
Memory Efficient Optimizers with 4-bit States

Bingrui Li1, Jianfei Chen1†, Jun Zhu1

1Dept. of Comp. Sci. and Tech., Institute for AI, BNRist Center, THBI Lab,
Tsinghua-Bosch Joint ML Center, Tsinghua University

lbr22@mails.tsinghua.edu.cn; {jianfeic, dcszj}@tsinghua.edu.cn

Abstract

Optimizer states are a major source of memory consumption for training neural
networks, limiting the maximum trainable model within given memory budget.
Compressing the optimizer states from 32-bit floating points to lower bitwidth
is promising to reduce the training memory footprint, while the current lowest
achievable bitwidth is 8-bit. In this work, we push optimizer states bitwidth
down to 4-bit through a detailed empirical analysis of first and second moments.
Specifically, we find that moments have complicated outlier patterns, that current
block-wise quantization cannot accurately approximate. We use a smaller block
size and propose to utilize both row-wise and column-wise information for better
quantization. We further identify a zero point problem of quantizing the second
moment, and solve this problem with a linear quantizer that excludes the zero point.
Our 4-bit optimizers are evaluated on a wide variety of benchmarks including
natural language understanding, machine translation, image classification, and
instruction tuning. On all the tasks our optimizers can achieve comparable accuracy
with their full-precision counterparts, while enjoying better memory efficiency.*

1 Introduction

Large-scale models with a massive amount of parameters [5, 9, 20, 22, 49, 58] have shown impressive
few-shot learning abilities on general tasks [52]. Despite being powerful, training these models is
challenging. Memory capacity is one of the main bottlenecks of training large-scale models. Modern
neural networks are typically trained with stateful optimizers such as Adam [26], which need to
maintain one or two optimizer states (i.e., first and second moments) per each parameter. As the
model size grows, the memory consumed by optimizer states can be a dominating factor of memory
consumption [40, 41].

There are several attempts to reduce optimizers’ memory consumption. Factorization [2, 8, 46] applies
low-rank approximation to optimizer states, delta tuning [18, 23, 24, 27, 28] avoids maintaining
optimizer states for most parameters by only tuning a small subset, and low-precision optimizers [15,
44] represent their states with low-precision numerical formats, which consume less memory.

Among these methods, low-precision optimizers are attractive due to their simplicity and wide
applicability. Dettmers et al. [15] propose an 8-bit optimizer with reparameterized embedding
layers (“stable embedding layers”) and a block-wise 8-bit dynamic exponential numerical format for
optimizer states. Their 8-bit optimizers achieve similar convergence to full-precision optimizers on
language modeling, image classification, machine translation, and language understanding tasks.

In this work, we push the required numerical precision of low-precision optimizers from 8 to 4-bit
through analyzing the patterns in the first and second moments and designing dedicated quantizers

*Code is available at https://github.com/thu-ml/low-bit-optimizers
†Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/thu-ml/low-bit-optimizers

Algorithm 1 Compression-based Memory Efficient Optimization Framework

Require: black-box stochastic optimization algorithm A, initial parameter w0 ∈ Rp, initial opti-
mizer state s̄0 = 0, total number of iterations T

1: for t = 1, 2, . . . , T do
2: Sample a minibatch ζt and get stochastic gradient gt = ∇wf(wt−1, ζt)
3: st−1 ← decompress(s̄t−1)
4: wt, st ← A (wt−1, st−1,gt)
5: s̄t ← compress(st)
6: end for
7: return wT

for optimizer states. Specifically, we find that moments exhibit complicated outlier patterns, that
vary across different parameter tensors. The large block size proposed by Dettmers et al. [15] cannot
properly handle all different outlier patterns. Based on this observation, we propose to use a smaller
block size, which improves the approximation of first moment.

For the second moment, we find its quantization suffers from a zero-point problem. Since the update
direction is usually inversely proportional to the square root of the second moment, quantizing
non-zero quantities to zero will cause significant deviation. To address this problem, we propose a
simple linear quantizer to exclude the zero-point for second moment. We further propose a stronger
quantization technique, rank-1 normalization, to improve the approximation of second moment by
better handling the outlier patterns. Our proposed quantization techniques are robust enough to
achieve lossless convergence under 4-bit, even without the stable embedding layers proposed by
Dettmers et al. [15].

Finally, we investigate the combination of factorization methods [2, 46] with low-precision optimizers,
and propose a memory efficient optimizer which utilizes quantized 4-bit first moment and factorized
second moment. For applicable tasks, the hybrid optimizer enjoys best of both worlds: good
convergence and memory efficiency.

We evaluate our 4-bit optimizers on a wide range of tasks, including natural language understanding,
machine translation, image classification, and instruction tuning of large language models. On all
the benchmarks, our 4-bit optimizer can converge similarly fast with full-precision optimizers, and
the converged models do not have noticeable accuracy loss. Our optimizers consumes less memory
than existing 8-bit optimizers [15], while improves the throughput of language model finetuning with
optimizer offloading [41, 45] due to reduced communication cost.

2 Preliminaries

In this section, we present some preliminaries of compression-based memory efficient optimizers and
discuss quantization methods for compression of optimizer states in a general formulation.

2.1 A Framework for Compression-based Memory Efficient Optimizers

Gradient-based stateful optimizers like SGDM [38, 47], Adam [26], AdamW [32] are the principal
choices in deep neural network training. However, the memory footprint of stateful optimizers is
several times of model itself, which results in a bottleneck for large model pretraining/finetuning.
Consider the update rule of the Adam optimizer:

Adam(wt−1,mt−1,vt−1,gt) =



mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2

t

m̂t = mt/(1− βt1)

v̂t = vt/(1− βt2)

wt = wt−1 − η · m̂t/
(√

v̂t + ε
) (1)

During the training process, the model parameters wt and optimizer states (i.e., first and second
moments) mt, vt need to be stored persistently in the GPU memory. As the model grows large,
optimizer states are a main source of training memory consumption. Each parameter dimension takes

2

two 32-bit optimizer states, making the memory consumption of Adam-style optimizers three times
larger than stateless optimizers like SGD.

Compressing the optimizer states is a promising method to achieve memory efficient optimization.
Formally, given a gradient-based optimizer A, a memory efficient version of the optimization
algorithm with compressed optimizer states is given by Alg. 1. The algorithm A can be any gradient-
based optimizers like SGDM, Adam, AdamW, etc. See App. F for examples. In Alg. 1, the precise
states st are only temporal, and only compressed states s̄t are stored persistently in the GPU memory.
Memory footprint reduction can be achieved since in neural networks, the state vectors mt and vt
are usually concatenation of state vectors of each parameterized layer. Therefore, we can perform the
optimizer steps (Line 3-5) separately for each layer, so only one single layer of the precise states are
presented in the memory at a time. The states for all other layers are kept compressed. In the rest of
this paper, we focus on the compression and decompression method, to achieve high compression
rate of optimizer states while maintaining good convergence of the optimizer.

2.2 Main Compression Method: Quantization

Quantizing the optimizer states to lower precision (e.g. 8-bit integers) is an effective way to com-
pression optimizer states [15]. In this case, the optimizer states are compressed with a quantizer
and decompressed with a dequantizer. The low-precision numerical format significantly impacts the
accuracy of quantization methods. Here, we present a general framework for numerical formats we
considered for compressing optimizer states.

A quantizer converts full-precision tensors to low-precision formats. Based on the formulation
proposed by Dettmers and Zettlemoyer [16], we disentangle the quantizer Q(·) into two parts:
normalization N(·) and mapping M(·), which applies sequentially and element-wisely to a tensor to
be quantized. For concise presentation, we only discuss quantizers for unsigned inputs, and defer the
discussion of signed inputs in App. E.1. Formally, the quantizer for a tensor x ∈ Rp is given by

qj := Q(xj) = M ◦N(xj).

Normalization The normalization operator N scales each elements of x into the unit interval, i.e.
[0, 1]. Normalization can have different granularity, such as per-tensor, per-token (row) [37, 55],
per-channel (column) [4], group-wise [37, 55] and block-wise [15]. The per-tensor and block-wise
normalization operators are given by

nj := Nper-tensor(xj) = xj/ max
1≤i≤p

|xi| ,

nj := Nblock-wise(xj) = xj/max {|xi| : 1 +B bj/Bc ≤ i ≤ B (bj/Bc+ 1)} ,
respectively, where the involved scaling factors are called quantization scale, which are persistently
stored together with quantized tensor until dequantization. The granularity of normalization presents
a trade-off of quantization error and memory overhead. Normalization method with low quantization
error and acceptable memory overhead is preferred. In this case, the coarsest per-tensor normalization
operator has negligible memory overhead, i.e. only 1 scaling factor regardless of tensor size, but
suffers from largest error due to outliers. Block-wise normalization views the tensor as an 1-
dimensional array, divides the array into blocks of size B called block and assigns a quantization
scale within each block, which leads to dp/Be quantizaton scales totally. The block size could be
adapted to trade-off quantization error and memory overhead.

Mapping A mapping [15] converts normalized quantities to low-bitwidth integers. Formally, the
mapping operator M = MT,b is equipped with a bitwidth b and a predefined increasing mapping,
named quantization mapping T : [0, 2b − 1] ∩ Z→ [0, 1]. Then M is defined as

qj := M(nj) = arg min
0≤i<2b

|nj −T(i)| .

The design of T is critical as it could effectively mitigate quantization error by capturing the
distribution information of n. There are two kinds mappings that are of specific interest to optimizer
states quantization, linear mapping and dynamic exponent (DE) mapping [13]. A linear mapping
T(i) = (i + 1)/2b defines a linear quantizer, where the quantization intevals distribute evenly
in each block. The DE mapping can approximate small values well, similar to floating point
numbers. DE splits the binary representation of a low-precision integer i into three parts: a leading

3

10 3 10 4 0 10 4 10 3
0

5000

10000

15000

20000

10 3 10 4 0 10 4 10 3
0

10000

20000

30000

40000

50000

10 3 10 4 0 10 4 10 3
0

20000

40000

60000

80000

100000

dim0

0 1000
2000

3000
dim1

0
200

400
600

800

0.2
0.4
0.6
0.8
1.0

(a) (b) (c) (d)

Figure 1: Visualization of the first moment in the layers.3.blocks.1.mlp.fc1 layer in a Swin-T model.
(a): Magnitude of the first moment. (b): Histogram of the first moment. (c): Moment approximated by B128/DE.
(d): Moment approximated by B2048/DE.

sequence of E zeros, followed by an indicator bit one, and remaining F fraction bits. DE defines
T(i) = 10−E(i)fraction(i), where fraction(i) ∈ [0.1, 1]. See App. E.2 for full specifications and
visualizations of different quantization mappings.

The normalization N and mapping M roughly play the same role in finding good quantization
point candidates and they affect each other. If an oracle normalization scaling the original tensor
x to a uniform distribution is accessible, linear mapping could be used generally. On the contrary,
if the optimal mapping could be readily identified with respect to certain metrics for a per-tensor
normalized tensor, there is no necessity to develop additional normalization methods that incur extra
overhead for mitigating the negative effects of outliers. In essence, if one of the two operators
approaches optimality, the quantizer can still perform well even when the other operator is set to its
most basic configuration. Additionally, as one operator becomes increasingly powerful, the potential
for improvement in the other operator gradually diminishes.

Dequantization The dequantizer is just the inverse of the quantizer, which is simply

x̃j := N−1 ◦T(qj).

Based on our formulation, we name quantizers by their normalization and mapping methods as
Norm./Map.. For example, 8-bit optimizers [15] use block-wise normalization with a block size of
2048 and dynamic exponent mapping, which we call B2048/DE in the rest of the paper.

3 Compressing First Moment

In the next two sections, we describe our design of compression and decompression methods in Alg. 1
to realize our memory efficient 4-bit optimizers. We first discuss the compression of the first moment.
Our compression method for first moment is based on Dettmers et al. [15], which uses block-wise
normalization with a block size of 2048 and dynamic exponent mapping [13]. We preliminary reduce
the bitwidth from 8-bit to 4-bit and discover that the first moment is rather robust to quantization.
This simple optimizer can already converge with 4-bit first moment, though in some cases there is
accuracy degradation.

To further improve the performance, we investigate the patterns of the first moment. There are some
outliers in the moments and outliers significantly affect quantization scale due to their large magnitude.
Outlier patterns have been studied for weights and activations. It is shown that the weights are rather
smooth [14, 54, 57], while the activation have column-wise outliers [4, 14, 53, 54], i.e., the outliers in
activation always lie in some fixed channels. However, we find that the outlier patterns in optimizer
states are quite complicated. Specifically, Fig. 2 shows patterns of first moment in a Swin-T model
during training. Outliers of the layers.3.blocks.0.mlp.fc1 layer lie in fixed rows while outliers
of the layers.3.blocks.0.mlp.fc2 layer lie in fixed columns. Actually, the outlier patterns vary
across different architectures, layers and parameters. See more patterns in App. B.

The complicated outlier pattern makes optimizer states harder to quantize. There exist some moment
tensors, that the outliers persist roughly in certain columns (dimension 1), as shown in Fig. 1.
Block-wise normalization treats this tensor as an flattened one-dimensional sequence, in the row-first
order. Therefore, any block size of 2048 would include an entry in the outlier column, resulting

4

dim0

0
250

500
750

dim1
0
1000

2000
3000

0.2
0.4
0.6
0.8
1.0

dim0

0
1000

2000
3000

dim1
0

250
500

750

0.2
0.4
0.6
0.8
1.0

(a) (b)

Figure 2: Outlier patterns vary across
two first moment tensors. (a): outliers
lie in fixed rows (dimension 0). (b):
outliers lie in fixed columns (dimen-
sion 1).

2 3 4 5 6
0.00

0.25

0.50

0.75

1.00

1.25

1.50

2 3 4 5 6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

2 3 4 5 6
0.00

0.25

0.50

0.75

1.00

1.25

1.50
(a) (b) (c)

Figure 3: Histogram of the inverse square root of second
moment. (a) full-precision; (b) quantized with B128/DE; (c)
quantized with B128/DE-0. All figures are at log10 scale and
y-axis represents density.

in a large quantization scale. In this case, block-wise normalization is not better than per-tensor
normalization. Therefore, we adopt a smaller block size of 128, as it provides enhanced performance
while incurring only a little memory overhead. In Fig. 1, we show that quantizing with a smaller
block size approximates the moments better than a large block size.

4 Compressing Second Moment

Compared to the first moment, quantizing the second moment is more difficult and incurs training
instability. Besides its sharper outlier pattern and ill-conditioned distribution compared with first
moment, we further identify the zero-point problem as the main bottleneck of quantizing the second
moment. We propose an improved normalization method with a quantization mapping excluding
zero. We also propose a factorization method for compressing the second moment, which leads to
even better memory efficiency.

4.1 Zero-point Problem

The problem of quantizing second moment different from quantizing other tensors in neural networks.
For weights [25], activations [25], and gradients [1], it is desirable to contain zero in the quantization
mapping for lower approximation error and training stability. Empirically, zero is often the most
frequent element [57]. But for second moment in Adam, small values around zero significantly impact
the update direction, which is proportional to the inverse square root of the second moment, as shown
in Eq. 1. In this case, a small quantization error of values around zero will cause catastrophically
large deviation of the update direction. Fig. 3 shows the histogram of the inverse square root (i.e.,
transformed with h(v) = 1/

(√
v + 10−6

)
) of the second moment quantized with B128/DE. The

quantizer pushes most of entries of the tensor to zero, so the inverse square root of most points
fall into 106 due to zero-point problem, resulting in a complete degradation in approximation. One
remedy is to simply remove zero from the DE quantization map, which we call DE-0. The smallest
number representable by DE-0 is 0.0033. With the B2048/DE-0 quantizer applied to second moment,
the approximation of second moment is more precise (Fig. 3), and the training with 4-bit optimizer
stabilizes (Tab. 1). However, by removing zero, DE-0 wastes one of the 24 = 16 quantization points.
We propose to use a Linear mapping T(i) = (i+ 1)/2b, whose smallest representable number is
0.0625. The linear mapping performs better than DE-0 for quantizing second moment.

In Tab. 1, we ablate different quantization schemes and show that excluding zero from the mapping
is indeed the key factor for second moment quantization, which cannot be replaced by a smaller
block size or/and stochastic rounding [11]. We also test Stable Embedding layers proposed by
Dettmers et al. [15], which are reparameterized embedding layers which can be more stably optimized.
While Stable Embedding could improve training stability, it cannot fully retain accuracy since non-
embedding layers still suffer from zero points. On the other hand, when the zero-point problem is
properly addressed, Stable Embedding is no longer required to retain accuracy.

4.2 Rank-1 Normalization

We propose an empirically stronger normalization method named rank-1 normalization based on
the observation of the heterogeneous outlier pattern in Sec. 3, inspired by the SM3 optimizer [2].
Formally, for a matrix-shaped non-negative (second moment) tensor x ∈ Rn×m, its 1-dimensional

5

Table 1: Ablation analysis of 4-bit optimizers on the second moment on the GPT-2 Medium E2E-NLG finetuning
task. The first line barely turns 8-bit Adam [15] into 4-bit, i.e. B2048/DE for both first and second moments. We
only vary the quantization scheme for second moment. SR=stochastic rounding (see App. E.3 for details). Stable
Embedding layers are not quantized. 32-bit AdamW achieves a BLEU of 67.7.

Normalization Mapping Stable Embed.∗ Factorized Unstable(%) BLEU

B2048 DE 7 7 33 66.6 ± 0.61
B2048 DE 3 7 0 66.9 ± 0.52

B128 DE 7 7 66 65.7 ± N/A
B128 DE+SR∗ 7 7 33 65.4 ± 0.02
B128 DE 3 7 0 67.2 ± 1.13

B2048 DE-0 7 7 0 67.5 ± 0.97
B2048 DE-0 3 7 0 67.1 ± 1.02
B128 DE-0 7 7 0 67.4 ± 0.59
Rank-1 DE-0 7 7 0 67.5 ± 0.58
Rank-1 Linear 7 7 0 67.8 ± 0.51
Rank-1 Linear 7 3 0 67.6 ± 0.33

statistics r ∈ Rn and c ∈ Rm are defined as ri = max1≤j≤m xi,j and cj = max1≤i≤n xi,j , which
are exactly the quantization scales of per-row and per-column normalization. Rank-1 normalization
utilizes two scales jointly and produce a tighter bound for entry, which is defined as

Nrank-1(xi,j) = 1
min{ri,cj}xi,j .

Rank-1 normalization could be easily generalized to high-dimensional tensors and signed tensors.
See App. G for details and the pseudocode.

Compared with per-tensor, per-token (row), and per-channel (column) normalization, rank-1 normal-
ization utilizes the 1-dimensional information in a more fine-grained manner and gives element-wisely
unique quantizaion scales. It deals with the outliers more smartly and effectively when outlier persists
in fixed rows or columns but the pattern across tensors are unknown and/or varied (Fig. 2). On the
other hand, block-wise normalization is also capable to capture the local information and avoid out-
liers effectively regardless of the patterns when a small block size is taken, but rank-1 normalization
provides a better trade-off between memory overhead and approximation. Rank-1 normalization falls
back to per-tensor normalization for 1-dimensional tensors, so we use B128 normalization in those
cases. Empirically, rank-1 normalization match or exceed the performance of B128 normalization at
a moderate model scale (hidden_size=1024). It is also possible to combine block-wise and rank-1
normalization together, which we leave for future work.

4.3 Factorization

Many memory efficient optimization methods [2, 8, 46] represent the entire second moment with a
few number of statistics, which differ from quantization and they take only sublinear memory cost.
These works bring more memory saving but they are only applicable to the second moment. In
this work, we find the factorization method proposed in Adafactor [46] could also avoid zero-point
problem effectively, as shown in Tab. 1. Further, we explore the effects of factorization on second
moment based on quantized optimizers to attain maximal memory saving while maintain lossless
accuracy. Specifically, when factorization is enabled, we factorize all second moment with dimension
greater than 1, and quantize 1d second moment tensors.

5 Experiments

We compare our 4-bit optimizers with their full-precision counterparts, as well as other memory
efficient optimizers including 8-bit AdamW [15]†, Adafactor [46] and SM3 [2]. 8-bit AdamW’s
optimizer states are not quantized for embedding layers. For Adafactor, we compare both the

†
https://github.com/TimDettmers/bitsandbytes

6

https://github.com/TimDettmers/bitsandbytes

Table 2: Performance on language and vision tasks. Metric: NLU=Mean Accuracy/Correlation. CLS=Accuracy.
NLG=BLEU. QA=F1. MT=SacreBleu. †: do not quantize optimizer states for embedding layers; ‡: β1 = 0.
See more results in App. A.

NLU CLS NLG QA MT
Optimizer RoBERTa-L Swin-T GPT-2 M RoBERTa-L Transformer

32-bit AdamW 88.9 ± 0.01 81.2 ± 0.05 67.7 ± 0.67 94.6 ± 0.13 26.61 ± 0.08

32-bit Adafactor 89.1 ± 0.00 80.0 ± 0.03 67.2 ± 0.81 94.6 ± 0.14 26.52 ± 0.02
32-bit Adafactor‡ 89.3 ± 0.00 79.5 ± 0.05 67.2 ± 0.63 94.7 ± 0.10 26.45 ± 0.16
32-bit SM3 87.5 ± 0.00 79.0 ± 0.03 66.9 ± 0.58 91.7 ± 0.29 22.72 ± 0.09
8-bit AdamW† 89.1 ± 0.00 81.0 ± 0.01 67.5 ± 0.87 94.5 ± 0.04 26.66 ± 0.10

4-bit AdamW (ours) 89.1 ± 0.01 80.8 ± 0.02 67.8 ± 0.51 94.5 ± 0.10 26.28 ± 0.05
4-bit Factor (ours) 88.9 ± 0.00 80.9 ± 0.06 67.6 ± 0.33 94.6 ± 0.20 26.45 ± 0.05

β1 > 0 and the β1 = 0 (no first moment) configuration. For our 4-bit optimizers, we report two
versions both based on 32-bit AdamW: (1) “4-bit AdamW” quantizes first moment with B128/DE
and second moment with Rank-1/Linear. (2) the more memory efficient “4-bit Factor” quantizes
first moment with B128/DE, factorizes second moment when the dimension of tensor is greater than
1, and quantizes lefted 1-dimensional second moment with Rank-1/Linear. See App. D for details
about the experiments.

Models, datasets and hyperparameters We report performance metrics on standard benchmarks,
including image classification (CLS) with Swin-T [31]‡ on ImageNet-1k [12], natural language
understanding (NLU) by fine-tuning RoBERTa-L [30]§ fine-tuning on GLUE [51], question answering
(QA) by fine-tuning RoBERTa-L on SQuAD [42, 43], natural language generation (NLG) by fine-
tuning GPT-2 Medium [39]¶ on E2E-NLG [35], machine translation (MT) by training Transformer-
Base [50]|| on WMT14 en-de [3] and LLaMA [49] fine-tuning. We fine-tune LLaMA-7B, LLaMA-
13B and LLaMA-33B [49] on the Alpaca dataset [48]** and evaluate them on MMLU [21] and
standard common sense reasoning benchmarks: HellaSwag [56], ARC easy and challenge [10] and
OpenBookQA [33].

We mainly follow the hyperparameters in the original paper or/and codebase. In each benchmark,
we keep same hyperparameters in one optimizer on different quantization schemes, which gives an
out-of-box transfer from full-precision optimizer to low-bit optimizer without extra hyperparameter
tuning. See App. D for hyperparameters and training details.

Accuracy of 4-bit Optimizers We first check whether our memory efficient 4-bit optimizers
could retain accuracy. According to Tab. 2, our 4-bit optimizers can match or exceed 32-bit AdamW
performance on all fine-tuning tasks (NLU, QA, and NLG) and are comparable on all pretraining tasks
(CLS and MT). Sublinear memory optimizers Adafactor (β1 = 0) and SM3 could have better memory
efficiency, but they suffer from performance degradation, particularly on the CLS task. According to
Tab. 3, our 4-bit AdamW will not destroy the capability of pretrained models while enabling them to
obtain instruction-following ability. 4-bit AdamW is comparable with 32-bit AdamW on all tasks
and does not get worse when the model size grows. Moreover, their convergence curves closely align
(Fig. 4).

Memory and Computing Efficiency We evaluate the memory and computation efficiency of
proposed 4-bit optimizers on instruction tuning, NLU, and NLG tasks, in Tab. 4. Our 4-bit optimizer
offers more memory saving compared to 8-bit optimizers, reducing the training memory consumption
by up to 57.7%. It may look like the memory saving saturates when the bitwidth goes down. This is
because we report the total memory consumption (including data, activations, and memory fragments)

‡
https://github.com/microsoft/Swin-Transformer

§
https://github.com/huggingface/transformers

¶
https://github.com/microsoft/LoRA

||
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer

**https://github.com/tatsu-lab/stanford_alpaca

7

https://github.com/microsoft/Swin-Transformer
https://github.com/huggingface/transformers
https://github.com/microsoft/LoRA
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
https://github.com/tatsu-lab/stanford_alpaca

Table 3: Performance on LLaMA fine-tuning on MMLU and commonsense reasoning tasks across
different sizes.

Model Optimizer MMLU (5-shot) HellaSwag ARC-e ARC-c OBQA

LLaMA-7B
Original 33.1 73.0 52.4 40.9 42.4
32-bit AdamW 38.7 74.6 61.5 45.1 43.4

4-bit AdamW 38.9 74.7 61.2 44.4 43.0

LLaMA-13B
Original 47.4 76.2 59.8 44.5 42.0
32-bit AdamW 46.5 78.8 63.6 48.3 45.2

4-bit AdamW 47.4 79.0 64.1 48.0 45.2

LLaMA-33B
Original 54.9 79.3 58.9 45.1 42.2
32-bit AdamW 56.4 79.2 62.6 47.1 43.8

4-bit AdamW 54.9 79.2 61.6 46.6 45.4

rather than the optimizer memory consumption alone. In principle, the optimizer states is 2x smaller
for 4-bit AdamW than 8-bit AdamW, and about 4x smaller for 4-bit Factor.

The instruction tuning task uses two Nvidia A100 80GB GPUs, while the model is sharded across
GPUs with PyTorch’s FSDP. In this case, our 4-bit optimizer speeds up training due to reduced
communication cost. For the smaller RoBERTa-L and GPT-2 Medium, our 4-bit optimizers appear
to be slower than 8-bit AdamW. This is because we have not yet optimize our implementation with
fused operators. The speed of our 4-bit optimizers should match or surpass 8-bit optimizers after
operator fusion.

We report the largest OPT and LLaMA models trainable under a given memory budget with full-
precision and our 4-bit optimizers in Tab. 5. Our optimizer allows for the training of 4x large OPT
models, and enables the training of LLaMA-7B model with a single 80GB GPU.

0 200 400 600 800 1000 1200
Training Step

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

32-bit AdamW
 4-bit AdamW

Figure 4: Training loss curve of LLaMA-7B fine-tuning on Alpaca dataset (averaged over 3 runs). Only result
of 4-bit AdamW is reported since all parameters are 1-dimension via FSDP packing. See more details in App. D.

Ablation Study Finally, we investigate the effectiveness of our proposed quantization schemes and
the sensitivity of each moment to quantization in Tab. 6. We see that quantizing both the first and
second moment brings a marginal drop in accuracy. Smaller block size on first moment improves
accuracy and takes a step towards lossless performance. Factorizing second moment improves
accuracy while leads to better memory efficiency.

6 Related Work

Compression-based memory efficient optimizers There have been some works trying to ap-
proximate the gradient statistics with sublinear memory cost relative to the number of parameters.
Adafactor [46] achieves memory reduction by approximating the second-moment of matrix-shaped

8

Table 4: Memory and Time of 4-bit optimizers compared with 32-bit AdamW and 8-bit Adam [15].

Task Optimizer Time Total Mem. Saved Mem.

LLaMA-7B
32-bit AdamW 3.35 h 75.40 GB 0.00 GB (0%)

4-bit AdamW 3.07 h 31.87 GB 43.54 GB (57.7%)
4-bit AdamW (fused) 3.11 h 31.88 GB 43.53 GB (57.7%)

RoBERTa-L

32-bit AdamW 3.93 min 5.31 GB 0.00 GB (0%)
8-bit AdamW 3.38 min 3.34 GB 1.97 GB (37.1%)
4-bit AdamW 5.59 min 3.02 GB 2.29 GB (43.1%)
4-bit AdamW (fused) 3.17 min 3.00 GB 2.31 GB (43.5%)
4-bit Factor 4.97 min 2.83 GB 2.48 GB (46.7%)

GPT-2 Medium

32-bit AdamW 2.13 h 6.89 GB 0.00 GB (0%)
8-bit AdamW 2.04 h 4.92 GB 1.97 GB (28.6%)
4-bit AdamW 2.43 h 4.62 GB 2.37 GB (34.4%)
4-bit AdamW (fused) 2.11 h 4.62 GB 2.37 GB (34.4%)
4-bit Factor 2.30 h 4.44 GB 2.45 GB (35.6%)

Table 5: Largest trainable model under given
memory budget. We use a batch size of 1 and
max length of 512 for this comparison. FSDP
is enabled at GPUs of 80 GB.

Largest fine-tunable Model

GPU Mem. 32-bit AdamW 4-bit AdamW

24 GB OPT-350M OPT-1.3B
80 GB OPT-1.3B OPT-6.7B
80 GB - LLaMA-7B

Table 6: Ablation study on the impact of compress-
ing different moments to Swin-T pretraining on Ima-
geNet1k.

Quant. 1st Quant. 2nd Factor. 2nd Acc.

- - 7 81.2 ± 0.05
B2048/DE - 7 80.9 ± 0.04
B128/DE - 7 81.0 ± 0.06
B128/DE Rank-1/Linear 7 80.8 ± 0.02
B128/DE Rank-1/Linear 3 80.9 ± 0.06

parameters with the outer product of “row” and “column”. SM3 [2] considers the cover of parameters
and maintain one statistics for each element in the cover. Experimentally, cover composed of slices
of co-dimension 1 for each tensor has been adopted. Extreme tensoring [8], compared with SM3, has
a different motivation but similar formulation for the experimental choice. These memory efficient
methods only focus on memory reduction on second moment and are applicable to most of the second
moment based optimizers, like Adagrad [19], Adam [26], AdamW [32], etc.

Another line of work achieves memory reduction by using compression-based method and maintaining
coordinate-wise low-bit precision optimizer states. The stability of 16-bit Adam is firstly studied in
DALL-E [44]. Dettmers et al. [15] uses block-wise and dynamic exponent quantization to reduce the
coordinate-wise optimizer states from 16-bit to 8-bit and is applicable to SGDM and Adam/AdamW.
Compression-based methods only reduce memory by a fixed percentage, irrelevant to the number and
shape of parameters. Compression-based methods are less memory efficient compared with sublinear
memory methods, but exhibit superior performance across a wider range of benchmarks.

Other memory efficient techniques Some works focus on the memory efficiency of activations.
Activation compressed training [6, 29] keeps low-precision activations in GPU memory via quanti-
zation in forward phase and dequantize the low-precision activations to full-precision layer-wisely
in backward phase. Gradient checkpointing [7] only keeps activation in a small number of layers
in forward phase and recompute the activations in all layers when gradient computation is needed,
which leads a trade-off between storage overhead of activations and additional computation cost.
These methods can be combined with our optimizer for better memory efficiency. LoRA [24] freezes
the pretrained weights and only tunes new initialized low-rank parameters, which greatly reduce the
size of computation graph but is only applicable to language model finetuning.

Sharding [40] divides model parameters and optimizer states among multiple devices, allowing for
more efficient model training through the use of additional GPUs. Offloading [41, 45] reduces GPU
memory consumption by transferring data to CPU memory. Our optimizer can be utilized by these
methods to reduce the communication overhead.

9

7 Conclusions, Limitations, and Broader Impact

We propose compression-based memory efficient 4-bit optimizers using quantization and factorization.
We observe the heterogeneous outlier patterns in optimizer states and identify the zero-point problem
in quantizing second moment as the main bottleneck. 4-bit optimizers achieve lossless performance
in finetuning and comparable accuracy in pretraining on a wide range of tasks.

Limitations The optimal quantization setting probably depends on task, datasets, and training
details. While rank-1 normalization and linear mapping for second moment quantization performs
consistently well in our experiments, task-specific quantization settings not in the scope of the study
might perform better and be helpful to achieve lossless performance. Our evaluation is currently
limited to language and vision tasks, while the applicability of our method to reinforcement learning,
audios, and graph learning tasks still needs further study.

Broader Impact Our work can facilitate the access to large models for pretraining and finetuning,
which were previously constrained by GPU memory limitations. This could help democratizing large
models and opens up new avenues for research that were previously unattainable due to restricted
GPU memory, especially benefiting researchers with limited resources. However, our work can also
exaggerate the abuse large models.

Acknowledgements

This work was supported by the National Key Research and Development Program of China
(No. 2021ZD0110502), NSFC Projects (Nos. 62061136001, 62106123, 62076147, U19A2081,
61972224, 62106120), Tsinghua Institute for Guo Qiang, and the High Performance Computing
Center, Tsinghua University. J.Z is also supported by the XPlorer Prize.

References
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:

Communication-efficient sgd via gradient quantization and encoding. Advances in Neural
Information Processing Systems, 30, 2017.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive
optimization. Advances in Neural Information Processing Systems, 32, 2019.

[3] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al. Findings of the
2014 workshop on statistical machine translation. In Proceedings of the ninth workshop on
statistical machine translation, pages 12–58, 2014.

[4] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming
the challenges of efficient transformer quantization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 7947–7969, 2021.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

[6] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael Mahoney, and
Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning, pages 1803–1813. PMLR, 2021.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

10

[8] Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, and Yi Zhang. Extreme tensoring for
low-memory preconditioning. In International Conference on Learning Representations, 2020.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, pages 3123–3131, 2015.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, 2009.

[13] Tim Dettmers. 8-bit approximations for parallelism in deep learning. arXiv preprint
arXiv:1511.04561, 2015.

[14] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022a.

[15] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2022b.

[16] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws.
arXiv preprint arXiv:2212.09720, 2022c.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT,
pages 4171–4186, 2019.

[18] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding
Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904,
2022.

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[20] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

[21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
Laurent Sifre. An empirical analysis of compute-optimal large language model training. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

11

[24] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[25] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[27] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3045–3059, 2021.

[28] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[29] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, et al. Gact: Activation compressed training for general
architectures. arXiv preprint arXiv:2206.11357, 2022.

[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[33] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[34] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[35] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for
end-to-end generation. arXiv preprint arXiv:1706.09254, 2017.

[36] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

[37] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo
Lee. nuqmm: Quantized matmul for efficient inference of large-scale generative language
models. arXiv preprint arXiv:2206.09557, 2022.

[38] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks,
12(1):145–151, 1999.

[39] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[40] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

12

[41] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–14, 2021.

[42] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018.

[43] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[44] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning, pages 8821–8831. PMLR, 2021.

[45] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}: Democratizing {Billion-Scale}
model training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
551–564, 2021.

[46] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[47] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International Conference on Machine Learning,
pages 1139–1147. PMLR, 2013.

[48] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[49] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[51] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[52] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022.

[53] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang,
Fengwei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer
language models. arXiv preprint arXiv:2209.13325, 2022.

[54] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

[55] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

[56] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

13

https://github.com/tatsu-lab/stanford_alpaca

[57] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual
pre-trained model. In International Conference on Learning Representations, 2023.

[58] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

14

A Additional Experiment Results

In this section, we show additional experiment results beyond Tab. 2. Tab. 7 shows the results of
RoBERTa-L finetuning on each task in GLUE datasets. Tab. 8 shows the results of GPT-2 Medium
finetuning on E2E-NLG via different metrics. Tab. 9 shows the EM and F1 of RoBERTa-L finetuning
on SQuAD and SQuAD 2.0 datasets.

Table 7: Performance of RoBERTa-Large finetuning on GLUE with diverse optimizers. Medians and
std over 5 runs are reported on all tasks. †: do not quantize optimizer states for embedding layers; ‡:
β1 = 0.

Optimizer MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

32-bit AdamW 90.2 ± 0.00 94.9 ± 0.00 92.2 ± 0.00 85.2 ± 0.14 96.3 ± 0.00 93.2 ± 0.01 66.9 ± 0.01 92.3 ± 0.00

32-bit Adafactor 90.4 ± 0.00 94.7 ± 0.00 92.2 ± 0.00 85.9 ± 0.02 96.3 ± 0.00 92.8 ± 0.00 67.3 ± 0.01 92.3 ± 0.00
32-bit Adafactor‡ 90.5 ± 0.00 94.8 ± 0.00 92.2 ± 0.00 87.0 ± 0.03 96.3 ± 0.00 92.9 ± 0.00 68.2 ± 0.01 92.2 ± 0.00
32-bit SM3 90.6 ± 0.00 94.2 ± 0.00 89.5 ± 0.00 85.2 ± 0.02 96.0 ± 0.00 90.5 ± 0.01 62.3 ± 0.04 91.4 ± 0.01

8-bit AdamW† 90.4 ± 0.00 94.8 ± 0.00 92.2 ± 0.00 84.8 ± 0.02 96.2 ± 0.00 93.2 ± 0.00 68.0 ± 0.00 92.2 ± 0.00

4-bit AdamW 90.2 ± 0.00 94.5 ± 0.00 92.0 ± 0.00 85.2 ± 0.12 96.3 ± 0.00 92.8 ± 0.00 67.3 ± 0.01 92.5 ± 0.00
4-bit Factor 90.1 ± 0.00 94.7 ± 0.00 92.2 ± 0.00 85.9 ± 0.00 96.4 ± 0.00 92.7 ± 0.00 68.1 ± 0.00 92.3 ± 0.00

Table 8: Performance of GPT-2 Medium finetuning on E2E-NLG Challenge with diverse optimizers.
Means and std over 3 runs are reported.

Optimizer BLEU NIST METEOR ROUGE-L CIDEr

32-bit AdamW 67.7 ± 0.67 8.60 ± 0.08 45.7 ± 0.28 68.7 ± 0.61 2.35 ± 0.04

32-bit Adafactor 67.2 ± 0.81 8.61 ± 0.60 45.3 ± 0.08 68.3 ± 0.22 2.35 ± 0.01
32-bit Adafactor‡ 67.2 ± 0.63 8.54 ± 0.09 45.6 ± 0.32 68.5 ± 0.30 2.32 ± 0.02
32-bit SM3 66.9 ± 0.58 8.59 ± 0.04 45.4 ± 0.32 68.2 ± 0.49 2.33 ± 0.03
8-bit AdamW† 67.5 ± 0.87 8.59 ± 0.08 45.7 ± 0.52 68.7 ± 0.97 2.34 ± 0.06

4-bit AdamW 67.8 ± 0.51 8.61 ± 0.08 45.8 ± 0.23 68.9 ± 0.33 2.35 ± 0.07
4-bit Factor 67.6 ± 0.33 8.59 ± 0.03 45.6 ± 0.43 68.6 ± 0.60 2.34 ± 0.06

Table 9: Performance of RoBERTa-Large on SQuAD and SQuAD 2.0 with diverse optimizers.
Medians and std over 5 runs are reported.

SQuAD SQuAD 2.0
Optimizer EM F1 EM F1

32-bit AdamW 89.0 ± 0.10 94.6 ± 0.13 85.8 ± 0.18 88.8 ± 0.15

32-bit Adafactor 88.8 ± 0.12 94.6 ± 0.14 85.8 ± 0.44 88.7 ± 0.21
32-bit Adafactor‡ 89.0 ± 0.18 94.7 ± 0.10 85.9 ± 0.15 88.8 ± 0.15
32-bit SM3 84.2 ± 0.49 91.7 ± 0.29 77.2 ± 0.71 81.1 ± 0.66

8-bit AdamW† 88.8 ± 0.15 94.5 ± 0.04 86.1 ± 0.26 89.0 ± 0.26

4-bit AdamW 88.8 ± 0.08 94.5 ± 0.10 85.4 ± 0.28 88.4 ± 0.26
4-bit Factor 88.8 ± 0.38 94.6 ± 0.20 85.9 ± 0.36 88.9 ± 0.18

15

B Outlier Patterns of Moments

In this section, we give a comprehensive visualization about the outlier pattern of optimizer states.
[2] did similar analysis for Adagrad’s second moment but here we give a better demonstration
about various patterns in optimizer states. The same technique has been applied to parameters and
activations in [54].

The outlier pattern of first moment depends on many factors such as data and training hyperparameters.
Here we mainly focus on different transformer models and different layers inside. In one transformer
block, there is one Attention module and one MLP module, including 6 main parameter matrices. We
do not focus on additional parameters including bias and parameters in layer normalization (LN) since
they only account a small portion. We denote the 6 matrices by WQ,WK ,WV ,WO,W1,W2,
respectively. When the matrices across different layers are involved at the same time, we add a
subscript indicating layer index. Note that W has shape RCo×Ci in a linear layer, we call the output
and input dimension by dim0/row and dim1/column, respectively. The per-channel quantizaition used
in other works actually correspond to per-row(dim0) normalization here.

Swin Transformer ImageNet pretraining In Fig. 5,6,7, the magnitude of first moment in trans-
former blocks at different depths are shown. It can be seen that the 1-dimensional structure in all
parameter matrices are vague at the initial layer. At layer 2, the pattern in WO and W1, that outliers
occur at fixed columns, becomes obvious while other parameter matrices remain noisy. At layer 3,
the patterns in WO,W1,W2 are quite obvious. In WO and W2, the outliers occur at fixed rows
while the pattern in W1 remain unchanged. The 1-dimensional structure in WQ,WK ,WV also
seem to appear even though not remarkable. It is notable that the pattern of same parameter matrix at
different depths are not necessarily same. See WO in Fig. 6,7.

Figure 5: Outlier patterns of first moment in transformer block layers.0.blocks.0 of Swin-T at
epoch 210.

16

Figure 6: Outlier patterns of first moment in transformer block layers.2.blocks.0 of Swin-T at
epoch 210.

Figure 7: Outlier patterns of first moment in transformer block layers.3.blocks.0 of Swin-T at
epoch 210.

17

RoBERTa-Large GLUE finetuning In Fig. 8,9,10,11,12,13, the magnitude of first moment in
transformer blocks of RoBERTa-Large at different depths are shown. At layer 0 and layer 1 (initial
layers), patterns in WO,W2 are obvious. At layer 11 and layer 12 (intermediate layers), patterns are
all noisy. At layer 22 and layer 23 (last layers), patterns in WQ,WK are obvious. Patterns in other
matrices are weak.

Figure 8: Outlier patterns of first moment in transformer block layer-0 of RoBERTa-Large at epoch 8.

Figure 9: Outlier patterns of first moment in transformer block layer-1 of RoBERTa-Large at epoch 8.

18

Figure 10: Outlier patterns of first moment in transformer block layer-11 of RoBERTa-Large at epoch
8.

Figure 11: Outlier patterns of first moment in transformer block layer-12 of RoBERTa-Large at epoch
8.

19

Figure 12: Outlier patterns of first moment in transformer block layer-22 of RoBERTa-Large at epoch
8.

Figure 13: Outlier patterns of first moment in transformer block layer-23 of RoBERTa-Large at epoch
8.

20

GPT-2 Medium E2E-NLG finetuning In Fig. 14,15,16,17,18,19, the magnitude of first moment
in transformer blocks of GPT-2 Medium at different depths are shown. At layer 1 and layer 2 (initial
layers), patterns in WO are obvious. At layer 13 and layer 14 (intermediate layers), patterns in
WK ,WO are obvious. At layer 21 and layer 22 (last layers), patterns in WQ,WK ,WV ,WO are
obvious. First moment of W1,W2 are consistently noisy throughout layers. It is notable that the
rows(or columns) that gather outliers are different across different layers.

Figure 14: Outlier patterns of first moment in transformer block layer-1 of GPT-2 Medium at epoch 2.

Figure 15: Outlier patterns of first moment in transformer block layer-2 of GPT-2 Medium at epoch 2.

21

Figure 16: Outlier patterns of first moment in transformer block layer-13 of GPT-2 Medium at epoch
2.

Figure 17: Outlier patterns of first moment in transformer block layer-14 of GPT-2 Medium at epoch
2.

22

Figure 18: Outlier patterns of first moment in transformer block layer-21 of GPT-2 Medium at epoch
2.

Figure 19: Outlier patterns of first moment in transformer block layer-22 of GPT-2 Medium at epoch
2.

23

C Quantization Quality via Histogram

C.1 Zero-point Problem

In Fig. 20,21,22, we show the effect of zero-point on quantization error for second moment via
histogram. All those figures show the negative impact of zero-point on quantizing second moment.
After removing zero-point, the quantization quality improves at a great scale.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

100

101

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

2

4

6

8

10

12

14

16

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

100

101

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 20: Histogram of second moment of the attention layer (WQ,WK ,WV) in transformer
block-wise layer-2 of GPT-2 Medium at epoch 2. In one horizontal line, the first figure is the original
second moment. The second figure is the tensor after normalization. The third figure is the quantized
tensor. The last figure is the dequantized object. Both the first and last figure is at log10 scale. Both
the second and third take values in [0, 1]. All y-axis represents density. Good quantization methods
try to make the third figure identical to the second figure and make the last figure identical to the first
figure. Top: B128/DE quantization. Bottom: B128/DE-0 quantization.

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

1 2 3 4 5 6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 21: Histogram of second moment of the WV in transformer block layer-10 of RoBERTa-Large
at epoch 8. Top: B128/DE quantization. Bottom: B128/DE-0 quantization.

24

2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

100

101

2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 22: Histogram of second moment of the attention layer (WQ,WK ,WV) in transformer block
layers.0.blocks.0 of Swin-T at epoch 210. Top: B128/DE quantization. Bottom: B128/DE-0
quantization.

C.2 Comparison between Block-wise and Rank-1 Normalization

To show the differences in quantization error for second moment between block-wise normalization
and rank-1 normalization, some cases where rank-1 normalization approximates better than block-
wise normalization are shown in Fig. 23, 25, 27. Also, some cases where rank-1 normalization
approximates worse than block-wise normalization is shown in Fig. 24, 26, 28. Empirically, it
has been observed that rank-1 normalization yields superior results when the distribution exhibits
long-distance multimodal characteristics. On the other hand, block-wise normalization tends to
outperform when the distribution displays short-distance multimodal patterns and/or intricate local
structures.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

101

102

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 23: Histogram of second moment of W1 in transformer block layer-23 of GPT-2 Medium at
epoch 2. A case where rank-1 normalization is better than block-wise normalization with block size
128. In this case, the tail in the right side of distribution is captured by rank-1 normalization but lost
in block-wise normalization. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.

C.3 Effectiveness of Block Size in Block-wise Normalization

In Fig. 29,30,31, we show the effect of block size on quantization error for both first and second
moments. Fig. 29,30 shows that B2048 normalization quantizes a significant portion of the points to
zero, resulting in poor approximation based on the histogram. However, when we utilize a smaller
block size of 128, the quantization performance improves. Fig. 31 shows smaller block size improves
quantization quality on second moment.

25

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

100

101

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 24: Histogram of second moment of the attention layer (WQ,WK ,WV) in transformer
block layer-2 of GPT-2 Medium at epoch 2. A case where rank-1 normalization is worse than
block-wise normalization with block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0
quantization.

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 25: Histogram of second moment of W2 in transformer block layer-4 of RoBERTa-Large at
epoch 8. A case where rank-1 normalization is better than block-wise normalization with block size
128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
10 3

10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Figure 26: Histogram of second moment of WV in transformer block layer-2 of RoBERTa-Large at
epoch 8. A case where rank-1 normalization is worse than block-wise normalization with block size
128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.

26

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

0.0 0.2 0.4 0.6 0.8 1.0

100

101

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0
10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

101

102

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 27: Histogram of second moment of W2 in transformer block layers.0.blocks.0 of
Swin-T at epoch 210. A case where rank-1 normalization is better than block-wise normalization
with block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.

2.4 2.6 2.8 3.0 3.2 3.4 3.6
0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

2.4 2.6 2.8 3.0 3.2 3.4 3.6
0.0

0.5

1.0

1.5

2.0

2.4 2.6 2.8 3.0 3.2 3.4 3.6
0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0
10 1

100

101

102

2.4 2.6 2.8 3.0 3.2 3.4 3.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 28: Histogram of second moment of WO in transformer block layers.1.blocks.0 of
Swin-T at epoch 210. A case where rank-1 normalization is worse than block-wise normalization
with block size 128. Top: B128/DE-0 quantization. Bottom: Rank-1/DE-0 quantization.

10 4 10 5 0 10 5 10 4
0

10000

20000

30000

40000

50000

60000

70000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

50

60

70

80

10 4 10 5 0 10 5 10 4
0

50000

100000

150000

200000

10 4 10 5 0 10 5 10 4
0

10000

20000

30000

40000

50000

60000

70000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

10

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

50

100

150

200

10 4 10 5 0 10 5 10 4
0

100000

200000

300000

400000

500000

Figure 29: Histogram of first moment of W1 in transformer block layer-20 of GPT-2 Medium at
epoch 2. Top: B128/DE quantization. Bottom: B2048/DE quantization.

27

10 3 10 4 10 5 0 10 5 10 4 10 3
0

10000

20000

30000

40000

50000

60000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

5

10

15

20

25

10 3 10 4 10 5 0 10 5 10 4 10 3
0

20000

40000

60000

80000

100000

120000

140000

10 3 10 4 10 5 0 10 5 10 4 10 3
0

10000

20000

30000

40000

50000

60000

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

50

100

150

200

10 3 10 4 10 5 0 10 5 10 4 10 3
0

200000

400000

600000

800000

Figure 30: Histogram of first moment of WO in transformer block layer-22 of RoBERTa-L at epoch
8. Top: B128/DE quantization. Bottom: B2048/DE quantization.

2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
10 2

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

101

102

0.0 0.2 0.4 0.6 0.8 1.0

100

101

102

103

2 3 4 5 6 7
0

1

2

3

4

5

6

Figure 31: Histogram of second moment of W1 in transformer block layers.0.blocks.0 of
Swin-T at epoch 210. Top: B128/DE-0 quantization. Bottom: B2048/DE-0 quantization.

D Experimental Details

D.1 Quantization

There are several parameters in deep neural networks that play a delicate role without occupying
too much memory, such as normalization layers and bias. In this context, we establish a rule to
determine which parameters should not be quantized. For all the experiments we conducted, the
rule is straightforward: tensors with a size smaller than or equal to 4096 will not be quantized.
However, for larger models with a hidden size exceeding 4096, it is advisable to exclude the bias
and normalization layers from quantization. Regarding the quantization settings, as stated in Sec. 5,
we employ block-wise normalization with a block size of 128, dynamic exponent mapping for first
moment and rank-1 normalization, linear mapping for second moment. When we apply factorization
on second moment, only tensors with a dimension greater than or equal to 2 will be factorized while
1-dimensional tensors that meet the specified rule will still be quantized.

8-bit Adam [15] also uses the threshold of 4096 about size to determine whether or not to quantize
parameters. Additionally, the implementation in huggingface does not quantize the parameters in
Embedding layers regardless of the model used. Consequently, we compare our method with the
8-bit Adam that does not quantize Embedding.

28

D.2 Hyperparameters and Training Details

In each benchmark, unless otherwise specified, we maintain the same hyperparameters for a given
optimize across different quantization schemes. Additionally, we use same optimizer hyperparameters
across various optimizers, including our 4-bit optimizers, 8-bit Adam [15], SM3 [2], Adafactor [46]
and the full precision counterpart AdamW [32]. For Adafactor, we use β1 > 0 as default setting
which is same as the β1 value used in AdamW. Also, the case where β1 = 0 is compared. The
other newly introduced hyperparameters in Adafactor are set to their default values and remain fixed
throughout the experiments. For SM3, we compare with the β1 > 0 configuration, same as the β1

value used in AdamW.

Table 10: The hyperparameters for RoBERTa-L fine-tuning on GLUE.
Dataset MNLI QNLI QQP RTE MRPC SST-2 CoLA STS-B

Batch Size 32 32 32 16 16 32 16 16
LR 1e-5 1e-5 1e-5 2e-5 1e-5 1e-5 1e-5 2e-5
Warmup 7432 1986 28318 122 137 1256 320 214
Max Train Steps 123873 33112 113272 2036 2296 20935 5336 3598
Max Seq. Len. 128 128 128 512 512 512 512 512

Table 11: The hyperparameters for RoBERTa-L fine-tuning on SQuAD and SQuAD 2.0.
Dataset SQuAD & SQuAD 2.0

Batch Size 48
LR 1.5e-5
Epochs 2
Warmup Ratio 0.06
Max Seq. Len. 384

Table 12: The hyperparameters for GPT-2 on E2E.
Dataset E2E

Training

Batch Size 8
LR 4e-5
Epochs 5
Warmup 500
Max Seq. Len. 512
Label Smooth 0.1

Inference

Beam Size 10
Length Penalty 0.8
no repeat ngram size 4

RoBERTa We train all of our RoBERTa-L models with PyTorch Huggingface††. On GLUE
benchmark, we mainly follow the hyperparameters in fairseq [36]. We use β1 = 0.9, β2 = 0.98,
ε = 1e-6, a weight decay factor of 0.1 and linear learning rate schedule. Other hyperparameters
are listed in Tab. 10. On SQuAD benchmark, we mainly follow the reported hyperparameters in
RoBERTa paper [30]. We use β1 = 0.9, β2 = 0.98, ε = 1e-6, a weight decay factor of 0.01 and
linear learning rate schedule. The other hyperparameters are listed in Tab. 11. On both datasets, we
report the median and standard deviation results over 5 runs, the result in each run is taken from the
best epoch. We utilize single RTX 3090 or 4090 GPU for runs of each task in GLUE datasets and
four RTX 3090 or 4090 GPUs for SQuAD and SQuAD 2.0.

††
https://github.com/huggingface/transformers

29

https://github.com/huggingface/transformers

On SQuAD 2.0, there may be a performance gap observed between the reproduced results using
32-bit AdamW and the original results reported in the original paper. This is because there are some
questions without answers in SQuAD 2.0. It is worth noting that the approach employed by Liu et
al. [30] to handle unanswered questions may differ from the solutions utilized in the BERT paper [17],
which is the reference implementation we are using

GPT-2 We train all of our GPT-2 Medium models with the LoRA codebase‡‡. We mainly follow
the hyperparameters in [28] and [24]. We use β1 = 0.9, β2 = 0.999, ε = 1e-6, a weight decay factor
of 0.01 and linear learning rate schedule. The other hyperparameters used in GPT-2 are listed in
Tab. 12. We report the mean and standard deviation results over 3 runs, the result in each run is taken
from the best epoch. We utilize fours RTX 3090 or 4090 GPUs for runs of this task.

Transformer We train all of our Transformer-Base models for machine translation with codebase§§.
We completely follow the hyperparameters in the codebase. We report the mean and standard
deviation results over 3 runs, the result in each run is taken from the best epoch. We utilize eight RTX
3090 or 4090 GPUs for runs of this task.

Swin We train all of our Swin-T models with its official codebase¶¶. We completely follow the
hyperparameters in the codebase. We report the mean and standard deviation results over 3 runs, the
result in each run is taken from the best epoch. We utilize eight RTX 3090 or 4090 GPUs for runs of
this task.

LLaMA We fine-tune LLaMA-7B, LLaMA-13B and LLaMA-33B with Alpaca codebase***. We
follow the hyperparameters in the codebase for LLaMA-7B and LLaMA-13B, and the hyperparam-
eters of LLaMA-33B are consistent with LLaMA-13B. We fine-tune LLaMA-7B with two A100
80GB GPUs. The training loss curve is the mean results over 3 runs. For LLaMA-7B, we enable
Fully Sharded Data Parallelism (FSDP), which packs parameters into 1-dimensional array. This
packing process makes it difficult to apply factorization directly without additional engineering efforts.
Consequently, we only compare the performance of 4-bit AdamW with its full precision counterpart.

D.3 Memory and Computing Efficiency

In Tab. 4, we present measurements of memory usage in practical settings, i.e. training configuration
described in Sec. D.2. Specifically, we measure the memory usage for LLaMA-7B using 2 A100
80G GPUs, RoBERTa-L using 1 RTX 4090 GPU, and GPT-2 Medium using 4 RTX 4090 GPUs.
Additionally, the time measurement for RoBERTa-L is conducted on the RTE task.

E Quantization Formulation Details

E.1 Signed Case

In this section, we discuss quantization function for signed tensors and the differences compared to
unsigned case. Regarding the normalization operator, the only difference lies in the fact that the sign
of the tensor remains unchanged before and after normalization. Formally, let N be the normalization
operator for the unsigned cases. For the signed case, the normalization can be defined as

nj := sign(xj)N(|xj |).
Therefore, the unit interval for signed case is [-1, 1]. Regarding the mapping operator, the difference
lies in the values of quantization mappings. See App. E.2 for more details.

E.2 Quantization Mappings

In this work, we mainly consider linear mapping and dynamic exponent mapping [13]. See Fig. 32
for illustration of quantization mappings.

‡‡
https://github.com/microsoft/LoRA

§§
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer

¶¶
https://github.com/microsoft/Swin-Transformer

***https://github.com/tatsu-lab/stanford_alpaca

30

https://github.com/microsoft/LoRA
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
https://github.com/microsoft/Swin-Transformer
https://github.com/tatsu-lab/stanford_alpaca

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 linear
dynamic exponent

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 linear
dynamic exponent

Figure 32: Visualization of the quantization mappings for the linear and dynamic exponent at 4-bit
precision. Left: Signed case. Right: Unsigned case.

Linear mapping It is notable that the linear mapping considered in our work does not include zero
in both signed case and unsigned case. Actually, we only use linear mapping in unsigned case, which
is defined as torch.linspace(0, 1, (2 ** b) + 1)[1:].

Dynamic exponent mapping Let b be the total bits. In the main text, we mentioned that dynamic
exponent takes the form T(i) = 10−E(i)fraction(i). In following paragraphs, we will define the
dynamic exponent mapping formally based on the binary representation.

In unsigned case, dynamic exponent mapping [13] is composed of exponent bits E, one indicator
bit and fraction bits F , where b = 1 + E + F . It uses the number of leading zero bits E represents
the exponent with base 10. The first bit, which is one, serves as an indicator bit that separates the
exponent and the unsigned linear fraction. The remaining bits F represent an unsigned linear fraction
distributed evenly in (0.1, 1), which is formally defined as

pj =
1− 0.1

2F
j + 0.1, 0 ≤ j ≤ 2F ,

fraction[k] =
pk + pk+1

2
, 0 ≤ k ≤ 2F − 1.

Therefore, a number with E exponent bits and F fraction bits valued k has a value of

10−E × fraction[k].

For signed case, the only difference is that dynamic exponent mapping additionally uses the first bit
as the sign thus we have b = 1 + E + 1 + F . Specially, at 8-bit case, we learn from the codebase†††

that dynamic exponent mapping assign 000000002 = 010, 000000012 = 110 in unsigned case and
assign 100000002 and 000000002 with 110 and 010, respectively. This means −110 is not defined
and the mapping is not symmetric in signed case. Finally, after collecting all the represented numbers
and arranging them in a sorted, increasing list, which has a length of 2b, the quantization mapping
T(i) returns the i-th element of this list.

The construction of dynamic exponent mapping is unrelated to the number of bits. Therefore, when
we say we barely turn the 8-bit optimizer into 4-bit optimizer, it just use 4 total bits. The corner cases
mentioned in last paragraph remain unchanged.

E.3 Stochastic Rounding

Stochastic rounding is only used in Tab. 1. In this section, we talk about how to integrate stochastic
rounding into our formulation of quantization. When stochastic rounding is used, the definition of
mapping M has some minor changes. Specifically, M is still an element-wise function and defined as

M(nj) = arg min
0≤i<2b

{nj −T(i) : nj −T(i) ≥ 0} ∪ arg max
0≤i<2b

{nj −T(i) : nj −T(i) ≤ 0} .

†††
https://github.com/TimDettmers/bitsandbytes

31

https://github.com/TimDettmers/bitsandbytes

In other words, M maps each entry nj to the maximal index set M(nj) such that for any i ∈M(nj)
there is no other 0 ≤ k ≤ 2b − 1 with T(k) lying between T(i) and nj . Actually, M acts as a filter
of T and give a more fine-grained range of quantized output candidates. In this definition, M(nj)
has only one or two points since only stochastic rounding is considered in the final step.

Finally, we define stochastic rounding Rs. When M(nj) only has one point, Rs just output this
point. When M(nj) has two points q1 and q2 with T(q1) < nj < T(q2), stochastic rounding (Rs)
is defined as

Rs (nj , q1, q2) =


q2,with proba. nj−T(q1)

T(q2)−T(q1)

q1,with proba. T(q2)−nj

T(q2)−T(q1)

F Compression-based Memory Efficient Optimizer Instances

In this section, we present some examples about compression-based memory efficient optimizers.
See Compression-based Memory Efficient SGDM in Alg. 2 and Adam in Alg. 3.

Algorithm 2 Compression-based Memory Efficient SGDM

Require: initial parameter θ0 ∈ Rp, learning rate α, initial first moment m̄0 = 0, total number of
iterations T and momentum parameter β.

1: for t = 1, 2, . . . , T do
2: Sample a minibatch ζt and get stochastic gradient gt = ∇θf(θt−1, ζt)
3: mt−1 ← decompress(m̄t−1)
4: mt ← β ·mt−1 + gt
5: θt ← θt−1 − α ·mt

6: m̄t ← compress(mt)
7: end for
8: return θT

Algorithm 3 Compression-based Memory Efficient Adam

Require: initial parameter θ0 ∈ Rp, learning rate α, initial moments m̄0 = 0, v̄0 = 0, total number
of iterations T and hyperparameters β1, β2, ε.

1: for t = 1, 2, . . . , T do
2: Sample a minibatch ζt and get stochastic gradient gt = ∇θf(θt−1, ζt)
3: mt−1, vt−1 ← decompress(m̄t−1), decompress(v̄t−1)
4: mt ← β1 ·mt−1 + (1− β1) · gt
5: vt ← β2 · vt−1 + (1− β1) · g2

t
6: m̂t ← mt/(1− βt1)
7: v̂t ← vt/(1− βt2)
8: θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

9: m̄t, v̄t ← compress(mt), compress(vt)
10: end for
11: return θT

G Rank-1 Normalization

In this section, we present the detailed formulation of rank-1 normalization in Alg. 4.

H Theoretical Analysis

The convergence of low-bit optimizers can be guaranteed if their fp32 counterparts converge. Here
we provide a theorem about the convergence of quantized SGDM (Alg. 2) under some assumptions.
We believe the convergence of low-bit AdamW could be inferred from the convergence of AdamW.

32

Algorithm 4 Rank-1 Normalization

Require: tensor x ∈ Rd1×···×dp ; statistics µr ∈ Rdr for 1 ≤ r ≤ p; permutation function Φ
mapping {1, . . . , d} to indices of tensor x, where d = d1 × · · · × dp.

1: for r = 1, 2, . . . , p do
2: for j = 1, 2, . . . , dr do
3: µr,j = maxi1,...,ir−1,ir+1,...,ip

∣∣x[i1,...,ir−1,j,ir+1,...,ip]

∣∣
4: end for
5: end for
6: for i = 1, 2, . . . , d do
7: Mi = min1≤r≤p µr,Φ(i)r
8: end for
9: reshape 1-dimensional array M to the same shape as x

10: return x/M

First, we make some assumptions. The first three are rather standard in stochastic optimization
literature, while last two depict properties of stochastic quantizers.

1. (Convexity) The objective function is convex and has an unique global minimum f(θ∗).
2. (Smoothness) The objective f(θ) is continuous differentiable and L-smooth;
3. (Moments of stochastic gradient) The stochastic gradient g is unbiased, i.e., E[g(θ)] = ∇f(θ),

and has bounded variance, i.e., E
[
‖g(θ)−∇f(θ)‖2

]
< σ2, ∀θ ∈ Rd.

4. (Unbiased quantizer) ∀x ∈ Rd, E [Q(x)] = x.

5. (Bounded quantization variance) ∀x ∈ Rd, E
[
‖Qm(x)− x‖2

]
≤ σ2

m.

Then, we have following theorem:

Theorem 1. Consider the Algorithm 2 with Assumptions 1-5. Let α ∈ (0, 1−β
L], then for all T > 0

we have

E[f(θ̄T)− f∗] ≤
1

2T

(
Lβ

1− β
+

1− β
α

)
‖θ0 − θ∗‖2

+
ασ2

(1− β)
+

ασ2
m

(1− β)
. (2)

where θ̄T = 1
T

∑T−1
i=0 θi.

H.1 Proof of Theorem 1

To prove Theorem 1, we need some useful lemmas.
Lemma 1. In Algorithm 2, The conditional first and second moments of gt satisfies

E[gt|θt−1] = ∇f(θt−1) (3)

E
[
‖gt‖2 |θt−1

]
≤ ‖∇f(θt−1)‖2 + σ2 (4)

Proof. By assumption, we easily have

E [gt|θt−1] = ∇f(θt−1).

With Assumption 3, it holds true that

E
[
‖g(θ)‖2

]
= E

[
‖g(θ)−∇f(θ) +∇f(θ)‖2

]
= E

[
‖g(θ)−∇f(θ)‖2

]
+ E

[
‖∇f(θ)‖2

]
+ 2E [〈g(θ)−∇f(θ),∇f(θ)〉]

= E
[
‖g(θ)−∇f(θ)‖2

]
+ E

[
‖∇f(θ)‖2

]
≤ σ2 + ‖∇f(θ)‖2 ,

which implies the second part.

33

Lemma 2. If Assumptions 3-5 hold, then sequence {zt} satisfies

zt+1 − zt =
1

1− β
(θt+1 − θt)−

β

1− β
(θt − θt−1) (5)

E[zt+1 − zt] =
−α

1− β
∇f(θt) (6)

E[‖zt+1 − zt‖2] ≤ 2

(
α

1− β

)2 (
E[‖gt+1‖2] + σ2

m

)
. (7)

Proof. By definition of zt, we have the first equation immediately. Take expectation on the first
equation and we get

E [zt+1 − zt] =
1

1− β
E [θt+1 − θt]−

β

1− β
E [θt − θt−1] .

Note that

E [θt+1 − θt] = E [θt+1 − (θt − αmt+1)]− E [αmt+1]

= −αE [mt+1]

= −αE [βmt + gt+1]

= −αβE [mt]− α∇f(θt),

and

E [θt − θt−1] = E [θt − (θt−1 − αmt)]− E [αmt]

= −αE [mt] ,

which gives the second equation.

E[zt+1 − zt] =
−α

1− β
∇f(θt)

For the last equation, since

zt+1 − zt =
1

1− β
(θt+1 − θt)−

β

1− β
(θt − θt−1)

= − α

1− β
(mt+1 − βmt)

Take expectation and we have

E
[
‖zt+1 − zt‖2

]
=

(
α

1− β

)2

E
[
‖mt+1 − βmt‖2

]
≤ 2

(
α

1− β

)2 (
E
[
‖mt+1 − (βmt + gt+1)‖2

]
+ E

[
‖gt+1‖2

])
≤ 2

(
α

1− β

)2 (
E
[
‖gt+1‖2

]
+ σ2

m

)
.

Proof of Theorem 1. From Lemma 2, we have

E
[
‖zt+1 − zt‖2

]
≤ 2

(
α

1− β

)2 (
E
[
‖gt+1‖2

]
+ σ2

m

)
.

Substituting Lemma 1 gives

E
[
‖zt+1 − zt‖2

]
≤ 2

(
α

1− β

)2 (
‖∇f(θt)‖2 + σ2 + σ2

m

)
. (8)

34

Suppose θ∗ is the optimal parameter and f∗ = f(θ∗) is the minimal objective value. First, we have

‖zt+1 − θ∗‖2 = ‖zt − θ∗‖2 + 2 〈zt − θ∗, zt+1 − zt〉+ ‖zt+1 − zt‖2

Take expectation over the randomness in the (t+ 1)−th step, we have

E[‖zt+1 − θ∗‖2] = ‖zt − θ∗‖2 −
2α

1− β
〈zt − θ∗,∇f(θt)〉+ E[‖zt+1 − zt‖2]

= ‖zt − θ∗‖2 −
2α

1− β
〈θt − θ∗,∇f(θt)〉

− 2αβ

(1− β)2
〈θt − θt−1,∇f(θt)〉+ E[‖zt+1 − zt‖2]

Since f is continuously differentiable and L-smooth, we have the following inequalities. [34]

〈θt − θ∗,∇f(θt)〉 ≥
1

L
‖∇f(θt)‖2 (9)

〈θt − θ∗,∇f(θt)〉 ≥ f(θt)− f∗ +
1

2L
‖∇f(θt)‖2 (10)

〈θt − θt−1,∇f(θt)〉 ≥ f(θt)− f(θt−1) (11)

Substitute them and get

E[‖zt+1 − θ∗‖2] ≤ ‖zt − θ∗‖2 −
2α(1− ρ)

L(1− β)
‖∇f(θt)‖2 −

2αρ

1− β
(f(θt)− f∗)

− αρ

L(1− β)
‖∇f(θt)‖2 −

2αβ

(1− β)2
(f(θt)− f(θt−1)) + E[‖zt+1 − zt‖2]

where ρ ∈ (0, 1] is a parameter used to balance the first two inequalities. Denote M =

2
(

α
1−β

)2 (
σ2 + σ2

m

)
. Substitute Eq. 8 into this inequality and collect the terms, we get(

2αρ

1− β
+

2αβ

(1− β)2

)
(f(θt)− f∗) + E[‖zt+1 − θ∗‖2]

≤ 2αβ

(1− β)2
(f(θt−1)− f∗) + ‖zt − θ∗‖2 +

(
2α2

(1− β)2
− α(2− ρ)

L(1− β)

)
‖∇f(θt)‖2 +M

When α satisfies the condition 2α2

(1−β)2 −
α(2−ρ)
L(1−β) ≤ 0, i.e. 0 ≤ α ≤ (1−β)(2−ρ)

2L , the term about

‖∇f(θt)‖2 is non-positive, thus we have(
2αρ

1− β
+

2αβ

(1− β)2

)
(f(θt)− f∗) + E[‖zt+1 − θ∗‖2]

≤ 2αβ

(1− β)2
(f(θt−1)− f∗) + ‖zt − θ∗‖2 +M

Summing this inequality from 0 to T − 1 and taking full expectation gives

2αρ

1− β

T−1∑
i=0

E[f(θi)− f∗] +

T−1∑
i=0

(
2αβ

(1− β)2
E[f(θi)− f∗] + E[‖zi+1 − θ∗‖2]

)

≤
T−1∑
i=0

(
2αβ

(1− β)2
E[f(θi−1)− f∗] + E[‖zi − θ∗‖2]

)
+ T ·M

which implies that

2αρ

1− β

T−1∑
i=0

E[f(θi)− f∗] ≤
2αβ

(1− β)2
(f(θ0)− f∗) + ‖θ0 − θ∗‖2 + T ·M

35

Since f is convex, we have Tf(θ̄T) ≤ 1
T

∑T−1
i=0 f(θi)). Subsequently we have

E[f(θ̄T)− f∗] ≤
1

T

(
β

ρ(1− β)
(f(θ0)− f∗) +

1− β
2αρ

‖θ0 − θ∗‖2
)

+
1− β
2αρ

M

Finally, when α ∈ (0, 1−β
L], we can take ρ = 1, use L-smooth condition again and substitute M ,

which gives

E[f(θ̄T)− f∗] ≤
1

2T

(
Lβ

1− β
+

1− β
α

)
‖θ0 − θ∗‖2

+
ασ2

(1− β)
+

ασ2
m

(1− β)

36

	Introduction
	Preliminaries
	A Framework for Compression-based Memory Efficient Optimizers
	Main Compression Method: Quantization

	Compressing First Moment
	Compressing Second Moment
	Zero-point Problem
	Rank-1 Normalization
	Factorization

	Experiments
	Related Work
	Conclusions, Limitations, and Broader Impact
	Additional Experiment Results
	Outlier Patterns of Moments
	Quantization Quality via Histogram
	Zero-point Problem
	Comparison between Block-wise and Rank-1 Normalization
	Effectiveness of Block Size in Block-wise Normalization

	Experimental Details
	Quantization
	Hyperparameters and Training Details
	Memory and Computing Efficiency

	Quantization Formulation Details
	Signed Case
	Quantization Mappings
	Stochastic Rounding

	Compression-based Memory Efficient Optimizer Instances
	Rank-1 Normalization
	Theoretical Analysis
	Proof of Theorem 1

