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Abstract

In the era of big data, graphs have emerged as a natural representation of intricate
relationships. However, graph sizes often become unwieldy, leading to storage,
computation, and analysis challenges. A crucial demand arises for methods that
can effectively downsize large graphs while retaining vital insights. Graph coars-
ening seeks to simplify large graphs while maintaining the basic statistics of the
graphs, such as spectral properties and ϵ-similarity in the coarsened graph. This
ensures that downstream processes are more efficient and effective. Most published
methods are suitable for homophilic datasets, limiting their universal use. We
propose Universal Graph Coarsening (UGC), a framework equally suitable for
homophilic and heterophilic datasets. UGC integrates node attributes and adjacency
information, leveraging the dataset’s heterophily factor. Results on benchmark
datasets demonstrate that UGC preserves spectral similarity while coarsening. In
comparison to existing methods, UGC is 4× to 15× faster, has lower eigen-error,
and yields superior performance on downstream processing tasks even at 70%
coarsening ratios.1

1 Introduction
Graphs have emerged as highly expressive tools to represent diverse structures and knowledge
in various fields such as social networks, bio-informatics, transportation, and natural language
processing [1–3]. They are essential for tasks like community detection, drug discovery, route
optimization, and text analysis. With the growing importance of graph-based solutions, dealing with
large graphs has become a challenge. Graph Coarsening(GC), a widely used technique to simplify
graphs while retaining vital information, making them more manageable for analysis [4]. It has been
applied successfully in various tasks [5–10]. Preserving the structural information of the graph is
crucial in graph coarsening algorithms to ensure the fidelity of the coarsened graphs. A high-quality
coarsened graph retains essential features and relationships, enabling accurate results for downstream
tasks. Additionally, computational efficiency is equally vital for scalability, as large-scale graphs
are common in real-world applications. An efficient coarsening method should ensure that the
reduction in graph size does not come at the expense of excessive computation time but existing
graph coarsening methods often face trade-offs between scalability and the quality of the coarsened
graph. Our method draws inspiration from hashing techniques, which provide us with advantages
in terms of computational efficiency. As a result, our approach exhibits a linear time complexity,
making it highly efficient even for large graphs.
Graph datasets often exhibit a blend of homophilic and heterophilic traits [11, 12]. Graph
Coarsening(GC) has been widely explored on homophilic datasets, but, to the best of our knowledge,
has never been applied to heterophilic graphs. We propose Universal Graph Coarsening UGC, an
approach that works well on both. Figure 2 illustrates how UGC uses a graph’s adjacency matrix as

1Code is available at UGC

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/katariaMohit/UGC-Universal-Graph-Coarsening/tree/main
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Figure 2: This figure illustrates our framework, UGC, which has three main modules a) Generation
of an augmented matrix by incorporating feature and adjacency matrices while using heterophily
measure α, b) Generation of coarsening matrix C using augmented features via Hashing, and c)
Generation of coarsened graph Gc from C followed by its utilization in downstream tasks.

well as the node feature matrix. UGC relies on hashing, lending computational efficiency. UGC
exhibits linear time complexity, enabling fast processing of large datasets. Figure 1 demonstrates the
computational time gains of UGC among graph coarsening methods. UGC surpasses the fastest
existing methods by about 6× on the Physics dataset and 9× on the Squirrel dataset. UGC enhances
the performance of Graph Neural Networks (GNN) models in classification tasks, indicating its
suitability for downstream processing. UGC coarsened graphs retain essential spectral properties
and show low eigen error, hyperbolic error, and ϵ-similarity measure. In a nutshell, UGC is fast,
universally applicable, and information-preserving.

Figure 1: This figure illustrates the computational time com-
parison among graph coarsening methods to learn a coars-
ened graph over ten iterations. UGC outperforms the fastest
existing methods by approximately 6× on the Physics dataset
and 9× on the Squirrel dataset.

Key Contributions.

• We proposed a novel framework
that is extremely fast compared to
other existing methods for graph
coarsening. It is also shown to
be helpful and effective for graph-
based downstream tasks.

• UGC is the first to handle het-
erophilic datasets for coarsening.

• UGC can retain important spectral
properties, such as eigen error, hy-
perbolic error, and ϵ-similarity mea-
sure, which ensures the preservation
of key characteristics and informa-
tion of the original graph during the
graph coarsening.

2 Background and Problem Formulation
A graph is represented using G(V,A,X) where V = {v1, · · · , vN} denotes set of N vertices,
A ∈ RN×N is the adjacency matrix and Aij > 0 indicates an edge (vi, vj) between nodes vi and vj .
X ∈ RN×d̃ denotes the feature matrix where ith row of X is a feature vector Xi ∈ Rd̃, associated
with node vi. The degree matrix D is a diagonal matrix, where Dii =

∑
j Aij . L ∈ RN×N is a

Laplacian matrix, L = D − A [13], and it belongs to the set SL =
{
L ∈ RN×N |Lji = Lij ≤

0, ∀i ̸= j; Lii = −
∑

j ̸=i Lij

}
as defined in [14, 15]. The adjacency matrix A and Laplacian

matrix L associated with the graph are related as follows: Aij =−Lij for i ̸= j and Aij = 0 for i = j.

2



CT =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1

]
(a)

2

1

3

4 5 6

8

7
A CB

(b)

Figure 3: Graph coarsening toy example, a) Coarsening matrix, b) Original graph G and corresponding
coarsened graph Gc

Both L and A can represent the same graph. Hence, a graph G(V,A,X) can also be represented as
G(L,X), with either representation utilized as required within the paper.

Problem. The objective is to reduce an input graph G(V,A,X) with N -nodes into a new graph
Gc(Ṽ , Ã, X̃), with n-nodes and X̃ ∈ Rn×d̃ where n ≪ N . The Graph Coarsening(GC) problem
requires learning of a coarsening matrix C ∈ RN×n, which is a linear mapping from V → Ṽ . A linear
mapping ensures that similar nodes in G are mapped to the same super-node in Gc, s.t. X̃ = CTX .
Every non-zero entry Cij denotes the mapping of the ith node of G to the jth super-node Gc. This C
matrix belongs to the following set:

S =

{
C ∈ RN×n, Cij ∈ {0, 1}, ∥Ci∥ = 1, ⟨Ci, Cj⟩ = 0,∀i ̸= j, ⟨Cl, Cl⟩ = di, ∥CTi ∥0 ≥ 1

}
(1)

where di means the number of nodes in the ith-supernode. The condition ⟨Ci, Cj⟩ = 0 ensures that
each node of G is mapped to a unique super-node. The constraint ∥Ci∥0 ≥ 1 requires that each
super-node contains at least one node. Consider the 8-node graph in Figure 3b. Nodes 1, 2, 3, and
4 are mapped to super-node A, while nodes 6, 7, and 8 are mapped to super-node C. Hence, the
coarsening matrix C is given in Figure 3a. The goal is to learn this C matrix such that G and Gc are
similar. The ϵ−similarity is a widely used similarity measure for graphs with node features, as it
entails comparing the Laplacian norms of the respective feature matrices. The graphs G(V,A,X)

and Gc(Ṽ , Ã, X̃) are said to be ϵ-similar if there exist ϵ ≥ 0 such that

(1− ϵ)∥X∥L ≤ ∥X̃∥Lc ≤ (1 + ϵ)∥X∥L (2)

where L and Lc are the Laplacian matrices of G and Gc respectively, ∥X∥L =
√
tr(XTLX) and

∥X̃∥Lc
=

√
tr(X̃TLcX̃). The quantity tr(XTLX) = −

∑
i,j Lij∥xi − xj∥2 is known as Dirichlet

Energy (DE), which is employed to measure the smoothness of node features where xi and xj are the
node features of nodes i and j [14].
Goal: Given a graph G(V,A,X) of N nodes, construct a coarsened graph Gc(Ṽ , Ã, X̃) with n
nodes, such that they are ϵ−similar.

Homophilic and Heterophilic datasets. Graph datasets may demonstrate homophily and heterophily
properties [16–19]. Homophily refers to the tendency of nodes to be connected to other nodes of
the same class or type, while heterophily signifies the tendency of nodes to connect with nodes of
different classes. A heterophily factor 0 ≤ α ≤ 1 may be used to denote the degree of heterophily.
α is calculated as the fraction of edges between nodes of different classes to the total number of
edges. A strongly heterophilic graph (α→ 1) has the most edges between nodes of different classes,
suggesting a diverse network with mixed interactions. Conversely, weak heterophily or strong
homophily (α→ 0) occurs in networks where nodes predominantly connect with others of the same
class.

Locality Sensitive Hashing. Locality Sensitive Hashing (LSH) is a linear time, efficient similarity
search technique for high dimensional data [20–23]. It maps high-dimensional vectors to lower
dimensions while ensuring that similar vectors collide with high probability. LSH uses a family of
hash functions to map vectors to buckets, enabling fast retrieval and similarity search. It has found
applications in image retrieval [24], data mining [25], and similarity search algorithms [26]. LSH
family is defined as

Definition 2.1 Let d be a distance measure, and let d1 < d2 be two distances. A family of functions
F is said to be (d1, d2, p1, p2)−sensitive if for every f ∈ F the following two conditions hold:

1. If d(x, y) ≤ d1 then probability [f(x) = f(y)] ≥ p1
2. If d(x, y) ≥ d2 then probability [f(x) = f(y)] ≤ p2

3



UGC uses LSH with a set of random projectors to map similar nodes to the same super-node. The
projection is computed as

⌊
<x·wi>+bi

r

⌋
, where wi is a randomly selected d−dimensional projector

vector from a p−stable distribution (see Appendix A); x represents the d−dimensional data sample,
and r is the width of each quantization bin.

Related Works. The literature is replete with graph reduction methods and their applications; they
may be broadly classified into three categories:

1. Optimization and Heuristics: Loukas [15] proposed advanced spectral graph coarsening algo-
rithms based on local variation to preserve the original graph’s spectral properties. Two variants,
viz. edge-based (LVE) and neighborhood-based (LVN), select contraction sets with small local
variation in each stage but have limitations in achieving arbitrary coarsening levels. Heavy edge
matching (HE) [9, 27], determines the contraction family by computing a maximum-weight
matching based on the weight of each contraction set. The Algebraic Distance method proposed
in [27, 28] calculates the weight of each candidate set using an algebraic distance measure. The
affinity method [29], inspired by algebraic distance, uses the vertex proximity heuristic. The
Kron reduction method [30] was originally proposed for electrical networks but is too slow for
large networks. FGC [14, 31] considers both the graph structure and the node attributes as the
input and, alternatively, optimizes C. The above-mentioned methods are computationally and
memory-intensive.

2. GNN based: GCond [32] and SFGC [33] are GNN-based graph condensation methods. These
works proposed the online gradient matching schema between the synthesized small-scale graph
and the large-scale graph. However, these methods have significant issues regarding computational
time and generalization ability. First, they require training GNN models on the original graph
to get a smaller graph as they imitate the GNN training trajectory on the original graph through
gradient matching. Due to this, these methods are extremely computationally demanding and may
not be suitable for the scalability of GNN models. However, these methods can be beneficial for
other tasks, like solving storage and visualization issues. Second, the condensed graph obtained
using GCond [32] shows poor generalization ability across different GNN models [33] because
different GNN models vary in their convolution operations along graph structures.

3. Scaling GNN viz. Graph Coarsening: SCAL [34] and GOREN [35] proposed to enhance the
scalability for training GNN models using graph coarsening. It is worth noting that SCAL and
GOREN are not standalone graph coarsening techniques. SCAL uses Louka’s [15] work to
coarsen the graph, then trains GNN models using the coarsened graph. While GOREN trying to
improve the coarsening quality of existing methods.

3 The Proposed Framework: Universal Graph Coarsening (UGC)
The proposed UGC framework comprises three main components: (a) First, obtaining an augmented
feature matrix F containing both node feature and structural information, (b) Secondly, using locality-
sensitive hashing to derive the coarsening matrix C, (c) and Finally, obtaining the coarsened graph
adjacency matrix Ac and coarsened features Fc.

Construction of Augmented Feature Matrix F . In order to create a universal GC framework
suitable for all, it is important to consider features at both i) the node level, i.e., features, and ii) the
structure-level, i.e., adjacency matrix, together. In this regard, we create an augmented feature matrix
F , where each node’s feature vector Xi is augmented with its binary adjacency vector Ai. We use the
heterophily factor α discussed in Section 2 to balance the emphasis between node-level and structure-
level information. The augmented feature vector for node vi is given using Fi =

{
(1−α)·Xi⊕α·Ai

}
where ⊕ and · denote the concatenation and dot product operations, respectively. Figure 11 in
Appendix K illustrates a toy example of the process involved in calculating the augmented feature
vector. While larger graphs may result in long vectors, efficient implementations and sparse tensor
methods may alleviate this hurdle. A motivating example demonstrating the need for augmented
features while doing GC is discussed in Appendix K (Figure 12).

Construction of Coarsening Matrix C. Let Fi ∈ Rd represent the augmented feature vector of node
vi. LetW ∈ Rd×l and b ∈ Rl be the hashing matrices used in UGC, with l denoting the number of
hash functions. The hash indices generated by kth hash/projector function for ith node is given as

hk
i = ⌊1

r
∗ (Wk · Fi + bk)⌋ (3)
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where r is a hyperparameter called bin-width. The hash index that has the maximum occurrence
among the hash indices generated by all l hash functions is the hash value assigned to the graph node
vi. Hence, the hash value for node vi is given by

hi = maxOccured{h1
i , h

2
i ....h

l
i} (4)

r controls the size of the coarsened graph Gc; empirically, we find that increasing r means reducing
the size of the coarsened graph Gc . All nodes assigned with the same hash value map to the same
super-node in Gc. The reader may like to refer to Algorithm 1 for the steps in UGC. The element of
coarsening matrix, Cij equals 1 if vertex vi is associated with super-node ṽj . Crucially, every node is
assigned a unique hi value, ensuring an exclusive mapping to a super-node. This constraint aligns
with the formulation of super-node and guarantees at least one node per super-node. Thus, each row
of C contains only one non-zero entry, leading to orthogonal columns. This matrix C satisfies the
conditions specified in Equation 1.

Algorithm 1 UGC: Universal Graph Coarsening

Require: Input G(V,A,X), l← Number of Projectors, r ← binWidth

1: α = |{(v,u)∈E:yv=yu}|
|E| ; α is heterophily factor, yi ∈ RN is node labels, E denotes edge list

2: F =
{
(1− α) ·X ⊕ α ·A

}
3: W ∼ D(.);W ∈ Rd×l denotes l projectors, and D is a p-stable distribution
4: b ∼ D(.); b ∈ Rl denotes sampled bias
5: H =

⌊
<F ·W>+b

r

⌋
;H ∈ RN×l

6: πi ← maxOccurence(Hi; i ∈ {1, 2, 3, ..., N}), π ∈ RN

7: for every node v in V do
8: C[v, π[v]]← 1
9: Ac(i, j)←

∑
(u∈π−1(ṽi),v∈π−1(ṽj))

Auv , ∀i, j ∈ {1, 2, ..., n}
10: Fc(i)← 1

|π−1(ṽi)|
∑

u∈π−1(ṽi)
Fu, ∀i ∈ {1, 2, ..., n}

11: return Gc(Vc, Ac, Fc), C

Construction of Coarsened Graph Gc. Let Gc(Ṽ , Ã, F̃ ) represent the coarsened graph that is to
be built. A pair of super-nodes, say ṽi and ṽj , in the coarsened graph Gc are connected, if any of
the nodes, say u ∈ π−1(ṽi) has an edge to any of the nodes, say v ∈ π−1(ṽj) in the original graph,
i.e., ∃ u ∈ π−1(ṽi), v ∈ π−1(ṽj) such that Auv ̸= 0. The coarsened graph Gc is weighted, and the
weight assigned to the edge between nodes ṽi and ṽj , is given by Ãij =

∑
(u∈π−1(ṽi),v∈π−1(ṽj))

Auv

where Auv refers to the element (u, v) in the adjacency matrix A of graph G. The features of
super-nodes are taken to be the average of the features of the nodes in the super-node, i.e., F̃i =

1
|π−1(ṽi)|

∑
u∈π−1(ṽi)

Fu. The super-node’s label is chosen as the class that has the most instances.

From the C matrix, we can directly calculate the adjacency Ã matrix of Gc using Ã = CTAC which is
the same as Ãij . F̃ can also be obtained using F̃ = CTF where C is the coarsening matrix discussed
earlier. Because each super-edge combines multiple edges from the original graph, the number
of edges in the coarse graph is also much less than m. In general, the adjacency matrix Ã has a
substantially smaller number of non-zero elements than A. The pseudocode for UGC is listed in
Algorithm 1. UGC gives a coarsened graph Gc(Lc, F̃ ) which also satisfies ϵ−similarity (ϵ ≥ 0).

Theorem 3.1 The input graph G(L,F ) and the coarsened graph Gc(Lc, F̃ ) obtained using the
proposed UGC algorithm are ϵ-similar with ϵ ≥ 0, i.e.,

(1− ϵ)∥F∥L ≤ ∥F̃∥Lc ≤ (1 + ϵ)∥F∥L (5)

where L and Lc are the laplacian matrices of G and Gc respectively.

Proof: The proof is deferred in Appendix I.

Universal Graph Coarsening with feature re-learning for Bounded ϵ-similarity. The coarsened
graph Gc generated through UGC exhibits a high degree of similarity, within the range of ϵ, to
the original graph G. It has also been empirically demonstrated that this coarsened representation
performs exceptionally well across various downstream tasks. Nonetheless, to achieve a tighter
ϵ-bound, where (ϵ ≤ 1), a potential step involves introducing modifications to the feature learning
procedure of the super-nodes Gc.
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It is important to note that the ϵ-similarity measure introduced in [15] does not incorporate features.
Instead, it relies on the eigenvector of the laplacian matrix to compute similarity, which limits its
ability to capture the characteristics of the associated features along with the graph structure. Once we
get the loading matrix C using UGC as discussed in Section 3 we used F̃i =

1
|π−1(ṽi)|

∑
u∈π−1(ṽi)

Fu

to learn the feature-vectors of super-nodes. Using F̃i we can satisfy the Theorem 3.1. However, to
give a strict bound on the ϵ similarity we updated F̃ to F̂ by minimizing the term

min
F̂

f(F̂ ) = tr(F̂TCTLCF̂ ) +
α

2
∥CF̂ − F∥2F (6)

We aim to enforce the Dirichlet smoothness condition in super-node features using Equation 6.
The above equation is a convex optimization problem from which we get a closed-form solution by
putting the gradient w.r.t to F̂ equal to zero. Update rule for F̂ can be derived as:

2CTLCF̂ + αCT (CF̂ − F ) = 0 =⇒ F̂ =

(
2

α
CTLC + CTC

)−1

CTF

We now have re-learnt features for super-nodes, please refer to Algorithm 2 in Appendix B which
we call as UGC-FL i,e UGC with feature learning. Using F̂ we can give a more strict bound on
ϵ−similarity.

Theorem 3.2 The original graph G(L,F ) and coarsened graph Gc(Lc, F̂ ) obtained using the pro-
posed UGC-FL algorithm are ϵ similar with 0 < ϵ ≤ 1, i.e,

(1− ϵ)||F ||L ≤ ||F̂ ||Lc
≤ (1 + ϵ)||F ||L (7)

where L and Lc are the laplacian matrices of G and Gc respectively, and F and F̂ are features matrix
associated with original and coarsened graphs, respectively.

Proof: The proof is deferred in Appendix J.

Novelty: The majority of current techniques involve coarsening the original graph and simultaneously
learning the graph structure, which makes them computationally intensive. The UGC decouples this
process, making it incredibly fast, first learning the coarsening mapping C by capturing the similarity
of features through hashing and then using the adjacency matrix only once as Ac = CTAC for
learning the coarsened graph’s structure all at once. The UGC is easy to use, extremely fast, and
produces better results for tasks requiring downstream processing.

Time Complexity Analysis of UGC. We have three phases for our framework. For the first phase,
we can see Algorithm 1, Line 5 is driving the complexity of the algorithm, where we multiply two
F ∈ RN×d andW ∈ Rd×l matrices, which results in O(Nld). In the second pass, the super-nodes
for the coarsened graphs are constructed with the help of the accumulation of nodes in the bins. The
main contribution of UGC is up to these two phases i.e., Line 1-8. Till now, time-complexity is
O(Nld) ≡ O(NC) where C is a constant.
In the third phase, Lines 10-11, we calculate the adjacency and features of the super-nodes of the
coarsened graph Gc. The computational cost of this operation is O(m), where m is the number of
edges in the original graph G, and this is a one-time step. Indeed, the overall time complexity of all
three phases combined is O(N +m) where m is the number of edges. However, it’s important to
note that the primary contribution of UGC lies in the process of finding the coarsening matrix, whose
time complexity is O(N). We have compared the computational time for obtaining the coarsening
matrix via UGC with the existing methods.

4 Experiments
In this section, we conduct extensive experiments to evaluate the proposed UGC against the existing
graph coarsening algorithms. The conducted experiments establish the performance of UGC concern-
ing i) computational efficiency, ii) preservation of spectral properties, and iii) potential extensions of
the coarsened graph Gc into real-world applications.
We compare our proposed algorithm with the following coarsening algorithms, as discussed in
Section 2. UGC (feat) represents a specific scenario within our framework, wherein only the feature
values are considered for hashing, thereby obtaining the mapping of super-nodes. To comprehend the
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significance of incorporating the adjacency vector, we have added the results for both UGC (feat) and
UGC (augmented feat).

Datasets. Our experiments cover widely adopted benchmarks, including Cora ,Citeseer, Pubmed
[36], CS, Physics [37], DBLP [38]. Additionally, UGC effectively coarsens large datasets like
Flickr, Yelp [39], and Reddit [40], previously challenging for existing techniques. We also present
datasets like Squirrel, Chameleon, Texas, Film, Wisconsin [11, 12, 16, 17], characterized by dominant
heterophilic factors. Table 6 in Appendix G provides comprehensive dataset details.

Table 1: Summary of run-time in seconds averaged over 5 runs to reduce the graph to 50%.
Data/Method Cora Cite. CS PubMed DBLP Physics Flickr Reddit Yelp Squirrel Cham. Cor. Texas Film
Var. Neigh. 6.64 8.72 23.43 24.38 22.79 58.0 OOM OOM OOM 33.26 12.2 1.34 0.63 27.67
Var. Edges 5.34 7.37 16.72 18.69 20.59 67.16 OOM OOM OOM 46.45 12.65 1.31 0.76 26.6
Var. Cliq. 7.29 9.8 24.59 61.85 38.31 69.80 OOM OOM OOM 28.91 10.55 1.56 1.14 33.04
Heavy Edge 0.7 1.41 7.50 12.03 8.39 39.77 OOM OOM OOM 18.08 5.41 1.62 1.17 11.79
Alg. Dist 0.93 1.55 9.63 10.48 9.67 46.42 OOM OOM OOM 18.03 5.24 1.58 0.81 12.65
Affinity GS 2.36 2.53 169.05 168.3 110.9 924.7 OOM OOM OOM 20.00 5.83 1.81 1.24 20.65
Kron 0.63 1.37 8.72 5.81 7.09 34.53 OOM OOM OOM 20.62 7.25 1.73 0.97 12.29
UGC 0.41 0.71 3.1 1.62 1.86 6.4 8.9 16.17 170.91 2.14 0.49 0.04 0.03 1.38

Run-Time Analysis. UGC’s main contribution lies in its computational efficiency. The time required
to compute the coarsening matrix C is summarized in Table 1. By referring to this Table, it becomes
evident that UGC exhibits a remarkable advantage, surpassing all existing methods across diverse
datasets. Our model outperforms existing methods by a substantial margin. While other methods
struggle at large datasets like Physics(34.4k nodes), UGC is able to coarsen down massive datasets
like Yelp(716.8k nodes), which was previously not possible. It should be emphasized that the time
taken by UGC on the Reddit(232.9k nodes) dataset, which has 7× the number of nodes compared to
Physics is one-third the time taken by the fastest existing methods on Physics dataset.

Spectral Properties Preservation.

1. Relative Eigen Error (REE):, REE used in [14, 15, 41] gives the means to quantify the measure
of the eigen properties of the original graph G that are preserved in coarsened graph Gc.

Definition 4.1 REE is defined as follows: REE(L,Lc, k) =
1
k

∑k
i=1

|λ̃i−λi|
λi

where λi and λ̃i

are top k eigenvalues of original graph Laplacian (L) and coarsened graph Laplacian (Lc) matrix,
respectively.

2. Hyperbolic error (HE): HE [42] indicates the structural similarity between G and Gc with the
help of a lifted matrix along with the feature matrix X of the original graph.
Definition 4.2 HE is defined as follows: HE = arccosh(

||(L−Llift)X||2F ||X||2F
2trace(XTLX)trace(XTLliftX)

+1) where
L is the Laplacian matrix and X ∈ RN×d is the feature matrix of the original input graph, Llift is
the lifted Laplacian matrix defined in [41] as Llift = CLcCT where C ∈ RN×n is the coarsening
matrix and Lc is the Laplacian of Gc.

Figure 4: Top 100 eigenvalues of the original graph G and coarsened graph Gc at different coarsening
ratios: 30%, 50%, and 70%.

Eigenvalue preservation can be seen in Figure 4 where we have plotted the top 100 eigenvalues of G
and of Gc. We can see that the spectral property is preserved even for 70% coarsened graphs. This
approximation is more accurate for a lower coarsening ratio, i.e., the smaller the graph, the bigger the
REE. The REE for all approaches across all datasets is shown in Table 2 for a fixed 50% coarsening
ratio. UGC stands out by giving the best REE values in 8 out of 12 datasets. Although we also have
coarsened graphs for large datasets like Yelp and Reddit, eigen error calculation for these datasets
was out of memory, so we have used EOOM while other methods fail to find even the coarsened
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Table 2: This table illustrates Relative Eigen Error at 50% coarsening ratio. UGC stands out by giving
the best REE values in 8 out of 12 datasets.

Data/Method Cora Cite. CS PubMed DBLP Physics Flickr Reddit Yelp Squirrel Cham. Cor. Texas Film
Var. Neigh. 0.121 0.180 0.248 0.108 0.117 0.273 OOM OOM OOM 0.871 0.657 0.501 0.391 32.87
Var. Edges 0.129 0.136 0.049 0.965 0.135 0.042 OOM OOM OOM 0.298 0.597 0.485 0.489 21.8
Var. Cli. 0.085 0.064 0.026 1.208 0.082 0.039 OOM OOM OOM 0.369 0.456 0.550 0.463 22.95
Hea. Edge 0.071 0.043 0.046 0.834 0.086 0.031 OOM OOM OOM 0.256 0.333 0.554 0.464 5.69
Alg. Dist. 0.107 0.111 0.087 0.403 0.047 0.117 OOM OOM OOM 0.245 0.413 0.552 0.465 5.71
Aff. GS 0.095 0.057 0.063 0.063 0.073 0.052 OOM OOM OOM 0.226 0.413 0.569 0.489 5.56
Kron 0.069 0.028 0.056 0.378 0.060 0.064 OOM OOM OOM 0.246 0.413 0.554 0.491 6.12
UGC(fea.) 0.224 0.340 0.208 0.179 0.145 0.016 0.014 EOOM EOOM 13.8 7.594 0.420 0.534 9.83
UGC(fea+Ad) 0.130 0.070 0.050 0.004 0.004 0.018 0.0153 EOOM EOOM 0.546 0.409 0.215 0.204 0.075
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Figure 5: This figure compares graph coarsening methods in terms of REE, HE, and GCN accuracy
on the Pubmed dataset.

graph, hence the term OOM. Figure 5 illustrates the trends for eigen error, hyperbolic error and GCN
accuracy for different methods as the coarsening ratio is altered.

LSH Similarity and ϵ-Bounded Results The LSH family used in our framework is based on p-stable
distributions D see Appendix A. This ensures that the probability of two nodes going to the same
super-node is directly related to the distance between their features (augmented features F for UGC).

Theorem 4.1 As given in [43], the probability that two nodes v and u will collide and go to
a super-node under a hash function drawn uniformly at random from a 2-stable distribution is
inversely proportional to c = ||v−u||2 and it is represented by p(c) = Prw,b [hw,b(v) = hw,b(u)] =∫ r

0
1
cfp

(
t
c

) (
1− t

r

)
dt.

In our experiments, we empirically validated the Theorem 4.1. We examined if the feature distance
between any node pair was below a specific threshold, and then using the coarsening matrix C
given by UGC, we verified if they shared the same super-node or not. Our evaluation involved
counting successful matches, where nodes belonged to the same super-node, and failures, where
they did not. We subsequently calculated a probability measure based on these counts. Figure 6a
and 6b plot this probabilistic function for two datasets, namely Cora and Citeseer as a function of
distance between two nodes. Re-visiting the Definition 2.1 for the Cora dataset, we denote our LSH
family asH(1, 3, 1, 0.20). Suppose d denotes the distance between the nodes {u, v}. In the notation
H(1, 3, 1, 0.20), this implies that if d ≤ 1, there is a 100% probability that u, v will be grouped into
the same super-node. Conversely, if d > 3, the probability of {u, v} being grouped into the same
super-node is 20%. Figure 6c plots different values of ϵ at different coarsening ratios. We used
Equation 6 for updating the augmented feature matrix F given by UGC and as mentioned, we got
ϵ ≤ 1 similarity guarantees for the coarsened graph. Hence proving Theorem 3.2.

Scalable Training of Graph Neural Networks. Graph neural networks (GNNs), tailored for non-
Euclidean data [44–46], have shown promise in various applications [47, 48]. However, scalability
remains a challenge. Building on [34], we investigate how our graph coarsening approach can
enhance GNN scalability for training, bridging the gap between GNNs and efficient processing of
large-scale data.

GNN parameter details. We employed a single hidden layer GCN model with standard hyper-
parameters values [13] see Appendix H for the node-classification task. Coarsened graph Gc
is used to train the GCN model, and all the predictions are made on test data from the orig-
inal graph. The relation between coarsening ratio and accuracy is evident from Table 9 in
Appendix H. Specifically, as we progressively coarsen the graph, a slight decrease in accu-
racy values becomes noticeable. Hence, there will always be a trade-off when it comes to the
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Figure 6: a) Cora and b) Citeseer demonstrate the inverse relationship between the probability of two
nodes belonging to the same super-node and the distance between them. c) plots the ϵ values (≤ 1)
for Cora, Citeseer, and CS datasets.

Table 4: This table illustrates the accuracy of GCN model when trained with 50% coarsen graph.
UGC demonstrated superior performance compared to existing methods in 7 out of the 9 datasets.

Data/Method Cora DBLP PubMed Physics Squirrel Cham. Cor. Texas Film
Var.Neigh. 79.75 77.05 77.87 93.74 19.67 20.03 52.49 34.51 15.67
Var.Edges 81.57 79.93 78.34 93.86 20.22 29.95 55.32 30.59 21.8
Var.Clique 80.92 79.15 73.32 92.94 19.54 31.92 58.8 33.92 20.35
Heavy Edge 79.90 77.46 74.66 93.03 20.36 33.3 54.67 29.18 19.16
Alg. Dis. 79.83 74.51 74.59 93.94 19.96 28.81 59.91 18.61 19.23
Aff. GS 80.20 78.15 80.53 93.06 20.00 27.58 54.06 21.18 20.34
Kron 80.71 77.79 74.89 92.26 18.03 29.1 55.02 31.14 17.41
UGC(fea.) 83.92 75.50 85.65 94.70 20.71 29.9 55.6 52.4 22.6
UGC(fea+Ad) 86.30 75.50 84.77 96.12 31.62 48.7 54.7 57.1 25.4

coarsening ratio and quality of the reduced graph. To emphasize the contribution of UGC in
terms of both computational time and node-classification accuracy, we have included Figure 7.

Citeseer Cora CS Pubmed Dblp Physics Squirrel Chameleon Texas Cornell Film
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Figure 7: Computational and accuracy gains of UGC. In
the bar plot, dashed bars represent the gain or loss in accu-
racy when compared to the existing best-performing method,
while plain bars indicate the computational gains. All
datasets are coarsened down by 50%.

This figure illustrates the improve-
ments in computational time and the
corresponding changes in accuracy
values when compared to the currently
best-performing model across various
datasets. Table 4 compares the accu-
racy among all the approaches with
all datasets when they are coarsened
down by 50%. UGC demonstrated su-
perior performance compared to exist-
ing methods in 7 out of the 9 datasets.
We have used t-SNE [49] algorithm
for visualization of predicted node la-
bels shown in Figure 10 in Appendix
H. It is evident that even with highly
coarsened graph training, the GCN
model can maintain its accuracy.

Table 3: This table demonstrates UGC’s
model-agnostic nature, as it doesn’t rely
on any specific GNN model.

Model/Data Cora Pubmed Physics Squirrel

GCN 86.30 84.77 96.12 31.62
GraphSage 69.39 85.72 94.49 61.23
GIN 67.23 84.12 85.15 44.72
GAT 74.21 84.37 92.60 48.75

UGC is Model-Agnostic. While our initial validation
utilized GCN to assess the quality of our coarsened graph
Gc our framework is not bound to any specific GNN ar-
chitecture. We extended our evaluations to include other
prominent graph neural network models. Results from
three diverse models, namely GCN [13], GraphSage [40],
GIN [50], and GAT [51], have been incorporated into our
analysis. All the models were trained using 50% coarsened
graph Gc. Results from Table 3 demonstrate the robustness
and model-agnostic nature of UGC. Refer to Table 7 in
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Appendix H for a comprehensive analysis of node classification accuracy results for various GNN
models. We believe this flexibility further enhances the applicability and utility of our proposed
framework in various graph-based applications.

Gained Performance on Heterophilic Graphs. Existing work for GC is focused on homophilic
datasets. A notable contribution of our framework is its ability to generalize to all datasets, including
heterophilic datasets as well. Building upon the observations made in Table 2 and Table 4 our methods,
UGC (feat) and UGC (aug. feat.), showcase notable improvements in both node classification accuracy
and REE values when applied to heterophilic datasets. A comparison of these results reveals that
conventional approaches demonstrate poor node-classification accuracy on heterophilic graphs. In
contrast, our UGC (features) method achieves substantial accuracy enhancements, surpassing the
performance of these traditional approaches. Furthermore, the true potential of our approach becomes
evident with augmented features F i.e., UGC (aug. feat.). This approach exhibits remarkable
accuracy gains, outperforming all other methods by a considerable margin, signifying the importance
of augmented features F .

5 Conclusion
In this paper, we present a framework UGC for reducing a larger graph to a smaller graph. We use
hashing of augmented node features inspired by Locality Sensitive Hashing (LSH). As expected,
the benefits of LSH are also reflected in the proposed coarsening algorithm. To the best of our
knowledge, it is the fastest algorithm for graph coarsening. Through extensive experiments, we have
also shown that our algorithm is not only fast but also preserves the properties of the original graph.
Furthermore, it is worth noting that UGC represents the first work in the domain of graph coarsening
for heterophilic datasets. This framework addresses the unique challenges posed by heterophilic
graphs and has demonstrated a significant increase in node classification accuracy following graph
coarsening. In conclusion, we believe that our framework is a major contribution to the field of graph
coarsening and offers a fast and effective solution for simplifying large networks. Our future research
goals include the exploration of different hash functions and novel applications for the framework.
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Appendix

A Stable Distribution
A distribution D over R is called p-stable if there exists p ≥ 0 such that for any n real numbers
v1....vn and i.i.d. variables X1....Xn with distribution D, the random variable

∑
i viXi has the same

distribution as the variable (
∑

i |vi|p)1/pX where X is a random variable with distribution D [52]. It
is known [53] that stable distributions exist for p ∈ (0,2].

• Cauchy distribution Dc, defined by the density function c(x) = 1
π

1
1+x2 , is 1-stable.

• Gaussian (normal) distribution Dg , defined by the density function g(x) = 1√
2π

e
−x2

2 is 2-stable.

However, it is known [54] that one can create p-stable random variables effectively from two
independent variables distributed uniformly across [0,1] despite the lack of closed-form density and
distribution functions.

Stable distributions have diverse applications across various fields (see survey [55] for details). In
computer science, they are utilized for "sketching" high-dimensional vectors, as demonstrated by
Indyk ([43]). The key property of p-stable distributions, mentioned in the definition, enables a
sketching technique for high-dimensional vectors. This technique involves generating a random
vector w of dimension d, with each entry independently chosen from a p-stable distribution. Given a
vector v of dimension d, the dot product w · v is also a random variable. A small collection of such
dot products, corresponding to different w’s, is termed as the sketch of the vector v and can be used
to estimate ||v||p [43]. However, instead of using the sketch to estimate the vector norm, we are using
it to assign hash values to each vector. These values map each vector to a point on the real line, which
is then split into equal-width segments to represent buckets. If two vectors v and If you are close,
they will have a small difference between lp norms ∥v − u∥p, and they should collide with a high
probability

B Algorithm for UGC-FL

Algorithm 2 UGC-FL: Universal Graph Coarsening with feature re-learning

Require: Input G(V,A,X), l← Number of Projectors, r ← binWidth

1: Gc(Ṽ , Ã, F̃ ), C = UGC(G, l, r)
2: α = |{(v,u)∈E:yv=yu}|

|E| ; α is heterophily factor, yi ∈ RN denotes node labels, E denotes edge
list

3: F =
{
(1− α) ·X ⊕ α ·A

}
Augmented features

4: F̂ =
(
2
αC

TLC + CTC
)−1 CTF

5: return Gc(Ṽ , Ã, F̂ ), C

C Size of coarsened graph Controlled by Bin-Width
This section discusses the impact of bin-width on the coarsening ratio see Figure 8. Algorithm 3
outlines the procedure for determining the appropriate bin-width value that corresponds to a desired
coarsening ratio. The parameter bin-width r decides the size of the coarsened graph Gc. For a
particular coarsening ratio R, we find the corresponding r by divide and conquer approach on the
real axis, which is similar to binary search. Algorithm 3 shows the method by which we find the r for
any given R for Gc. Figure 8 shows the relation of r with R for two datasets: a) Cora, and Coauthor
CS. It is observed that the R increases as the r increases. For each dataset, r is a hyper-parameter
that needs to be calculated only once, and hence its computational cost is not included in the reported
time complexity.
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Figure 8: This figure shows the trend of coarsening ratio as the bin-width increases on two datasets:
Cora and Coauthor CS.

Algorithm 3 Bin-width Finder

Require: Input G(V,A,X) , L← Number of Projectors, R← Coarsening Ratio, p← precision of
coarsening

Ensure: bin-width h
1: r ← 1, ratio← 1, N ← ∥V ∥
2: while |R− ratio| > p do
3: if ratio > R then
4: r ← r ∗ 0.5
5: else
6: r ← r ∗ 1.5
7: n← UGC(G, L, r); n denotes number of supernodes in Gc
8: ratio← (1− n

N )
9: return r

D Proof of Theorem 4.1
Let fp(t) denote the probability density function of the absolute value of our stable distribu-
tion(Normal distribution), and let c = ||v − u||p for two node vectors v, u, and r is the bin-width.
Since we have a random vector w from our stable distribution, v.w − u.w is distributed as cX where
X is a random variable from our stable distribution. Therefore our probability function is

p(c) = Pra,b [ha,b(v) = ha,b(u)] =

∫ r

0

1

c
fp

(
t

c

)(
1− t

r

)
dt (8)

For a fixed bin-width r the probability of collision decreases monotonically with c = ||v − u||2. For
Definition, 2.1 the hash family will be (r1, r2, p1, p2)-sensitive where p1 = p(1) and p2 = p(c) for
r2
r1

= c.

For 2-stable distribution fp(x) =
2√
2π

e−x2/2. Equation 9 will be

p(c) =
2√
2π

∫ r

0

1

c
e−(

1
c )

2
/2dt− 2√

2π

∫ r

0

1

c
e−(

1
c )

2
/2 t

r
dt (9)

= S1(c)− S2(c)

Note that S1(c) ≤ 1.

S2(c) =
2√
2π
· c
r

∫ r

0

e−(
t
c )

2
/2 t

c2
dt (10)

S2(c) =
2√
2π
· c
r

∫ R2
(2c2)

0

e−ydy (11)

S2(c) =
2√
2π
· c
r
[1− e

− R2
(2c2) ] (12)
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We have p(1) = S1(1)− S2(1) ≥ 1− e
R2
2 − 2√

2πr
≥ 1− A

r , for some constant A > 0. This implies

that the probability that u collides with v is at least (1− A
r ) ≈ e−A. Thus the algorithm is correct

with the constant probability.
If c2 ≤ R2

2 , then we have

p(c) ≤ 1− 2√
2π

c

r
(1− 1

e
) (13)

E Additional experiments for LSH scheme
We have further validated our theoretical results through a secondary experiment. This LSH family
which we discussed above says as the distance between two nodes increases, the likelihood of them
being assigned to the same bin decreases, hence we will have more number of super-nodes now. By
increasing the bin-width, we can effectively reduce the number of super-nodes. This phenomenon
is evident when considering the average distance between node pairs in various graphs and the
corresponding bin-width required to achieve a 30% coarsening ratio. The table below illustrates these
findings:

Table 5: Average Distance and Bin-Width for 30% Coarsening
Dataset Average Distance Bin-Width
Citeseer 7.748 0.0029
Cora 5.810 0.0021
Dblp 3.168 0.000068
Pubmed 0.540 0.000025

The results in the table clearly demonstrate that as the average distance between nodes increases,
the required bin-width also increases when maintaining the same coarsening ratio. This observation
highlights the importance of considering the distance metric and bin-width selection during the graph
coarsening process to effectively control the number of super-nodes and achieve desired coarsening
ratios. Figure 8 shows the trend of coarsening ratio when we change bin-width.

F System Specifications:
All the experiments conducted for this work were performed on an Intel Xeon W-295 CPU and 64GB
of RAM desktop using the Python environment.

G Datasets

Table 6: Summary of the datasets. H.R shows heterophily factor.

Data Nodes Edges Features Class H.R(α)
Cora 2,708 5,429 1,433 7 0.19
Citeseer 3,327 9,104 3,703 6 0.26
DBLP 17,716 52,867 1,639 4 0.18
CS 18,333 163,788 6,805 15 0.20
PubMed 19,717 44,338 500 3 0.20
Phy. 34,493 247,962 8,415 5 0.07
Flickr 89,250 899,756 500 7 0.69
Reddit 232,965 114.61M 602 41 0.25
Yelp 716,847 13.95M 300 100
Texas 183 309 1703 5 0.91
Cornell 183 295 1703 5 0.70
Film 7600 33544 931 5 0.78
Squirrel 5201 217073 2089 5 0.78
Chameleon 2277 36101 2325 5 0.75
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H Application of coarsened graph for GNNs
This section contains additional results related to the scalable GNN training. Figure 9 shows the
GNN training pipeline. Figure 10 shows the visualization of GCN predicted nodes when training is
done using the coarsened graph.
We used four GNN models, namely GCN, GraphSage, GIN, and GAT. Table 7 contains node
classification accuracy results for across various methodologies employing different GNN models.
Table 8 contains parameter details used in UGC across different GNN models. We have used these
parameters across all methods.

Table 7: Evaluation of node classification accuracy of different GNN models when trained with 50%
coarsen graph.

Dataset Model Var.Neigh Var.Edges Var.Clique Heavy Edge Alg. Dis. Aff. GS Kron UGC
GCN 20.03 29.95 31.92 33.30 28.81 27.58 29.10 48.70

Chameleon GraphSage 20.03 20.02 22.05 23.03 19.88 20.02 27.62 58.86
GIN 20.22 19.53 25.25 19.98 18.20 18.06 21.50 54.92
GAT 22.94 19.33 26.44 21.95 23.72 18.06 21.95 55.58
GCN 19.67 20.22 19.54 20.36 19.96 20.00 18.03 31.62

Squirrel GraphSage 19.87 20.00 20.03 20.03 19.93 20.00 19.98 57.60
GIN 18.54 19.65 18.98 21.65 19.47 18.29 20.56 35.64
GAT 20.90 18.56 20.68 19.93 20.46 20.05 20.08 32.28
GCN 15.67 21.80 20.35 19.16 19.23 20.34 17.41 25.40

Film GraphSage 22.32 26.05 24.01 21.49 21.88 21.50 23.73 21.12
GIN 24.20 23.51 17.51 11.49 13.90 21.93 18.04 21.12
GAT 17.50 21.73 17.82 21.18 17.94 17.40 24.15 21.71
GCN 77.87 78.34 73.32 74.66 74.59 80.53 74.89 84.77

Pubmed GraphSage 78.85 62.73 67.18 60.11 63.09 71.25 62.00 83.76
GIN 74.77 39.29 46.19 35.97 32.13 49.63 39.29 76.36
GAT 75.22 72.63 74.81 60.04 69.47 59.76 71.92 83.56
GCN 93.74 93.86 92.94 93.03 93.94 93.06 92.26 96.12

Physics GraphSage OOM OOM OOM OOM OOM OOM OOM OOM
GIN OOM OOM OOM OOM OOM OOM OOM OOM
GAT 92.04 91.80 91.48 91.80 92.94 93.33 91.60 93.80
GCN 77.05 79.93 79.15 77.46 74.51 78.15 77.79 75.50

DBLP GraphSage 68.54 60.17 74.17 72.70 72.19 71.81 71.76 68.25
GIN 35.84 33.93 35.12 24.16 51.47 47.30 42.24 55.28
GAT 70.20 74.07 72.82 71.35 71.17 76.12 72.27 73.49
GCN 79.75 81.57 80.92 79.90 79.83 80.20 80.71 86.30

Cora GraphSage 70.49 68.48 70.16 69.17 72.26 67.77 73.20 69.39
GIN 47.65 35.03 52.91 34.00 63.05 23.49 48.56 67.23
GAT 69.26 74.02 75.92 68.95 73.09 73.83 73.24 74.21
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Figure 9: GCN training pipeline
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(a) Original (b) 30% coarsen (c) 50% coarsen (d) 70% coarsen

Figure 10: Visualization of GCN predicted nodes when training is done using the coarsened graph of
Physics dataset.

Table 8: GNN model parameters.

MODEL HIDDEN LAYERS LEARNING RATE DECAY EPOCH

GCN {64, 64} 0.003 0.0005 500
GRAPHSAGE {64, 64} 0.003 0.0005 500
GIN {64, 64} 0.003 0.0005 500
GAT {64, 64} 0.003 0.0005 500

Table 9: We report the accuracy of GCN on node classification after coarsening by UGC at different
ratios.

Ratio/Data Cora DBLP Pub. Phy.
30 86.30 75.50 85.65 96.70
50 86.30 75.50 84.77 96.12
70 84.63 74.82 80.57 92.43

We randomly split data in 60%, 20%, 20% for the training-validation-test.

I Proof of Theorem 3.1

Theorem I.1 Given a Graph G and a coarsened graph Gc they are said to be ϵ similar if there exists
some ϵ ≥ 0 such that:

(1− ϵ)∥x∥L ≤ ∥x∥Lc
≤ (1 + ϵ)∥x∥L (14)

where L and Lc are the Laplacian matrices of G and Gc respectively.

Proof: Let S be defined such that L = STS, by Cholesky’s decomposition:

|∥x∥L − ∥xc∥Lc | = |∥Sx∥2 − ∥SP+Px∥2| (15)

≤ ∥Sx− SP+Px∥2 = ∥x− x̃∥L ≤ ∥x∥L (16)

The conversion from Lth−norm to 2nd−norm or vice-versa is as follows:

∥x∥L =
√
xTLx =

√
xTSTSx = ∥S∥2

J Proof of Bounded Theorem 3.2

Theorem J.1 Given a graph G(L,F ), a coarsened graph Gc(Lc, Fc), the enhanced features F̃
obtained by enforcing smoothness condition. The original graph G(L,F ) and a coarsened graph
Gc(Lc, F̃ ), are said to be ϵ similar with 0 < ϵ ≤ 1

(1− ϵ)∥F∥L ≤ ∥F̃∥Lc
≤ (1 + ϵ)∥F∥L (17)

18



where L and Lc are the Laplacian matrices, F and Fc are the augmented feature vector given by
UGC, F̃ is the relearned enhanced features by enforcing the smoothness condition discussed in
Equation 6.

Proof:

|∥F∥L − ∥F̃∥Lc | = |
√

tr(FTLF )−
√
tr(F̃TLcF̃ )| (18)

As L is a positive semi-definite matrix we can write L = STS using Cholesky’s decomposition and
by writing Lc = CTLC we get,

= |
√
tr(FTSTSF )−

√
tr(F̃TCTSTSCF̃ )| (19)

= |∥SF∥F − ∥SP †PF∥|F (20)

≤ ∥SF − SP †PF∥F (21)

≤ ϵ∥F∥L (22)

Using the new update rule of ∥F̃∥Lc
we have F̃Lc

≤ ∥F∥L, we get

ϵ =
|∥F∥L − ∥F̃∥Lc

|
∥F∥L

≤ 1 (23)

where ϵ ≤ 1 refer [14] for more details. See Figure 6 which plots different values of ϵ at different
coarsening ratios. As mentioned for fixed values of α we got ϵ ≤ 1 similarity guarantees for the
coarsened graph.

K Importance of Augmented Features
See Figure 12 which showcases the importance of considering the augmented feature vector. It
can be seen from the figure that when coarsened using Augmented features super-nodes have more
intra-node similarity.

Figure 11: A toy example illustrating the computation of augmented features of a given graph.
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Figure 12: This figure highlights the significance of the augmented vector and showcases coarsening
outcomes, specifically when coarsening is performed solely using the adjacency or feature matrix
compared to when the augmented matrix is taken into account.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: Yes, all the claims are reflected in paper. See Section 4 and Appendix.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 3 (Need efficient implementations and sparse tensor methods to represent
the F matrix) and Section 5 (Exploration of different hash functions and novel applications for
the framework).
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
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• The authors should discuss the computational efficiency of the proposed algorithms and how
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problems of privacy and fairness.
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preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: See Appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear
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• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4 and Appendix
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.
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their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
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to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
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results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.
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contribution. For example
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(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: All datasets used are publicly available. See Section 4 and link UGC-NeurIPS
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
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the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
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• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
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obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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