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Abstract

Large Language Models have achieved remark-001
able success across various natural language002
processing tasks, yet their high computational003
cost during inference remains a major bottle-004
neck. This paper introduces Sparse Expert005
Activation Pruning (SEAP)1, a training-free006
pruning method that selectively retains task-007
relevant parameters to reduce inference over-008
head. Inspired by the clustering patterns of hid-009
den states and activations in LLMs, SEAP iden-010
tifies task-specific expert activation patterns011
and prunes the model while preserving task012
performance and enhancing computational effi-013
ciency. Experimental results demonstrate that014
SEAP significantly reduces computational over-015
head while maintaining competitive accuracy.016
Notably, at 50% pruning, SEAP surpasses both017
WandA and FLAP by over 20%, and at 20%018
pruning, it incurs only a 2.2% performance019
drop compared to the dense model. These020
findings highlight SEAP’s scalability and ef-021
fectiveness, making it a promising approach022
for optimizing large-scale LLMs.023

1 Introduction024

Large Language Models (LLMs) have achieved re-025

markable success across a wide spectrum of natural026

language processing (NLP) tasks (Zhao et al., 2024;027

Zheng et al., 2025), demonstrating their versatility028

and adaptability in diverse applications. However,029

their deployment in real-world scenarios remains030

a significant challenge due to the substantial com-031

putational demands during inference. The infer-032

ence process of LLMs is constrained by memory033

bandwidth and hardware limitations (Chavan et al.,034

2024), making efficient deployment particularly dif-035

ficult, especially in resource-constrained environ-036

ments such as real-time systems and edge comput-037

ing. As LLMs continue to scale, these challenges038

1Our code is available at https://anonymous.4open.
science/status/SEAP-EF0F

become even more pronounced, necessitating novel 039

approaches to optimize computational efficiency 040

while preserving model performance. 041

To mitigate the computational overhead of 042

LLMs, several techniques have been explored. 043

Quantization methods (Bai et al., 2021; Frantar 044

et al., 2023) reduce weight precision, while Mix- 045

ture of Experts (MoE) architectures (Shazeer et al., 046

2017; Lepikhin et al., 2020; Fedus et al., 2022) 047

dynamically activate only subsets of the network 048

to improve efficiency. Another widely adopted ap- 049

proach is pruning (Frantar and Alistarh, 2023; Ma 050

et al., 2023; Liu et al., 2024), which removes redun- 051

dant parameters, neurons, or connections to reduce 052

inference costs and storage requirements. Despite 053

the effectiveness of pruning in reducing model com- 054

plexity, most existing methods are static, relying 055

on activation distributions collected from general 056

datasets such as WikiText-2 (Merity et al., 2016) 057

and C4 (Raffel et al., 2020a). These methods apply 058

a uniform pruning strategy across all tasks, which 059

may lead to suboptimal efficiency and fail to fully 060

leverage task-specific knowledge requirements. 061

Inspired by cognitive neuroscience, where dif- 062

ferent brain regions are selectively activated based 063

on task demands, we hypothesize that a similar 064

mechanism exists in LLMs—where different tasks 065

rely on distinct sets of neurons working collabora- 066

tively. This suggests that pruning strategies should 067

be adaptive rather than static, dynamically select- 068

ing the most relevant parameters for each task. By 069

leveraging task-specific activation patterns, we can 070

develop a more effective sparsification technique 071

that maintains task performance while significantly 072

enhancing computational efficiency. 073

Motivation Discovery In cognitive neuroscience, 074

the brain parcellation theory posits that different 075

regions of the brain are selectively activated based 076

on specific task demands, thereby optimizing cog- 077

nitive efficiency (Mesulam, 2000; Li et al., 2022). 078
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Figure 1: Visualization of hidden states h(P ) from different tasks. Each point represents the activation of a hidden
state in the model for a specific task. The clustering patterns illustrate how tasks with similar requirements tend to
activate similar regions in the model.

Inspired by this principle, we investigate whether079

a similar mechanism exists in LLMs — where080

distinct tasks may activate different sets of neu-081

rons, forming task-specific computational path-082

ways. This perspective challenges conventional083

pruning approaches, which typically apply a uni-084

form sparsity pattern across all tasks, potentially085

overlooking task-dependent knowledge representa-086

tions.087

We hypothesize that the knowledge requirements088

and activation patterns of different tasks are closely089

linked. If so, pruning should not be a one-size-090

fits-all process but rather a dynamic, task-aware091

strategy. By leveraging this relationship, pruning092

can adaptively retain the most relevant parame-093

ters based on each task’s specific characteristics,094

thereby enhancing computational efficiency while095

preserving task performance.096

To validate this hypothesis, we design a multi-097

task experiment to analyze whether different tasks098

induce partitioned representations in LLM hidden099

states. We select seven task categories, covering100

a broad spectrum of linguistic and reasoning chal-101

lenges, including common sense reasoning, math-102

ematical problem-solving, and scientific question103

answering. We construct task-specific knowledge104

corpora consisting of question-answer pairs and105

feed them into an LLM to extract hidden states106

across multiple layers. The details of the corpus107

construction process are provided in Section A. To108

visualize the structure of these hidden states, we109

project their high-dimensional representations onto110

a two-dimensional plane. As shown in Figure 1,111

embeddings are initially intermingled. However,112

as forward propagation progresses, the model re-113

fines the semantic features of the input, leading to 114

increasingly distinct task-specific clusters. 115

For instance, in the final layer, GSM8K(Cobbe 116

et al., 2021), a challenging mathematical reason- 117

ing task, exhibits a clear separation from common- 118

sense reasoning tasks. Similarly, OBQA(Mihaylov 119

et al., 2018) and ARC(Clark et al., 2018), both of 120

which rely heavily on external scientific knowl- 121

edge, form a closely related distribution. On 122

the other hand, PIQA(Bisk et al., 2020) and Hel- 123

laSwag(Zellers et al., 2019), though both catego- 124

rized as common-sense reasoning tasks, empha- 125

size everyday knowledge, positioning them below 126

OBQA and ARC in the visualization. Interestingly, 127

Winogrande(Sakaguchi et al., 2019), a pronoun 128

resolution task, clusters with certain HellaSwag 129

prompts, likely due to their shared reliance on 130

pronoun-based reasoning. Lastly, BoolQ(Clark 131

et al., 2019), a contextual reasoning task, forms 132

a distinct grouping, indicating its unique reliance 133

on contextual comprehension. 134

These findings suggest that each task occupies a 135

distinct region within the hidden state space, with 136

certain dimensions of activation corresponding to 137

task-specific information. This observation draws 138

an intriguing parallel to the functional specializa- 139

tion of the human brain, where different cognitive 140

processes activate distinct neural circuits. 141

Building on this insight, we propose our cen- 142

tral hypothesis: During inference, leveraging task- 143

specific activation patterns and dynamically se- 144

lecting the most relevant parameters can signifi- 145

cantly reduce computational overhead while main- 146

taining task performance. This task-adaptive prun- 147

ing paradigm stands in contrast to traditional static 148
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Figure 2: Framework of the SEAP approach. The left side shows the Motivation Discovery phase, where task-
specific activation patterns are identified by analyzing hidden states and neuron activations extracted from the task
corpus. The right side illustrates the Training-free Sparse Expert Activation Pruning process, consisting of five
main steps described in Section 2.1.

pruning approaches, offering a promising path to-149

ward more efficient and specialized LLM deploy-150

ment.151

Contributions Our key contributions are:152

• We analyze task-specific activation patterns in153

LLMs, revealing their correlation with hidden154

state distributions and providing new insights155

for adaptive sparsification.156

• We propose SEAP, a training-free, task-157

adaptive pruning method that dynamically ad-158

justs sparsity based on task type, improving159

efficiency while preserving performance.160

• We demonstrate that SEAP outperforms ex-161

isting baselines in task accuracy, storage ef-162

ficiency, and inference speed, confirming its163

effectiveness for efficient LLM deployment.164

2 Method165

2.1 Overview of SEAP166

Building on the insights from Section 1, we pro-167

pose Sparse Expert Activation Pruning (SEAP), a168

training-free, task-adaptive pruning method that se-169

lectively activates task-relevant parameters during170

inference. By dynamically pruning based on task-171

specific activation patterns, SEAP reduces compu-172

tational overhead while maintaining model perfor-173

mance. The SEAP Workflow (shown in Figure 2)174

is as follows,175

1. Task-Specific Knowledge Corpus Construc- 176

tion: We compile datasets from various tasks, 177

such as reasoning, mathematical problem- 178

solving, and scientific question answering, to 179

form task-specific knowledge corpora (details 180

in Section A). 181

2. Activation Patterns Modeling: We feed the 182

constructed corpora into an LLM and extract 183

hidden state activations from multiple layers 184

to analyze task-specific neural activity. This 185

step lays the foundation for understanding 186

how different tasks engage distinct parame- 187

ter subsets. 188

3. Compute Neuron Importance Scores: We 189

perform task knowledge awakening by com- 190

puting features such as mean, variance, and 191

ℓ2 norm from the collected activations, which 192

are used to derive the task-specific expertise 193

scores. These scores quantify the relevance 194

of each neuron to the task and serve as the 195

foundation for pruning decisions. 196

4. Distribute Sparsity Dynamically: We intro- 197

duce a logistic-based sparsity function that dy- 198

namically adjusts pruning ratios across layers, 199

retaining critical neurons while maximizing 200

efficiency. This enables structured sparsifica- 201

tion tailored to task complexity. 202

5. Apply Task-Specific Pruning Strategies: 203

(5.1) Expert-Based Pruning: Task-specific 204
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expert scores are used to generate pruning205

masks, allowing the model to dynamically se-206

lect the most relevant parameters during in-207

ference. (5.2) General Pruning: A unified208

pruning mask is created by aggregating scores209

across multiple tasks, ensuring broad applica-210

bility.211

2.2 Activation Patterns Modeling212

To validate the feasibility of task-specific expert213

pruning, we analyze the consistency within task214

categories and the distinguishability between dif-215

ferent task categories in the activations of LLMs.216

Only when both of these properties are present can217

the task-specific expert pruning method be effec-218

tively applied. To formalize our analysis, let τ219

denote a task type, and let pi be a specific prompt220

within task τ . We denote by221

h(pi)
τ =

[
h1(pi)

τ , h2(pi)
τ , . . . , hC(pi)

τ
]

(1)222

the hidden state vector of dimension C extracted223

from a particular layer of the model. We further224

define225

Hτ =
{
h(p1)

τ , h(p2)
τ , . . . , h(pnτ )

τ
}
, (2)226

where nτ is the number of prompts for task τ .227

To quantify how each dimension (often viewed228

as a “neuron channel”) responds under different229

tasks, we define the following statistical measures230

that capture the mean activation level, variance, and231

ℓ2 norm of each dimension: 232

µτ
j =

1

nτ

nτ∑
i=1

hj
(
pi
)τ
, (3) 233

(στ
j )

2 =
1

nτ

nτ∑
i=1

(
hj(pi)

τ − µτ
j

)2
, (4) 234

∥∥hτj∥∥2 =
∥∥hτj∥∥2
nτ

=
1

nτ

√√√√ nτ∑
i=1

(
hj(pi)τ

)2
. (5) 235

In these equations, µτ
j denotes the mean activa- 236

tion of dimension j for task τ , (στ
j )

2 represents its 237

variance, and
∥∥hτj∥∥2 is the total ℓ2 norm of that 238

dimension’s activations. The normalized measure 239∥∥hτj∥∥2 divides the raw ℓ2 norm by nτ . 240

Figure 3 visualizes
∥∥hτj∥∥2 for multiple tasks in 241

a given layer or module. Columns represent dif- 242

ferent dimensions, while rows correspond to either 243

distinct layers or modules. Bright regions indicate 244

higher ℓ2 norms, suggesting stronger activation in 245

those dimensions. Within each task, two random 246

subsets of prompts often reveal remarkably consis- 247

tent high-activation dimensions, indicating internal 248

stability. In contrast, tasks with very different ob- 249

jectives exhibit distinct “hot spots,” implying that 250

they engage disjoint sets of dimensions. Hence, 251

these dimension-wise patterns reinforce our claim: 252

tasks of the same type focus on overlapping di- 253

mensions, whereas tasks from different domains 254

activate largely separate regions of the hidden state. 255

Furthermore, consider the weight matrix W ∈ 256

RA×C that applies a linear transformation to the 257

Figure 3: Heatmaps of dimension-wise average ℓ2 norms for different tasks. Each row corresponds to a layer or
module, and each column represents a dimension in the hidden state space. The top and bottom parts of the figure
show activation patterns from two randomly selected subsets of the same task. Consistent color patterns appear
within tasks of the same type, while distinctly different tasks exhibit unique activation signatures, supporting our
hypothesis that tasks selectively activate specific dimensions.
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hidden state. We conceptualize W as consisting258

of C column “slices,” where each slice wi ∈ RA259

corresponds to the i-th dimension in the input hid-260

den state. If a particular dimension i is consistently261

unimportant for a given task τ , then its associated262

column wi can be pruned—thereby reducing com-263

putation without sacrificing essential features.264

Formally, for a prompt pi in task τ , the output265

o ∈ RA of the linear layer is266

o = W h(pi)
τ267

=

w1,1 · · · w1,C
...

. . .
...

wA,1 · · · wA,C

 ·

h1(pi)
τ

...
hC(pi)

τ

 , (6)268

Here, wa,i is the weight linking the i-th hidden269

dimension to the a-th output unit. If dimension i270

is deemed unimportant for task τ , we zero out the271

entire column {w1,i, w2,i, . . . , wA,i} (see Figure 4),272

resulting in a form of structured sparsity that is273

hardware-friendly for inference acceleration.274

Scores calculated using the 
mean, variance, L2 norm,
and other features of 
the activations.

High Score Mid Score Low Score

𝐡𝐡(𝑝𝑝) ℎ𝑖𝑖 (𝑝𝑝) ℎ𝑗𝑗 (𝑝𝑝)

𝑾𝑾𝑻𝑻

𝜔𝜔𝑖𝑖

𝜔𝜔𝑗𝑗

Figure 4: Illustration of how neurons are pruned based
on importance scores.

In summary, by identifying and pruning inactive275

or low-importance dimensions on a per-task basis,276

we can achieve task-adaptive compression.277

2.3 Pruning Procedure278

As mentioned, the next step is to prune neurons279

based on their importance scores for each task.280

Specifically, the neuron importance s
(ℓ,τ)
i for each281

task is computed using a function f(·), which com-282

bines the aforementioned statistical measures with283

the weight norm of the corresponding neuron in284

layer ℓ. Formally,285

s
(ℓ,τ)
i = f

(
µ
(ℓ,τ)
i ,

(
σ
(ℓ,τ)
i

)2
,
∥∥h(ℓ,τ)i

∥∥
2
, w

(ℓ)
i

)
,

(7)286

where µ
(ℓ,τ)
i and

(
σ
(ℓ,τ)
i

)2 denote the mean and287

variance of the activations for neuron i in layer ℓ288

under task τ , ∥h(ℓ,τ)i ∥2 represents the average ℓ2289

norm of its activations, and w
(ℓ)
i is the correspond- 290

ing weight in layer ℓ. 291

Once these importance values are obtained for 292

all C neurons in the chosen module of layer ℓ, we 293

collect {|s(ℓ,τ)1 |, . . . , |s(ℓ,τ)C |} and sort them in as- 294

cending order: 295

|s(ℓ,τ)|sorted = Sort
(
|s(ℓ,τ)1 |, . . . , |s(ℓ,τ)C |

)
. (8) 296

Given a desired sparsity ratio ρ ∈ [0, 1], we 297

identify the ρ-th quantile in (8): 298

θ(ℓ,τ) = |s(ℓ,τ)|sorted
(
⌊ρC⌋

)
, (9) 299

where ⌊·⌋ is the floor function. All neurons whose 300

importance |s(ℓ,τ)i | is less than or equal to θ(ℓ,τ) are 301

then pruned: 302

w
(ℓ)
i =

0, if |s(ℓ,τ)i | ≤ θ(ℓ,τ),

w
(ℓ)
i , otherwise.

(10) 303

Here, w(ℓ)
i = 0 effectively disables neuron i. 304

2.4 Scores Calculating Strategy 305

The expert activation pruning framework we pro- 306

pose is highly flexible, capable of accommodating 307

various neuron importance metrics. The impor- 308

tance score s
(ℓ,τ)
i can be easily integrated with ex- 309

isting training-free methods, such as FLAP(An 310

et al., 2024) and WandA(Sun et al., 2024), by sim- 311

ply adjusting their respective formulas. 312

In the framework above, each neuron i in layer ℓ 313

under task τ is assigned an importance score s
(ℓ,τ)
i 314

by combining its activation statistics and weight 315

information. Specifically, we rely on the definitions 316

of mean activation, variance, and total activation 317

energy (i.e., squared ℓ2-norm) from equations (3), 318

(4), and (5) in Section 2.2, respectively. Let w(ℓ)
i ∈ 319

RDℓ be the weight vector corresponding to neuron 320

i in layer ℓ, with ∥w(ℓ)
i ∥2 and ∥w(ℓ)

i ∥1 denoting its 321

ℓ2- and ℓ1-norms. 322

Based on these quantities, we introduce two spe- 323

cific scoring functions, sF and sW . The first, sF , 324

follows the scoring method used in FLAP by mul- 325

tiplying the neuron’s variance with the squared ℓ2- 326

norm of its weights: 327

s
(ℓ,τ)
F,i = (σ

(ℓ,τ)
i )2 ×

∥∥w(ℓ)
i

∥∥2
2
, (11) 328

This gives higher importance to neurons whose 329

activations vary significantly across prompts and 330

whose weight magnitudes are relatively large. 331
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The second, sW , follows the scoring method332

used in WandA, replacing the variance with the333

total activation energy (i.e., the squared ℓ2-norm334

of the neuron’s activations) and weighting it by335 ∥∥w(ℓ)
i

∥∥
1
:336

s
(ℓ,τ)
W,i =

∥∥h(ℓ,τ)i

∥∥2
2
×

∥∥w(ℓ)
i

∥∥
1
. (12)337

After computing sF or sW for all neurons, we338

apply the threshold-based pruning procedure de-339

scribed in Section 2.3 to remove those receiving340

lower scores.341

In the MLP layers, each neuron index i directly342

corresponds to a single channel, so the scores sF343

or sW in (11)–(12) apply on a channel-by-channel344

basis. By contrast, in the attention layers, we ag-345

gregate neuron scores at the head level: suppose346

each attention head h spans a contiguous set of347

dimensions Ih, then its overall importance score348

can be taken as349

s
(ℓ,τ)
h =

∑
i∈Ih

s
(ℓ,τ)
i . (13)350

A threshold is then applied to s
(ℓ,τ)
h to prune or351

retain the entire head.352

2.5 Expert-Based vs General Pruning353

We propose two pruning strategies to adapt to task-354

specific scenarios and general scenarios. The first355

strategy, Expert-based Pruning, uses task-specific356

importance scores to prune neurons or attention357

heads. The pruning process selects the importance358

score s
(ℓ)
i for each neuron i in layer ℓ based on the359

task type τchosen as follows:360

s
(ℓ)
i = s

(ℓ,τchosen)
i , (14)361

where τchosen is the task selected for pruning, and362

s
(ℓ,τchosen)
i is the corresponding importance score.363

During inference, different pruning masks can be364

flexibly applied based on the task type.365

The second strategy, General Pruning, inte-366

grates importance scores across multiple tasks to367

identify neurons or attention heads that are less368

important across all tasks. This general pruning369

approach forms a unified model, ensuring that im-370

portant components are retained across a broader371

range of tasks. The score is computed as a weighted372

average of the importance scores from each task:373

s
(ℓ)
i =

∑
τ

ατs
(ℓ,τ)
i , (15)374

where ατ is the weight assigned to task τ , and the375

sum is taken across all tasks.376

2.6 Sparsity Setting 377

To determine appropriate sparsity levels for each 378

layer in LLMs, we conduct a remove test on two 379

tasks: MMLU(Hendrycks et al., 2021) and PIQA. 380

This test prunes neurons across layers at varying 381

sparsity levels and measures task performance. Fig- 382

ures 5 and 6 show that early layers are more sensi- 383

tive to pruning, while deeper layers tolerate higher 384

sparsity with minimal performance loss, consistent 385

with our observations in Section 1. 386

Additionally, LLM-Pruner(Ma et al., 2023) and 387

FLAP methods highlight that layers near the output 388

are crucial for language modeling. Thus, we set the 389

sparsity of the final n layers to zero and adjust the 390

sparsity of other layers to maintain overall sparsity. 391

For sparsity setting, we employ a differentiable

Figure 5: Impact of pruning on MMLU performance
at different layers and sparsity levels. Early layers are
more sensitive to pruning.

392
logistic function to ensure a smooth and continuous 393

distribution of sparsity across layers. Each layer 394

index ℓ is mapped to the interval [0, 1] using xℓ = 395
ℓ−1
L−1 , where L is the total number of layers. The 396

sparsity for layer ℓ is defined as: 397

ρℓ = ρ
(
xℓ
)

= Λ
1

1 + exp
(
−k(xℓ − x0)

) ,
(16) 398

where k controls the steepness, x0 sets the inflec- 399

tion point, and Λ represents the maximum sparsity. 400

This ensures lower sparsity in early layers and pro- 401

gressively higher sparsity in deeper layers. 402

To meet a global sparsity target G, we adjust Λ 403

so that the average sparsity satisfies: 404

1

L

L∑
ℓ=1

ρℓ = G. (17) 405

This is done via a numerical search for Λ. In our 406

experiments, we use (x0, k) = (0.3, 1). 407
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Pruning
Ratio

Method
Llama-2-7B

WinoGrande OBQA HellaSwag PIQA ARC-c ARC-e BoolQ Average
0% Dense 69.14 44.20 76.01 79.11 46.33 76.26 77.71 66.97

20%

WandA-sp (sW ) 62.67 40.80 71.56 76.28 42.41 71.93 61.01 60.95
SEAP (sW ) 66.77 43.00 72.53 77.80 45.48 75.42 71.77 64.68
SEAP-gen (sW ) 67.80 41.00 73.77 77.58 44.71 74.33 71.44 64.38
FLAP (sF ) 67.32 41.00 72.77 76.12 42.75 71.93 62.57 62.07
SEAP (sF ) 68.19 42.60 74.07 78.07 45.39 75.42 74.50 65.46
SEAP-gen (sF ) 67.72 41.20 74.82 78.35 45.39 74.12 71.68 64.75

50%

WandA-sp (sW ) 52.72 35.20 41.11 64.36 30.97 52.78 39.45 45.23
SEAP (sW ) 56.12 37.20 58.07 73.83 38.74 61.32 60.15 55.06
SEAP-gen (sW ) 54.70 38.20 56.97 71.76 35.24 57.15 57.25 53.04
FLAP (sF ) 56.04 34.40 48.62 63.00 32.17 51.18 42.32 46.82
SEAP (sF ) 60.14 38.80 58.22 74.32 38.14 60.56 59.94 55.73
SEAP-gen (sF ) 59.91 39.80 58.17 73.39 37.97 55.72 57.98 54.71

Table 1: Task performance accuracy on Llama-2-7B under different pruning ratios. A higher ↑ score indicates better
performance. The bolded entries represent the highest scoring methods, while the underlined entries represent the
second highest scoring methods.

3 Experiment and Results Analysis408

3.1 Experimental Settings409

LLMs and Tasks We evaluate our method on410

the Llama2-7B and Llama2-13B models, assess-411

ing their performance across a range of down-412

stream tasks. Zero-shot performance is evaluated413

on seven benchmarks—BoolQ, ARC Easy, ARC414

Challenge, HellaSwag, OBQA, PiQA, and Wino-415

grande—using the EleutherAI LM Harness(Gao416

et al., 2024). In addition to accuracy, we also com-417

pare inference speed. More details can be found in418

Section A.419

Baselines We compare our method to the original420

(dense) models and two established training-free421

sparsification methods: WandA and FLAP. The422

key difference between these baselines is in the423

importance score calculation. For the expert-based424

and general models, we use the scoring methods425

sW from WandA and sF from FLAP, respectively.426

All methods, including baselines, adopt the logistic427

sparsity setting proposed in this paper, enabling428

consistent comparison of knowledge corpus expert429

activation differences. A detailed comparison of430

sparsity settings is provided in Section 3.2.431

3.2 Results and Analysis432

Zero-shot Tasks Performance We evaluate433

SEAP’s zero-shot performance across multiple434

benchmarks, demonstrating its ability to reduce435

computational overhead while maintaining com-436

petitive accuracy. For Llama-2-7B (see Table 1),437

at 20% pruning, SEAP outperforms both WandA438

and FLAP with minimal performance loss, show- 439

ing only a 2.2% drop compared to the dense model, 440

which is exceptional for structured pruning. At 441

50% pruning, SEAP’s advantage over FLAP and 442

WandA increases, with the average score surpass- 443

ing both baselines by over 20%, indicating strong 444

performance even at high sparsity levels. 445

Interestingly, the results do not always align with 446

expectations for general versus expert models. In 447

HellaSwag, the general model outperforms the ex- 448

pert model, likely due to richer knowledge corpora 449

enhancing task-relevant activation distributions. A 450

similar trend is observed in BoolQ with Llama-2- 451

13B (see Table 4), where higher sparsity leads to a 452

noticeable performance drop, possibly due to the 453

simpler True/False nature of the task, which lacks a 454

sufficiently rich knowledge corpus for task-specific 455

pruning to be fully effective. 456

Overall, our results confirm that task-specific 457

pruning improves efficiency without compromising 458

performance. 459

Inference Speed Our pruning method completes 460

pruning on Llama-2-7B in approximately 5–10 461

minutes on a single NVIDIA H800 80GB GPU. 462

As shown in Table 2, SEAP significantly improves 463

inference speed compared to non-structured prun- 464

ing methods like WandA. At 20% pruning, SEAP 465

is slightly slower than FLAP, but at 50% pruning, 466

SEAP maintains high speed with only a minimal 467

difference compared to FLAP. These results demon- 468

strate that SEAP reduces computational resources 469

while maintaining high inference speed, making it 470
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suitable for real-world deployment across various471

hardware environments.472

Ratio Method
Llama-2-7B Llama-2-13B

Tokens/s Up Tokens/s Up
0% Dense 31.88 27.45

20%
WandA 32.05 ×1.01 28.01 ×1.02
FLAP 38.90 ×1.22 33.96 ×1.24
SEAP-gen 37.32 ×1.17 33.02 ×1.20

50%
WandA 31.24 ×0.98 27.01 ×0.98
FLAP 47.94 ×1.50 43.45 ×1.58
SEAP-gen 47.10 ×1.48 41.78 ×1.52

Table 2: Inference speed (Tokens per second) and
speedup under different pruning ratios.A higher↑ speed
indicates better performance.

Sparsity Setting Comparison As shown in Ta-473

ble 3, we compare our Logistic-based (LB) spar-474

sity setting with other strategies: Uniform Sparsity475

across Layers (UL) and Adaptive Sparsity across476

Layers and Modules (AL) from FLAP. At both477

20% and 50% pruning ratios, our method (SEAP-478

gen with LB) consistently outperforms WandA-sp479

and FLAP in terms of performance, demonstrating480

that the LB setting leads to more efficient resource481

allocation and better performance.

Ratio Method Set. Average Set. Average
0% Dense - 69.46 - 69.46

20%
WandA-sp UL 61.47 LB 65.57
FLAP AL 63.03 LB 66.76
SEAP-gen UL 66.03 LB 68.75

50%
WandA-sp UL 48.80 LB 49.94
FLAP AL 51.12 LB 51.78
SEAP-gen UL 59.03 LB 60.89

Table 3: Sparsity settings and average sparsity on
the Llama-2-13B model. The table shows three spar-
sity strategies: "UL" (Uniform Layer Sparsity), "LB"
(Logistic-based Sparsity), and "AL" (Adaptive Layer
Sparsity).A higher↑ score indicates better performance.

482

4 Related Works483

The computational cost and inference time of484

LLMs significantly impact deployment. Re-485

searchers have addressed these challenges through486

model compression(Michel et al., 2019; Yao et al.,487

2022; Lin et al., 2024), quantization(Bai et al.,488

2021; Frantar et al., 2023), structural modifica-489

tions(Gu and Dao, 2023; Peng et al., 2023), and490

optimized decoding. Sparsification has become a491

key technique, including Mixture of Experts (MoE)492

(Shazeer et al., 2017), which activates subsets of493

the network to improve efficiency while maintain- 494

ing performance (Lewis et al., 2021; Lepikhin et al., 495

2020; Zhang et al., 2022). 496

Pruning is another effective sparsification tech- 497

nique for reducing computational and memory 498

costs, categorized into unstructured, structured, 499

and activation pruning. Unstructured Pruning, 500

which sparsifies individual weights but can hinder 501

hardware efficiency. Examples include SparseGPT 502

(Frantar and Alistarh, 2023) and WandA (Sun et al., 503

2024). Structured Pruning, which prunes en- 504

tire units like channels or attention heads for im- 505

proved hardware efficiency and inference speed, 506

with methods like Bonsai (Dery et al., 2024), 507

QPruner (Zhou et al., 2024), LLM-Pruner (Ma 508

et al., 2023), FLAP (An et al., 2024), and Depth2 509

(Li et al., 2024). Activation Pruning sparsifies 510

network activations, reducing memory bandwidth 511

during inference. Activation functions like SiLU 512

and GeLU (Mirzadeh et al., 2023), and variants 513

like dReLU (Song et al., 2024b), ReGLU (Raffel 514

et al., 2020b), and RELU2 (So et al., 2021; Zhang 515

et al., 2024) help reduce computational load. Meth- 516

ods like TEAL (Liu et al., 2024), CATS (Lee et al., 517

2024), SCAP (Chua et al., 2024), QSparse (Wang 518

et al., 2024), and ProSparse (Song et al., 2024a) 519

achieve training-free activation pruning. 520

5 Conclusion 521

We present SEAP (Sparse Expert Activation 522

Pruning), a training-free, task-adaptive pruning 523

framework for LLMs, inspired by the clustering 524

of hidden states and task-specific activation pat- 525

terns. SEAP dynamically selects and activates 526

the most relevant neurons for each task, reduc- 527

ing computational overhead while maintaining 528

strong task performance. Extensive experiments 529

demonstrate that SEAP significantly improves effi- 530

ciency—outperforming baselines by over 20% at 531

50% pruning, while maintaining over 97.8% of the 532

original performance at 20% pruning. These results 533

highlight SEAP’s ability to achieve substantial spar- 534

sification with minimal performance degradation. 535

By leveraging insights from hidden state cluster- 536

ing and activation-driven pruning, SEAP optimizes 537

LLMs for real-world deployment, enabling more 538

efficient, scalable, and adaptive language models. 539

This approach paves the way for future advance- 540

ments in structured pruning and task-aware model 541

compression, making LLMs more accessible and 542

practical across diverse applications. 543
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Ethical Considerations544

This work introduces a pruning method for LLMs545

to improve efficiency, but it raises ethical con-546

cerns. Pruning decisions could unintentionally af-547

fect model performance or fairness on certain tasks.548

While our method aims to preserve task-specific549

performance, it is important to monitor its impact550

on fairness and utility, especially in critical appli-551

cations. Furthermore, pruned models could have552

unintended consequences in domains requiring nu-553

anced decision-making. Transparent deployment554

and ongoing evaluation are essential to address555

these concerns.556

Limitations557

While SEAP improves inference efficiency, it does558

have some limitations. (1) Compared to other meth-559

ods, our approach may result in a slight increase in560

perplexity, as it preserves task-specific parameters561

at the cost of some efficiency. (2) The acquisition562

of task-specific activation values could also bene-563

fit from more diverse data, and incorporating data564

synthesis techniques could improve model general-565

ization. (3) Lastly, pairing SEAP with a simple task566

classifier to route tasks to the pruned model could567

further enhance efficiency, making the approach568

more adaptable in practical applications.569
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Pruning
Ratio

Method
Llama-2-13B

WinoGrande OBQA HellaSwag PIQA ARC-c ARC-e BoolQ Average
0% Dense 72.14 45.20 79.37 80.52 48.98 79.42 80.58 69.46

20%

WandA-sp (sW ) 67.40 42.80 74.52 78.40 48.64 76.73 70.49 65.57
SEAP (sW ) 71.98 43.60 78.73 80.69 48.46 77.61 74.68 67.96
SEAP-gen (sW ) 69.85 43.20 78.13 80.47 48.55 78.58 72.54 67.33
FLAP (sF ) 69.14 44.00 75.05 76.71 48.04 77.19 77.22 66.76
SEAP (sF ) 70.64 44.80 79.12 80.69 47.95 76.85 76.82 68.12
SEAP-gen (sF ) 70.09 44.20 78.97 80.09 50.17 78.37 79.36 68.75

50%

WandA-sp (sW ) 53.51 37.20 46.77 66.97 35.24 60.14 49.76 49.94
SEAP (sW ) 58.96 40.60 66.91 76.77 44.03 71.09 57.43 59.40
SEAP-gen (sW ) 63.38 44.40 66.75 76.55 43.43 71.09 49.79 59.34
FLAP (sF ) 55.17 38.20 53.82 67.41 33.11 58.42 56.36 51.78
SEAP (sF ) 64.56 42.00 68.75 76.93 45.05 71.84 52.57 60.24
SEAP-gen (sF ) 62.59 43.20 67.05 77.15 41.55 67.93 66.79 60.89

Table 4: Task performance accuracy on Llama-2-13B under different pruning ratios. A higher ↑ score indicates
better performance. The bolded entries represent the highest scoring methods, while the underlined entries represent
the second highest scoring methods.

A Experimental Settings803

A.1 Task-Specific Corpus Construction804

In this study, we constructed a standardized task-805

specific corpus by reformatting the questions and806

answers from evaluation tasks into knowledge-rich807

inputs.808

For each task, we began by extracting relevant809

components from the raw training data, including810

the question, answer options, and correct answers.811

These components were then formatted into stan-812

dardized input prompts. By combining the ques-813

tion, options, and correct answer into a unified814

input format, we provided the model with the full815

context of each task, as shown in Table5. This struc-816

tured input allows the model to learn task-specific817

patterns and understand the relationship between818

the question and the correct answer, ultimately im-819

proving its ability to make accurate predictions.820

A.2 Tasks821

For evaluating downstream task performance, we822

use the lm-eval harness(Gao et al., 2024) to as-823

sess zero-shot performance across seven bench-824

mark tasks. We ensured that all tools and datasets825

used are properly cited, comply with their licenses826

and intended uses, and meet ethical standards, in-827

cluding data privacy and documentation. These828

tasks test a wide range of natural language under-829

standing challenges and include:830

• BoolQ (Clark et al., 2019): Evaluates models’831

ability to answer yes/no questions based on832

context, testing comprehension and reasoning.833

• ARC Easy and ARC Challenge (Clark et al., 834

2018): Benchmarks from the AI2 Reasoning 835

Challenge assessing reasoning on multiple- 836

choice science questions; Easy set for direct 837

retrieval, Challenge set for complex reason- 838

ing. 839

• HellaSwag (Zellers et al., 2019): Tests com- 840

monsense reasoning by having models select 841

the most plausible continuation of a given sen- 842

tence. 843

• OBQA (Mihaylov et al., 2018): An open- 844

book question answering task assessing mod- 845

els’ ability to answer factual questions using 846

a collection of documents. 847

• PiQA (Bisk et al., 2020): Focuses on physical 848

commonsense reasoning, requiring models to 849

select the correct solution from two choices 850

for a given problem. 851

• Winogrande (Sakaguchi et al., 2019): A 852

large-scale dataset designed to evaluate mod- 853

els’ ability to resolve commonsense reasoning 854

tasks in the style of the Winograd Schema 855

Challenge. 856

These tasks cover a broad spectrum of natural 857

language understanding, from reasoning and com- 858

monsense knowledge to factual and situational un- 859

derstanding. 860
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Task Example Prompt

HellaSwag
Then, the man writes over the snow covering the window of a car, and a woman
wearing winter clothes smiles. Then, the man continues removing the snow on his
car.

PIQA
How do I ready a guinea pig cage for its new occupants? Provide the guinea pig
with a cage full of a few inches of bedding made of ripped paper strips, you will
also need to supply it with a water bottle and a food dish.

OBQA
The sun is the source of energy for physical cycles on Earth: plants sprouting,
blooming, and wilting.

WinoGrande
Katrina had the financial means to afford a new car while Monica did not, since
Katrina had a high paying job.

ARC
One year, the oak trees in a park began producing more acorns than usual. The next
year, the population of chipmunks in the park also increased. Which best explains
why there were more chipmunks the next year? Food sources increased.

GSM8K

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips
in May. How many clips did Natalia sell altogether in April and May? Natalia sold
48/2 = 24 clips in May. Natalia sold 48 + 24 = 72 clips altogether in April and
May.

BoolQ
All biomass goes through at least some of these steps: it needs to be grown,
collected, dried, fermented, distilled, and burned... Does ethanol take more energy
to make than it produces? False

Table 5: Example Prompts from Various Tasks in the Task-Specific Corpus

A.3 Baselines861

In this study, we select two representative methods862

as baseline models for comparison: Wanda and863

FLAP. Below is a detailed introduction to these864

two methods.865

Wanda (Sun et al., 2024) Wanda evaluates pa-866

rameter importance by calculating the product of867

the weight magnitude and the ℓ2-norm of the corre-868

sponding input activation. It adopts a local pruning869

strategy, pruning weights associated with each out-870

put feature within a linear layer. We extend Wanda871

to structured pruning by computing the ℓ2-norm of872

weight groups within the linear layer, evaluating873

the importance of the entire group. This extended874

version, called Wanda-sp, enables structured prun-875

ing in large language models.876

FLAP (An et al., 2024) FLAP (Fluctuation-based877

Adaptive Structured Pruning) is a novel structured878

pruning method for large language models, achiev-879

ing compression without retraining. It uses a fluctu-880

ation pruning metric to assess the recoverability of881

the output feature map after removing a column of882

weights. By normalizing importance scores, FLAP883

adaptively determines the global structure of the884

compressed model. 885

A.4 Hyperparameters 886

The hyperparameters in this study involve the 887

weighting of tasks and the sparsity setting across 888

layers. 889

For general pruning, the importance score s
(ℓ)
i 890

for each neuron in layer ℓ is calculated as a 891

weighted sum of task-specific scores: 892

s
(ℓ)
i =

∑
τ

ατs
(ℓ,τ)
i , 893

where ατ is the weight assigned to task τ . Wiki- 894

Text2 is assigned a weight of 3 as an expert activa- 895

tion for language modeling, while other tasks are 896

assigned an equal weight of 2. 897

To achieve a global sparsity target G, we adjust 898

the sparsity distribution across layers by tuning the 899

parameter Λ such that the average sparsity satisfies: 900

1

L

L∑
ℓ=1

ρℓ = G. 901

This is done through a numerical search for the 902

optimal Λ. In our experiments, we use (x0, k) = 903

(0.3, 1) for the logistic sparsity function. 904
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Figure 6: Impact of pruning on PIQA performance at
different layers and sparsity levels. Deeper layers are
more robust to pruning.

B Additional Experiments905

In this section, we present two additional experi-906

ments to support our proposed method. These ex-907

periments are designed to assess key aspects of the908

model’s performance: perplexity as a measure of909

language modeling quality and task classification910

for task-specific pruning.911

B.1 Perplexity912

We evaluate the impact of pruning on language913

modeling by assessing perplexity (PPL) on the914

WikiText2 dataset. Perplexity measures how well a915

model predicts the next word in a sequence, with916

lower values indicating better performance. This917

experiment helps determine whether pruning meth-918

ods, including SEAP, can maintain language gen-919

eration quality while achieving computational sav-920

ings.921

We use 128 random samples from the WikiText2922

dataset (Merity et al., 2016), each with a 2048-923

token context and a 512-token evaluation window,924

following the FLAP setup (An et al., 2024). As925

shown in Figure 7, at 20% sparsity, SEAP leads to926

a slight increase in perplexity compared to WandA-927

sp and FLAP, reflecting a small trade-off in lan-928

guage modeling quality. At 50% sparsity, perplex-929

ity increases across all methods, with SEAP-gen930

showing the highest values. However, these in-931

creases remain within an acceptable range, espe-932

cially considering the significant improvements in933

task-specific performance.934

B.2 Task Classifier935

A key feature of the task-specific expert activation936

pruning method is its ability to dynamically se-937

lect pruning masks based on the task type, improv-938

ing computational efficiency. The challenge lies939

Figure 7: Perplexity (PPL) results under different prun-
ing ratios. A lower↓ perplexity indicates better perfor-
mance.

in quickly identifying the task type with minimal 940

overhead to ensure efficient mask selection. 941

To address this, we propose a lightweight task 942

classification method. We extract a vector from 943

the model’s 0th-layer embedding and train a single- 944

layer classifier to identify the task type, enabling 945

the model to select the appropriate task-specific 946

mask with minimal cost. 947

Class Precision Recall F1-
Score

Support

hellaswag 0.94 0.89 0.91 236
gsm8k 0.92 0.99 0.95 233
winogrande 0.98 0.99 0.98 218
piqa 0.88 0.91 0.89 201
mmlu 0.95 0.87 0.91 233
ai2_arc 0.91 0.95 0.93 222
Accuracy 0.93 (1343)
Macro avg 0.93 0.93 0.93 1343
Weighted avg 0.93 0.93 0.93 1343

Table 6: Task classification performance metrics for the
proposed task classifier. Precision, recall, and F1-score
are reported for each task class, along with the overall
accuracy, macro average, and weighted average.

As shown in Table 6, the task classifier performs 948

effectively, distinguishing between different task 949

types with minimal computational resources. This 950

confirms that task classification can be done rapidly, 951

allowing for efficient pruning and dynamic adjust- 952

ment of model parameters. 953

C Generation Examples 954

In this section, we provide several examples of 955

generated outputs to illustrate the effectiveness of 956

our method. The following tables showcase two 957

results of our model’s generation capabilities using 958

prompts from the FLAP: Table 7 and Table 8. 959
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Model Generated Sentences

LLaMA-7B

20% Pruned

AI can create a logo in seconds. But it’s not just a logo that you need to build a brand.
A brand is a collection of ideas, emotions, and associations that people have about
a product, service, or company. It’s the sum of all the things that make up a brand,
and it’s what differentiates one brand from another. The most important thing to
remember about branding is that it’s not just about the logo.

What is McDonald’s? McDonald’s is a fast-food restaurant franchise that serves
burgers, fries, chicken nuggets, soft drinks, milkshakes, sundaes, salads, wraps,
breakfast items (in some restaurants), desserts, and other items. The menu varies by
country and region, but there are over 30,000 locations worldwide.

LLaMA-7B

50% Pruned

AI can create a logo in seconds. The process of creating logotypes is called typestudy.
A Log is a handwritten symbol or group of alphabets used in a script. In 1915, Eric
Blake created the typeface Helvetica. It was a revival of handwriting from the Italian
Renaissance. The first known example of handwriting is from a cave in Georgia,
USA. It is dated 10,000 BCE.

What is McDonald’s? It is a small inn in an alley, a hundred yards or two from the
gates. The tavern’s walls are thick, and it has a steeply pitched roof. Above the door
there is carved a dragon’s flicked beak, with the words _Bow of Arrows_ carved in
the sill. Inside, the tavern is large and well lit by daylight. There are three stairways
leading to the north, all of which are occupied by men in armor.

Table 7: Generated Sentences by LLaMA-7B with Different Pruning Levels

Model Generated Sentences

LLaMA-13B

20% Pruned

"AI can create a logo in seconds. But it’s not that simple. There are pros and cons to
AI-generated logos. On the one hand, they are quick to create and don’t require a lot
of time or resources. On the other hand, they can be generic and lack personality.
In this article, we’ll explore the pros and cons of AI-generated logos and how they
compare to human-designed logos. "

"What is McDonald’s? McDonald’s is a fast-food hamburger restaurant that serves
burgers, fries, chicken nuggets, milkshakes, salads, and breakfast items. The menu is
simple and affordable, and the restaurant is known for its cleanliness and friendliness.
What is the history of McDonald’s? In 1940, two brothers, Ray Kroc and Richard
McDonald, opened the first McDonald’s restaurant in Des Plaines, Illinois."

LLaMA-13B

50% Pruned

"AI can create a logo in seconds. It’s a matter of fact that the time to create a
logo has decreased from 10 days to 24 hours in the last decade. This is due to the
development of computer graphics and digital technologies. In the 1990s, the world’s
first computer-animated film “Turtle Island” was released in 1990. It took three years
to make the film and cost $40 million. The sequel of the franchise, Taz the Stone
Age, was released in 1994. It made $ 24 million in box office and gross revenue of
$402 million worldwide."

"What is McDonald’s? Founded in 1946 by Mac and his brother Dave McDonald
in Aberdeen, Scotland as a bar for American servicemen and their friends, the
Macdonald family took over the business in 1972. It was renamed The White Rose
in 1974 and changed to its current name in 1986 due to the unfortunate similarity
of McDonald’s which was registered at the time some 30 miles away. Today the
pub serves 1200 pints a week and has live music 6 nights a week with DJ’s playing
between breaks."

Table 8: Generated Sentences by LLaMA-13B with Different Pruning Levels
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