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1 ABSTRACT

Much of the recent progress in image and video recognition has come at the cost of memory:
larger models, increased resolution, and longer temporal contexts. An inevitable component is the
quadratic (or larger) growth of memory and compute based on image resolution, which is a property
of the grid sampling used in convolutional networks and vision transformers. In this work we study
residual networks whose convolutional blocks have logarithmic-square growth instead, enabling
them to process very high-resolution video quickly and with low memory. The key insight is to use
a residual architectures’ residual stream as a high-resolution buffer, to which convolutional blocks
only read and write via log-polar image warp operations. Layers adaptively focus on different parts
of each frame, with very high resolution only near the focus point. A complete high-resolution rep-
resentation is built up in the residual stream, which is analogous to eye saccades creating a complete
picture in biological vision. Experiments demonstrate that our proposed HiResNets learn to foveate
around scenes similarly to human vision, and have superior performance in difficult egocentric video
recognition tasks, especially egocentric video with small objects and fine-grained recognition.

2 INTRODUCTION

Progress in image and video recognition has been driven by ever-larger models, higher input resolu-
tions, and longer temporal contexts. This trend has clear costs: memory and compute grow at least
quadratically with spatial resolution in convolutional networks and vision transformers (Dosovitskiy
et al.L[2021};He et al.,|2016)), creating a hard bottleneck for tasks that require fine detail. Applications
such as egocentric video recognition or small-object analysis are especially constrained, not because
of a lack of model capacity, but because of the inefficiency of uniform grid-based sampling.

In contrast, the human eye allocates resolution unevenly, capturing detail only at the fovea while
encoding the periphery coarsely, and relies on saccades to integrate a full high-resolution scene
(Yamada et al., 2018). This principle has motivated several works: from earlier glimpse networks
(Mnih et al., [2014)), zoom-in detectors (Cao et al., [2018)), and hierarchical multi-scale processing
(Larochelle & Hinton| 2010)), to more recent approaches which incorporated saccade-like glimpses
into modern architectures, for example through recurrent hard-attention models (Elsayed et al.,[2019;
Li et al., |2025) or differentiable foveated sampling schemes (Deza & Konklel 2023). Despite these
advances, the common limitation is that foveation is applied outside the backbone itself (typically as
a control or pre-processing module wrapped around an otherwise standard network), so the backbone
continues to scale quadratically with resolution.

We address this limitation by embedding foveation directly into the backbone. Our key idea is to use
the residual pathway of a deep network as a persistent high-resolution buffer, while convolutional
blocks interact only with a warped, adaptive-resolution view. This view is produced by a log-polar
image warp, which preserves fine detail near a chosen focus point and compresses the periphery
(Schwartz,[1980). As aresult, the cost of residual blocks grows only logarithmically with resolution,
rather than quadratically, while the residual stream maintains full fidelity. Layers can shift their
focus adaptively across frames, gradually building up a complete high-resolution representation in
a manner analogous to biological saccades.

While this means that the residual stream still scales quadratically with resolution, it is only involved
in inexpensive copy and addition operations, and its back-propagation memory can be reduced (for
example with gradient checkpointing (Chen et al., 2016)). We thus have greater performance gains
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Figure 1: Illustration of the foveal warps and qualitative results of gaze estimation. (a) Three gazes
estimated by different stages of the network (starting with the white dot, top), and the corresponding
log-polar warp grids (bottom) (sec. {.2). (b) Illustration of log-polar warped images (in practice
the residual blocks operate on residual features, not raw RGB images). (c) Examples of saccade
trajectories that appear in egocentric video. The network tends to focus on hands in close-up scenes
(important for action prediction and locating manipulated objects), and alternating near-far regions
in panoramic scenes.

by improving the residual blocks, which are often the bottleneck due to their expensive convolutions

and expanded numbers of channels (Liu et al.| [2022).

The resulting architecture, HiResNets, integrates foveation directly into residual networks. Unlike
prior approaches that wrap a standard backbone with glimpse or zoom modules, HiResNets modify
the internal computation of each residual block, yielding fundamentally different scaling behaviour
with respect to input resolution. Our contributions are threefold:

1. A residual design in which block cost grows only logarithmically with resolution while the
residual stream maintains full fidelity.

2. A differentiable log-polar warp mechanism enabling adaptive foveated processing inside
the backbone itself.

3. Extensive experiments showing that HiResNets not only reduce memory and computation
but also learn interpretable foveation strategies.

On egocentric video benchmarks, HiResNets offers consistent gains, particularly for fine-grained
activities and small-object recognition. These results demonstrate that foveated architectures can
overcome resolution bottlenecks in video understanding.

3 RELATED WORK

There is an ample body of literature that is related to our work. In this section we provide only a
small summary of more recent and classical papers that are relevant.

Biological Vision and Foveation. It is well known that human vision is sharply non-uniform: the
retina contains a densely packed fovea surrounded by coarse peripheral sampling, with retinotopic
organization that approximates a log-polar map. Classic studies of visual attention emphasize that
this arrangement is computationally efficient, as attention enhances acuity only where it is needed

Carrasco, 2011). Anatomical evidence confirms dramatic variation in photoreceptor density across
the retina (Curcio et al} [T990), and early computational accounts framed retinotopy itself as a log-
polar coordinate transform [1977). Perceptual research has shown how peripheral vision
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is limited by crowding and coarse feature integration (Strasburger et al.| |2011), while summary-
statistic representations explain how such limits still support robust search and scene perception
(Rosenholtz et al., 2012). [Yamada et al.| (2018) demonstrated engineering applications of foveated
vision systems, showing how uneven resolution sampling can reduce bandwidth and computation.
These works show that foveation and saccades evolved in biology as an efficient strategy for building
complete high-resolution representations from partial glimpses, as opposed to having a uniform-
resolution sensor, which is commonly the case in artificial vision.

Log-Polar Compression and Differentiable Warping. This biological perspective has inspired
computer vision models that explicitly encode non-uniform sampling. Focusing on the deep learn-
ing era, early work in geometric warping introduced learnable modules such as spatial transformer
networks (Jaderberg et al., |2015), while polar transformer networks showed how polar coordinates
yield built-in rotation and scale equivariance (Esteves et al., 2018b). More recently, log-polar con-
volution layers were proposed to natively operate in a retinotopic coordinate system, yielding both
efficiency and robustness to geometric variation (Su & Wen, |[2022).

Computational Models of Foveation. Beyond static reparameterizations, many learning-based
systems attempt to mimic saccades by dynamically selecting where to process at high resolution.
The Recurrent Model of Visual Attention (RAM) introduced sequential glimpses trained via rein-
forcement learning (Mnih et al.,|2014), while later models such as Saccader stabilized accuracy by
supervising fixation selection (Elsayed et al.,[2019). Other approaches replaced reinforcement learn-
ing with differentiable mechanisms: the Dynamic Zoom-In network, for example, predicted where
to zoom within large images to save computation (Gao et al.| |2018)). |Cao et al.| (2018)) introduced
zoom-in detection pipelines where a coarse network proposes candidate regions that are re-examined
at higher resolution, reducing cost for large images. More recent methods have implemented con-
tinuous foveated sensors that sample the input with log-polar density and learn how to shift fixations
end-to-end (Killick et al.,[2023), or incorporated foveation directly into transformers, as in FoveaTer
(Jonnalagadda et al 2021). Monte Carlo convolutions generalize filtering to non-uniform foveated
inputs (Killick et al.| [2022)), and multi-resolution strategies such as Dragonfly achieve similar goals
by aggregating many zoomed sub-crops into a unified representation (Thapa et al.,2024). Recently,
Li et al.| (2025) proposed MRAM, a multi-level recurrent attention model that mimics fixations and
saccades to improve stability and accuracy in glimpse-based architectures.

Egocentric Vision and Gaze Estimation Benchmarks. Egocentric video is a natural application
domain for foveated models, since hand-object interactions, rapid egomotion, and small tools make
uniform downsampling especially lossy. Benchmarks such as EPIC-KITCHENS (Damen et al.,
2018) and Ego4D (Grauman et al., 2022) established large-scale testbeds for activity recognition
and object understanding, while HD-EPIC (Perrett et al., 2025) recently added highly detailed anno-
tations and gaze data. In parallel, gaze-estimation datasets such as MPIIGaze (Zhang et al.,|2019),
ETH-XGaze (Zhang et al.| [2020), and Gaze360 (Kellnhofer et al., 2019), along with VR-focused
corpora like OpenEDS (Garbin et al., 2019)), provide evidence of where humans naturally focus in
first-person settings.

Small-Object Detection and Fine-Grained Targets. Standard detection backbones lose fine de-
tail under pooling and stride, which led to several multi-scale architectures. |Larochelle & Hinton
(2010) presented one of the earliest hierarchical multi-scale models, showing that learning across
resolutions improves recognition efficiency. Feature Pyramid Networks (Lin et al., 2017a) explic-
itly added top-down pathways to preserve detail across scales, while RetinaNet (Lin et al., 2017b))
introduced focal loss to mitigate the imbalance between small and large objects. Transformer-based
detection, exemplified by DETR (Carion et al.| 2020), simplified pipelines but still struggled on
small objects without scale-specific augmentation.

Large-Scale High-Resolution Vision. Finally, a broad literature addresses how to scale vision
architectures to high-resolution images and video. HRNet demonstrated the benefits of maintaining
parallel high-resolution streams throughout a network (Sun et al., 2019; |Wang et al., 2020), while
Multiscale Vision Transformers (MViT) and its successor MViTv2 used hierarchical pooling to man-
age compute (Fan et al., 2021} [Li et al.| 2022)). Efficiency-focused transformers prune or merge to-
kens dynamically, as in DynamicViT (Rao et al., 2021), EViT (Liang et al., 2022), and ToMe (Bolya
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Figure 2: Overview of the proposed architecture. We integrate log-polar warp and unwarp operators
around a series of residual (convolutional) blocks of a given backbone (e.g. ResNet). In this warped
space, the network can process a very high resolution only around a saccade position (predicted
by a separate branch), with much reduced computation. This allows the residual stream to carry
information at a much higher resolution, processing full-HD video natively and recognizing very
fine-grained detail.

et al.| [2022). At the extreme end, gigapixel pathology has motivated hierarchical pretraining (HIPT)
(Chen et al.| 2022)) and MIL-based slide classification (CLAM) (Lu et al.| 2021)). These proposals
attempt to balance resolution with efficiency, but most operate at globally fixed scales or discard fine
detail. In contrast, the proposed HiResNets achieve sub-quadratic (log-squared) scaling by treating
the residual stream itself as a high-resolution buffer accessed via log-polar warps, allowing full-HD
video to be processed natively while preserving the biological analogy of foveation and saccades.

4 METHOD

4.1 RESIDUAL NETWORKS AND RESOLUTION SCALING

We begin by recalling the standard residual block notation of He et al.[(2016). Let () € RE*HxW
denote the feature map (the residual stream) after block /. A residual block updates it via

2D — 2O 4 f(a:(l)> 7 (1)

where f(-) is a sequence of convolutions, nonlinearities, and normalizations.

While this formulation underlies most modern vision models, its cost grows quickly with resolution.
The computational complexity of a convolution with kernel size K is
O(C*HWK?), 2)

so both compute and memory scale quadratically in the spatial dimensions. This quadratic law is the
main bottleneck preventing standard residual networks from handling very high-resolution video.

4.2 LOG-POLAR WARPS

To alleviate this bottleneck, we require a representation that emphasizes local detail while compress-
ing distant regions. One candidate is the log-polar reparameterization of the image plane (Esteves
et alL |2018a). Let ¢ € R? be a centre of focus. The log-polar mapping 9. : RP*® — RIXW g
defined by

(i,5) = ¥e(p,0) = c+ (exp(p) cos b, exp(p)sin ), 3)
where (p, 0) are the log-polar coordinates of a point in the warped view. This mapping allocates
exponentially more resolution near ¢, while progressively downsampling farther away.

The warped feature at (p, 0) is obtained by bilinear resampling:
0(p,0) =Y ammpli—m)p(i—n), () =max(0,1 - [t]). 4)
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Since ¢ has compact support in [—1, 1], this double sum reduces to exactly four terms: the 4 neigh-
bours obtained by integer floor and ceiling of the coordinates.

Limitations of direct warping. Although the log-polar warp provides a more efficient parame-
terization, applying it directly to the input image or to the activations of a standard network has a
major limitation: the centre c is fixed for the entire forward pass. As a result, only a single part of
the scene benefits from high-resolution processing, and the network cannot reallocate its resolution
budget across layers or time. This motivates applying the warp at a more fine-grained level.

4.3 HIRESNET ARCHITECTURE

We therefore restructure the residual block so that convolutional processing takes place only in
log-polar space, while the global high-resolution representation is preserved in the residual stream.
Concretely, a block is defined as

UZZZJC(CU% y:f(u)7 $<—$+¢§1(y)» (5)

where 1! is the inverse log-polar warp, mapping features back to Cartesian coordinates by bilinear
resampling.

This means that each convolutional block operates on a compact warped view u € R€*F*®  while
x maintains a full-resolution buffer of the scene. Over the course of IV blocks, the network integrates
multiple warped updates into z, analogous to how the visual system fuses multiple saccades into a
coherent high-resolution percept. In practice, we let f be a sequence of M residual blocks instead
of just one, in order to avoid recomputing the centre c too often over the depth of the network.

4.4 SACCADE PREDICTOR

To make this mechanism adaptive, the centre ¢ must be predicted dynamically at each block. We
introduce a lightweight saccade predictor, consisting of two 1 x 1 convolutions with a ReLU non-
linearity, followed by a differentiable softargmax operator (Henriques & Vedaldi, |2017). Given an
attention map a € R¥*W | the softargmax produces

o= Yig) ) ©

i.j m,n exp(amm)

This allows each block to reposition its high-resolution focus based on the current residual state .

4.5 INVERSE WARP

In order to relate high-resolution information from different focus positions, we must be able to write
information back from a log-polar warped space into a common space (typically cartesian). We thus
use also the following inverse warp to transform features to the high-resolution residual stream:

(0,0) = v (i) = (10g |G, )P atan2(i',)), (.5) = Gj) —e; (D

again using bilinear interpolation (eq. [).

4.6 COMPLEXITY ANALYSIS

A standard residual block with kernel size k applied to a feature map of size (W, H) has cost
O(K*WH). In our proposal, convolutions act only on the warped view u € RE*®XP where
the log-polar warp yields © = O(log W) and P = O(log H). The warp itself can be implemented
in O(OP), so the dominant cost is the convolution, scaling as

O(k*OP) = O(k*log W log H).

This logarithmic-square scaling replaces the quadratic growth of conventional blocks, and becomes
the bottleneck whenever convolution dominates warp overhead and channel dimensions remain
moderate.
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Meanwhile, the residual stream ensures that no fine detail is lost: every update is reintegrated into a
global high-resolution buffer. Thus HiResNets achieve logarithmic-square scaling in the computa-
tionally dominant convolutional bottlenecks, while preserving complete spatial information across
depth and time.

4.7 IMPLEMENTATION DETAILS

In each experiment, we take an existing residual network as a baseline (ResNet (He et al., [2016)
or SqueezeTime (Zhai et al., 2024)), and obtain a HiResNet by adding the warp operations as de-
scribed in sec. [.3] We implement the log-polar warp (sec. [1.2) and its inverse transform modules
using efficient bilinear sampling (grid_sample in PyTorch) in order to produce the warped and
unwarped tensors.

A new localization network is instantiated in every stage (group of residual blocks) — for example,
the ResNet always has 4 stages (He et al.,|2016). Therefore there is one focus point per stage. We
also experiment with the frequency of the polar prediction, for block groups with large number of
residual blocks.

As for spatial resolution of the tensors, the residual blocks’ spatial sizes increase by 1/2 every stage
with increasing depth, while the residual stream has a constant size 4 times smaller than the input
resolution.

5 EXPERIMENTS

In these experiments, we want to assess several capabilities of HiResNets: 1) their ability to mimic
gaze estimation, analogously to biological vision; 2) the ability to process higher-resolution images
and video than their corresponding baselines; 3) their performance scaling w.r.t. image resolution;
4) the ability to detect fine-grained object details that would be difficult in lower resolutions.

Baselines. We use YOLOVS (Jocher et al.,|2020) as a strong one-stage object detection baseline. It
uses a CSPDarknet backbone with PANet feature aggregation and anchor-based detection heads, to
trade off between accuracy and speed on high-resolution inputs. For gaze estimation, Global-Local
Correlation (GLC) (Lai et al.l [2023) is a transformer-based egocentric gaze estimation model that
explicitly models the interaction between global scene context and local visual features. It injects a
“global token” into the transformer embedding and uses a Global-Local Correlation (GLC) module
to compute attention weights between that global token and every local token.

5.1 HIGH-RESOLUTION EGOCENTRIC VISION EXPERIMENTS

We focus on egocentric video, which presents unique challenges that are relevant for our approach.
Unlike third-person data, egocentric data is dominated by rapid head motion, cluttered environments,
and frequent occlusions. Objects of interest are often small, hand-held, and viewed at unusual an-
gles. These conditions make accurate recognition heavily dependent on preserving fine spatial detail,
but requiring high resolution quickly becomes prohibitive. We therefore focus our experiments on
egocentric object detection, where the ability of HiResNets to foveate adaptively and process high-
resolution video efficiently is most critical.

In all these experiments, we evaluate the method at different resolutions, including relatively high
ones (reaching Full HD resolution), in order to show the scaling behaviour of the different methods.

5.1.1 GAZE ESTIMATION

Our first task is gaze estimation, which we speculate should have a highly correlated output with
the foveation mechanism that we introduce. In egocentric gaze estimation, a model receives head-
mounted first-person video and predicts the corresponding 2D gaze locations on each frame, indi-
cating where the wearer is looking.

For datasets, we use Ego4D (Grauman et al., [2022) and EGTEA (Li et al., [2018). Ego4D contains
15K video clips for training and 5.2K video clips for testing, and 20K gaze trajectories. EGTEA
contains 8.2K clips for training and 2K clips for testing, and 10K gaze trajectories. For all our gaze
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EGTEA Ego4D
Method Max Res AP. AR. F1. AP. AR. Fl1.
640 0.29 0.59 0.39 0.32 0.57 0.41
SqueezeTime (Zhai et al.,[2024) 1000 0.33 0.60 0.42 0.34 0.58 0.42
640 0.36 0.62 0.44 0.35 0.56 0.43
Ours 1000 0.37 0.63 0.46 0.36 0.57 0.44

Table 1: Gaze Estimation on EGTEA and Ego4D.
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Figure 3: Computational cost plot (latency vs. resolution) on Ego4D (Grauman et al.| [2022) gaze
estimation task for the baseline (SqueezeTime) and our method.

estimation tasks, we integrate our method into the GLC (Lai et al., [2023) pipeline, including the
native configuration of optimizer, batch sizes, and evaluation metrics (average precision, F1 and
recall). We swap the video backbone architecture in GLC with SqueezeTime (Zhai et al., |2024) for
both the baseline and the proposed method, since we found it to be more performant.

Results. We evaluate the performance when scaling the resolution from 640 to 1000. We observe
that our model outperforms other baselines both at lower and higher resolutions (table[T). However,
the task is largely solvable at intermediate resolutions, attributed to the distribution of the object
sizes which contain both small and large objects.

5.1.2 OBIJECT DETECTION — EGOOBJECTS AND EG0O4D

Object detection is a classic task in computer vision and is one where focusing on different regions
of an image seems like a natural strategy, since objects are bounded and some can be relatively
small, especially in egocentric video.

For datasets, we use EgoObjects (Zhu et al., 2023) and Ego4D datasets (Grauman et al., [2022).
EgoObjects is the largest egocentric object detection dataset, with 78K frames in training and 6K
frames in validation, with 640K bounding boxes. We curate the Ego4D dataset with 53K frames
in train and 35K frames in test and a total of 100K bounding boxes. We show the distribution of
object sizes in both datasets. For all our object detection tasks, we use the state-of-the-art object
detection model, YOLO (Jocher et al.l [2020) with its native configuration of optimizer, batch size,
and evaluation metrics (average precision, recall and evaluation accuracy).

Results. For Ego4D dataset, when scaling the resolutions, accuracy does not significantly improve
as seen in table [2| This can be attributed to the distribution of the object sizes in the dataset which
cover large pixel areas, hence do not need higher resolution training. In contrast, for EgoObjects,
when scaling the resolutions, accuracy improves by about 10%, attributing to varied object size
distribution from small to large pixel areas (table [2)). However, the dataset is still largely solvable at
intermediate resolutions as seen in the table. Varying improvements at increasing resolutions across
the two datasets motivates us to investigate performance on a dataset primarily covering smaller
objects sizes.
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Ego4D Ego-Objects
Method Max Res AP. AR. Acc. AP. AR. Acc.
640 0.36 0.16 0.21 0.28 0.17 0.27
YOLOVS (Jocher et al.|[2020) 900 0.37 0.15 0.23 0.26 0.18 0.29
1200 0.35 0.18 0.25 0.27 0.16 0.28
640 0.41 0.24 0.27 0.35 0.20 0.37
Ours 900 0.44 0.23 0.30 0.37 0.23 0.39
1200 0.42 0.20 0.25 0.36 0.26 0.35

Table 2: Object Detection on Ego4D and Ego-Objects.
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Figure 4: Average pixel area distribution for object and part categories in PACO (Ramanathan et al.,
2023)) dataset in its full resolution image.

5.2 FINE-GRAINED VISUAL UNDERSTANDING

Finally, we turn to fine-grained visual understanding, for which we posit that high-resolution video
understanding may be especially well-suited. We thus evaluate on the PACO (Ramanathan et al.,
2023)) detection dataset for detailed visual understanding. Derived from the Ego4D dataset (Grau-
man et al. 2022), PACO comprises of rich annotations 531 object categories, of which 456 are
object-part categories. There are a total of 15667 frames in train and 550 frames in validation, and
197K bounding boxes. We plot the pixel area size distribution for the categories in the dataset in

Fig. @

Results. We evaluate the performance on PACO when scaling resolution from 640 to 1400. We
see that our method outperforms the baseline at lower resolutions, however, only by a small margin
(table[3). This indicates that PACO is not solvable with resolution lower than its full-HD or higher.
The performance increase at higher pixel resolutions (that is, 900 and 1400) comes at 1.2x and
1.5x higher latency respectively, compared to the 640 pixel resolution. This shows that, for harder
detection tasks, increased resolution does meaningfully improve performance, and methods such as
ours can take advantage of the additional detail without a large increase in computational cost.

5.3 SCALING BEHAVIOUR OF COMPUTATIONAL COST WITH INCREASING IMAGE
RESOLUTION

For this experiment we measured inference latency as a function of input resolution on the Ego4D
gaze estimation benchmark, without any additional training. We compared HiResNets to the base-
line SqueezeTime, running both models on an NVIDIA M40 GPU. Latency was recorded while
scaling the input from a typical ResNet resolution (224px) up to 1K, using identical preprocessing
and batch (size 24) settings.

Results. The results, shown in Fig. [3] show that HiResNets scale much more favorably with res-
olution. SqueezeTime exhibits the expected quadratic growth in latency as image size increases,
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Method Max Res Train Eval. AP. AR.
640 044 037 058 0.10
YOLOVS (Jocher et al., 2020) 900 048 038 052 0.12
1400 0.55 043 055 0.18
640 049 040 051 0.20
Ours 900 052 044 054 025
1400 058 047 057 0.30

Table 3: Object Parts Detection on PACO Dataset.

reflecting the pixel-wise scaling of convolutional layers in a ResNet-style backbone. In contrast,
HiResNets grow only nearly linearly with resolution, consistent with their logarithmic—squared
property. As a result, HiResNets remain efficient even at 1K input, while SqueezeTime becomes
substantially slower.

6 ABLATIONS

We perform ablation studies on different architecture configurations that can result from changing
the frequency of polar center predictor and varying the polar radius and angle sizes of the feature
maps passed into the log-polar transform. For the frequency at which we predict polar center within
and across the stacks of residual blocks, we experiment with predicting twice for groups with more
residual blocks (greater than 4), and observe an increase in evaluation accuracy by 1.5%. This is
expected due to the representations drift in later blocks from that of the initial residual block. For
the polar radius/angle sizes, we experiment with multiple configurations such as keeping the factor
of reduction the same (eg.1/4) across blocks, resulting in an increase in accuracy of 1%. This is
expected due to an increased coverage in the local area of interest (i.e. the high resolution site).

7 CONCLUSION

In this work we propose HiResNets, a residual architecture that integrates log-polar warps into the
residual stream to enable efficient foveated processing. Our experiments show that HiResNets can
mimic gaze allocation, handle inputs at substantially higher resolutions than conventional baselines,
and exhibit favourable scaling behaviour with respect to resolution. These properties lead to superior
performance on egocentric video object detection, where capturing fine-grained details is critical.
Overall, our results highlight foveated representations as a promising direction for building scalable
high-resolution vision models without incurring quadratic computational cost.
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