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ABSTRACT

The depth separation theory indicates that depth is significantly more powerful
than width, which consists of two parts: i) there exists a function representable by
a deep network; ii) such a function cannot be represented by a shallow network
whose width is lower than a large threshold. However, the depth-width com-
parison therein is always based on the standard fully-connected networks, which
motivates us to consider the question: Is width always significantly weaker than
depth? Here, we report through bound estimation, explicit construction, and func-
tional space analysis that adding shortcuts to connect neurons within a layer can
greatly empower the width, such that a slender and shallow network can represent
a deep network. Specifically, the width needed can be exponentially reduced by
intra-layer links to represent the renowned “sawtooth” functions, compared to the
threshold prescribed earlier. This means that width can also be powerful when
armed with intra-layer links. Because the sawtooth function is a fundamental
module in approximating polynomials and smooth functions, our saving of width
is general for broader classes of functions. Lastly, the mechanism we identify can
be translated into analyzing the expressivity of popular shortcut networks such as
ResNet and DenseNet. We demonstrate that the addition of intra-layer links can
also empower a ResNet to generate more linear pieces.

1 INTRODUCTION

Due to the widespread applications of deep networks in many important fields (LeCun et al., 2015),
mathematically understanding the power of deep networks has been a central problem in deep learn-
ing theory (Poggio et al., 2020). The key issue is figuring out how expressive a deep network is or
how increasing depth promotes the expressivity of a neural network better than increasing width. In
this regard, there have been a plethora of studies on the expressivity of deep networks, which are
collectively referred to as the depth separation theory (Safran et al., 2019; Vardi & Shamir, 2020;
Gühring et al., 2020; Vardi et al., 2021; Safran & Lee, 2022; Venturi et al., 2022; Vardi et al., 2022).

A popular idea in depth separation theory is the complexity characterization that introduces ap-
propriate complexity measures for functions represented by neural networks (Pascanu et al., 2013;
Montufar et al., 2014; Telgarsky, 2015; Montúfar, 2017; Serra et al., 2018; Hu & Zhang, 2018;
Xiong et al., 2020; Bianchini & Scarselli, 2014; Raghu et al., 2017; Sanford & Chatziafratis, 2022;
Joshi et al., 2023), and then reports that increasing depth can greatly boost such a complexity mea-
sure. In contrast, a more tangible way to show the power of depth is to construct functions that
can be expressed by a narrow network of a given depth, but cannot be approximated by shallower
networks, unless its width is sufficiently large (Telgarsky, 2015; 2016; Arora et al., 2016; Eldan &
Shamir, 2016; Safran & Shamir, 2017; Venturi et al., 2021). For example, (Eldan & Shamir, 2016)
constructed a radial function that can be represented by a two-hidden-layer neural network with a
poly number of neurons. But to achieve the same level of error, the exponential number of neurons
is required for a one-hidden-layer neural network. (Telgarsky, 2015) employed a ReLU network
to build a one-dimensional ”sawtooth” function whose number of pieces scales exponentially over
the depth. As such, a deep network can construct a sawtooth function with many pieces, while a
shallow network cannot unless it is exponentially wide. (Arora et al., 2016) derived the upper bound
of the maximal number of pieces for a univariate ReLU network, and used this bound to elaborate
the separation between a deep and a shallow network. In a broad sense, we summarize the elements
of establishing a depth separation theorem as the following: i) there exists a function representable
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Figure 1: (a) fully-connected, (b) residual, and (c) intra-linked (2-neuron linked). x is a univariate input. In
analogy to horizontal residual connections in ResNet, we take the intra-layer links as vertical residual con-
nections. Inserting intra-layer links is essentially different from stacking layers in terms of the mechanism of
generating new pieces, the number of (affine transforms, activation) being used, and the functional class.
by a deep network; ii) such a function cannot be represented by a shallow network whose width is
lower than a large threshold.

It appears that depth is significantly more powerful than width, as indicated by the depth separation
theory. However, their comparison is always based on the standard fully-connected neural networks.
This motivates us to consider the following question: Is width always significantly weaker than
depth? (Goyal et al., 2022) demonstrated that a wide network with only 12 layers can achieve
performance on par with a deep network with 30 layers. In this paper, we also give a positive answer
on width. We find that adding shortcuts to connect neurons within a layer can greatly empower the
width, such that a slender and shallow network can represent a deep network. Our design is inspired
by ResNet, which are shortcuts across layers (Figure 1(b)). The shallow network with residual
connections can have comparable performance with a deep network, i.e., residual connections can
empower depth. Per structural symmetry, we embed shortcuts vertically, i.e., linking neurons within
a layer (Figure 1(c)) to force a neuron to take the outputs of other neurons in the same layer. From
the perspective of the crossing number (Telgarsky, 2016), the non-symmetric structure of intra-layer
linked networks can produce more oscillations than networks without intra-layer links. In this light,
with intra-layer links, without the need to go exponentially wide, a shallow network can express as
a complicated function as a deep network could, which means that the width can also be powerful,
and its power can be stimulated by intra-layer links. Although intra-layer links are not popular
in literature and practice, we find that using intra-layer links is attractive in terms of performance
and parametric and computational complexity. Appendix H shows the encouraging preliminary
regression and classification results of using intra-layer links solely and conjugated with residual
links, respectively, on 5 synthetic datasets, 15 tabular datasets, and 2 image benchmarks.

Specifically, our roadmap to justify the power of width includes two milestones. 1) Through bound
analysis and explicit construction, we substantiate that a network with intra-layer links can produce
many more pieces than a fully-connected network, and the gain is at most exponential. This means
that the intra-layer links can boost the expressive ability of a network. Furthermore, we empirically
confirm the power of networks with intra-layer links with systematic experiments over a bunch of
datasets. In addition, we highlight that the identified mechanism of generating more pieces in analyz-
ing intra-layer links can be translated into other shortcut networks such as ResNet and DenseNet. We
compare the number of pieces generated by the intra-linked network and ResNet. The upper bound
of the intra-linked network is higher than ResNet, which suggests that adding intra-layer links can
also boost the representation ability of ResNet. 2) Since intra-layer links are helpful in generating
more pieces, they can empower a slender and shallow network to represent a function constructed
by a deep network. We derive theorems (Theorems 10 and 12), showing that the threshold of width
in depth separation theory can be lowered at a linear and exponential level. Remarkably, Theorem
12 is realized in representing the famous sawtooth function (Telgarsky, 2015). The sawtooth func-
tion, as a fundamental module in approximating polynomials and smooth functions (Yarotsky, 2017;
Kidger & Lyons, 2020; Lu et al., 2021; Shen et al., 2021), is important in the approximation theory
of deep learning. This implies that our result regarding saving the width can hold for a broader class
of functions besides sawtooth functions.
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To summarize, our contributions are threefold. 1) We point out the limitation of the current depth
separation theory, which is always established on fully-connected networks. 2) We show via bound
estimation and explicit construction that intra-layer links can make a ReLU network produce more
pieces. 3) We provide a complimentary understanding of depth separation theory, demonstrating
that width under an intra-link design can also be powerful.

2 RELATED WORK

A plethora of depth separation studies have shown the superiority of deep networks over shallow
ones from perspectives of complexity analysis and constructive analysis.

The complexity analysis is to characterize the complexity of the function represented by a neu-
ral network, thereby demonstrating that increasing depth can greatly maximize such a complexity
measure. Currently, one of the most popular complexity measures is the number of linear regions
because it conforms to the functional structure of the widely-used ReLU networks. For example,
(Pascanu et al., 2013; Montufar et al., 2014; Montúfar, 2017; Serra et al., 2018; Hu & Zhang, 2018;
Hanin & Rolnick, 2019) estimated the bound of the number of linear regions generated by a fully-
connected ReLU network by applying Zaslavsky’s Theorem (Zaslavsky, 1997). (Xiong et al., 2020)
offered the first upper and lower bounds of the number of linear regions for convolutional networks.
Other complexity measures include classification capabilities (Malach & Shalev-Shwartz, 2019),
Betti numbers (Bianchini & Scarselli, 2014), trajectory lengths (Raghu et al., 2017), global curva-
ture (Poole et al., 2016), and topological entropy (Bu et al., 2020). Please note that using complexity
measures to justify the power of depth demands a tight bound estimation. Otherwise, it is insuf-
ficient to say that shallow networks cannot be as powerful as deep networks, since deep networks
cannot reach the upper bound.

The construction analysis is to find a family of functions that are hard to approximate by a shallow
network, but can be efficiently approximated by a deep network. (Eldan & Shamir, 2016) built a
special radial function that is expressible by a 3-layer neural network with a polynomial number
of neurons, but a 2-layer network can do the same level approximation only with an exponential
number of neurons. Later, (Safran & Shamir, 2017) extended this result to a ball function, which is
a more natural separation result. (Venturi et al., 2021) generalized the construction of this type to a
non-radial function. (Telgarsky, 2015; 2016) used an O(k2)-layer network to construct a sawtooth
function. Given that such a function has an exponential number of pieces, it cannot be expressed by
an O(k)-layer network, unless the width is O(exp(k)). (Arora et al., 2016) estimated the maximal
number of pieces a network can produce, and established the size-piece relation to advance the depth
separation results from (k2, k) to (k, k′), where k′ < k. (Daniely, 2017) proved that poly-size depth
neural networks with (exponentially) bounded weights cannot approximate f : Sd−1 × Sd−1 →
R which has the form f(x,x′) = g(⟨x,x′⟩) whenever g cannot be expressed by a low-degree
polynomial. Other smart constructions include polynomials (Rolnick & Tegmark, 2017), functions
of a compositional structure (Poggio et al., 2017), Gaussian mixture models (Jalali et al., 2019), and
so on. Recently, (Malach & Shalev-Shwartz, 2019) explored the relationship between the expressive
properties of a deep network and the trainability using gradient descent-based methods. (Vardi et al.,
2022) proved that there are no functions that can be expressed by wide and shallow neural networks
but cannot be approximated by a narrow but deep network. (Safran & Lee, 2022) extended the
depth separation theory into the provable training guarantee by proving that a ball indicator cannot
be learned by a shallow network but can be learned by a deeper network. (Ren et al., 2023) showed
that a multi-layer neural network can be trained to learn the function ReLU(1−∥x∥) that cannot be
approximated by any one-hidden-layer network. Our work also includes the construction, and we
use an intra-linked network to efficiently build a sawtooth function.

3 NOTATION AND DEFINITION

Notation 1 (Fully-connected networks and extra-linked networks). For an Rw0 → R ReLU DNN
with widths w1, . . . , wk of k hidden layers, we use f0 =

[
f
(1)
0 , . . . , f

(w0)
0

]
= x ∈ Rw0 to denote

the input of the network. Let fi =
[
f
(1)
i , . . . , f

(wi)
i

]
∈ Rwi , i = 1, · · · , k, be the vector composed

of outputs of all neurons in the i-th layer. The pre-activation of the j-th neuron in the i-th layer and
the corresponding neuron is given by

g
(j)
i =

〈
a
(j)
i , fi−1

〉
+ b

(j)
i and f

(j)
i = σ

(
g
(j)
i

)
,
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respectively, where σ(·) is the ReLU activation, and a
(j)
i ∈ Rwi−1 , b

(j)
i ∈ R are parameters. The

output of this network is gk+1 = ⟨ak, fk⟩ + bk for some ak ∈ Rwk , bk ∈ R. The extra-linked
networks like ResNet and DenseNet are similar to the classical fully-connected networks except
that the pre-activation of the current layer takes the outputs of some previous layers.

Notation 2 (Intra-linked networks) For an Rw0 → R ReLU DNN with widths w1, . . . , wk of k
hidden layers, we now use the matrix Gi ∈ Rwi×wi to denote the connecting operations within
the i-th hidden layer. If Gi

p,q ̸= 0, it means that the output of the p-th neuron is fed into the q-th
neuron in the i-th hidden layer, and multiplied by a coefficient Gi

p,q; otherwise, the output of the
p-th neuron is not. Gi

p,q≤p = 0 by default, since there are no loops. Similar to the classical ReLU

DNN, we use f̃0 = x ∈ Rw0 and f̃i =
[
f̃
(1)
i , . . . , f̃

(wi)
i

]
∈ Rwi to denote the input and the outputs

of the i-th layer, respectively. The j-th pre-activation in the i-th layer and the output of the network
are computed as the following:

g
(j)
i =

〈
a
(j)
i , f̃i−1

〉
+ b

(j)
i and f̃

(j)
i = σ

g
(j)
i +

∑
p<j

Gi
p,j f̃

(p)
i


for each j. Especially, we are interested in the case that every 2 neurons are linked in each layer
(Gi

2k−1,2k ̸= 0, as Figure 1(c)) and the case that every neuron in a layer are linked by its preceding
neurons (Gi is an upper-triangular matrix).

Notation 3 (sawtooth functions and breakpoints) we say a piecewise linear (PWL) function
g : [a, b] → R is of ”N -sawtooth” shape, if g(x) = (−1)n−1

(
x− (n− 1) · b−a

N

)
, for x ∈[

(n− 1) · b−a
N , n · b−a

N

]
, n ∈ [N ]. We say x0 ∈ R is a breakpoint of a PWL function g, if the

left-hand and right-hand derivatives of g at x0 are not equal, i.e., g′+(x) ̸= g′−(x).
Note that stacking layers is essentially different from inserting intra-layer links in terms of the basic
mechanism of generating new pieces, the number of affine transforms, and the functional class.
Therefore, adding intra-layer links is essentially different from increasing depth.

Adding Layers
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Adding Intra Links

… … …
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Figure 2: Adding intra-layer links is not equivalent to increasing depth in terms of the mechanism of generating
more pieces, the number of (affine transforms, activation), and function classes.
• As Figure 2 shows, their mechanisms of producing pieces are fundamentally different. While the
mechanism of adding a new layer is the repetition effect (multiplication), i.e., when composing two
layers that generate oscillation, each oscillation can generate more oscillations, which falls into the
depth paradigm. The mechanism of intra-layer links is the gating effect (addition). The neuron being
embedded has two activation states, and each state is leveraged to produce a breakpoint. Two states
are combined to generate more pieces. Such a mechanism essentially conforms to the parallelism,
which is of width paradigm. Therefore, adding intra-layer links does not increase depth.

• Adding intra-layer links does not increase the number of affine transforms and activation. As
Figure 2 illustrates, a fully-connected network with two layers involves two times of affine trans-
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formation and activation. In contrast, adding intra-layer links actually exerts a gating effect. When
σ(W2x + b2) > 0, the output is σ((W1 + W2)x + b1 + b2); when σ(W2x + b2) = 0, the output
is σ(W1x + b1). The number of (affine transform, activation) is still one for both cases. We think
the essence of depth is composition, which will lead to increased affine transforms and activations.
Therefore, adding intra-layer links is different from stacking layers.

• The function classes represented by our intra-linked network and the deeper fully-connected net-
work are not the same, either, and this will make a big difference. Given the same width, the deeper
fully-connected network has a larger function class than a shallow intra-linked network. However,
given the same width and depth, our intra-linked network has a larger function space (i.e., number
of pieces, VC dimension) than a fully-connected network (see results in Section 4.1). Therefore,
essentially, an intra-linked network is a new type of network compared to fully-connected networks.

Defining the width and depth of a fully-connected network is straightforward. Because intra-linked
networks are obtained by inserting intra-layer links into a standard fully-connected network, we
define the width and depth of intra-linked networks to be the same as the width and depth of a
fully-connected network resulting from removing intra-layer links layer by layer.
Definition 1 (Width and depth of fully-connected networks (Arora et al., 2016)). For any number of
hidden layers k ∈ N, input and output dimensions w0, wk+1 ∈ N, an Rw0 → Rwk+1 fully-connected
network is given by specifying a sequence of k natural numbers w1, w2, . . . , wk representing widths
of the hidden layers. The depth of the network is defined as k + 1, which is the number of (affine
transforms, activation). The width of the network is max {w1, . . . , wk}.
Definition 2 (Width and depth of intra-linked networks (Fan et al., 2020)). Given an intra-linked
network Π, we delete the intra-layer links layer by layer to make the resultant network Π′ a standard
fully-connected network, which means it has no isolated neurons and shortcuts. Then, we define the
width and depth of Π to be the same as the width and depth of Π′.

4 RETHINK THE DEPTH SEPARATION WITH INTRA-LAYER LINKS

Our focus is the network using ReLU activation and the estimation of the number of pieces. The
seminal depth separation theorems closest to us are the following:
Theorem 1 (Depth separation k2 vs k (Telgarsky, 2015; 2016)). For a natural number k ≥ 1, there
exists a sawtooth function representable by an R → R (2k2 + 1)-layer fully-connected ReLU DNN
of width 2 such that if it is also representable by a (k + 1)-layer fully-connected ReLU DNN, this
(k + 1)-layer fully-connected ReLU DNN should at least have the width of 2k − 1.
Theorem 2 (Depth separation k vs k′ (Arora et al., 2016)). For every pair of natural numbers
k ≥ 1, w ≥ 2, there exists a function representable by an R → R (k + 1)-layer fully-connected
ReLU DNN of width w such that if it is also representable by a (k′ + 1)-layer fully-connected ReLU
DNN for any k′ ≤ k, this (k′ + 1)-layer fully-connected ReLU DNN has width at least 1

2w
k
k′ .

The above two theorems reveal that increasing depth can make a ReLU network express a much
more complicated function than increasing width, which is at the heart of depth separation. Here, we
show that width is not always significantly weaker than depth. Our primary argument is that if intra-
layer links are inserted, there exist slender and shallow networks that previously could not express
some hard functions constructed by deep networks now can do the job. Our investigation consists
of two parts. First, we theoretically illustrate that adding intra-layer links can greatly increase the
number of pieces via bound estimation and explicit construction. We also empirically confirm the
regression and classification performance of networks with intra-layer links via 5 synthetic datasets,
15 tabular datasets, and 2 image benchmarks (Appendix H). Then, adding intra-layer links can help
a network represent complicated functions such as sawtooth functions, without the need to go as
wide as before. Favorably, the width needed can be reduced exponentially, which means the width
is not that weak when intra-layer links are configured.

4.1 INTRA-LAYER LINKS CAN INCREASE THE NUMBER OF PIECES

4.1.1 UPPER BOUND ESTIMATION

Lemma 3. Let g : R → R be a PWL function with w + 1 pieces, then the breakpoints of f := σ(g)
consist of two parts: some old breakpoints of g and at most w + 1 newly produced breakpoints.
Furthermore, f has w + 1 new breakpoints if and only if g has w + 1 distinct zero points.

Proof. A direct calculus.
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Theorem 4 (Upper bound of fully-connected and extra-linked networks). Let f : R → R be a PWL
function represented by an R → R ReLU fully-connected or extra-linked neural networks, whose
depth is k + 1 and widths are w1, . . . , wk of k hidden layers, respectively. Then f has at most∏k

i=1 (wi + 1) pieces.

Remark 1. This bound is actually the univariate case of the bound:
∏k

i=1

∑n
j=0

(
wi

j

)
, derived in

(Montúfar, 2017) for n-dimensional inputs. In Appendix A, we offer constructions to show that this
bound is achievable in a depth-bounded but width-unbounded network (depth=3) (Proposition 7)
and a width-bounded (width=3) but depth-unbounded network (Proposition 8) in one-dimensional
space. Previously, many bounds (Pascanu et al., 2013; Montufar et al., 2014; Montúfar, 2017; Xiong
et al., 2020) on linear regions were derived, however, it is unknown whether these bounds are vacu-
ous or tight, particularly for networks with more than one hidden layer. Determining the tightness of
a bound is essential in analyzing the approximation ability of a deep network. What makes Proposi-
tions 7 and 8 special is that they for the first time substantiate that (Montúfar, 2017)’s bound is tight
over an arbitrary three-layer network and deeper networks with small widths, which fills the gap of
bound estimation, although these results are for the one-dimensional case.

Theorem 4 also sharpens the bound in (Arora et al., 2016). Previously, they computed the number
of pieces produced by a network of depth k+1 and widths w1, . . . , wk as 2k+1 · (w1+1)w2 · · ·wk.
The reason why their bound has an exponential term is that when considering how ReLU activation
increases the number of pieces, they repetitively computed the old breakpoints generated in the
previous layer. Our Lemma 3 implies that the ReLU activation in fact cannot double the number of
pieces of a PWL function.
Lemma 5 (A corollary of Lemma 3). Let g1, g2 : R → R be two PWL functions with w breakpoints
in total. f1 := σ (g1) and f2 := σ (g2 − f1). Then the breakpoints of f2 include three parts:
some breakpoints of g2, some breakpoints of f1, and at most 2w + 2 newly produced breakpoints.
Furthermore, f2 has 2w+2 new breakpoints if and only if g2 − f1 has 2w+2 distinct zero points.

Let us illustrate why the intra-linked architecture can produce more pieces. Given two PWL func-
tions g1 and g2 which has a total of w breakpoints, in the fully-connected architecture, σ (g1)
and σ (g2) have totally at most 3w + 2 breakpoints, which contains at most w old breakpoints
of g1, g2 and at most 2w + 2 newly produced breakpoints. However, in the intra-linked archi-
tecture, σ (g2 − σ (g1)) can produce more breakpoints because σ(g1) has two states: activated or
deactivated. Then, σ(g1) and σ (g2 − σ (g1)) consist of at most w old breakpoints of g1, g2 and
(w + 1) + (2w + 2) = 3w + 3 new breakpoints.
Theorem 6 (Upper bound of ni-neuron intra-linked networks). Let f : R → R be a PWL function
represented by a ReLU DNN with depth k + 1, widths w1, . . . , wk, and every ni neurons linked
in the i-th layer as Figure 1(c). Assuming that ni can divide wi without remainder, f has at most∏k

i=1

(
2ni−1

ni
wi + 1

)
pieces.

Proof. For conciseness, we only consider the case ni = 2. The general case is nothing but repeating
the same analysis in each layer several times. We prove by induction on k. For the base case k = 1,
we assume for every odd j, the neurons f̃ (j)

1 and f̃
(j+1)
2 are linked. The number of breakpoints of

f̃
(j)
1 , j = 1, . . . , w1, is at most 2 + (−1)j . Hence, the first layer yields at most 3

2w1 + 1 pieces.
For the induction step, we assume that for some k ≥ 1, any R → R ReLU DNN with every two
neurons linked in each hidden layer, depth k+1 and widths w1, . . . , wk of k hidden layers produces
at most

∏k
i=1

(
3
2wi + 1

)
pieces. Now we consider any R → R ReLU DNN with every two neurons

linked in each hidden layer, depth k + 2 and widths w1, . . . , wk+1 of k + 1 hidden layers. By the
induction hypothesis, each g̃

(j)
k+1 has at most

∏k
i=1

(
3
2wi + 1

)
−1 breakpoints. Then the breakpoints

of σ(g̃
(j)
k+1) consist of some breakpoints of g̃

(j)
k+1 and at most

∏k
i=1

(
3
2wi + 1

)
newly generated

breakpoints. Then g̃
(j+1)
k+1 − f̃

(j)
k+1 has at most 2 ·

∏k
i=1

(
3
2wi + 1

)
− 1 breakpoints, based on Lemma

5. The breakpoints of f̃ (j+1)
k+1 = σ(g̃

(j+1)
k+1 − f̃

(j)
k+1) consist of some breakpoints of g̃(j+1)

k+1 − f̃
(j)
k+1 and

at most 2 ·
∏k

i=1

(
3
2wi + 1

)
newly generated breakpoints. Note that g̃(1)k+1, . . . , g̃

(wk+1)
k+1 have totally

at most
∏k

i=1

(
3
2wi + 1

)
−1 breakpoints. In all, the number of pieces we can therefore get is at most

1+ wk+1

2 ·
(∏k

i=1

(
3
2wi + 1

)
+ 2 ·

∏k
i=1

(
3
2wi + 1

))
+
∏k

i=1

(
3
2wi + 1

)
− 1 =

∏k+1
i=1

(
3
2wi + 1

)
.
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Remark 2. Comparing Theorems 4 and 6, we surprisingly find that adding extra-layer links does
not promote the upper bound, but adding intra-layer links does. This is not because this upper
bound is vacuous (later, we show this bound is tight). Instead, adding previous layers into later
layers does not produce new pieces in the maximal sense. In contrast, adding intra-layer links can
improve the upper bound of fully-connected and extra-linked networks exponentially (dependent on
depth), which means that intra-layer links can also empower ResNets. Thus, intra-layer links are a
sufficiently interesting architecture in their sole existence or in synergy with extra-layer links.
Theorem 7 (Upper Bound of Fully-connected Networks (Montúfar, 2017)). Let f : Rn → R be a
PWL function represented by an Rn → R ReLU DNN with depth k + 1 and widths w1, . . . , wk of k
hidden layers. Then f has at most

∏k
i=1

∑n
j=0

(
wi

j

)
linear regions.

Theorem 8 (Upper Bound of Intra-linked Networks, proof in Appendix B). Let f : Rn → R be a
PWL function represented by an Rn → R ReLU DNN with every two neurons linked in each hidden
layer, depth k + 1 and widths w1, . . . , wk of k hidden layers. We assume each wi is even. Then f

has at most
∏k

i=1

∑n
j=0

( 3wi
2 +1
j

)
linear regions.

4.1.2 EXPLICIT CONSTRUCTION.

Despite that the bound estimation offers some hints, to convincingly illustrate that intra-layer links
can increase the number of pieces, we need to supply the explicit construction for the intra-linked
networks. The number of pieces in the construction should be bigger than the maximum a fully-
connected network can achieve. Specifically, the constructions for 2-neuron intra-linked networks
in Propositions 1 and 2 have a number of pieces larger than the upper bounds of fully-connected
networks. In Proposition 3, by enumerating all possible cases, we present a construction for a 2-
neuron intra-linked network of width 2 and arbitrary depth whose number of pieces is larger than
what a fully-connected network of width 2 and arbitrary depth possibly achieves. Proposition 4
shows that

∏k
i=1

(
(wi+1)wi

2 + 1
)

pieces can be achieved by a one-hidden-layer all-intra-linked net-
work. Propositions 5 and 6 provide rather tight constructions for an all-neuron intra-linked network
of width 3&4 and arbitrary depth.

Proposition 1 (The bound
∏k

i=1

(
3wi

2 + 1
)

is tight for a two-hidden-layer 2-neuron intra-linked
network, proof in Appendix C). Given an R → R two-hidden-layer ReLU network, with every two
neurons linked in each hidden layer, for any even w1 ≥ 6, w2 ≥ 4, there exists a PWL function
represented by such a network, whose number of pieces is

(
3w1

2 + 1
) (

3w2

2 + 1
)
.

Proposition 2 (Use intra-linked networks to achieve
∏k

i=1

(
3wi

2

)
pieces, proof in Appendix D).

There exists a [0, 1] → R function represented by an intra-linked ReLU DNN with depth k + 1 and
width w1, . . . , wk of k hidden layers, whose number of pieces is at least 3w1

2 · . . . · 3wk

2 .
Proposition 3 (Intra-layer links can greatly increase the number of pieces in an R → R ReLU
network with width 2 and arbitrary depth, proof in Appendix E). Let f : R → R be a PWL function
represented by an R → R (k + 1)-layer ReLU DNN with widths 2 of all k hidden layers. Then the

number of pieces of f is at most

{ √
7
k
, if k is even,

3 ·
√
7
k−1

, if k is odd.

There exists an R → R (k + 1)-layer 2-wide ReLU DNN, with neurons linked in each hidden layer,
which can produce at least 7 · 3k−2 + 2 pieces.

Proposition 4 (
∏k

i=1

(
(wi+1)wi

2 + 1
)

pieces for a one-hidden-layer all-neuron intra-linked net-
work, proof in Appendix F). Given an R → R one-hidden-layer ReLU network with all neurons
linked in the hidden layer, there exists a PWL function represented by such a network, whose number
of pieces is (w1+1)w1

2 + 1.
Proposition 5 (An arbitrarily deep network of width=3 and with all neurons in each layer in-
tra-linked Gi

j−1,j ̸= 0 can achieve at least 5k pieces, proof in Appendix F). There exists an R → R
function represented by an intra-linked ReLU DNN with depth k, width 3 in each layer, and all
neurons intra-linked in each layer, whose number of pieces is at least 5k.
Proposition 6 (An arbitrarily deep network of width=4 and with all neurons in each layer in-
tra-linked Gi

j−1,j ̸= 0 can achieve at least 9k pieces, proof in Appendix F). There exists an R → R
function represented by an intra-linked ReLU DNN with the depth k, width 4 in each layer, and all
neurons in each layer intra-linked, whose number of pieces is at least 9k.
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Remark 3. Currently, intra-layer links are few studied in practice. (Zhang & Zhou, 2022) shows
that using intra-layer links can improve the generalization of spiking networks. Concurrent to our
work, (Sadat Shahir et al., 2023) confirms that using intra-layer links can result in a rapid conver-
gence. Although the main focus of this draft is not to propose a new network architecture, we find
that intra-layer links are a promising structure in terms of the balance between the performance and
the parametric and computational complexity. To evaluate if intra-linked networks can deliver good
performance as theory suggests, we compare intra-linked networks with fully-connected networks
and ResNet on 5 synthetic datasets, 15 public tabular datasets, and 2 image benchmarks in Appendix
H. Results show that on both regression and classification tasks, intra-linked networks can outper-
form the standard fully-connected network with fewer parameters, and using intra-layer links can
also further enhance the performance of ResNet. At the same time, although intra-layer links have
more links to optimize, our experiments also demonstrate that intra-linked networks do not suffer
the optimization issue, which aligns with what was observed in (Sadat Shahir et al., 2023).

4.2 MODIFY THE DEPTH SEPARATION THEOREM WITH INTRA-LAYER LINKS

We summarize that the depth separation theorems consist of two elements: i) there exists a function
representable by a deep network; ii) such a function cannot be represented by a shallow network
whose width is lower than a threshold. Since adding intra-layer links can generally improve the
capability of a network, if one adds intra-layer links to a shallow network, the function constructed
by a deep network can be represented by a shallow network, even if the width of this shallow network
is lower than the threshold. Theorem 10 showcases that a shallow network with all-neuron intra-
layer links can save the width up to a linear reduction. Theorem 12 modify the depth separation (k2
vs k) by presenting that a shallow network with intra-layer links only needs a linear width instead
of an exponential width to express the sawtooth function. Since the exponential width is no longer
needed, we contend that width is not significantly weaker than depth in this setting.
Lemma 9 (A network with width=2 can approximate any univariate PWL function (Fan et al.,
2021)). Given an arbitrary univariate PWL function with n pieces p(x), there exists an (n + 1)-
layer network D(x) with two neurons in each layer such that p(x) = D(x).

Theorem 10 (Modify the depth separation k2 vs 2). For every k ≥ 2, there exists a function p(x)
that can be represented by a (k2 + 1)-layer ReLU DNN with 2 nodes in each layer, such that it
cannot be represented by a classical 2-layer ReLU DNN W2(x) with width less than k2−1, but can
be represented by a 2-layer, (2k)-wide intra-linked ReLU DNN W̃2(x). The connecting operations
of each layer are Gi

j−1,j = 1, where j < 2k, and the rest entries are zeros.

Proof. Combining Theorem 4, Proposition 4, and Lemma 9 straightly concludes the proof.

Lemma 11 (Representing sawtooth functions with intra-linked networks). An intra-linked ReLU
DNN of k hidden layers with widths w1, . . . , wk can represent a sawtooth functions with

∏k
i=1 2

wi−2

pieces. The connecting operations within the i-th layer are that Gi
<j,j = 1, j ≤ wi−2, and the rest

entries are zeros.
Proof. It suffices to show the result for the first layer. Then the result follows from the composition
of sawtooth functions. We set f (1)

1 = σ(x − 1/2). Then the affine combination of f (1)
1 and y = x,

denoted as h
(1)
1 , can be of sawtooth shape with 21 pieces on [0,1], which gives f

(2)
1 = σ(h

(1)
1 −

1/2). Similarly, the affine combination of h(1)
1 and f

(2)
1 , which is in fact the affine combination of

f
(1)
1 , f

(2)
1 and y = x, can be of sawtooth shape with 22 pieces on [0, 1]. Following this procedure

several times gives f
(3)
1 , . . . , f

(w1−2)
1 . Then the pre-activation of the second layer, as an affine

combination of f (1)
1 , . . . , f

(w1−2)
1 and y = x can be of sawtooth shape with 2w1−2 pieces on [0, 1].

Remember that y = x can be easily given by f
(w1−1)
1 = σ(x) and f

(w1)
1 = σ(−x).

Theorem 12 (Modify the depth separation k2 vs k, the exponential saving of width). For every
k ≥ 1, there is a [0, 1] → R PWL function p(x) represented by a fully-connected (2k2 + 1)-layer
ReLU DNN with at most w nodes in each layer, such that it cannot be represented by a classical
(k+1)-layer ReLU DNN Wk(x) with width less than wk, but can be represented by a (k+1)-layer
intra-linked ReLU DNN W̃k(x) with width no more than log2(w) · k + 2.

Proof. Per (Telgarsky, 2016)’s construction, a fully-connected (2k2 + 1)-layer ReLU DNN with at
most w nodes in each layer can produce a sawtooth function of wk2

pieces. Thus, it follows Theorem

8
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4 that any classical (k + 1)-layer ReLU DNN Wk(x) with width less than wk − 1 cannot generate
wk2

pieces. However, according to Lemma 11, let w1 = w2 = · · · = wk = log2(w) · k + 2, an
intra-linked network can exactly express a sawtooth function with wk2

pieces.

From the perspective of the number of parameters, adding intra-layer links in a fully-connected net-
work is no more than doubling the number of depth. When doubling the depth of a fully-connected
network, the width is only reduced from w to w1/2. However, our saving for the width is expo-
nential instead of polynomial, which means that adding intra-layer links has an essentially different
mechanism from adding depth.

Remark 4. The depth-width comparison is a long-standing open problem. Indeed, the interplay
between width and depth is intricate. In (Levine et al., 2020), it was shown that widening is nec-
essary when deepening; otherwise, deepening becomes much more inefficient. The existing depth
separation theory is primarily established for standard fully-connected networks. Here, we contend
that adding intra-layer links mitigates the gap between width and depth in a linear and exponential
manner. Note that our findings do not claim that width can replace depth. Instead, we derive a
new relationship between width and depth in the context of shortcuts which is a more realistic set-
ting, and can provide a different perspective than what is suggested in the depth separation theory.
Because the sawtooth function is a fundamental module in deep learning approximation (Yarotsky,
2017; Kidger & Lyons, 2020; Lu et al., 2021; Shen et al., 2021), our saving of width is general for
broader classes of functions such as smooth functions and polynomial functions.

5 DISCUSSION AND CONCLUSION

Well-established network architectures such as ResNet and DenseNet imply that incorporating short-
cuts greatly empowers a neural network. However, only a limited number of theoretical studies at-
tempted to explain the representation ability of shortcuts (Veit et al., 2016; Fan et al., 2021; Lin &
Jegelka, 2018). Although intra-layer links and extra-layer links such as residual connections are es-
sentially two different kinds of shortcuts, the techniques developed and the mechanisms identified in
analyzing intra-linked networks can be extended to other networks with shortcuts. On the one hand,
we identify conditions for the tightness of the bound, which has been proven to be stronger than
existing results. Specifically, in the activation step, we distinguish the existing and newly generated
breakpoints to avoid repeated counting, and then in the following pre-activation step, we maximize
the oscillation to yield the most pieces after the next activation. On the other hand, the construction
of functions in our work, i.e., constructing oscillations by preserving existing breakpoints and split-
ting each piece into several ones, is generic in analyzing networks with extra-layer links, thereby
explaining how they improve the representation power of a network. Earlier, we provide the bound
for extra-linked networks such as ResNet and DenseNet, here we report our constructive results.
For example, it is straightforward to see that a one-neuron-wide ReLU DNN can represent PWL
functions with at most three pieces, no matter how deep the network is. However, as Theorem 13
shows, with residual connections, a ResNet with k neurons can represent a sawtooth function with
O(k) pieces, which cannot be done by a fully-connected network. For DenseNet, Theorem 4 shows
that an R → R ReLU DNN with depth k + 1 and width w1, . . . , wk has at most

∏k
i=1(wi + 1)

pieces. If we add dense intra-layer links that connect any two neurons in a hidden layer to turn a
fully-connected network into a DenseNet, Theorem 14 shows that the so-obtained DenseNet can
produce many more pieces than the fully-connected network. The difference is exponential, i.e.,
1 +

∏k
i=1 (2

wi − 1) vs
∏k

i=1(wi + 1). The detailed proofs are put into Appendix G.
Theorem 13. Let f : R → R be a PWL function represented by a one-neuron-wide ResNet. Mathe-
matically, f = ck+1fk + gk, where g1(x) = x, fi = σ (aigi + bi) , gi+1 = cifi + gi, ck+1, ai, bi, ci
are parameters, for i = 1, . . . , k. Then f has at most 2k pieces. Furthermore, this upper bound is
tight and f can be a sawtooth function with at most 2k pieces.
Theorem 14. Let f : R → R be a PWL function represented by a DenseNet obtained by adding
dense intra-layer links into a fully-connected network of k hidden layers with widths w1, . . . , wk.
Then we can construct such a PWL function f with at least 1 +

∏k
i=1 (2

wi − 1) pieces.
In this draft, via bound estimation (Theorems 6 and 8) and dedicated construction (Propositions 2,
3, 4, 5, and 6), we have shown that an intra-linked network is much more expressive than a fully-
connected one, given the same width. Then, we have shown that a slender and shallow network that
previously cannot express some functions constructed by deep networks now can do the job with
intra-layer links (Theorems 10 and 12), suggesting that the width can also be powerful when aided
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by intra-layer links. Meanwhile, the identified mechanism of generating pieces can also be used to
decode the power of other shortcut networks such as ResNet and DenseNet. Future endeavors can
be using intra-layer links to solve real-world problems.
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CONTENTS OF APPENDICES

Appendix A provides supplementary results to justify the tightness of Theorem 4.

Appendix B provides the proof of Theorem 8.

Appendix C provides the proof of Proposition 1.

Appendix D provides the proof of Proposition 2.

Appendix E provides the proof of Proposition 3.

Appendix F extends the results of 2-intra-linked networks to a network with more intra-layer links.

Appendix G demonstrates that the analysis tools developed for intra-linked networks can also be
used to analyze the power of ResNet and DenseNet.

Appendix H demonstrates the empirical success of using intra-linked networks.
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A SUPPLEMENTARY RESULTS FOR THE TIGHTNESS OF THEOREM 4

Proposition 7 (The bound
∏k

i=1 (wi + 1) is tight for a depth-bounded but width-unbounded net-
work). Given an R → R two-hidden-layer ReLU network, for any width w1 ≥ 3, w2 ≥ 2 in the
first and second hidden layers, there exists a PWL function represented by such a network, whose
number of pieces is (w1 + 1) (w2 + 1).
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Figure 3: Construction of PWL functions to reach the bound of Proposition 7 when w1 = 3, w2 = 2.

Proof. To guarantee the bound
∏k

i=1 (wi + 1) is tight, the following two requirements should be
met: (i) each g

(j)
i , i = 0, 1, 2, j = 1, . . . , wi, has distinct zero points that are as many as its number

of pieces, so that the activation step can produce the most new breakpoints; (ii) the breakpoints of
each g

(j)
(i+1), i = 0, 1, 2, j = 1, . . . , wi+1, as the affine combination of

{
f
(1)
i , . . . , f

(wi)
i

}
, contains

all the breakpoints of
{
g
(1)
i , . . . , g

(wi)
i

}
, so that all the old breakpoints are reserved.

Now we give the proof in detail. Let f
(1)
1 (x) = σ(3x), f

(2)
1 (x) = σ(−x + 3), f

(3)
1 (x) =

σ
(
3
2x− 3

2

)
. When w1 = 3, we set

g
(1)
2 = −

(
f
(1)
1 + f

(2)
1 − f

(3)
1 − 3− 1

w2+1

)
,

g
(j)
2 = f

(1)
1 + f

(2)
1 − f

(3)
1 − 3− j

w2+1 , j = 2, . . . , w2.

When w1 > 3, we let f (j)
1 = σ(−2x− 2(j − 3)) and

g
(1)
2 = −

(
f
(1)
1 + f

(2)
1 − f

(3)
1 +

∑w1

j=4(−1)j−1f
(j)
1 − 3− 1

w2+1

)
g
(j)
2 = f

(1)
1 + f

(2)
1 − f

(3)
1 +

∑w1

r=4(−1)r−1f
(r)
1 − 3− j

w2+1 , j = 2, . . . , w2.

Then g
(j)
2 has w1 + 1 distinct zero points. Hence for j = 1, . . . , w2, the breakpoints of f (j)

2 =

σ
(
g
(j)
2

)
keeps all breakpoints of g(j)2 and yields w1+1 new breakpoints. Note that f (j)

2 and f
(j)
2 do

not share new breakpoints, and f
(1)
2 and f

(2)
2 covers all the breakpoints of

{
g
(j)
2

}w2

j=1
. Therefore, the

total number of pieces via an affine combination of f (1)
2 , . . . , f

(w2)
2 is (w1 + 1) (w2 + 1) pieces.

Proposition 8 (The bound
∏k

i=1 (wi + 1) is tight for a width-bounded but depth-unbounded net-
work). Given an R → R ReLU network with width w for the first layer and 3 for other layers,
for any depth k ≥ 2, there exists a PWL function represented by such a network, whose number of
pieces is (w + 1) · 4k−1.

Proof. Let f (1)
1 , . . . f

(w)
1 be the same as in Proposition 7. Let

g̃2 =

{
f
(1)
1 + f

(2)
1 − f

(3)
1 − 3, if w = 3,

f
(1)
1 + f

(2)
1 − f

(3)
1 +

∑w
j=4(−1)j−1f

(j)
1 − 3, if w > 3.

14
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We set
f
(1)
2 = σ

(
2g̃2 − 1

3

)
,

f
(2)
2 = σ

(
−g̃2 +

2
3

)
,

f
(3)
2 = σ

(
3
2 g̃2 −

1
2

)
.

Now we continue our proof by induction. Assume that we have constructed f
(1)
i , f (2)

i and f
(3)
i ,

i ≥ 2, then we set

g̃i+1 = f
(1)
i + f

(2)
i − f

(3)
i − 3

6i

and
f
(1)
i+1 = σ

(
2g̃i+1 − 2

6i

)
,

f
(2)
i+1 = σ

(
−g̃i+1 − 4

6i

)
,

f
(3)
i+1 = σ

(
g̃i+1 +

3
6i

)
.

Through a direct calculus, we know g̃i+1 has (w + 1) · 4i−1 pieces with opposite slopes in every
two adjoint pieces and ranges from 0 to 3/6i in each piece except the leftmost and rightmost pieces,
which implies we can obtain a total of (w + 1) · 4k−1 pieces.

B PROOF OF THEOREM 8

Lemma 15 (Zaslavsky’s Theorem (Zaslavsky, 1975; Stanley, 2004)). Let A =
{Hi ⊂ V : 1 ≤ i ≤ m} be an arrangement in Rn. Then, the number of regions for the ar-
rangement A satisfies

r(A) ≤
n∑

i=0

(
m

i

)
. (1)

Proof. We prove by induction on k. For the base case k = 1, f̃
(2i−1)
1 = σ

(
g̃
(2i−1)
1

)
pro-

duces one hyperplane in the input space Rn. Furthermore, f̃
(2i)
1 = σ

(
g̃
(2i)
1 − f̃

(2i−1)
1

)
=

σ
(
g̃
(2i)
1 − σ

(
g̃
(2i−1)
1

))
produces at most two hyperplanes in the input space Rn. Therefore, in to-

tal, the w1 neurons in the first layer produces (1+2) · w1

2 = 3w1

2 hyperplanes in the input space Rn.
Then by Zaslavsky’s Theorem, it will produce at most

∑n
j=0

(
w1+1

j

)
linear regions in the input space

Rn. For the induction step, we assume that for some k ≥ 1, any Rn → R ReLU DNN with every two
neurons linked in each hidden layer, depth k+1 and widths w1, . . . , wk of k hidden layers produces
at most

∏k
i=1

∑n
j=0

( 3wi
2 +1
j

)
linear regions. Now we consider any Rn → R ReLU DNN with every

two neurons linked in each hidden layer, depth k+2 and widths w1, . . . , wk+1 of k+1 hidden layers.
Then for each linear region S produced by the first k + 1 layers, again, f̃ (2i−1)

k+1 = σ
(
g̃
(2i−1)
k+1

)
pro-

duces one hyperplane in S. Furthermore, f̃ (2i)
k+1 = σ

(
g̃
(2i)
k+1 − f̃

(2i−1)
k+1

)
= σ

(
g̃
(2i)
k+1 − σ

(
g̃
(2i−1)
k+1

))
produces at most two hyperplanes in the S. Therefore, in total, the wk+1 neurons in the k + 1 layer
produces (1 + 2) · wk+1

2 = 3wk+1

2 hyperplanes in S. Then by Zaslavsky’s Theorem, it will pro-

duce at most
∑n

j=0

(
wk+1+1

j

)
linear regions in S. Thus f has at most

∏k
i=1

∑n
j=0

( 3wi
2 +1
j

)
linear

regions.

C PROOF OF PROPOSITION 1

Proof. To guarantee the bound
∏k

i=1

(
3wi

2 + 1
)

is tight, the following two conditions should be
satisfied: (i) g̃

(j)
i and g̃

(j+1)
i − f̃

(j)
i have as many zero points as possible so that σ(g̃

(j)
i ) and

σ(g̃
(j+1)
i − f̃

(j)
i ) can produce the maximal number of breakpoints; (ii) all old breakpoints of{

g̃
(1)
i , . . . , g̃

(wi)
i

}
are reserved by g̃

(j)
i+1, an affine transform of

{
f̃
(1)
i , . . . , f̃

(wi)
i

}
.
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We first consider the first hidden layer. Let

f̃
(1)
1 (x) = σ

(
9
2x− 27

)
, f̃

(2)
1 (x) = σ

(
3
2x− f̃

(1)
1 (x)

)
f̃
(3)
1 (x) = σ(−2x+ 2), f̃

(4)
1 (x) = σ

(
−x+ 2− f̃

(3)
1 (x)

)
f̃
(5)
1 (x) = σ

(
− 7

2x− 7
4

)
, f̃

(6)
1 (x) = σ

(
−2x+ 8− f̃

(5)
1 (x)

)
.

When w1 = 6, we set g̃ = − 2
9 f̃

(1)
1 − f̃

(2)
1 + 1

2 f̃
(3)
1 + f̃

(4)
1 − 4

7 f̃
(5)
1 − f̃

(6)
1 .

When w1 > 6, for each odd j > 6, let f̃
(j)
1 = σ (−5 (x− aj + 3)) , f̃

(j+1)
1 =

σ
(
−2 (x− aj)− f̃

(j)
1

)
, where aj = − 19

2 − 9
(
j−1
2 − 3

)
, then the output of the first layer

is expressed as the following: g̃ = − 2
9 f̃

(1)
1 − f̃

(2)
1 + 1

2 f̃
(3)
1 + f̃

(4)
1 − 4

7 f̃
(5)
1 − f̃

(6)
1 +∑w2

j=7,j is odd (−1)
j+1
2

(
2
5f

(j)
1 + f

(j+1)
1

)
, which has 3

2w1 + 1 pieces and whose adjacent pieces
have slopes of opposite signs. Note that any line y = b, where b ∈ (−13/2,−6), can
cross all pieces of g̃ + b. Thus, g fulfills the conditions of Lemma 5. We divide the break-
points of g̃ into two parts: Bupper = {x : x is a breakpoint of g̃ and g̃(x) > b} and Blower =
{x : x is a breakpoint of g̃ and g̃(x) ≤ b}. We refer to their counts as #Bupper and #Blower.

Figure 4: The PWL functions that reach the bound of Proposition 1 when w1 = 6, w2 = 4.

Next, we construct the second hidden layer. f̃
(1)
2 := σ (g̃ + b1), where b1 ∈ (−13/2,−6), has

3
2w1 + 1 new breakpoints. Then by choosing some scaling parameter a ∈ (0, 1) bias b2 to fulfill
Lemma 5, we can also make ag̃+ b2 − f̃

(1)
2 has 3w1 +2 distinct zero-points, which implies f̃ (2)

2 :=

σ
(
ag̃ + b2 − f̃

(1)
2

)
has 3w1 + 2 newly produced breakpoints. Therefore, the affine combination

of f̃ (1)
2 and f̃

(2)
2 contains all breakpoints of Bupper, and has #Bupper +

(
3
2w1 + 1

)
+ (3w1 + 2)

breakpoints. To reserve all the breakpoints of g̃, we do the similar thing for −g̃ to gain f̃
(3)
2 and

f̃
(4)
2 , whose affine combination has #Blower +

(
3
2w1 + 1

)
+(3w1 + 2) breakpoints, which contains

all breakpoints in Blower, and shares no breakpoints with the affine combination of
{
f̃
(1)
2 , f̃

(2)
2

}
.

Hence, the affine combination of
{
f̃
(1)
2 , f̃

(2)
2 , f̃

(3)
2 , f̃

(4)
2

}
has #Bupper+ # Blower +2 ·

(
3w1

2 + 1
)
+

2 · (3w1 + 2) =
(
3w1

2

)
+ 6 ·

(
3w1

2 + 1
)

breaking points, which contains all the breakpoints of g̃.{
f̃
(1)
2 , f̃

(2)
2 , f̃

(3)
2 , f̃

(4)
2

}
are visualized in Figure 4. Repeating this procedure by selecting different

b1, a, b2, we can construct the remaining {f̃ (i)
2 }w2

i=5 such that the affine transformation of {f̃ (i)
2 }w2

i=1

has pieces of 3
2w1 +

3w2

2 ·
(
3
2w1 + 1

)
+ 1 =

(
3w1

2 + 1
) (

3w2

2 + 1
)
.

D PROOF OF PROPOSITION 2

Proof. Let ϕ(x) = x defined over [0,∆]. The core of the proof is to use a one-hidden-layer network
of w ≥ 2 neurons to create 3w

2 pieces from ϕ(x).

Let δ = 2∆
3w . Set g̃(1) = 3ϕ − 3δ, f̃ (1) = σ

(
g̃(1)

)
, g̃(2) = ϕ, f̃ (2) = σ

(
g̃(2) − f̃ (1) + δ

)
,

and g̃(2j+1) = 4ϕ − 4(3j + 1)δ, f (2j+1) = σ
(
g̃(2j+1)

)
, g̃(2j+2) = 2ϕ − 6jδ, f̃ (2j+2) =
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1
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ሚ𝑓(1) = 𝜎(𝑥 − 𝛿)

Δ𝛿
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1

3
ሚ𝑓(1) + ሚ𝑓(2)

1

2
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Figure 5: A schematic illustration of how to use an intra-linked network to generate a sawtooth function.

σ
(
g̃(2j+2) − f̃ (2j+1)

)
, for all j = 1, . . . , w/2− 1. The output of this one-hidden-layer network is

ξ∆,w(x) =
1
3 f̃

(1)+ f̃ (2)−δ+
∑w

2 −1
j=1 (−1)j

(
1
2 f̃

(2j+1) + f̃ (2j+2)
)
, which has 3w

2 pieces on [0,∆].

ξ∆,w(x) is of slope (−1)j on [jδ, (j + 1)δ], j = 0, . . . , 3w/2 − 1, and ranges from 0 to δ on each
piece. Figure 5 shows how the affine transformation of {f̃ (1), f̃ (2), f̃ (3), f̃ (4)} constructs a sawtooth
function of 6 pieces. Please note that flipping ϕ(x) or translating ϕ(x) will not prevent ξ∆,w(ϕ(x))
from generating 3w

2 pieces.

The targeted intra-linked ReLU network with depth k + 1 and width w1, . . . , wk of k hidden layers
is designed as ξ∆k,wk

◦ ξ∆k−1,wk−1
◦ · · · ◦ ξ∆1,w1

(x), where ∆i = 1/
(∏i−1

j=1
3wi

2

)
.

E PROOF OF PROPOSITION 3

Proof. For the first assertion, we claim that each pre-activation g
(j)
i , 2 ≤ i ≤ k, j = 1, 2, cannot

make its two adjacent pieces have slopes with different signs, which implies the pre-activation cannot
produce the most breakpoints as in Lemma 3. In fact, g(j)2 , j = 1, 2, has at most 3 pieces. If some
g
(j)
2 has 3 pieces, then by enumeration, we know either it has a 0 slope, or it has two adjacent pieces

with slopes of the same sign (see Figure 6). Hence, f (j)
2 , j = 1, 2, has at most 2 new breakpoints.

Then the output of the second layer has at most 2 + 2 × 2 = 6 breakpoints and 7 pieces. Applying
a similar method to each piece, we can finish the proof via a simple induction step.

Now we come to the second assertion. For convenience, we say an R → R PWL function f is of
“triangle-trapezoid-triangle” shape on [a, b] ⊂ R, if there exists a partition of [a, b] : a < x1 < x2 <
· · · < x6 < b and a positive constant c, such that

f(x) =


c, if x = a, x2, x5, b
−c, if x = x1, x6

−3c, if x ∈ [x3, x4]
linear connection, otherwise.

Given a PWL function f : R → R of “triangle-trapezoid-triangle” shape on [a, b], with a partition
a < x1 < x2 < · · · < x6 < b and f(a) = c > 0, if we set

g(1) = 4f,
g(2) = 2f − 3c

2 ,
f (1) = σ

(
g(1)

)
,

f (2) = σ
(
g(2) − f (1)

)
,

then g = − 1
4f

(1)+f (2)+ c
8 is of “triangle-trapezoid-triangle” shape on [a, x2] , [x2, x5], and [x5, b],

respectively.
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Using this fact, we can construct a PWL function represented by a (k + 1)-layer 2-neuron wide
intra-linked ReLU DNN, which has 7 · 3k−2 + 2 pieces. Actually, if we set

f̃
(1)
1 = σ(2x),

f̃
(2)
1 = σ

(
x− f̃

(1)
1 + 1

)
,

g̃
(1)
2 = −4f̃

(2)
1 + 2,

g̃
(2)
2 = −2f̃

(2)
1 + 3

2 ,

then through a direct calculus, 1
4 f̃

(1)
2 + f̃

(2)
2 − 3

8 is of “triangle-trapezoid-triangle” shape on [−1, 1].
Using the fact above repeatedly, we can construct a PWL function represented by an R → R (k+1)-
layer, 2-wide, intra-linked ReLU DNN, which is constant on (−∞,−1] ∪ [1,∞) and of “triangle-
trapezoid-triangle” shape on

[
−1 + 2n

3k−2 ,−1 + 2(n+1)
3k−2

]
, n = 0, . . . , 3k−2 − 1.

(a)

(b)

(c)

(e)

(f)

(g)

(h)

(i)

Figure 6: Enumerating all possible shapes of g(j)2 ,j = 1, 2 in Proposition 3.

F EXTENSION TO MORE INTRA-LAYER LINKS

ሚ𝑓(1)

x

ሚ𝑓(2) = 𝜎(𝑤 2 𝑥 + 𝑏(2) − ሚ𝑓(1)) 𝑤 2 𝑥 + 𝑏(2)

ሚ𝑓(1)
ሚ𝑓(2)x x

ሚ𝑓(2)
𝑤 3 𝑥 + 𝑏(3)

ሚ𝑓(3)

x x x

ሚ𝑓(3)

𝑤 4 𝑥 + 𝑏(4) ሚ𝑓(4)

x x x x

ሚ𝑓(1) = 𝜎(𝑤 1 𝑥 + 𝑏(1))

ሚ𝑓(3) = 𝜎(𝑤 3 𝑥 + 𝑏(3) − ሚ𝑓(2))

ሚ𝑓(4) = 𝜎(𝑤 4 𝑥 + 𝑏(4) − ሚ𝑓(3))

Figure 7: The construction demonstrating that the bound
∏k

i=1

(
(wi+1)wi

2
+ 1

)
is tight for a one-hidden-layer

intra-linked network.

F.1 PROOF OF PROPOSITION 4

Proof. Without loss of generality, a one-hidden-layer network with all neurons intra-linked is math-
ematically formulated as the following:{

f̃ (1) = σ(w(1)x+ b(1))

f̃ (j+1) = σ(w(j)x+ b(j) − f̃ (j))
. (2)

To prove that the bound
∏k

i=1

(
(wi+1)wi

2 + 1
)

is tight for a one-hidden-layer network, the key is to

make each f̃ (j) produce j new breakpoints and have j non-zero pieces that share a point with y = 0.
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We use mathematical induction to derive our construction. Figure 7 schematically illustrates the key
idea in our construction.

First, let f̃ (1) = σ(x+ 1) and f̃ (2) = σ(0.5× (x+ 2)− f̃ (1)). Note that f̃ (1) has 1 non-zero piece
that shares a point with y = 0, and f̃ (2) has 2 non-zero pieces that share a common point with y = 0.

Then, given f̃ (j), j ≥ 2, we suppose f̃ (j) has j non-zero pieces that share a point with y = 0. Since
f̃ (j) is continuous, we select its peaks {(xpi , f̃

(j)(xpi))} by the following conditions: i) f̃ (j) is not
differentiable at xpi

; ii) f̃ (j)(xpi
) ̸= 0. Next, let (x∗, f̃ (j)(x∗)) be the lowest peak of f̃ (j). As long

as the slope w(j+1) and the bias b(j+1) satisfy{
w(j+1) <

f̃
(j)
1 (x∗)

x∗+j+1

b(j+1) = wj+1 × (j + 1)
, (3)

w(j+1)x+b(j+1) crosses and only crosses j pieces of f̃ (j). These pieces are exactly non-zero pieces
that share a point with y = 0. Thus, plus the breakpoint − b(j+1)

w(j+1) , f̃ (j+1) generates a total of j + 1

new breakpoints. At the same time, f̃ (j+1) has j + 1 non-zero pieces that share a point with y = 0.
Figure 7 illustrates the process of induction.

Finally, the total number of breakpoints is
∑w1

j=1 j =
(w1+1)w1

2 , which concludes our proof.

F.2 PROOF OF PROPOSITION 6

Proof. The core of the proof is to use a one-hidden-layer all-neuron-intra-linked network of width
4 to create a quasi-sawtooth function with as many pieces as possible. We construct four neurons as
follows: 

f̃ (1) = σ(2x)

f̃ (2) = σ(x+ 1− σ(f̃ (1)))

f̃ (3) = σ( 13 (x+ 2)− f̃ (2))

f̃ (4) = σ( 19 (x+ 3)− f̃ (3))

. (4)

The profiles of f̃ (1), f̃ (2), f̃ (3), f̃ (4) are shown in Figure 8(a).
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Figure 8: A schematic illustration of how to use an intra-linked network to generate a sawtooth function.

By combining f̃ (1), f̃ (2), f̃ (3), f̃ (4) with carefully calibrated coefficients, we have the following
quasi-sawtooth function that has 9 pieces are

η(x) = f̃ (4) +
5

84
× f̃ (3) − 1

3
× f̃ (2) + 0× f̃ (1). (5)

As shown in Figure 8(b), we have marked all breakpoints of η(x) to validate its correctness.
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Next, we just need to let each layer of the intra-linked network represent a stretched and down-pulled
variant of η(x), e.g., the k-th layer ηk(x) = Mk ·η(x)−Bk, where Mk is a sufficiently large number
and Bk > 5

504Mk + 3 to ensure that [−3, 0] is within the function range of ηk(x).

Finally, the constructed network is

ηk ◦ ηk−1 ◦ · · · ◦ η1(x). (6)

F.3 PROOF OF PROPOSITION 5

Proof. Following the same spirit in proof of Proposition 6, we construct three neurons as follows:
f̃ (1) = σ(2x)

f̃ (2) = σ(x+ 1− σ(f̃ (1)))

f̃ (3) = σ( 13 (x+ 2)− f̃ (2))

. (7)

The target function that returns us 5 pieces is

ξ(x) =
1

100
× f̃ (3) − 1

3
× f̃ (2) + 0× f̃ (1). (8)

Next, we just need to let each layer of the intra-linked network represent a stretched and down-pulled
variant of ξ(x), e.g., the k-th layer ξk(x) = Tk · ηk(x)−Ck, where Tk is a sufficiently large number
and Ck > 1

200Tk + 2 to ensure that [−2, 0] is within the function range of ξk(x).

Finally, the constructed network is

ξk ◦ ξk−1 ◦ · · · ◦ ξ1(x). (9)

G ANALYSIS EXTENDED TO RESNET AND DENSENET

G.1 PROOF OF THEOREM 13

Proof. We set ci = −2 and ai = 1 for all i and set b1 = 0, bi = 2− 2−i+2 for i = 2, . . . , k .

G.2 PROOF OF THEOREM 14
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Figure 9: A schematic illustration of using constructions in intra-linked networks to analyze DenseNet.

Proof. For convenience, we only consider the case wi = 3, the general case is just simply repeating
this procedure. Let

f
(1)
1 (x) = σ(3x), f

(2)
1 (x) = σ

(
3

2
x+ 3− f

(1)
1

)
, f

(3)
1 (x) = σ

(
x

2
+ 2− f2 −

1

3
f1

)
be the neurons of the first hidden layer. Then we consider the affine combination. It is easy to find
coefficients c1, c2 such that

c1f
(1)
1 (x) + c2f

(2)
1 (x) =


3
8x+ 3

4 , x ∈ [−2, 0],
− 1

4x+ 3
4 , x ∈ [0, 2],

x
8 , x ∈ [2, 4],
0, otherwise.
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A direct calculus gives g̃ = c1f
(1)
1 (x)+c2f

(2)
1 (x)+f

(3)
1 (x), shown in Figure 9. Then following the

same idea in analyzing intra-linked networks, we know all the non-constant pieces of g̃ can generate∏k
i=1 (2

w2 − 1) in the next layer and the result follows after a simple induction step.

Theorems 13 and 14 confirm that adding simple links can greatly improve the representation ability
of a network. Actually, both ResNet and intra-layer linked networks do not increase the number
of parameters a lot, but they can represent more complicated functions than the fully-connected of
the same width in each layer. Hence, the linked structure can improve the efficiency of parameters.
Besides, we can see from proofs of Theorems 13 and 14 that the idea and construction in analyzing
intra-linked networks can indeed be utilized to analyze other important architectures.

H VALIDATING THE REPRESENTATION POWER OF INTRA-LINKS

Although the focus of our draft is justifying the power of width in the context of intra-layer links
rather than designing new architectures, our analysis theoretically suggests that an intra-linked net-
work is a promising network structure. Therefore, it is highly necessary to validate if an intra-linked
network can deliver good performance as predicted by our theory.

Before reporting experimental results, let us analyze the characteristics of an intra-lined network.
First, it is straightforward to see that using intra-layer links increases a few parameters. But even if
only every two neurons are intra-linked in a layer, the improvement is exponentially dependent on
depth, i.e., approximately O( 32 )

k, which is considerable when a network is deep. Therefore, they
can serve as an economical yet powerful add-on to the model. Second, the complexity of computing
a layer with W neurons in a classical ReLU DNN is W 2 multiplications and W 2 additions while
computing an intra-layer linked ReLU DNN of the same size and with every ni neurons intra-
linked needs W 2 multiplications and W 2 + (ni − 1) · [W/ni] ≈ W 2 + W additions, where [·]
is a ceiling function, which is still quadratic. Thus, the computational cost incurred by adding
intra-links is minor. When applying intra-layer links in CNNs, the links can be added between
different channels. The computational cost is also minor. Third, the usage of intra-layer links may
hurt the hardware optimization to some extent. However, we can design acceleration algorithms
for intra-linked networks. Specifically, the acceleration of RNNs and LSTMs has been intensively
investigated. We can translate ideas therein such as sequence bucketing to solve the training issues
of intra-linked networks. In brief, intra-layer links are not subjected to a high computational and
parametric cost and a low training speed.

We evaluate the proposed intra-layer links in both regression and classification tasks. We first con-
duct regression experiments on 5 synthetic polynomials, 2 widely-used public datasets, and 3 real-
world datasets. Results suggest that the intra-layer links can boost the network’s representation
power. Second, we demonstrate the effectiveness and efficiency of intra-layer links on classification
tasks using 8 tabular datasets, 2 fault diagnosis datasets, and 2 image benchmarks (CIFAR100 and
Tiny-ImageNet). The experiments are implemented in Tensorflow using a CPU Intel i7-11800H
processor at 2.3Hz and a GPU NVIDIA T600.

H.1 REGRESSION EXPERIMENTS

H.1.1 RESULTS ON SYNTHETIC DATASETS

We synthesize five elementary polynomials whose expressions are shown in Table 1. The normally-
distributed noise with 0 mean and 0.5 variance is added into the synthesized signals. A total of 1,000
points are sampled from [−3, 3] with an equal distance for training. The width of each layer is 8,
and depths of each network are respectively set to [3, 5, 11, 11, 11]. The epoch is 200, the batch size
is 128, and ‘Adam’ (Kingma & Ba, 2014) is the optimizer. The schedule for the learning rate is
‘ReduceLROnPlateau’. To test the generalization accuracy of the model, 1,000 points are sampled
from [−4, 4], none of which appears in the training. Comparisons between fully-connected networks
and intra-layer links are shown in Table 2 and Figure 10.

In Table 2, we quantitatively compare the approximation errors between intra-linked and fully-
connected networks using the mean squared error (MSE). We verify two kinds of fully-connected
networks: one (s1) has the same width and depth as intra-linked networks; the other (s2) is deeper.
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Table 1: The expressions of synthetic polynomials.

Synthetic functions Expression
p1(x) x2 + x

p2(x) x3 + x2 + x

p3(x) x4 + x3 + x2 + x

p4(x) x5 + x4 + x3 + x2 + x

p5(x) x6 + x5 + x4 + x3 + x2 + x

Table 2: MSE values of intra-linked and fully-connected networks on synthetic experiments. #PRM denotes
the number of parameters.

Synthetic functions Indicators Intra-layer Fully-connected (s1) Fully-connected (s2)

p1(x)
MSE 0.6616 1.5755 1.0700

#PRM 99 97 169

p2(x)
MSE 43.6248 46.9811 45.4330

#PRM 245 241 313

p3(x)
MSE 432.0960 491.0851 439.0270

#PRM 683 673 745

p4(x)
MSE 17,204.2516 23,397.8515 17,936.0898

#PRM 829 817 889

p5(x)
MSE 304,183.1563 334,655.9375 307,388.1875

#PRM 829 817 889
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Figure 10: Polynomial function. (a)∼(e) are separately the polynomial functions from the second order to the
sixth order.

Table 3: Statistics of 5 regression tabular datasets.

Datasets Instances Features Features Type
Boston housing 506 13 discrete

California housing 20640 8 discrete
Walmart 97056 20 discrete

Energy consumption 35024 6 continuous
Wind power 49166 5 continuous

Thus, s1 has comparable parameters as intra-linked networks, and s2 has more. We can draw two
highlights from Table 2. First, when the parameters are comparable, intra-linked networks can lead
to a huge improvement in MSE compared with fully-connected networks (s1). For example, in
approximating p1(x), the MSE decreases by 58%. Second, when the fully-connected networks go
deeper (s2), the intra-linked network can still perform better.

Figure 10 shows qualitatively the generalization between intra-linked and fully-connected (s1) net-
works. We find that in [−3, 3] both intra-linked and fully-connected networks agree with the original
functions well. However, in approximating peripheral parts of the function like [−4,−3] and [3, 4],
intra-linked networks outperform fully-connected (s1) networks.

H.1.2 RESULTS ON REAL-WORLD DATASETS

Furthermore, encouraged by positive results on synthetic experiments, we continue the regression
experiments on 5 widely-used real-world datasets: Boston housing1, California housing2, Walmart3,

1https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
2https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
3https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
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Figure 11: Real-world regression experiments. (a) Boston house price; (b) California house price; (c) Walmart
sales forecasting; (d) Load consumption forecasting; (e) Wind power forecasting.
Table 4: MSE values of intra-linked and fully-connected networks on real-world datasets. #PRM denotes the
number of parameters.

Datasets Indicators Intra-layer Fully-connected (s1) Fully-connected (s2)

Boston house price
MSE 5.3113 10.5220 5.9844

#PRM 69,635 69,633 135,425

California house price
MSE 0.2518 0.2664 0.2631

#PRM 69,635 69,633 135,425

Walmart sales forecasting
MSE 88,556,472.0 111,667,784 110,398,056

#PRM 466,185 466,177 531,969

load consumption forecasting
MSE 7,922,336.5 8,191,562.55 8,191,562.55

#PRM 923,152 923,137 988,929

Wind power forecasting
MSE 3,812.82 3,991.2966 3,838.5940

#PRM 593,931 593,921 659,713

Energy consumption4, Wind power5. The statistics of these datasets are summarized in Table 3. For
small datasets, they are split into training and test sets with a ratio of 0.9:0.1. For the rest large
datasets, we split them with a ratio 0.8:0.1:0.1. Each layer has 256 neurons, and depths of each
network are respectively [2, 2, 8, 15, 10]. The epoch is 500, and the batch size is 128. Other hyper-
parameters are the same as synthetic experiments.

Consistent with synthetic experiments, Tabel 4 summarizes the MSE and parameters of each net-
work. s1 has the same width and depth as intra-linked network, and s2 has one more layer. We also
find the intra-linked networks consistently outperform fully-connected networks (s1 and s2) on the 5
real-world datasets. When intra-linked and fully-connected networks have comparable parameters,
intra-linked networks can lead by a large margin.

Figure 11 shows visually the regression results between intra-linked and fully-connected networks
on 5 datasets. By adding intra-layer within each layer, the regression performance has significant
improvement in real-world regression tasks especially at peaks. For example, the Walmart sales
predicted by intra-linked network at Day 10, and 19 are closer to the actual sales. For the load
consumption prediction, intra-linked networks generate curves that align with the true load better,
especially at 3hr and 42hr.

In brief, in regression tasks, the intra-linked network takes the lead by a large margin. Such a
superiority corroborates our theoretical analysis that adding intra-layer links can boost the network’s
representation power.

H.2 CLASSIFICATION

H.2.1 RESULTS ON TABULAR DATASETS

We first investigate the effectiveness of intra-layer links on classification tasks using tabular datasets.
The tabular datasets contain Gaussian quantiles6, Breast cancer7, kddcup998, Wine9, Banknote au-

4https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
5https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting
6https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make-gaussian-quantiles.html
7https://archive.ics.uci.edu/ml/datasets/Breast+cancer+Wisconsin+(Diagnostic)
8http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
9https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load wine.html
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Table 5: Statistics of 10 classification tabular datasets.

Datasets Instances Classes Features Features Type
Gaussian quantiles 10000 2 2 discrete

Breast cancer 569 2 30 discrete
kddcup99 494021 23 41 discrete

Concentric circles 16000 4 2 discrete
Banknote authentication 1347 2 4 discrete

Heart Failure 299 2 12 discrete
Ionosphere 350 2 34 discrete

Mobile Price 2000 4 20 discrete
CWRU 2400 10 1200 continuous

Motor fault 3392 6 120 continuous

thentication10, Heart Failure11, Ionosphere12, Mobile Price13, CWRU14, Motor fault15. They are
publicly available from the Python scikit-learn package, UCI machine learning repository, Kaggle
and so on. The Concentric circles and Gaussian quantiles are two synthetic datasets, and the rest are
all real-world datasets including medical dataset, network intrusion detection dataset (Kddcup99),
climate dataset (Ionosphere), mobile price dataset and fault diagnosis dataset etc.. All the statistics
of tabular datasets are summarized in Table 5.

Similar to regression experiments, Table 6 indicates as well that intra-layer links have stronger ex-
pressivity than fully-connected networks. When evaluated on simple datasets such as concentric
circles, Gaussian quantiles, and Kddcup99, the improvement is moderate. This is because both
intra-layer links and fully-connected networks has the ability to extract features for accurate classi-
fication. In contrast, the intra-layer links perform much better on complex datasets. For example,
for the fault diagnosis in CWRU, the gains are respectively 2.04% and 1.2%. These improvements
in test accuracy substantiate the effectiveness of intra-layer links.

H.2.2 IMAGE CLASSIFICATION EXPERIMENTS

To further illustrate the effectiveness of intra-linked networks, we conduct two image classification
experiments utilizing CIFAR100 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang, 2015).
In the intra-linked layer, channels are equally divided into two parts, and each part is used to capture
the image features. The outputs of one part are added to the other in the form of shortcuts by
trainable parameters, and then concatenated. Mathematically, the input of an intra-linked layer is
[a, b], while the output is [ReLU(a), ReLU(ReLU(a) + b)]. The intra-linked network contains 1
convolutional layer, several intra-link layers, and 1 fully-connected layer with ‘softmax’. We use the
same hyperparameters as ResNet18 (DeVries & Taylor, 2017).

Taking ResNet18 as a benchmark, Table 7 shows that when we use fewer convolutional kernels in
an intra-linked network, it has similar performance on CIFAR100 but significantly better perfor-
mance on Tiny-ImageNet compared to ResNet18, which means adding intra-layer links can boost
the network’s representation power.

10http://archive.ics.uci.edu/ml/datasets/banknote+authentication
11https://archive.ics.uci.edu/ml/datasets/heart+disease
12http://archive.ics.uci.edu/dataset/52/ionosphere
13https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification
14https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures
15https://gitlab.com/power-systems-technion/motor-faults
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Table 6: Test accuracy of intra-linked and fully-connected networks on tabular classification datasets. #PRM
denotes the number of parameters.

Datasets Indicators Intra-layer Fully-connected (s1) Fully-connected (s2)

Concentric circles
ACC 99.93% 99.75% 99.43%

#PRM 61 60 132

Gaussian quantiles
ACC 97.2% 96.6% 96.1%

#PRM 554 546 618

Breast cancer
ACC 98.246% 96.49% 96.86%

#PRM 2,380,812 2,380,802 2,643,458

Kddcup99
ACC 99.95% 99.94% 99.945%

#PRM 295,961 295,959 558,615

Banknote authentication
ACC 100% 98.52% 99.26%

#PRM 3,587 3,586 266,242

Heart Failure
ACC 83.33% 80.00% 76.67%

#PRM 795,654 795,650 1,058,306

Ionosphere
ACC 100% 97.14% 94.28%

#PRM 806,918 806,914 1,069,570

Mobile Price
ACC 92.5% 91.5% 92%

#PRM 806,918 806,914 1,069,570

CWRU
ACC 89.12% 87.08% 87.92%

#PRM 2,105,873 2,105,866 2,368,522

Motor fault
ACC 98.53% 97.35% 97.64%

#PRM 2,166,287 2,166,278 2,428,934

Table 7: Test accuracy of intra-linked and fully-connected networks on two image datasets. #PRM denotes the
number of parameters.

Datasets Indicators Intra-layer ResNet18

CIFAR100
ACC 75.34% 75.61%

#PRM 6.55M 11.2M

Tiny-ImageNet
ACC 46.60% 42.51%

#PRM 5.07M 11.2M
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