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ABSTRACT

Recently, large language models (LLMs) have been increasingly used to support
various decision-making tasks, assisting humans in making informed decisions.
However, when LLMs confidently provide incorrect information, it can lead hu-
mans to make suboptimal decisions. To prevent LLMs from generating incorrect
information on topics they are unsure of and to improve the accuracy of gener-
ated content, prior works have proposed Retrieval Augmented Generation (RAG),
where external documents are referenced to generate responses. However, tradi-
tional RAG methods focus only on retrieving documents most relevant to the input
query, without specifically aiming to ensure that the human user’s decisions are
well-calibrated. To address this limitation, we propose a novel retrieval method
called Calibrated Retrieval-Augmented Generation (CalibRAG), which ensures
that decisions informed by the retrieved documents are well-calibrated. Then we
empirically validate that CalibRAG improves calibration performance as well as
accuracy, compared to other baselines across various datasets.

1 INTRODUCTION

Large language models (LLMs; Jiang et al., 2023; Touvron et al., 2023; Dubey et al., 2024; Achiam
et al., 2023) have demonstrated remarkable performance on numerous downstream natural language
processing (NLP) tasks, leading to their widespread integration into various decision-making pro-
cesses (Bommasani et al., 2021; Band et al., 2024; Zhou et al., 2024). However, even with significant
increases in model size and the expansion of training datasets, it remains infeasible for LLMs to en-
code all possible knowledge within their parameters. As a result, the outputs produced by LLMs may
not consistently be reliable for important human decision-making processes, potentially overlooking
key or hidden details. Additionally, LLMs frequently provide inaccurate or misleading information
with a high degree of confidence, a phenomenon referred to as hallucination (Zhuo et al., 2023;
Papamarkou et al., 2024), which can lead humans to make flawed decisions. In addition, Zhou
et al. (2024) have empirically demonstrated that human users often over-rely on LLM outputs dur-
ing decision-making processes, and this over-reliance tends to increase in proportion to the model’s
confidence. Here, the model’s confidence refers to the verbalized expression of how certain the
model is when asked how confident it is in its answer. Specifically, they have found that for answers
with high confidence, users show strong over-reliance regardless of whether the answer is correct or
not. These findings highlight that utilizing LLMs without proper calibration of their responses and
addressing the frequent occurrence of hallucinations can lead to incorrect decisions in high-stakes
tasks like medical diagnosis and legal reasoning, potentially resulting in severe consequences (Li
et al., 2019; 2022b; Han et al., 2024).

Retrieval Augmented Generation (RAG) (Lewis et al., 2020; Li et al., 2022a; Wang et al., 2024)
has emerged as a promising method to address hallucinations, which is one of the two key issues
when using LLMs in decision-making (Shuster et al., 2021; Li et al., 2024). Instead of generating
answers directly, RAG retrieves relevant documents from external databases and uses them as an
additional context for response generation. This approach supplements the information that LLMs
lack, resulting in more accurate and reliable responses. However, the database cannot encompass
all information, and the world knowledge is continuously being updated. In such cases, the retriever
may retrieve irrelevant documents, which can distract the LLM and lead to the generation of in-
correct answers to the question (Shi et al., 2023). Moreover, as described in Section 2.2, due to
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the LLM’s overconfidence in the retrieved document, they still tend to assign high confidence to its
responses even when they are incorrect.

To address the issue of deep neural networks generating overconfident outputs for given inputs and to
promote well-calibrated predictions, research on uncertainty calibration has been actively conducted
across various fields (Kuleshov et al., 2018; Laves et al., 2020; Kapoor et al., 2024). In particular,
for image classification tasks in computer vision, numerous techniques (Lakshminarayanan et al.,
2017; Maddox et al., 2019; Thulasidasan et al., 2019) have been developed to improve uncertainty
calibration. Especially, post hoc methods like temperature scaling, which simply adjust the output
logits, have been shown to be simple yet effective in improving calibration (Kull et al., 2019; Vaice-
navicius et al., 2019; Minderer et al., 2021; Widmann et al., 2022). However, in contrast to vision
tasks, calibrating LLMs poses a more complex challenge due to their sequential token generation
nature (Kapoor et al., 2024). Specifically, LLMs produce sequences of log probabilities for each
token, and the number of possible sequences grows exponentially with length, making it impracti-
cal to apply traditional calibration methods that consider all output possibilities. This complexity
renders straightforward adaptations of calibration techniques like temperature scaling ineffective for
long-form sentence generation tasks in LLMs. To address these challenges, recent work by Band
et al. (2024) proposed an uncertainty calibration method specifically designed for decision-making
scenarios involving LLMs in long-form generation contexts. This method aims that the probabilities
associated with user decisions, based on the guidance generated by the LLM, are well-calibrated.
However, this method still lacks the ability to calibrate the probabilities associated with user deci-
sions based on the guidance provided by RAG.

To address this issue, we propose the Calibrated Retrieval-Augmented Generation (CalibRAG)
framework. CalibRAG allows an LLM using RAG to not only select relevant information to support
user decision-making but also provide confidence levels associated with that information by utilizing
a forecasting function, ensuring well-calibrated decisions based on the retrieved documents. Here,
the forecasting function is the surrogate model that predicts the probability of whether the user’s
decision based on the guidance provided by RAG will be correct. We empirically validate that our
CalibRAG significantly improves calibration performance as well as accuracy, compared to other
relevant baselines across several datasets.

Our contributions can be summarized as follows:

• We propose the CalibRAG framework, which enables well-calibrated decision-making
based on the guidance provided by RAG.

• We construct a new dataset by creating labels that indicate whether decisions made using
retrieved documents correctly answer the questions, essential for training the forecasting
function.

• We outperform existing uncertainty calibration baselines across various tasks involving
RAG context using the Llama-3.1 model in decision-making scenarios.

2 PRELIMINARIES

2.1 DECISION CALIBRATION OF LONG FORM GENERATION

As discussed in Section 1, since human decision-makers tend to over-rely on the outputs of LLMs
during the decision-making process, it is crucial to ensure that the confidence in LLMs’ outputs is
well-calibrated. To address this problem, Band et al. (2024) propose decision calibration, which
aims to align the confidence of the model’s predicted output with the accuracy of the user’s decision
based on the model output. This allows the user to make a reliable decision based on the model’s
confidence. Therefore, to achieve this goal, we need to ensure that the model not only generates
factual information but also that its confidence in the generated responses accurately reflects the
likelihood of correctness.

To formalize the problem, we introduce the following notations. Let x ∈ X represent the question
or task for which a user needs to make a decision (e.g., “What was the name of the 1996 loose
adaptation of William Shakespeare’s Romeo & Juliet written by James Gunn?”), and let y ∈ Y
denote the corresponding true answer (e.g., “Tromeo and Juliet”). Here, X and Y are the set of all
possible questions and answers, respectively. Given the question x, the user provides an open-ended
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(a) (b)

Figure 1: (a) Cumulative accuracy using the top-10 documents shows an 11% improvement, demon-
strating that top-1 document is not always optimal. CalibRAG achieves higher top-1 accuracy, with only
marginal gains thereafter. The base retrieval model is contriever-msmarco, evaluated on synthetic
valid data (see Section 3.3).(b) Accuracy and calibration error on the NaturalQA dataset. RAG outperforms
the base model (orange) in accuracy (blue) but exhibits increased calibration error. Bar height represents
average accuracy per confidence bin, with darker shades indicating a higher density of predictions. The base
model is Llama-3.1-8B, fine-tuned using the Number-LoRA method.

query q(x) (e.g., “Please provide an overview of the various adapted versions of Romeo and Juliet.”)
to an LLM as a prompt to gather information for the decision making about x. The LLM, denoted as
M, generates a long-form response to the query, i.e., z ∼ M(z|q(x)), which serves as the guidance
for the decision-making process. For the sake of notational simplicity, unless specified otherwise,
we will use q in place of q(x). Given the question x and the generated response z, the user leverages
a forecasting function f : X ×Z → ∆|Y| to assess all possible answers y ∈ Y , where ∆|Y| denotes
a simplex over the set Y and Z is the space of all possible responses from M. The goal is to use
the forecasting function f to ensure that, given the long-form generated LLM response z, the user
makes calibrated decisions on the question-answer pairs (x, y). Based on this, Band et al. (2024)
introduces formal definitions for three types of calibrations with varying conditions. For instance,
the LLM is confidence calibrated (Guo et al., 2017) with respect to the forecasting function f if f
is calibrated on the joint distribution p(x, y, z), that is,

Pr
(
y = argmax

j∈|Y|
f(x, z)j | max

j∈|Y|
f(x, z)j = β

)
= β, ∀β ∈ [0, 1], (1)

where f(x, z)j denotes the jth element of the vector f(x, z).

However, the method proposed by Band et al. (2024) to tackle this calibration problem has three ma-
jor limitations: 1) it requires supervised fine-tuning for three different LLMs, including the LLM re-
sponsible for generating a response z and the forecasting function f parameterized with two LLMs,
2) it further needs proximal policy optimization (PPO; Schulman et al., 2017) for fine-tuning the
LLM for response generation, which is known to suffer from training instability (Zhu et al., 2023),
and 3) it cannot calibrate the probabilities associated with the user decisions based on the guidance
provided by RAG.

2.2 RETRIEVAL AUGMENTED GENERATION (RAG)

Retrieval augmented generation (RAG) is first proposed by Lewis et al. (2020) and uses dense pas-
sage retrieval (DPR; Karpukhin et al., 2020) to retrieve and rank relevant paragraphs in question-
answering (QA) tasks. The bi-encoder structure of the DPR model embeds questions and documents
separately, enabling to precompute document embeddings and cache them in a vector database. A
question is only embedded when presented and the similarity between the question and document
embeddings is computed. The most relevant documents are retrieved and provided as additional
context for the question to an LLM. The retrieved documents can guide the LLM to generate more
reliable answers, rahther than solely relying on the knowledge encoded in its parameters.

Although RAG improves accuracy, retrieval models can still produce errors. First, since retrieval
models are typically trained in an unsupervised manner (Izacard et al., 2021; Jin et al., 2023), the
order of query-document similarities they produce does not necessarily align with how helpful those
documents are for downstream user decisions. As shown in Figure 1a, the top-1 document retrieved
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Tim Cook, born in 1960, is the CEO of Apple Inc. He joined Apple in
1998, becoming CEO in 2011 after Steve Jobs' resignation. Under
his leadership, Apple expanded into new product lines like the
Apple Watch and services such as Apple Music, while emphasizing
privacy, environmental sustainability, and innovation.

Generated guidance (𝑧)

Original question (𝑥)
: Is Tim Cook currently  the CEO of Apple?

Retrieval 
model

Open-ended 
query (𝑞)

: Please summarize 
Tim Cook's life!

Document
Retrieval

Retrieved document (𝑑)

Finetune on 𝑞, 𝑑, 𝑏

True 

Predicted decision
: Yes! Tim Cook is CEO of Apple.

Ground-truth decision (𝑦)
: Yes.

Label (𝑏)

Surrogate LLM 
(𝑼)

Evaluate 

False

He was interim CEO and chief of the 
Macintosh division in 2004 while 
Jobs took a leave of absence for 
surgery to treat pancreatic cancer. 
After Jobs returned to Apple, Cook 
became chief operating officer in 
2005      …

LLM 
(𝓜)

Forecasting 
Function

Figure 2: Overview of data generation and training process.

by the base retrieval model often leads to incorrect decisions. Rather subsequent documents could
potentially improve the outcome. This indicates that the similarity scores assigned by the retrieval
model do not always correlate with their utility in aiding decision-making. Additionally, RAG using
an incorrect document may lead to flawed decision-making, as the LLM could introduce misleading
information from irrelevant documents. As shown in Figure 1b, while RAG improves accuracy,
the calibration error increases due to the tendency of the LLM to over-rely on irrelevant documents
provided as context. Current RAG models do not address the confidence of the retrieved document.

To address these two issues, it is important to not only identify documents more relevant to down-
stream users through an additional reranking process but also to calibrate the confidence level of the
retrieved documents.

3 CALIBRAG: RAG FOR DECISION CALIBRATION

Overview. We summarize our method and describe it in more detail in the following section.
Given a task x on which users make a decision and an open-ended query q about the task, a retriever
model gets a document d relevant to the query from an external database. Based on the query and
retrieved document, an LLM generates a guidance z in the form of long-form generation that can
help the user make an informed decision and outputs confidence c for its response. To allow the
LLM to express its uncertainty, we prompt the model to respond using either an integer number
between 0 and 10 or linguistic terms of certainty (e.g., “Ambiguous”). Finally, the user makes a
final decision about the task, using both the guidance response z and the LLM’s confidence c. Our
goal is to align the model confidence with accuracy of the user’s decision based on the guidance.
To this end, we train a forecasting function f(q, d) that gets the query and retrieved document as
input predicts the probability of the decision being correct, and uses it as a ranking function of the
retriever model. The overall pipeline of our method is illustrated in Figure 2.

3.1 PROBLEM SETUP

Following Band et al. (2024), to train and evaluate the forecasting function, we first use an LLM
surrogate model, denoted as U , to mimic human decision-making when making decisions, instead
of relying on actual human users. However, unlike Band et al. (2024), we leverage the human
evaluation results from Zhou et al. (2024) to design a prompt that steers the surrogate LLM model
U to exhibit more human-like behavior. Specifically, the prompt is crafted to lead the surrogate U
to place strong belief in the confidence of the LLM, denoted as M, generating the guidance in its
responses. For further details on the prompt, please refer to Appendix F. Additionally, since the
user’s decision (mimicked by U ) is usually given as a free-form text rather than being a simple class
label, we use GPT-4o-mini (Achiam et al., 2023) model, denoted as G, to evaluate the correctness
of the user’s decision compared to the true answer y.
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Let x be a task and q the corresponding open-ended query. The retriever model retrieves a document
d from the external database E . Then, the LLM model M, responsible for generating the guidance
based on d, takes both the query q and the retrieved document d, and produces the guidance and
confidence [z, c] ∼ M(z, c|q, d) for the decision-making task x. As we discussed in Section 1
and illustrated in Figure 1b, the RAG model M often generates a guidance z with overly-high
confidence c. This can lead to miscalibrated predictions when the confidence does not accurately
reflect the correctness of the generated information z. Following this, our user model U makes a
decision U(x, z, c) by utilizing the question x, the guidance z, and the confidence c. Then our final
goal is to learn a forecasting function f : Q× E → [0, 1] defined on a product space of query space
Q and the external dataset E and satisfies the following binary calibration equation,

E [G(y, U(x, z, f(q, d)))|f(q, d) = β] = β, ∀β ∈ [0, 1]. (2)

where G(y, U(x, z, f(q, d))) ∈ {0, 1} is a binary variable indicating whether a user decision
U(x, z, f(q, d)) matches the answer y. Note here that we are using the forecasted confidence f(q, d)
in place of the confidence c generated from M. This adjustment means that forecasting function f
is designed to predict the probability of a correct answer for a given task x, the guidance z, and the
confidence derived from f , by utilizing the query q and the retrieved document d. We expect that
the actual accuracy will be well-aligned with the predicted probabilities, ensuring a well-calibrated
decision-making process.

3.2 MODELING AND TRAINING

To model the forecasting function f , it is essential to have the capacity to sufficiently analyze the
relationship between the query q and the retrieved document d. For this reason, we use a pre-trained
LLM encoder ffeat as the base feature extractor model. Additionally, to model the probability of
whether U(x, z, f(q, d)) is correct or not, we attach a linear classifier head after ffeat. This head
uses a sigmoid function on the logits to generate the probability values. For efficient learning during
supervised fine-tuning, we keep the weights of the pre-trained ffeat fixed and employ Low-Rank
Adaptation (Lora; Hu et al., 2021) to train the feature extractor. This allows us to adapt the model
efficiently with minimal additional parameters. Then our overall forecasting function f is formulated
as follows:

Pr(G(y, Uf ) = 1) = f(q, d) := sigmoid
(
W⊤

headffeat(concat[q, d];WLoRA) + bhead
)

(3)

where sigmoid and concat denote the sigmoid function x 7→ 1/(1 + exp(−x)) and the concatenate
operation, respectively. Whead, bhead, and the LoRA weight WLoRA are learnable parameters, and
Uf is the shorthand for U(x, z, f(q, d)). Here, the reason f can model p(G(y, Uf ) = 1) using
only the query q and document d is that q and d depend on x, and z also depends on both q and d.
This enables f to acquire enough information from the query and the retrieved document to forecast
the distribution of correctness of the decision y. To train our forecasting function f , we employ a
synthetic dataset whose construction will be described in the next section. The model is trained with
the following binary cross-entropy loss,

L = − 1

|T |
∑

(q,d,b)∈T

(b log f(q, d) + (1− b) log(1− f(q, d))) (4)

where T represents the synthetic training dataset, and b ∈ {0, 1} is a binary label indicating the
correctness of the user’s decision. Here, through supervised learning using various combinations of
q, d, and b, the trained function f can analyze the relationship between unseen combinations of q
and d using the learned feature map, enabling it to predict the probability of the decision.

3.3 SYNTHETIC SUPERVISION DATA GENERATION

To conduct the supervised learning discussed in Section 3.2, it is essential to construct an appropriate
synthetic training dataset T consisting of the triples (q, d, b). We first extract the (x, y) (e.g., (“In
which county is Ascot”, “Berkshine, England”)) decision-making task pairs from the following three
Question Answering datasets: 1) TriviaQA (Joshi et al., 2017), 2) SQuAD2.0 (Rajpurkar et al.,
2018), and 3) WikiQA (Yang et al., 2015) datasets. Then, for every x in the training dataset, we
generate an open-ended query q (e.g., “Write a paragraph about the county where Ascot is located.”)
based on each x, using the GPT-4o-mini model. At this point, it is important to note that instead
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of retrieving only the single top document d with the highest similarity score from the retriever
model for each query q, we retrieve the top 20 documents. There are two reasons for this. First, as
illustrated in Figure 1a, a large number of low-ranked documents actually help the surrogate user
make a correct decision. If we only include the top-1 documents, many of which would be labeled as
incorrect, the synthetic dataset would be highly biased to negative samples. Second, using only one
d per (x, y) pair for labeling and training could result in the model overfitting to the label without
learning the relationship between q and d adequately. By pairing the same q with various d’s,
the model can learn from positive and negative samples, improving its ability to generalize. After
retrieving multiple documents, we provide each (q, d) pair to the RAG model M, which generates
the guidance z based on d (e.g., “Ascot, Berkshire”) and a certainty level c (e.g.,“Certainty: 9”).
Then, the triple (x, z, c) is passed to the user model U . The model’s decision is compared with the
true answer y by the evaluation function G, which determines whether the decision is correct, and
this is recorded as a binary label b. Thus, for each (x, y) pair, we can generate 20 different training
triples (q, d, b). Refer to Appendix D for examples of 20 different retrieved documents and their
corresponding labels.

3.4 INFERENCE

After finishing the training of the forecasting function f , we perform inference for a new decision
task x∗ through the following four stage process:

Stage 1: Initial retrieval of documents. Given an open-ended query q∗, derived from the original
question x∗, we begin the document retrieval process using the retrieval model. Similar to the train-
ing data generation process, we retrieve the top K relevant documents from the external database,
denoted as D∗ := {d∗i }Ki=1. The goal of this stage is to construct a diverse set of candidate documents
that may contain valuable information for producing the correct answer y.

Stage 2: Scoring and selection of documents. Once the K candidate documents are retrieved, we
predict the decision confidence level for each document using our trained forecasting function f .
At this point, regardless of the similarity score from the retrieval model, each document is assigned
a new rank based on its confidence level predicted with f . Specifically, the ranking is determined
based on the probability that the user will make a correct decision when provided with the guidance
generated from each document, with documents arranged in descending order of the forecasted
probabilities {f(q∗, d∗i )}Ki=1. The document with the highest ranking is selected for the next stage.
Here, if the predicted probability for the highest-ranked document d∗ is lower than a pre-defined
threshold ϵ (with more details about ϵ provided in Appendix B), we set this probability to 0.5. In
such cases, we determine that none of the currently retrieved K documents are useful for assisting
with the decision task x∗. Consequently, in this case, we proceed to Stage 3 to retrieve a new set of
K candidate documents. If this condition is not met, we move forward to Stage 4.

Stage 3: Reformulating the query. If the predicted probability for the highest-ranked document d∗
is lower than a pre-defined threshold ϵ in Stage 2, to retrieve a new set of K candidate documents,
we reformulate our open-ended query q∗ into q∗∗ by emphasizing more important content from
the question x. This reformulation focuses on extracting key aspects of the original task, ensuring
that the next retrieval attempt targets more relevant and helpful documents. After reformulating the
query, we repeat Stage 1 and Stage 2 once again. Examples of query reformulation are shown in
Appendix C.

Stage 4: Final decision. After retrieving the document d∗, we generate the guidance z∗ using the
RAG model M. The user model U then makes a decision U(x∗, z∗, f(q∗, d∗)). This decision is
compared with the correct answer y∗ by G to determine its accuracy.

4 EXPERIMENTS

4.1 SETUP

Implementation detail. For all experiments, following Section 3.3, we collect a total of 20,870
samples for training and 4,125 for validation. We employ the Llama-3.1-8B (Dubey et al.,
2024) model as both the RAG model M and decision model U . For evaluating the long-form
generated answers, we utilize the GPT-4o-mini API as an evaluation model G. Additionally, we
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Table 1: Comparison of zero-shot evaluation of calibration baselines across multiple datasets. † indicates one
additional regeneration step if the confidence does not reach the threshold. CalibRAG demonstrates a lower
no-answer rate while achieving higher accuracy and lower calibration error compared to other baselines.

Methods/Dataset BioASQ HotpotQA

AUROC (↑) ACC (↑) ECE (↓) BS (↓) NLL (↓) %NA AUROC (↑) ACC (↑) ECE (↓) BS (↓) NLL (↓) %NA

Base - 27.41 - - - 26.10 - 28.47 - - - 41.82
CT-probe 58.11 28.19 0.3368 0.3559 1.1195 28.05 55.95 31.75 0.3600 0.3773 1.2479 32.42
CT-LoRA 65.74 29.05 0.3664 0.3640 1.1729 26.83 60.87 30.13 0.3858 0.3842 1.4122 37.29
Number-LoRA 65.40 28.84 0.2677 0.2992 0.8220 32.43 63.91 26.54 0.1971 0.2643 0.7724 50.53
Linguistic-LoRA 51.72 31.02 0.2868 0.3828 1.0311 24.28 51.07 33.64 0.2886 0.3100 0.9413 33.76

CalibRAG 71.21 35.03 0.2500 0.2900 0.7899 27.31 65.47 39.28 0.2414 0.2876 0.8276 26.85
CalibRAG† 76.50 35.98 0.2667 0.2779 0.7560 25.16 68.51 40.70 0.2392 0.2642 0.7390 25.90

Methods/Dataset WebQA NQ

AUROC (↑) ACC (↑) ECE (↓) BS (↓) NLL (↓) %NA AUROC (↑) ACC (↑) ECE (↓) BS (↓) NLL (↓) %NA

Base - 35.84 - - - 31.16 - 36.95 - - - 30.90
CT-probe 57.94 37.31 0.3572 0.3724 1.2797 13.03 58.15 38.53 0.3898 0.4273 1.3313 14.93
CT-LoRA 62.54 33.48 0.3382 0.3507 1.0852 14.18 64.08 38.89 0.3936 0.3670 1.2574 18.05
Number-LoRA 63.55 35.05 0.3382 0.3372 0.9688 15.32 64.83 38.40 0.2608 0.2914 0.8707 24.23
Linguistic-LoRA 50.33 36.88 0.4894 0.4809 1.3977 9.45 51.37 41.44 0.4220 0.4254 1.2433 11.86

CalibRAG 69.58 44.32 0.3064 0.3251 0.8919 6.65 66.36 48.29 0.2596 0.2994 0.8490 8.39
CalibRAG† 73.23 45.03 0.3194 0.3113 0.9035 5.43 69.40 49.10 0.2625 0.2876 0.8150 8.39

used Contriever-msmarco (Izacard et al., 2021) as the base retrieval model. In all tables, the
best performance is indicated with boldfaced underline, while the second-best value is represented
with underline in each column.

Baselines. We compare CalibRAG with the following relevant baselines.

• Uncertainty calibration baselines: (1) Calibration Tuning (Kapoor et al., 2024) labels the cor-
rectness of the prediction ŷi to the question xi and utilizes these triples {(xi, ŷi, bi)} for fine-
tuning. The two variants are CT-probe, which adds a classifier head to estimate the probability of
the correctness of the prediction, and CT-LoRA, which outputs “Yes” or “No” to the question “Is
the proposed answer true?” (2) Verbalized Confidence Fine-tuning, as used by (Tian et al., 2023;
Xiong et al., 2024), samples multiple predictions ŷik for each xi and maps ratio of the correct
answers into confidence level: either integer between 0 and 10 (Number-LoRA) or linguistic
terms indicating uncertainty (Linguistic-Lora). At inference time, all the models use the top-1
document retrieved by the base retriever as additional context. Further details are in Appendix F.

• Reranking baselines: Although our method is primarily designed to verify the utility of context
retrieved by the retrieval model and calibrate confidence, it can also be viewed as a reranking ap-
proach for retrieved documents in downstream tasks. Accordingly, we compare our model against
various reranking methods: (1) Base, which uses the top-1 document without any reranking. (2)
Cross-encoder, which reranks documents using a cross-sentence encoder that jointly embeds the
query and document, and then outputs their similarity score. (3) LLM-rerank (Sun et al., 2023),
which involves prompting the LLM to rerank by leveraging the relationship between the query q
and the documents d.

Evaluation metrics. We evaluate all the models in terms of accuracy, AUROC, and various cal-
ibration metrics such as Expected Calibration Error (ECE; Naeini et al., 2015), Brier Score (BS;
Brier, 1950), and Negative Log Likelihood (NLL). Moreover, we measure the percentage of LLM
abstaining from predicting an answer, denoted as %NA. Details regarding these metrics can be found
in Appendix A.

Zero-shot evaluation. We also utilize BioASQ (Krithara et al., 2023), HotpotQA (Yang et al.,
2018), WebQA (Chang et al., 2022), and NQ (Kwiatkowski et al., 2019) for zero-shot evaluation. In
our comparison of the uncertainty calibration baselines, all uncertainty baselines employ the top-1
document d∗1 from the Base retrieval model for the LLM M to generate the guidance z∗ related to
the open-ended query q∗. In contrast, CalibRAG re-ranks the original top-20 documents with the
forecasting function f and selects the document with the highest confidence score of f to produce the
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Table 2: Comparison of reranking methods based on accuracy across different datasets under original RAG
settings and direct RAG setting. In this setting, confidence was not incorporated into the decision process.
CalibRAG consistently outperforms other reranking methods in terms of accuracy.

Methods BioASQ HotpotQA WebQA NQ Avg.

Base 32.02 35.74 38.13 43.03 37.23
Cross-encoder 31.48 37.70 42.25 44.10 38.88
LLM-rerank 36.34 35.15 37.51 41.28 37.57

CalibRAG 37.57 43.84 45.03 49.85 44.07
CalibRAG† 37.61 44.16 45.97 49.90 44.41

(a) Human-Model Agreement Rate (b) Ablation of z Generation (c) Different number of retreival

Figure 3: (a) Agreement rates between human annotators and the model. (b) Performance impact when model
generation is omitted. The 0.0 line represents the best baseline from Table 1. (c) The effect of varying the
number of retrieved documents on reranking performance on WebQA dataset.

guidance z∗, as outlined in Stage 2 of the inference process. The uncertainty baselines do not take
into account the confidence of d∗1; hence, we leverage the confidence c∗ generated by M concerning
q∗ and z∗ for answer prediction. For CalibRAG, we generate the confidence using f(q∗, d∗), and
the surrogate user U makes a decision based on x∗, z∗, and f(q∗, d∗).

4.2 MAIN RESULTS

Comparison with uncertainty calibration baselines. Table 1 presents a comparison of
uncertainty-based baselines across four QA datasets. Our CalibRAG achieves both a lower ‘No
Answer’ rate and higher accuracy compared to other baselines, achieving the accuracy of 35.03 and
39.91 on BioASQ and HotpotQA, respectively, representing over a 3% improvement over the best-
performing baseline. Additionally, its confidence level is better calibrated than the other baselines,
demonstrating the lowest ECE and BS. CalibRAG†, which regenerates the query for documents that
do not exceed the threshold, consistently shows performance improvements. However, while it cor-
rectly answers more challenging questions, it also makes accurate decisions with lower confidence,
causing some variation in the calibration metrics.

Comparison with reranking baselines. For a fair comparison with the reranking baselines, we
assume a scenario where the surrogate user U makes decisions using only the question x∗ and
the guidance z∗ without leveraging the confidence prediction c∗, i.e., U(x∗, z∗). In the case of
CalibRAG, although the confidence predicted by the forecasting function f is not provided to the
user, the reranking is based on f ’s prediction. This means that, unlike the other baselines, CalibRAG
takes the confidence of f into account for reranking. Table 2 highlights the reranking capability of
CalibRAG, achieving an average accuracy improvement of 5.19% over the reranking with cross-
encoder. Notably, CalibRAG† once again results in further performance improvement, similar to
the previous experiment. In contrast, the LLM-rerank method even underperforms HotpotQA and
NQ compared to the cross-encoder baseline due to cases where the LLM either refuses to answer or
generates incorrect tokens. These findings demonstrate the superior performance of CalibRAG in
reranking for RAG.

4.3 ABLATION STUDIES

In this section, we provide ablation studies to demonstrate the performance of CalibRAG.
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Does an LLM approximate human decision making? Since it is impractical to directly hire
human annotators to generate and evaluate large amounts of data, as mentioned earlier, we follow
the setup of Zhou et al. (2024) by crafting prompts to encourage the LLM to mimic human decision
behaviors. As illustrated in Fig. 3a, we ask each of 10 human annotators to answer 10 questions
based on the guidance z as well as the confidence level c corresponding to specific confidence bins.
The agreement rate exceeded 50% in all confidence bins, achieving an average agreement rate of
81.33%. This indicates that our LLM serves as an effective surrogate through prompting, which is
consistent with the results reported by Zhou et al. (2024).

Does CalibRAG generalize to utilize unseen RAG models? The way CalibRAG constructs the
synthetic dataset T , used for training the forecasting function, depends on the RAG model M,
which is responsible for generating the guidance z. In this experiment, we study how well our
CalibRAG can generalize to utilize an unseen LLM as the RAG model for decision-making task.
We use Mistral-7B for the RAG model and plot its performance improvement over the best-
performing baseline. As shown in Fig. 3b, our CalibRAG with Mistral-7B still improves the ac-
curacy and ECE, indicating the effectiveness of CalibRAG with the unseen RAG model. Compared
to Llama-3.1-8B, it slightly underperforms due to inherent performance disparities between the
two models.

What is the effect of directly using retrieved documents for prediction? In this experiment,
we study the effectiveness of utilizing the guidance generated by the RAG model M. To this end,
instead of generating the guidance z∗ with respect to the query q∗, we directly provide the retrieved
document d∗ to the surrogate user U for prediction of the task x∗, i.e., U(x∗, d∗, f(q∗, d∗)) instead
of U(x∗, z∗, f(q∗, d∗)), and evaluate its performance. As illustrated in Fig. 3b, prediction without
generating the guidance z∗, denoted as “w/o Generation”, significantly degrades both accuracy and
ECE. This degradation is attributed to irrelevant parts of the retrieved document that distract the
surrogate user U , leading to an incorrect decision (Shi et al., 2023).

How does the number of retrieved passages (K) impact reranking? We use K = 20 documents
for reranking in all the experiments, considering the trade-off between its computational cost and
the performance of the decision-making task. To validate our choice, we plot accuracy as a function
of the number of documents for reranking in Fig. 3c. The results show that performance improves
up to 20 documents, but the gains diminished beyond 40 documents, supporting our choice of 20
documents. This indicates that the retrieval model gets most of the relevant documents in the initial
stage, and a more advanced reranking would be necessary for further improvement.

4.4 QUALITATIVE RESULTS

While quantitative metrics alone may not fully capture all the benefits of CalibRAG, we present
examples highlighting its ability to identify relevant documents and assign calibrated confidence
scores. Given the query “Write a paragraph about the kind of bug that uses the American Sweetgum
as a host plant.”, the base retriever focuses only on the keyword “American Sweetgum,”, retrieving
loosely relevant content and marking its confidence as ‘Confident’ (10/11) as illustrated in Fig. 4.
This led to the incorrect conclusion that the sweetgum is the host plant of Parcoblatta divisa, the
southern wood cockroach. In contrast, CalibRAG captures the full context, retrieving documents
specifically about the gypsy moth, which uses the sweetgum as a host plant, and correctly assigns
a confidence level of 81.41. This demonstrates the capability of CalibRAG to find a relevant docu-
ment and assign a confidence level correlated with the accuracy of the downstream surrogate user.
Additional examples can be found in Appendix D.

5 RELATED WORKS

5.1 UNCERTAINTY CALIBRATION IN LANGUAGE MODELS

Traditional calibration techniques primarily rely on token-level log probabilities (Guo et al., 2017).
However, many modern LLMs are autoregressive, allowing the generation of token sequences
through the chain rule of probability by multiplying the conditional probabilities of each to-
ken (Achiam et al., 2023). To estimate the concept-level probability within such generated sen-
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Figure 4: Qualitative comparison of original retrieval model from CalibRAG.

tences, summing over all possible corresponding probabilities would be required—an intractable
process due to the exponential number of potential sequences. Consequently, token-level probabil-
ities in current language models often fail to offer reliable confidence estimates for long-form text
generation, thereby limiting their application to tasks that extend beyond multiple-choice scenarios.

Recently, various prompting-based approaches have been explored to address this limitation, lever-
aging verbalized expressions to quantify uncertainty (Tian et al., 2023; Xiong et al., 2023). For
instance, a model can be prompted with: “Please indicate your confidence level in your answer
by providing a number between 0 and 100.” If the model generates a response such as “90”, this
value can be interpreted as the confidence level of its answer. However, when using zero-shot prob-
abilities for uncertainty estimation, recent LLMs often display overconfidence in their predictions,
leading to poorly calibrated outputs (Papamarkou et al., 2024). This remains a significant challenge
in enhancing the reliability and robustness of LLMs for more complex decision-making tasks.

5.2 RERANKING FOR RETRIEVAL AUGMENTED GENERATION

RAG leverages external knowledge to produce accurate answers in Open-Domain QA. However,
not all documents retrieved by the retrieval model hold the same importance, and many contain
noise, making reranking essential to select the most relevant documents (Glass et al., 2022). LLM-
based reranking is an effective approach as it captures complex semantic relationships between
documents and queries to reorder the retrieved documents appropriately (Sun et al., 2023). Another
prominent reranking method uses cross-encoders, which take both the question and document as
input, considering their interactions to perform more precise reranking (Li et al., 2022c). These
diverse reranking approaches help RAG systems minimize noise from retrievers and select the most
pertinent information to generate optimal answers.

6 CONCLUSION

In this paper, we introduced CalibRAG, a simple yet effective framework designed to improve con-
fidence calibration and ensure more reliable document retrieval. Our experiments demonstrated that
CalibRAG significantly enhances QA performance within the RAG setting across various bench-
mark datasets. Moreover, ablation studies showed that CalibRAG effectively aligns model con-
fidence with factual correctness, resulting in improved decision-making accuracy and calibration.
Overall, CalibRAG stood out as a robust solution for enhancing the reliability of RAG-based LLM
guidance in decision-driven scenarios. However, creating synthetic datasets and training the fore-
casting function for decision calibration may introduce some overhead. Nonetheless, accurately
calibrating language model confidence is crucial, making this approach both valid and worthwhile.
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Reproducibility statement. We present the overall dataset generation and training procedure in
Fig. 2. Additionally, we further present all the details regarding experimental environments, datasets,
hyperparameters, and evaluation metrics in Appendix A.

Ethics statement. In this paper, we proposed a method that enables well-calibrated decision-
making based on the guidance provided by RAG. During the synthetic data generation process,
we did not create or use datasets containing personal or sensitive information; instead, we processed
existing publicly accessible document datasets to create new datasets, thus avoiding ethical issues.
On the other hand, as various human users increasingly utilize LLMs in different aspects of daily
life, the trustworthiness of LLM outputs is becoming increasingly important. We specifically en-
hanced the model’s guidance by providing additional confidence in situations where users rely on
LLMs for decision-making. This approach helps users trust the accuracy of the guidance, thereby
offering a positive societal impact by increasing users’ confidence in LLMs.
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A EXPERIMENTAL DETAILS

Our implementation builds on key libraries such as PyTorch 2.1.2 (Paszke et al., 2019), Huggingface
Transformers 4.45.1 (Wolf et al., 2019), and PEFT 0.7.1 1, providing a robust foundation for exper-
imentation. We employ the Llama-3.1-8B-Instruct model, a state-of-the-art open-source
multilingual LLM available from Hugging Face models. 2 Our experiments are executed on high-
performance NVIDIA RTX 3090 and RTX A6000 GPUs, ensuring efficient and scalable model
training. Additionally, we utilize the official facebookresearch-contriever repository for
our retrieval model3. For training baselines, we reference the calibration-tuning repository. 4

A.1 DATATSETS

Train Datasets SQuAD2.0 (Rajpurkar et al., 2018) is a reading comprehension dataset sourced
from Wikipedia, containing questions answered by text spans from the articles, including some
unanswerable ones. WikiQA (Yang et al., 2015) is a question-sentence pair dataset from Wikipedia,
designed for open-domain question answering and includes unanswerable questions for research
on answer triggering. TriviaQA (Joshi et al., 2017) is a reading comprehension dataset with ques-
tions authored by trivia enthusiasts, paired with evidence documents from Wikipedia and other web
sources. We randomly sampled 10,000 data points each from TriviaQA and SQuAD, and collected
all 873 training samples from WikiQA, resulting in a total of 20,873 training data. For the valida-
tion set, we gathered 2,000 samples each from TriviaQA and SQuAD, along with 126 samples from
WikiQA, resulting in 4,126 validation data points. After removing null values, we compiled 20,870
training and 4,125 validation data. For CalibRAG, we retrieved the top 20 documents for each query
from a set of 21,015,300 Wikipedia articles. we downloaded all these datasets in Hugging Face
datasets. 5 For construction of labeled dataset T used to train the forecasting function of CalibRAG,
we collect positive and negative documents for each query as follows. If the first correct document
is ranked at position k, the top k − 1 documents are labeled as negative and the correct document
is labeled positive. Each k documents are paired with corresponding query and added to the dataset
T . If we find the correct document ranked at position 1, only the correct document is added to the
dataset. This process resulted in a total of 27,220 training data points and 6,271 validation data
points.

Evaluation Datasets For zero-shot evaluation, we employ several datasets covering diverse do-
mains and question types. BioASQ (Krithara et al., 2023) is a biomedical QA dataset containing
factoids, lists, and yes/no questions derived from PubMed articles. HotpotQA (Yang et al., 2018) is
a multi-hop question-answering dataset requiring reasoning across multiple supporting documents
from Wikipedia to find answers, emphasizing a more complex retrieval and reasoning process. We-
bQA (Chang et al., 2022) is an open-domain question-answering dataset consisting of natural, con-
versational questions paired with web documents, targeting real-world, context-rich scenarios. Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019) is another large-scale question-answering dataset,
designed to answer questions based on Wikipedia articles, containing both long-form and short-form
answers. These datasets are used without additional training, providing a robust evaluation of the
generalization capabilities of CalibRAG across different domains and question types.

A.2 HYPERPARAMETERS

Table 3 outlines the hyperparameters used for training the base model and LoRA, including key
parameters such as learning rate, batch size, and LoRA-specific settings like rank and alpha.

1https://github.com/huggingface/peft
2https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
3https://github.com/facebookresearch/contriever
4https://github.com/activatedgeek/calibration-tuning
5https://github.com/huggingface/datasets
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Table 3: Hyperparameters for LLM Training

Base Model Hyperparameters LoRA Hyperparameters
Hyperparameter Value Hyperparameter Value

Learning Rate [10−4, 10−5] LoRA Rank 8
Batch Size [1, 4] LoRA Alpha 16
Max Steps 10,000 LoRA Dropout 0.1
Optimizer AdamW
Dropout Rate 0.0
Gradient Accumulation Steps [1, 4]
Weight Decay 0.01
Gradient Clipping 1.0
Warmup Steps 500
Scheduler Linear

Figure 5: Human evaluation format

A.3 EVALUATION METRICS

To evaluate long-form text, we utilized gpt-4o-mini to compare the ground-truth answers with
the predicted answers in all cases. Based on this comparison, we labeled each instance as correct or
incorrect accordingly.

A.3.1 CALIBRATION METRICS

• Expected Calibration Error (ECE; Naeini et al., 2015):

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

where Bm is the set of predictions in bin m, acc(Bm) is the accuracy, and conf(Bm) is
the average confidence of predictions in that bin. ECE measures how well the model’s
predicted probabilities are calibrated.

• Brier Score (BS; Brier, 1950):

BS =
1

N

N∑
i=1

(fi − yi)
2

where fi is the predicted probability and yi is the true label. BS combines both the accuracy
and confidence of predictions, penalizing overconfident and underconfident predictions.
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Table 4: Comparison of zero-shot evaluation of calibration baselines on BioASQ dataset. Results are averaged
over three random seeds.

Methods AUROC ACC ECE BS NLL %NA

Base - 27.41 ± 1.25 - - - 26.10 ± 0.34

CT-probe 58.11 ± 1.68 28.19 ± 0.48 0.3368 ± 0.03 0.3559 ± 0.02 1.1195 ± 0.12 28.05 ± 3.42

CT-LoRA 65.74 ± 0.37 29.05 ± 0.66 0.3664 ± 0.03 0.3640 ± 0.02 1.1729 ± 0.06 26.83 ± 2.23

Number-LoRA 65.40 ± 2.77 28.84 ± 0.86 0.2677 ± 0.00 0.2992 ± 0.00 0.8220 ± 0.02 32.43 ± 0.62

Linguistic-LoRA 51.72 ± 1.48 31.02 ± 0.40 0.2868 ± 0.01 0.3828 ± 0.00 1.0311 ± 0.01 24.28 ± 0.34

CalibRAG 71.21 ± 0.83 35.03 ± 0.14 0.2500 ± 0.01 0.2900 ± 0.01 0.7899 ± 0.01 27.31 ± 0.97

CalibRAG† 76.50 ± 4.98 35.98 ± 0.38 0.2667 ± 0.00 0.2779 ± 0.01 0.7560 ± 0.04 25.16 ± 0.42

Table 5: Comparison of zero-shot evaluation of calibration baselines on HotpotQA dataset. Results are aver-
aged over three random seeds.

Methods AUROC ACC ECE BS NLL %NA

Base - 28.47 ± 3.22 - - - 41.82 ± 7.25

CT-probe 55.95 ± 0.75 31.75 ± 0.33 0.3600 ± 0.01 0.3773 ± 0.01 1.2479 ± 0.01 32.42 ± 2.68

CT-LoRA 60.87 ± 0.37 30.13 ± 0.75 0.3858 ± 0.01 0.3842 ± 0.01 1.4122 ± 0.05 37.29 ± 2.61

Number-LoRA 63.91 ± 1.97 26.54 ± 1.03 0.1971 ± 0.03 0.2643 ± 0.02 0.7724 ± 0.08 50.53 ± 3.59

Linguistic-LoRA 51.07 ± 0.62 33.64 ± 0.10 0.2886 ± 0.01 0.3100 ± 0.01 0.9413 ± 0.04 33.76 ± 1.53

CalibRAG 65.47 ± 0.94 39.28 ± 0.79 0.2414 ± 0.03 0.2876 ± 0.01 0.8276 ± 0.05 26.85 ± 2.12

CalibRAG† 68.51 ± 2.19 40.70 ± 0.40 0.2392 ± 0.01 0.2642 ± 0.01 0.7390 ± 0.05 25.90 ± 1.34

• Negative Log Likelihood (NLL):

NLL = − 1

N

N∑
i=1

log p(yi | xi)

where p(yi | xi) is the probability assigned to the correct class yi given input xi. NLL
evaluates the model’s probabilistic predictions and lower values indicate better calibration.

A.3.2 HUMAN EVALUATION

We recruited 10 participants to answer 10 questions from each confidence bin, with the survey
formatted as shown in Fig. 5. The survey was conducted anonymously, ensuring that no ethical
concerns were raised during the process.

Additional findings of human evaluations. In Fig. 3a, the 0-20 confidence bin exhibits the lowest
agreement between human and user models. Our qualitative analysis revealed that, for the question,
“Rex Riot is known for a remix of the Kanye West song from which album?”, the model generated
the answer, “All of the Lights by Kanye West.” with a confidence score of only 0.09. Despite this
low confidence, participants trusted the model’s output due to the retrieval-augmented guidance that
made the response sound convincing. This suggests that “plausible-sounding LLMs” with retrieval-
based support can significantly influence people, even when their numerical confidence is low. We
leave further exploration of this phenomenon to future research.

B ADDTIONAL EXPERIMENTS

Table 4, Table 5, Table 6, and Table 7 present the complete results from the primary experiments. For
the Base model, we utilized a pretrained model, sampling sentences across three different seeds. For
the other methods, training was conducted across three random seeds to ensure robust evaluation.

Table 8 and Table 9 present results demonstrating how the existing baselines perform without the
application of RAG. It can be observed that RAG generally increases accuracy while also leading
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Table 6: Comparison of zero-shot evaluation of calibration baselines on WebQA dataset. Results are averaged
over three random seeds.

Methods AUROC ACC ECE BS NLL %NA

Base - 35.84 ± 0.07 - - - 31.16 ± 1.05

CT-probe 57.94 ± 0.67 37.31 ± 1.85 0.3572 ± 0.02 0.3724 ± 0.02 1.2797 ± 0.17 13.03 ± 1.48

CT-LoRA 62.54 ± 0.69 33.48 ± 1.07 0.3382 ± 0.02 0.3507 ± 0.02 1.0852 ± 0.01 14.18 ± 0.73

Number-LoRA 63.55 ± 2.27 35.05 ± 0.10 0.3382 ± 0.03 0.3372 ± 0.02 0.9688 ± 0.04 15.32 ± 0.67

Linguistic-LoRA 50.33 ± 0.20 36.88 ± 0.42 0.4894 ± 0.00 0.4809 ± 0.00 1.3977 ± 0.01 9.45 ± 0.79

CalibRAG 69.58 ± 0.56 44.32 ± 0.42 0.3064 ± 0.04 0.3251 ± 0.02 0.8919 ± 0.08 6.65 ± 0.73

CalibRAG† 73.23 ± 1.46 45.03 ± 0.58 0.3194 ± 0.03 0.3113 ± 0.03 0.9050 ± 0.06 5.43 ± 0.32

Table 7: Comparison of zero-shot evaluation of calibration baselines on NQ dataset. Results are averaged over
three random seeds.

Methods AUROC ACC ECE BS NLL %NA

Base - 36.95 ± 3.17 - - - 30.90 ± 2.07

CT-probe 58.15 ± 1.54 38.53 ± 2.39 0.3898 ± 0.03 0.4273 ± 0.02 1.3313 ± 0.02 14.93 ± 2.44

CT-LoRA 64.08 ± 1.91 38.89 ± 0.24 0.3936 ± 0.01 0.3670 ± 0.01 1.2574 ± 0.03 18.05 ± 0.07

Number-LoRA 64.83 ± 2.32 38.40 ± 0.80 0.2508 ± 0.01 0.2914 ± 0.02 0.8707 ± 0.06 24.23 ± 2.75

Linguistic-LoRA 51.37 ± 1.31 41.44 ± 0.07 0.4220 ± 0.01 0.4254 ± 0.01 1.2433 ± 0.03 11.86 ± 0.78

CalibRAG 66.36 ± 0.68 48.29 ± 0.59 0.2596 ± 0.02 0.2994 ± 0.02 0.8490 ± 0.01 8.39 ± 0.54

CalibRAG† 69.40 ± 2.90 49.10 ± 0.17 0.2625 ± 0.00 0.2876 ± 0.02 0.8150 ± 0.02 8.39 ± 0.38

Table 8: Additional performance comparison of baselines with and without RAG. When applying RAG on the
HotpotQA dataset, we observe that the overall accuracy improves, but the calibration error increases.

Methods AUROC ACC ECE BS NLL %NA

No RAG

CT-probe 61.32 15.46 0.4224 0.4208 1.7531 65.56
CT-LoRA 58.27 17.93 0.3394 0.3623 1.0450 46.48

Number-LoRA 62.39 25.86 0.1887 0.1552 0.6846 50.22
Linguistic-LoRA 61.25 26.32 0.2614 0.2353 0.7430 49.28

RAG

CT-probe 56.31 31.43 0.3583 0.3846 1.2633 36.20
CT-LoRA 60.80 30.25 0.3979 0.3984 1.3415 38.58

Number-LoRA 61.14 25.51 0.2366 0.2935 0.8927 54.65
Linguistic-LoRA 51.70 33.54 0.2787 0.3279 0.8959 35.30

to a rise in calibration error. And these results empirically validate that the LLM model M places
strong trust in the retrieved documents, leading to overconfidence in the generated guidance. As
a result, while accuracy increases, the calibration performance significantly decreases. Therefore,
these results suggest that additional calibration adjustments are necessary when applying RAG to
ensure balanced performance between accuracy and calibration. CalibRAG demonstrates both high
accuracy and improved calibration metrics in such scenarios.

Analysis of ϵ In our experiments, ϵ was set as a balanced choice to manage the trade-off between
accuracy and calibration error. As shown in Table 10, increasing ϵ results in retrieving a larger
number of new queries, incorporating more relevant information, and thereby improving accuracy.
However, this increase can potentially lead to higher calibration errors. Specifically, while better
retrieval enhanced prediction accuracy, the confidence scores for these predictions only increased
marginally. This mismatch between improved accuracy and relatively low confidence resulted in
underconfident predictions, which contributed to a slight increase in calibration error.
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Table 9: Additional performance comparison of baselines with and without RAG. When applying RAG on the
NatrualQA dataset, we observe that the overall accuracy improves, but the calibration error increases.

Methods AUROC ACC ECE BS NLL %NA

No RAG

CT-probe 51.08 33.10 0.3496 0.3790 1.0235 24.68
CT-LoRA 55.51 39.00 0.3021 0.3487 1.0326 18.15

Number-LoRA 63.64 33.76 0.1085 0.1610 0.7819 26.35
Linguistic-LoRA 50.74 42.83 0.4497 0.4486 1.3080 13.74

RAG

CT-probe 58.31 35.23 0.4194 0.4233 1.3196 15.93
CT-LoRA 65.87 39.01 0.3762 0.3743 1.2092 18.12

Number-LoRA 61.55 37.27 0.2500 0.3010 0.8575 28.04
Linguistic-LoRA 52.67 41.37 0.4124 0.4154 1.2130 12.64

Table 10: Effect of Threshold Selection on Performance. Experiments on the BioASQ dataset show how
increasing ϵ affects accuracy and calibration metrics.

ϵ AUROC ACC ECE BS NLL %NA

0.0 71.21± 0.83 35.03± 0.14 0.2500± 0.01 0.2900± 0.01 0.7899± 0.01 27.31± 0.97

0.4 76.15± 1.50 35.05± 0.25 0.2608± 0.00 0.2830± 0.00 0.7703± 0.03 26.57± 0.80

0.5 76.50± 4.98 35.98± 0.38 0.2667± 0.00 0.2779± 0.01 0.7560± 0.04 25.16± 0.42

0.6 77.20± 4.10 36.50± 0.45 0.2707± 0.00 0.2800± 0.01 0.7620± 0.03 24.98± 0.50

Table 11: Evaluation results on TREC-COVID and SciFact datasets, a subset of the BEIR benchmark. The
evaluation metric is Normalized Discounted Cumulative Gain (NDCG@K).

Model Dataset NDCG@5 NDCG@10

Cross-Encoder TREC-COVID 0.7655 0.7576
SciFact 0.6668 0.6914

CalibRAG TREC-COVID 0.7863 0.7660
SciFact 0.6872 0.7114

To assess the impact of different ϵ values on model performance, we conducted experiments on the
BioASQ dataset. Based on these observations, we selected ϵ = 0.5 as a reasonable compromise to
balance accuracy improvements with calibration reliability.

Evaluation on BEIR Benchmark To provide a more comprehensive evaluation, we conducted
experiments using two datasets from the BEIR benchmark: SciFact and TREC-COVID. These eval-
uations aim to validate the effectiveness of CalibRAG beyond its primary focus on well-calibrated
decision-making, which predicts the probability of a correct decision when a user relies on the gener-
ated guidance to solve a given problem. While CalibRAG is not specifically designed as a reranking
method to optimize retrieval performance, it inherently supports both calibration and retrieval.

For the experiments, we followed the standard retrieval pipeline, retrieving documents using BM25
and reranking the top-100 results. We compared CalibRAG with the Cross-Encoder baseline, and
the results, presented in Table 11, demonstrate that CalibRAG consistently outperforms the Cross-
Encoder. These findings validate that CalibRAG not only enables well-calibrated decision-making
but also enhances retrieval performance, reinforcing its utility in relevant scenarios.

Analysis of Verbalized Confidence Representations CalibRAG does not rely on linguistic or
numerical confidence in its primary approach. Instead, it provides confidence scores based on prob-
ability predictions generated by the forecasting function. Verbalized confidence, however, was used
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Table 12: Results of Verbalized Confidence Fine-Tune Evaluation on the MMLU Dataset using Llama-3-8B.
Evaluation metrics are ACC and ECE.

Case ACC ECE

Continuous-Number 43.63 0.3190
Discrete-Number 44.96 0.1605
Linguistic 45.03 0.1585

Table 13: Comparison of Agreement Rates with Human Decisions Across Confidence Ranges.

Confidence Range (%) Agreement Rate (With Prompt) Agreement Rate (Without Prompt)

0-20 70.00% 30.00%
20-40 80.00% 70.00%
40-60 60.00% 40.00%
60-80 96.67% 96.67%
80-100 100.00% 100.00%

Average 81.33% 67.33%

as a baseline in the comparative models. Verbalized confidence is typically expressed as a continu-
ous number within the range [0, 100] Tian et al. (2023); Xiong et al. (2023), but LLMs often struggle
to interpret these numerical values precisely.

To address this limitation, alternative representations were explored in the baselines: (1) linguistic
expressions (e.g., “likely”), and (2) discrete numerical values ranging from 0 to 10. These ap-
proaches were termed Linguistic and Number, respectively, with detailed prompt designs provided
in Appendix E.

To further analyze verbalized confidence, we conducted experiments on the MMLU dataset using the
Llama-3-8B model. We evaluated the effectiveness of three confidence representations: continuous
number, discrete number, and linguistic. As shown in Table 12, both discrete number and linguistic
representations outperformed the continuous number baseline. Linguistic confidence, in particular,
addressed the limitations of the model’s understanding of numerical relationships and improved
calibration.

Comparison of Agreement Rates with Human Decisions We acknowledge that an LLM cannot
fully replicate human behavior with 100% accuracy. However, conducting evaluations with multiple
human annotators for all data would involve substantial costs, and our annotator pool was limited in
size and included some outliers. Furthermore, when the LLM made decisions independently, with-
out prompts designed to simulate human decision-making, a significant gap was observed between
human and surrogate model decisions.

To address this, we employed prompts to minimize this gap. Table 13 shows a comparison of agree-
ment rates with human decisions across different confidence ranges. The results demonstrate that
incorporating prompts significantly improves the agreement rates, especially in lower confidence
ranges, reducing the gap between human and surrogate model decisions.

Comparison with RAG Robustness Methods There are many methods like CRAG (Yan et al.,
2024), Self-RAG (Asai et al., 2023), and RetRobust (Yoran et al., 2023) designed to improve the ro-
bustness of RAG systems. However, these approaches are fundamentally different from CalibRAG.
While CRAG focuses on evaluating the correctness of documents based on relevance, Self-RAG
measures utility as the perceived informativeness of answers, and RetRobust learns whether a query
can be inferred from a document. In contrast, CalibRAG explicitly models the accuracy of user
decisions and aims to provide reliable calibration by maximizing proper scoring rules.
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Table 14: Comparison of CalibRAG and Self-RAG in Zero-Shot Decision Calibration.

Method Dataset ACC AUROC ECE NLL BS %NA

Self-RAG

BioASQ 30.15± 0.07 50.00± 0.04 0.6932± 0.07 23.94± 0.08 0.6932± 0.09 1.72± 0.09

HotpotQA 33.92± 0.10 50.11± 0.01 0.6507± 0.00 22.43± 0.09 0.6505± 0.04 2.77± 0.08

WebQA 38.83± 0.02 50.00± 0.09 0.6104± 0.03 21.07± 0.04 0.6104± 0.11 3.00± 0.02

NQ 34.97± 0.09 50.09± 0.04 0.6471± 0.10 22.33± 0.07 0.6469± 0.05 8.00± 0.05

CalibRAG

BioASQ 35.03± 0.14 71.21± 0.83 0.2500± 0.01 0.7899± 0.01 0.2900± 0.01 27.31± 0.97

HotpotQA 39.28± 0.79 65.47± 0.94 0.2414± 0.03 0.8276± 0.05 0.2876± 0.01 26.85± 2.12

WebQA 44.32± 0.42 69.58± 0.56 0.3064± 0.04 0.8919± 0.08 0.3251± 0.02 6.65± 0.73

NQ 48.29± 0.59 66.36± 0.68 0.2596± 0.02 0.8490± 0.01 0.2994± 0.02 8.39± 0.54

Table 15: Examples of Query Reformulation

Case Original Query Reformulated Query

1 Write a paragraph about the effect of TRH on my-
ocardial contractility.

Write a paragraph about the effect of Thyrotropin-
Releasing Hormone (TRH) on myocardial con-
tractility.

2 Write a paragraph about the clinical trials for off-
label drugs in neonates as cited in the literature.

Write a paragraph about clinical trials for off-label
drug use in neonates as reported in the medical
literature.

3 Write a paragraph about the current representa-
tives from Colorado.

Write a paragraph about the current representa-
tives from the state of “Colorado” in the United
States.

4 Write a paragraph about the current minister of lo-
cal government in Zimbabwe and their role within
the government.

Write a paragraph about the current Minister of
Local Government and Public Works in Zim-
babwe and their role within the government.

To further investigate these differences, we conducted experiments using the same settings for all
methods. As shown in Table 14, CalibRAG demonstrates significantly lower ECE compared to
SelfRAG, highlighting its effectiveness in providing well-calibrated decision guidance.

C EXAMPLES OF QUERY REFORMULATIONS

In CalibRAG, the initial query is generated to simulate how a human decision-maker might pose a
simple query based on the input. For example, a decision-maker faced with a problem such as ”Is a
tomato a fruit or a vegetable?” might craft a straightforward query like ”Classification of tomatoes”
to query a language model. Using this setup, we employed an LLM generator to create simple yet
relevant queries and retrieved documents based on these queries. If the retrieved documents were
insufficiently informative, the query was reformulated in Stage 3. This reformulation emphasized
key terms to refine the query and improve the quality of retrieved documents. The specific prompt
used for this process is detailed in Appendix F.

To help readers understand the transformation from the initial query to its reformulated version,
Table 15 provides examples illustrating how queries evolve during the refinement process, offering
practical insights into the mechanism.

D DATA EXAMPLES

Fig. 6 shows the top 20 examples of queries and their corresponding labels. The full set of data
examples will be released upon publication of the paper. Fig. 6 shows that ranking of the retrieved
documents does not correlate with the accuracy of the user decision. As seen in this example, the
top-ranked document is not helpful for the user model in decision-making, whereas the second-
ranked document provides information that can lead the user model to make a correct decision.
This illustrates the importance of CalibRAG’s forecasting function f in effectively modeling the
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probability that a decision made using document d is correct, emphasizing the need for reranking
documents based on this modeling.
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Figure 6: Top-20 retrieved document exampels.
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Figure 7: CalibRAG vs Linguistic-LoRA. In the case of CalibRAG, a document about the person in question
is retrieved with a confidence level of 83.93%. In contrast, the document retrieved by the base retrieval model
is related to Donald Trump but does not match the specific person in the query. Nevertheless, the Linguistic-
LoRA model trust the document confidently.

Figure 8: CalibRAG vs Number-LoRA. In the case of CalibRAG, an accurate document about the location
following North Africa was retrieved, allowing the user model to make a correct decision. In contrast, the
base retrieval model brought a different document. Nevertheless, Number-LoRA model set this context with a
confidence level of 6 out of 10, leading the user to ultimately make an incorrect decision.

E QUALITATIVE EXAMPLES

Here, we present additional qualitative examples for comparison with other baselines. In Fig. 7,
Fig. 8, Fig. 9, and Fig. 10, the examples demonstrate that while the baselines retrieve documents
that provide incorrect answers to the queries, they still assign high confidence to the retrieved docu-
ments. In contrast, CalibRAG effectively reranks and retrieves documents that are highly relevant to
the decision problem x, allowing us to confirm that the guidance generated from these retrieved doc-
uments is well-predicted to be helpful for decision-making. Additionally, we can confirm that when
the document with the highest rank does not aid in decision-making for x, CalibRAG successfully
assigns a lower confidence level, helping to prevent the user from over-relying on the guidance.
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Figure 9: CalibRAG vs Number-LoRA. The base retrieval model focused solely on the word ’impeached’ and
retrieved a related document, missing the context of ’first.’ Despite this, Number-LoRA model set a confidence
level of 9 out of 10, causing the user to make an incorrect decision. In contrast, CalibRAG retrieved an accurate
document that, while not explicitly containing ’first impeached,’ included the phrase ’first being.’ It set a
confidence level of 92.32%, allowing the user to arrive at the correct answer.

Figure 10: CalibRAG vs CT-LoRA. In the case of CalibRAG, the top-20 confidence score is 20.95 for in-
correct information, causing the user to hesitate in making a decision. However, with the CT-LoRA model,
incorrect information is assigned a confidence score of 96.83, leading the user to make an incorrect decision.
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F PROMPT EXAMPLES

f"""The task is to answer questions based on a context generated by a
language model in response to a question about relevant information,
along with the model’s confidence level in the provided answer.

Follow the behavior instructions below:
1. Overconfidence: You feel that the answers provided are very accurate.

Trust the provided answers with confidence.
2. Avoidance of Uncertainty: If any uncertainty is expressed in the

answer, do not trust the answer and seek other information.
3. Consistent Trust: If the provided answer shows clear confidence or

lacks any explicit uncertainty, accept the answer as it is.
4. Trust in Incorrect Information: You believe that answers provided with

confidence are correct, even if they are actually incorrect.

If you cannot provide an answer or if you do not trust the information,
respond with ’no answer’.

Additionally, consider the language model’s confidence level when
assessing the answer.

Context: {context}
Question: {question}
Model Confidence: {confidence}
Answer:"""

Table 1: Human decision prompt. This prompt is crafted to force the user model to imitate according to the
human evaluation results of Zhou et al. (2024). This prompt encourages the user model U to over-rely on the
guidance provided by the LLM.

In this section, we present prompt examples used during training and inference. Table 1 shows the
prompt that encourages the user model U to act like a human decision-maker, leading it to over-
rely on the guidance provided by the LLM. Table 2 displays the prompt that generates the open-
ended query q from the decision task x. Table 3 presents the prompt that induces the generation
of guidance z from M based on the retrieved document d. Table 4 is used when grading the user
model U ’s decision against the true answer using G. Table 5, Table 6, and Table 7 are prompts used
to instruct M to generate confidence in terms of linguistic or numerical calibration. Lastly, Table 8
is the prompt used during Stage 3 of the inference process.
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f"""You are an automated assistant tasked with rephrasing specific
questions into open-ended queries to encourage detailed exploration
and discussion of the key topics mentioned.

Your goal is to prompt someone to write a paragraph exploring the topic
without directly revealing the answer.

You will be given an original question, labeled as ’Question 1.’ Your
task is to rephrase this into a new question, labeled as ’Question
2.’ This new question should encourage someone to provide a
comprehensive exploration of the key topic from the original question
.

Examples for Guidance:

Example 1:
Question 1: Which sea creature is the world’s largest invertebrate?
Question 2: Write a paragraph about the world’s largest invertebrate.

Example 2:
...

Example 3:
Question 1: In which century was the printing press established in

Britain?
Question 2: Write a paragraph about the century in which the printing

press was established in Britain.

Example 4:
Question 1: What type of creature is Chewbacca?
Question 2: Write a paragraph about the type of creature that Chewbacca

is.

Now, please rephrase the following question:
Question 1: {question}
Question 2:"""

Table 2: Prompt that generates open-ended query q from the decision task x. This prompt was first
suggested by Band et al. (2024), and we have modified part of the proposed prompt for our use here. We use
this prompt as an input when generating the query q based on the decision task x.

f"""You are an expert who responds with concise, correct answers.
Directly state the answer without phrases like ’the correct answer is
.’

If you cannot provide an answer or if you do not trust the information,
respond with ’no answer.’

Given the provided context, answer the question based on that context.

Context: {title};{context}
Question: {query}
Answer:"""

Table 3: Guidance z generation prompt. This prompt guides the language model to provide direct, concise
guidance z based on a given retrieved document d, avoiding unnecessary phrases. It emphasizes providing an
answer or stating ’no answer’ if information is insufficient.
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f"""The problem is: {question}

The correct answer for this problem is: {ground-truth}

A student submitted the answer: {prediction}

The student’s answer must be correct and specific but not overcomplete (
for example, if they provide two different answers, they did not get
the question right). However, small differences in formatting should
not be penalized (for example, ’New York City’ is equivalent to ’NYC
’).

Did the student provide an equivalent answer to the ground truth? Please
answer yes or no without any explanation:"""

Table 4: Evaluation prompt. This prompt was first suggested by Kapoor et al. (2024), and we have modified
part of the proposed prompt for our use here. This prompt is used when G compares the user’s decision with
the true answer.

f"""Is the proposed answer correct?
Choices:
(i): no
(ii): yes
Answer:"""

Table 5: Calibration tuning prompt. This prompt was first suggested by Kapoor et al. (2024). It poses a
straightforward question to verify the correctness of a proposed answer with binary choices for evaluation. We
used this prompt when training our baselines.

f"""Provide the certainty level of answer using the given 11 certainty
levels. Give ONLY your certainty level, no other words or explanation
.

Certainty Levels: Unlikely, Doubtful, Uncertain, Ambiguous, Probable,
Likely, Possible, Specified, Confirmed, Certain, Inevitable.

For example: Certainty: <ONLY the certainty level that Answer is correct,
without any extra commentary whatsoever; just the certainty level!>

Certainty:"""

Table 6: Linguistic calibration prompt. This prompt requires the model to evaluate the certainty of an
answer using a predefined set of linguistic levels of certainty. We used this prompt for our baselines that utilize
linguistic calibration.

f"""Provide the certainty level of answer using the given 11 certainty
levels. Give ONLY your certainty level, no other words or explanation
.

Certainty Levels: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

For example: Certainty: <ONLY the certainty level that Answer is correct,
without any extra commentary whatsoever; just the number!>

Certainty:"""

Table 7: Number calibration prompt. This prompt is similar to the linguistic calibration prompt but uses
numerical certainty levels (from 0 to 10) to rate the confidence in the answer provided. We used this prompt
for our baselines that utilize number calibration.
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f"""You are a language model assistant who specializes in improving
queries for document search systems. Your task is to highlight and
clarify the important parts of a given query to make it more precise
and help retrieve relevant documents.

Please take the original search query below and rewrite it by emphasizing
the important words. Do not add any new information not included in

the original query.

Original Retrieval Query: {query}

Please generate the new retrieval query without any explanation:"""

Table 8: Query regeneration prompt. This prompt assists in rewriting search queries to enhance precision
and relevance for document retrieval, emphasizing the crucial elements without adding extraneous information.
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