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Abstract

Object recognition in humans depends primarily on shape cues. We have developed
a new approach to measuring the shape recognition performance of a vision system
based on nearest neighbor view matching within the system’s embedding space.
Our performance benchmark, ShapeY, allows for precise control of task difficulty,
by enforcing that view matching span a specified degree of 3D viewpoint change
and/or appearance change. As a first test case we measured the performance of
ResNet50 pre-trained on ImageNet. Matching error rates were high. For example,
a 27◦change in object pitch led ResNet50 to match the incorrect object 45% of
the time. Appearance changes were also highly disruptive. Examination of false
matches indicates that ResNet50’s embedding space is severely "tangled". These
findings suggest ShapeY can be a useful tool for charting the progress of artificial
vision systems towards human-level shape recognition capabilities.

1 Introduction

Object recognition in humans is based primarily on shape, (Grill-Spector et al., 2001; Biederman,
1987; Biederman and Ju, 1988; Hoffman, 1998; Kourtzi, 2001). In contrast, deep networks (DNs)
trained on conventional object and scene datasets such as ImageNet have only a weak grasp of
true shape, instead classifying images mainly based on color, texture, local shape, and context cues
(Baker et al., 2018; Brendel and Bethge, 2019; Geirhos et al., 2019). The lack of a "shape bias" in
conventional DNs is a likely contributor to the various un-biological performance characteristics of
DNs, including their susceptibility to adversarial inputs (Goodfellow et al., 2015); their propensity to
confidently classify random noise patterns as specific objects; their poor generalization behavior; and
their inability to recognize objects based on line drawings, though line drawings explicitly represent
the key information needed for recognition in humans (Brendel and Bethge, 2019; Geirhos et al.,
2019; Russakovsky et al., 2015).

A poor grasp of global object shape does not prevent conventional DNs from performing well on
benchmark tasks, however: state-of-the-art top-5 performance on ImageNet is approaching 99%
(Pham et al., 2021). It therefore seems that ImageNet does not test, and is evidently not well suited
for training, the basic representational capability that underlies human object and scene vision.
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Figure 1: Complete set of 3D object models (from shapenet.org) rendered using Blender at their
"origin viewpoints". Objects were grouped into 20 categories, with 10 instances of each.

We have developed a new benchmarking approach based on the idea – similar to that motivating some
contrastive learning approaches (Chen et al., 2020) – that the core competence of a 3D recognition
system is to produce similar internal visual codes when familiar objects or scenes are viewed from
different perspectives, under different lighting conditions, and/or with different backgrounds. On the
other hand, to state the obvious, the recognizing system should produce different codes for different
objects, regardless of viewpoint, lighting conditions, etc. The ability to perform well at this basic
matching task is, in our view, a pre-requisite for performing well and generalizing well in real-world
object recognition tasks. Conversely, a recognition system that performs poorly at this task cannot
be said to understand shape. In the following, we describe our image set, our measures of task
performance, and the way we control task difficulty.

2 The ShapeY Image Set

Constructing a challenging 3D shape recognition benchmark based on nearest-neighbor view matching
requires (1) the ability to densely sample 3D views for each represented object; (2) the ability to
manipulate (or eliminate) all non-shape-related cues; and (3) the availability of a large and diverse set
of 3D object models. Borji et al. (2016) provide a comprehensive review of 3D view-based image
databases; some meet one or two of these requirements, but none – or any other database that we
are aware of – satisfies all three. We therefore set out to produce a new object view database using
Blender and publicly available 3D models from Shapenet.org (Chang et al., 2015).

Our image database currently contains ∼ 63,000 rendered images of 3D objects. Each 256x256
image depicts a single object, grey in color, against a black background. The database contains 20
basic level object categories (chair, airplane, plant, etc.), 10 instances of each category (Figure 1),
and 321 3D views of each instance. Object views are grouped into "series" representing different
combinations of viewpoint transformations (CVTs). Each series is centered on a common "origin
view" of the object, with 5 viewpoint steps moving away from the origin in both directions for a total
of 11 views per series. Five types of rigid transformation were used (x, y, pitch, roll and yaw; scale
changes were excluded so as to preserve object detail that would be lost at smaller scales), leading
to 31 possible CVTs (31 = 5 transformations chosen 1, 2, 3, 4, or 5 at a time). In each viewpoint
step the object was transformed simultaneously along all dimensions in the CVT. For example, in a
series combining "x" and "roll", each step in the series came with a horizontal shift of ∼3.3% of the
image width, combined with 9◦of image plane rotation. In series’ containing "pitch" or "yaw", the
object was rotated in depth around the horizontal or the vertical axis of the object, respectively. The
step sizes meant that over the 10 steps from one end of a series to the other, the object could shift
by ∼33% of the image width and/or rotate by 90◦, or both. Examples of all series that contained
transformations in both pitch and yaw (’pw’) are shown in Figure 2.
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Figure 2: Positive match candi-
dates (PMCs) for view #8 (blue
box) out of 11 in the series with
CVT = ’pw’. Rows show all 8
series containing ’pw’. The dif-
ficulty of the matching task is
controlled by excluding positive
match candidates in the "vicin-
ity" of the reference view in
viewpoint space. The "exclusion
zone" shown (red shading) is for
an exclusion radius re = 2.

3 Novel features of the ShapeY performance benchmark

ShapeY has three notable features. First, it is designed to probe the micro-structure of the embedding
space of a shape-representing network by directly asking "what looks most similar to what" in that
space. Given an input image, a response is scored as "correct" if the closest match is to another view
of the same object; "categorically correct" if the closest match is to a view of a different object within
the same category; and "incorrect" if the closest match is to a "distractor" from a different object
category. Thus, unlike most OR benchmarks in wide use, in which a response is considered correct
if an object view is rated as generally better matched to the correct class compared to other classes
(e.g. by computing cosine distance to a class prototype in the final layer of a DN), our benchmark
enforces the stronger condition that there should be no single view of any other object that matches
an input better than the best-matching same-object view. Thus, given a particular view of a lamp,
even if 99 out of 100 of the closest views in the database are images of the same lamp, if the single
closest match is a view of a boat, the trial is scored as an error. Measuring performance in this "worst
case" manner allows us to more sensitively detect "tangles" in the fine structure of the shape-space
embedding (DiCarlo and Cox, 2007).

Second, our benchmark allows task difficulty to be finely controlled through the use of "exclusions".
In the case of a viewpoint exclusion, we choose an exclusion radius re, and then eliminate as positive
match candidates (PMCs) all same-object views surrounding, and therefore most similar to, the
input view, up to re steps along a designated set of transformation dimensions. For example, if
re = 2, and ’pw’ is the designated set of exclusion transformations, then PMCs must be at least 3
viewpoint steps away from the reference view in both pitch and yaw, and can therefore be drawn only
from the 8 series whose CVTs contain both pitch and yaw (’pw’, ’xpw’, ’xypw’, ’xprw’, ’xyprw’,
’ypw’, ’prw’, ’yprw’) (Figure 2). This particular set of exclusion parameters guarantees that any
successful match to a reference view must have bridged at least a 27◦change in both pitch and yaw,
and could also differ from the reference view by 3 viewpoint steps along one or more other viewpoint
dimensions. Measuring the decline in matching performance as re increases allows us to quantify
the degree of 3D viewpoint variation that the shape-representing system can tolerate before false
matches to similar-looking distractor objects begin to increase in frequency. Similarly, by varying the
composition of the exclusion transformation set, we can test which dimensions of viewpoint variation,
singly or in combination, are most disruptive to shape-matching performance.

In addition to ignoring modest changes in viewpoint, a shape-based recognition system must be
capable of ignoring changes in non-shape cues, including the colors and textures of objects and
backgrounds, changes in lighting conditions, etc. (this is the main idea underlying contrastive
learning). We quantified the ability to cope with these types of changes through the use of "appearance
exclusions". An example of an appearance exclusion would be a "contrast exclusion", in which object
views rendered in the original format with black backgrounds (Figure 1) could only be matched to
views of themselves with light backgrounds. That is, views containing the original black backgrounds
were excluded from the set of PMCs. To put this into practice, we doubled the database to include a
second, light background version of every object view. In the "hard" version of the contrast exclusion
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Figure 3: Nearest neigh-
bor matching error, plot-
ted against the exclu-
sion radius re. Top row
shows errors for object
matching; bottom row
shows errors for cate-
gory matching. Three
columns show results
for exclusion transfor-
mation sets with 1, 2,
and 3 viewpoint trans-
formation dimensions,
respectively.

task, given a "reference" view, all same-object views with dark backgrounds were excluded as match
candidates, forcing the system to recognize the same shape despite the change in background. All
views of other objects were not subject to the exclusion, however, and were available to match in the
original black background only. In the "soft" version of the task, all match candidates were subject to
the exclusion, including all views of different objects and of the same object.

4 Results

We tested the performance of a ResNet50 (He et al., 2015), pre-trained on ImageNet (Paszke et al.,
2019). Results of a basic matching test are shown in Figure 3. Error rates averaged over all
63,000 views are shown in Figure 3 for all exclusion transformations involving either 1, 2, or 3
transformation dimensions (columns 1-3, respectively). Error rates were surprisingly high. For
the single transformation dimension ’p’, error rate was already 45% for re= 2, corresponding to an
enforced 27◦change in object pitch. When pitch and yaw were combined (’pw’), the error rate climbed
to nearly 60% at re= 2. Error rates were generally worse when more transformation dimensions were
combined; worse for depth rotations than image plane rotations; and much worse for rotations than
shifts. (The near perfect shift invariance for re = 2 was expected given the ResNet50 embedding was
taken from the global average pooling layer, which explicitly pools across image shifts). Category
error rates were lower, but remained substantial. For example, a 27◦change in object pitch and roll
led to a 33% error rate, meaning that 1 in every 3 views in the database was judged to be most similar
to view from an entirely different object category.

The numerical results shown in Figure 3 provide a quantitative summary of the shape representation
capabilities of a vision system, and especially the ability to tolerate 3D viewpoint variation. Our
approach to nearest-neighbor matching with exclusions can also provide a qualitative measure of
the "tangledness" of the shape embedding by analyzing shape match failures. Match failures are
particularly informative regarding the quality of the shape embedding: when a view of a reference
object is found to be very close to a view of even one other object of very different shape, it is
likely that the reference view is close to a large number of other very different shapes as well, whose
discovery depends mainly on having a sufficient number of distractors in the view database. Several
examples of match failures are shown in Figure 4, along with same-object match candidates that were
rejected by the DN.

We next tested matching performance of ResNet50 with the added challenge of a "contrast exclusion".
Figure 5 shows results for the exclusion transformation ’pr’ using the both object and category
matching criteria. When a reference view could only be matched to contrast reversed views (soft
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Figure 4: Eight examples of
nearest-neighbor matching er-
rors by a pre-trained ResNet50.
Within each group of 3 images,
the best match to the reference
view (according to ResNet50) is
shown at left, and a more similar
appearing correct match rejected by
the DN is shown at right. Values
in orange show the correlation
between that view’s embedding
vector and that of the reference view.

version), category error rates climbed from 33% to 42% at re= 2, and object matching errors climbed
above 70%. The difficulty encountered by ResNet50 in matching contrast reversed views is striking:
even when the PMCs for a reference view included the exact same object view but for the change in
background, the reference view was falsely matched more than 70% of the time to an object from an
entirely different category.

Figure 5: Nearest-neighbor matching er-
rors when a "contrast exclusion" was com-
pounded with viewpoint exclusions. Re-
sults shown is for the exclusion transforma-
tion set ’pr’. The first point on the x-axis
means that all contrast-reversed views, in-
cluding the reference view itself, were avail-
able as positive match candidates.

5 Discussion

As an approach to OR performance testing, pairwise view matching has three particular merits. First,
the ability to recognize familiar objects and scenes despite modest changes in viewing distance,
angle, lighting, and background is an innate capability of biological vision systems, and is arguably a
more fundamental visual capability than image classification. Thus, we can imagine a vision system
that can reliably rate the similarity of two views of an object without knowing the object class, but
it would seem paradoxical if a system could correctly classify objects, while being unable to rate
the similarity of two object views. In short, pairwise view matching is a good starting point for
evaluating recognition competence. Second, our approach allows task difficulty to be controlled by
parametrically varying the set of views that are qualified to be positive match candidates for any given
reference view. Third, collecting and analyzing matching errors allows us to draw a rough equivalence
between an amount of viewpoint change, which should minimally alter an object’s shape code, and
an amount of actual shape change. If we discover that a modest depth rotation of an object regularly
alters the embedding vector as much as switching to a different object category, then the embedding
is performing poorly. This applies to ResNet50 when pre-trained on ImageNet: a viewpoint change
of 27◦in pitch and yaw alters the embedding vector as much as switching from a birdhouse to a
couch, or from a faucet to a beer mug (Figure 5). Likewise, if switching the background of an object
from dark to light changes the embedding vector as much as a change of object category, we may
conclude the embedding space is badly entangled. This can serve as a cautionary note when utilizing
embeddings on downstream transfer learning tasks.

It is worth noting that, when views of objects of very different shape are found to lie near to each
other in the embedding space, then it is likely that every object view is near to a panoply of different

5



shapes. Therefore as the number of different objects in the database increases, and the embedding
space becomes more densely populated with views, the rate of false matches is likely to approach
100%. As a reference point, our database currently contains 20 basic level object categories; by
comparison, the number of basic level categories that a human subject effortlessly commands is
∼100-fold larger (in the range of 1-∼3,000 (Biederman, 1987) see Footnote 10).
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