix
	Spiking neural network calculus
	Realizations of LSRMs
	Spiking neuron with two inputs
	Spiking neuron with arbitrarily many inputs

	Realizing ReLU with LSRMs
	Realizing ReLU networks by spiking neural networks
	Proof of Example 1

