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ABSTRACT

We describe a minimalistic and interpretable method for unsupervised represen-
tation learning that does not require data augmentation, hyperparameter tuning,
or other engineering designs, but nonetheless achieves performance close to the
state-of-the-art (SOTA) SSL methods. Our approach leverages the sparse mani-
fold transform [21], which unifies sparse coding, manifold learning, and slow fea-
ture analysis. With a one-layer deterministic (one training epoch) sparse manifold
transform, it is possible to achieve 99.3% KNN top-1 accuracy on MNIST, 81.1%
KNN top-1 accuracy on CIFAR-10, and 53.2% on CIFAR-100. With simple gray-
scale augmentation, the model achieves 83.2% KNN top-1 accuracy on CIFAR-10
and 57% on CIFAR-100. These results significantly close the gap between sim-
plistic “white-box” methods and SOTA methods. We also provide visualization to
illustrate how an unsupervised representation transform is formed. The proposed
method is closely connected to latent-embedding self-supervised methods and can
be treated as the simplest form of VICReg. Though a small performance gap re-
mains between our simple constructive model and SOTA methods, the evidence
points to this as a promising direction for achieving a principled and white-box
approach to unsupervised representation learning, which has potential to signifi-
cantly improve learning efficiency.

1 INTRODUCTION

Unsupervised representation learning (aka self-supervised representation learning) aims to build
models that automatically find patterns in data and reveal these patterns explicitly with a representa-
tion. There has been tremendous progress over the past few years in the unsupervised representation
learning community, and this trend promises unparalleled scalability for future data-driven machine
learning. However, questions remain about what exactly a representation is and how it is formed in
an unsupervised fashion. Furthermore, it is unclear whether there exists a set of common principles
underlying all these unsupervised representations.

Many investigators have appreciated the importance of improving our understanding of unsupervised
representation learning and taken pioneering steps to simplify SOTA methods [18; 19; 114; 22], to
establish connections to classical methods [69; 4], to unify different approaches [4; 39; 97; 62; 55],
to visualize the representation [9; 116; 15], and to analyze the methods from a theoretical perspective
[3; 45; 107; 4]. The hope is that such understanding will lead to a theory that enables us to build
simple, fully explainable “white-box” models [14; 13; 71] from data based on first principles. Such
a computational theory could guide us in achieving two intertwined fundamental goals: modeling
natural signal statistics, and modeling biological sensory systems [83; 31; 32; 65].

Here, we take a small step toward this goal by building a minimalistic white-box unsupervised learn-
ing model without deep networks, projection heads, augmentation, or other similar engineering de-
signs. By leveraging the classical unsupervised learning principles of sparsity [81; 82] and low-rank
spectral embedding [89; 105], we build a two-layer model that achieves non-trivial benchmark re-
sults on several standard datasets. In particular, we show that a two-layer model based on the sparse
manifold transform [21], which shares the same objective as latent-embedding SSL methods [5],
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achieves 99.3% KNN top-1 accuracy on MNIST, 81.1% KNN top-1 accuracy on CIFAR-10, and
53.2% on CIFAR-100 without data augmentation. With simple grayscale augmentation, it achieves
83.2% KNN top-1 accuracy on CIFAR-10 and 57% KNN top-1 accuracy on CIFAR-100. These re-
sults close the gap between a white-box model and the SOTA SSL models [18; 20; 5; 117]. Though
the gap remains, narrowing it further potentially leads to a deeper understanding of unsupervised
representation learning, and this is a promising path towards a useful theory.

We begin the technical discussion by addressing three fundamental questions. In Section 2, we
then revisit the formulation of SMT from a more general perspective and discuss how it can solve
various unsupervised representation learning problems. In Section 3, we present benchmark results
on MNIST, CIFAR-10, and CIFAR-100, together with visualization and ablations. Additional re-
lated literature is addressed in Section 4, and we offer further discussion in Section 5. This paper
makes four main contributions. 1) The original SMT paper explains SMT from only a manifold
learning perspective. We provide a novel and crucial interpretation of SMT from a probabilistic co-
occurrence point of view. 2) The original SMT paper potentially creates the misleading impression
that time is necessary to establish this transformation. However, this is not true. In this paper, we
explain in detail how different kinds of localities (or similarities) can be leveraged to establish the
transform. 3) We provide benchmark results that support the theoretical proposal in SMT. 4) We
provide a connection between SMT and VICReg (and other SSL methods). Because SMT is built
purely from neural and statistical principles, this leads to a better understanding of self-supervised
learning models.

Three fundamental questions:

What is an unsupervised (self-supervised) representation? Any non-identity transformation of
the original signal can be called a representation. One general goal in unsupervised representation
learning is to find a function that transforms raw data into a new space such that “similar” things are
placed closer to each other and the new space isn’t simply a collapsed trivial space1. That is, the
important geometric or stochastic structure of the data must be preserved. If this goal is achieved,
then naturally “dissimilar” things would be placed far apart in the representation space.

Where does “similarity” come from? “Similarity” comes from three classical ideas, which have
been proposed multiple times in different contexts: 1) temporal co-occurrence [112; 119], 2) spatial
co-occurrence[90; 28; 34; 103; 84], and 3) local metric neighborhoods [89; 105] in the raw signal
space. These ideas overlap to a considerable extent when the underlying structure is geometric,2
but they can also differ conceptually when the structure is stochastic. In Figure 1, we illustrate the
difference between a manifold structure and a stochastic co-occurrence structure. Leveraging these
similarities, two unsupervised representation learning methods emerge from these ideas: manifold
learning and co-occurrence statistics modeling. Interestingly, many of these ideas reach a low-rank
spectral decomposition formulation or a closely related matrix factorization formulation [112; 89;
105; 27; 54; 44; 86; 46; 21].

The philosophy of manifold learning is that only local neighborhoods in the raw signal space can
be trusted and that global geometry emerges by considering all local neighborhoods together —
that is, “think globally, fit locally”[92]. In contrast, co-occurrence [25] statistics modeling offers a
probabilistic view, which complements the manifold view as many structures cannot be modeled by
continuous manifolds. A prominent example comes from natural language, where the raw data does
not come from a smooth geometry. In word embedding [77; 78; 86], “Seattle” and “Dallas” might
reach a similar embedding though they do not co-occur the most frequently. The underlying reason
is that they share similar context patterns [68; 118]. The probabilistic and manifold points of view
complement each other for understanding “similarity.” With a definition of similarity, the next step
is to construct a non-trivial transform such that similar things are placed closer to one another.

How do we establish the representation transform? Through the parsimonious principles of
sparsity and low-rank spectral embedding. The general idea is that we can use sparsity to de-
compose and tile the data space to build a support, see Figure 2(a,b). Then, we can construct our
representation transform with low-frequency functions, which assign similar values to similar points
on the support, see Figure 2(c). This process is called the sparse manifold transform [21].

1An obvious trivial solution is to collapse every data point to a single point in the new space.
2If we consider that signals which temporally or spatially co-occur are related by a smooth transformation,

then these three ideas are equivalent.
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Figure 1: Two different points of view. (a) Manifold: There are three patches in the dashed boxes.
Let’s assume there is a path between them on a manifold of the image patch space; then, their rela-
tionship can be found based on either the Euclidean neighborhoods, spatial co-occurrence, or tem-
poral co-occurrence from smooth transformation. (b) Probabilistic: For the two red boxes (“leg”),
it is unclear whether there is a path between them in the patch space. However, they can still be
considered to be similar under spatial co-occurrence because they appear in the same context. These
two patches both co-occur with the “grass land” (blue boxes) and “elbow or body” (green boxes).
Temporal co-occurrence has a similar effect.

2 UNSUPERVISED LEARNING WITH THE SPARSE MANIFOLD TRANSFORM

The sparse manifold transform. The sparse manifold transform (SMT) was proposed to unify
several fundamental unsupervised learning methods: sparse coding, manifold learning, and slow
feature analysis. The basic idea of SMT is: 1) first to lift the raw signal x into a high-dimensional
space by a non-linear sparse feature function f , i.e. α⃗ = f(x⃗), where locality and decomposition
are respected. 2) then to linearly embed the sparse feature α⃗ into a low-dimensional space, i.e., find
β⃗ = Pα⃗, such that the similarity or “trajectory linearity”[21] is respected. As we mentioned earlier,
for each data point xi, we can choose to use either its local neighbors in the raw signal space, its
spatial co-occurrence neighbors, or its temporal co-occurrence neighbors to define similarity. Let’s
denote the neighbors of x⃗i as x⃗n(i), and denote α⃗i as the sparse feature of x⃗i. The optimization
objective of finding similarity-preserving linear projection P is the following:

min
P

∑
i

∑
j∈n(i)

∥Pα⃗i − Pα⃗j∥2F , s.t. P E[α⃗iα⃗
T
i ]P

T = I (1)

Example sparse feature extraction function α⃗ = f(·) could be sparse coding [82] and vector quanti-
zation [42], which will be further explained in Section 3.

Similarity can be considered as a first-order derivative (see Appendix L for detailed explaination).
A more restrictive requirement is linearity [89], which is the second-order derivative. Then the
objective is changed to a similar one:

min
P

∑
i

∥Pα⃗i −
∑

j∈n(i)

w(i, j)Pα⃗j∥2F , s.t. P E[α⃗iα⃗
T
i ]P

T = I (2)

where
∑

j∈n(i) w(i, j) = 1. Several ways to acquire w(·, ·) are: to use locally linear interpolation,
temporal linear interpolation, or spatial neighbor linear interpolation. If we write the set {α⃗i} as
a matrix A, where each column of A corresponds to the sparse feature of a data point, then both
Optimization 1 and Optimization 2 can be formulated as the following general formulation [21]:

min
P
∥PAD∥2F , s.t. PV PT = I (3)

where D is a differential operator, V = 1
NAAT and N is the total number of data point. D corre-

sponds to a first-order derivative operator in Optimization 1 and a second-order derivative operator
in Optimization 2. For Optimization 1, D has M columns, where M denote the number of pair
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of neighbors. D = [d1,d2, · · ·dM] and for kth pair of neighbors xi, xj , we have dki = 1 and
dkj = −1. All other elements of D are zero. For Optimization 2, Dji = −w(i, j) for j ∈ n(i),
Dii = 1, and Dji = 0 otherwise. The solution to this generalized eigen-decomposition problem is
given [109] by P = UV − 1

2 , where U is a matrix of L trailing eigenvectors (i.e. eigenvectors with
the smallest eigenvalues) of the matrix Q = V − 1

2ADDTATV − 1
2 . Please note that if U contains all

of the eigenvectors of Q, then the solution of SMT reduces to the whitening matrix.

Figure 2: Manifold disentanglement with SMT. (a) Data distribution along two entangled 1D
spiral manifolds in the 2D ambient space. (b) Sparse feature (dictionary) learned with 1-sparse
sparse coding is shown as dots. They serve as a set of landmarks to tile the data manifolds. Given two
points marked as red and green crosses, the 1-sparse feature function maps them to the corresponding
dictionary element, marked as red and green dots. (c) Spectral embedding assigns similar values to
nearby dictionary elements. Each embedding dimension is a low-frequency function defined on the
sparse dictionary support. We show the first 4 embedding dimensions, i.e., the first 4 rows of P ,
P1,·, P2,·, P3,·, and P4,·. The color represents the projection values for each dictionary element. (d)
The sparse manifold transform is a vector function Pf(·), and we plot the first four dimensions of
SMT over the data distribution. The color represents the projection values for each data point. (e)
We show the Euclidean neighborhood of the point marked by a blue cross in the original data space.
(f) After the sparse manifold transform, we show the cosine similarity neighborhood of the point
marked by the same blue cross in the representation space.

Manifold point of view: a 2D nonlinear manifold disentanglement problem. Let’s consider a
spiral manifold disentanglement problem in a 2D space shown in Figure 2(a). As it is not a linearly-
separable problem, to construct a representation function to disentangle the two spiral manifolds,
we need to leverage nonlinearity and give the transform function enough flexibility. Let’s first use 1-
sparse sparse coding to learn an overcomplete dictionary Φ ∈ R2×K 3, i.e. a set of K landmarks [98;
27], to tile the space. This dictionary serves as the support of the representation function, as shown
in Figure 2(b). This dictionary turns a data point x⃗ into a 1-sparse vector α⃗ = f(x⃗) = argminα⃗∥x⃗−
Φα⃗∥, s.t.∥α⃗∥0 = 1, ∥α⃗∥1 = 1; α⃗ ∈ IRK is an 1-hot vector and denotes the closest dictionary element
ϕ⃗ to x⃗. Next, we seek a linear projection P to embed the sparse vector α⃗ to a lower dimensional
space, β⃗ = Pf(x⃗) and β⃗ ∈ IRd, which completes the transform. Each column of P ∈ IRd×K

corresponds to a d-dimensional vector assigned to the corresponding entry of α. The ith row, Pi,·,
of P is an embedding dimension, which should assign similar values to the nearby landmarks on
the manifolds. As we mentioned earlier, there are three localities to serve as similarities, where
they behave similarly in this case. With either of the three, one can define the Optimization 1 or
Optimization 2. In this simple case, the different similarity definitions are almost identical, leading
to a spectral solution of P . Let’s choose a simple construction [69]: given a data point x⃗ ∈ IR2, add
Gaussian noise ϵ1, ϵ2 to it to generate two augmented samples x⃗1 = x1+ϵ1 and x⃗2 = x2+ϵ2, which
are marked as the red and green crosses in Figure 2(b) and are considered as similar data points.
f(x⃗1) and f(x⃗2) are marked as red and green dots (landmarks). So the objective in Optimization 1
is to find P such that Ex∼p(x),ϵ1,ϵ2∼N (0,I)∥Pf(x1 + ϵ1)− Pf(x2 + ϵ2)∥2 is minimized. We show
the solution in Figure 2(c) with the first four embedding dimensions, {P1,·, P2,·, P3,·, P4,·} plotted,
where the color reflect their values at each dictionary element. As we can see, each embedding

31-sparse sparse coding is equivalent to clustering. Sampling the data as the dictionary also suffices here.
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dimension, e.g. Pi,·, is essentially a low-frequency function. P1,·, P2,· are piecewise constant
functions on the union of the manifolds. Essentially, either P1,· or P2,· will suffice to determine
which manifold a point belongs to. P2,·, P3,· are non-constant linear functions along the manifolds.
A linear combination of P3,· and P4,· will preserve the coordinate information of the manifolds.
Now with both the sparse feature function f and the spectral embedding P , we have constructed a
sparse manifold transform, i.e. β⃗ = Pf(x⃗). In Figure 2(d), we show how each dimension of this
transform assigns different values to each point in the original 2D space, and the points from the
same manifold are placed much closer in the representation space as shown in Figure 2(f).

Probabilistic point of view: co-occurrence modeling. Many related variations of spectral and
matrix factorization methods have been widely used to build continuous word representations. SMT
formulation bears a probabilistic point of view, which complements the manifold perspective. A
notable example is the word co-occurrence problem. Here we present an SMT-word embedding.
Given a corpus and a token dictionary, we can treat each token as a 1-hot vector α⃗. Then we can
seek a linear projection P such that tokens co-occur within a certain size context window are linearly
projected closer. After we solve Optimization 1, each column of P corresponds to a continuous
embedding of an element from the token dictionary. We train SMT on WikiText-103 [76] and
provide the visualization result in Appendix A. As we discussed earlier, “Seattle” and “Dallas” may
reach a similar embedding though they do not co-occur the most frequently. The probabilistic view
of SMT explains the phenomenon that two embedding vectors can be close in the representation
space if they frequently appear in similar contexts, though they may not be close in the signal space.

Sparsity, locality, compositionality, and hierarchy. (a) Sparsity: In the sparse manifold transform,
sparsity mainly captures the locality and compositionality, which builds a support for the spectral
embedding. Spectral embedding, on the other hand, would assign similar values to similar points on
the support. (b) Locality: In a low-dimensional space, e.g., the 2D manifold disentanglement case,
with enough landmarks, using 1-sparse feature fvq to capture locality will suffice, and SMT can
directly solve the problem as we showed earlier. Please note that, in this simple case, this process
is not different from manifold learning [89; 105] and spectral clustering [80]. One can also use
a kernel, e.g. RBF kernel or the heat kernel, to respect locality by lifting to a higher or infinite
dimensional space [95; 112; 6; 102; 8]. (c) Compositionality: If the signal comes from a high-
dimensional space, e.g. images, then we may need to build the representation for image patches
first since even local neighborhoods can become less reliable in high-dimensional space with finite
samples. If the patch space is simple enough, e.g. MNIST, using 1-sparse vector quantization as the
sparse feature fvq would be sufficient to capture the locality in patch space. As we will show later in
Section 3, the SMT with 1-sparse feature fvq achieves over 99.3% top-1 KNN accuracy. For more
complex natural images, e.g. CIFAR or ImageNet, compositionality exists even in the patch space.
So 1-sparse feature becomes less efficient and may compromise the fidelity of the representation. As
we will show, the general sparse feature will achieve better performance than the 1-sparse feature
in this case. (d) Hierarchy: For high-resolution images, we may need to stack several layers of
transforms in order to handle the hierarchical representation [108; 35; 52].

SMT representation for natural images. We use SMT to build representation for image patches
and aggregate patch representation of an image as the image representation. For an S×S image, we
extract every T ×T image patches as shown in Figure 3. Each of the image patches is whitened and
L2-normalized, which resembles the early visual system processing [110; 74]. Given an image, we
denote the pre-processed image patches as {x⃗ij}, where i indicates the vertical index of the patch
and j indicates the horizontal index. For each image patch {x⃗ij}, we define its neighbors to be
other patches within a certain pixel range from it on the same image, i.e., n(ij) = { lm; |i − l| ≤
d and |j − m| ≤ d}. Given a sparse feature function f , we would like to map these neighboring
patches to be close in the representation space. If we choose d = S − T + 1, then all the patches
from the same image are treated as neighbors to each other. Given f , d, and a set of training images,
we can calculate ADDTAT , V , and solve Optimization 1 for P . 4 The representation of patch
x⃗ij is β⃗ij = Pf(x⃗ij) with a L2 normalization. If we denote all of the patch representations from
an image as tensor B, the image representation is z⃗ = L2 normalize pw (avg pool(B; ks, stride)).
avg pool(·; ks, stride) denotes the average pooling operator, where ks and stride are the kernel size
and stride size of the pooling respectively. L2 normalize pw denotes a point-wise L2 normalization.
We use tensor z⃗ as a vector for an image representation. The detailed settings, e.g. d, ks, stride, etc.,

4While a SGD algorithm can be used[21], we use deterministic algorithm in this paper.
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are left to the experiments section. In this work, we primarily use the soft-KNN classifier to evaluate
the quality of representation.

Connection to the deep latent-embedding methods. There are important connection between the
SOTA latent-embedding SSL methods[18; 5]. In particular, Optimization 1 can be considered the
simplest form of VICReg [5], whereas the VC regularization is replaced by a hard constraint, and a
sparse feature function replaces the deep neural encoder. See exact formulation in Appendix K. This
connection is even stronger given the evidence that VICReg is essentially building a representation
of image patches [22]. In this sense, SMT can be considered the simplest form of VICReg.

Figure 3: SMT representation of an image and its patches. An S × S image is first decomposed
into (S − T + 1) × (S − T + 1) overlapping image patches of size T × T . Each image patch is
whitened and the sparse feature is calculated, α⃗ij = f(x⃗ij), where ij indicates the spatial index of
the image patch and x⃗ij is the whitened patch. The representation of patch x⃗ij is β⃗ij = Pf(x⃗ij)

with a L2 normalization. We then aggregate these patch representations β⃗ij via spatial local average
pooling and L2-normalize at every spatial location to obtain the final image-level representation z⃗.

3 EMPIRICAL RESULTS

In this section, we first provide the benchmark results on MNIST, CIFAR-10, and CIFAR-100.
Qualitative visualization is also provided for a better understanding. We also compare 1-sparse
feature fvq and a more general sparse feature fgq . α⃗ = fvq(x⃗;D) refers to the 1-sparse vector
quantization sparse feature, where α⃗i = 1 for i = argmaxi∥x⃗ − D·,i∥2 and D is a dictionary.
We denote the SMT representation with fvq sparse feature as SMT-VQ. α⃗ = fgq(x⃗;D, t) refers
to a more general sparse function, where each column of dictionary D is an image patch and t is
a given threshold. For α⃗ = fgq(x⃗;D, t), the ith entry of α⃗ is 1 if only if the cosine similarity
between x⃗ and ith dictionary element pass the threshold, i.e., αi = 1 if cos(x⃗, D·,i) ≥ t and
αi = 0 otherwise. We denote the SMT representation with fgq feature as SMT-GQ. We find fgq
achieves similar performance as the sparse coding feature in benchmarks, and it’s more efficient in
experiments since it does not involve a loopy inference. For both MNIST and CIFAR, we use 6x6
image patches, i.e., T = 6. All the image patches are whitened, and the whitening transform is
described in Appendix C. Once patch embeddings are computed, we use a spatial average pooling
layer with ks = 4 and stride = 2 to aggregate patch embeddings to compute the final image-level
embeddings.

MNIST. For MNIST, 1-sparse feature fvq is sufficient to build good support of the patch space. The
dictionary D ∈ IR36×K is learned through 1-sparse sparse coding, which is equivalent to clustering
and can be implemented with any clustering algorithm. The centroid of each cluster will serve
as a dictionary element. The detailed learning procedure is left to Appendix D. The inference is
equivalent to vector quantization. We chose the patch embedding dimension as 32 because further
increasing the dimension does not improve the performance. In Table 1, we compare different
dictionary sizes and different spatial co-occurrence ranges. We also compare the SMT embedding
with the GloVe embedding. Treating each image patch as a token and the entire image patch as a
sentence, we can train a GloVe word embedding model on MNIST patches. We provide a GloVe
embedding with optimized settings. As we can see in Table 1, GloVe embedding works slightly
worse in this case, even with a large dictionary size. Further, we can find that a small context range
works slightly better for MNIST. This is probably due to the fact that the patch space of MNIST
is closer to a manifold, and co-occurrence is less informative in this case. To further verify this
hypothesis, we provide an ablation study on embedding dimensions in Table 2. Even if we reduce
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the embedding dimension to 4 5, the top-1 KNN accuracy is still 98.8%. This implies that the MNIST
patch space might be close to a manifold like high-contrast natural image patches [67; 26; 12].

Table 1: Evaluation of SMT representation on MNIST. The table shows the evaluation result of
SMT embedding and GloVe embedding using a KNN classifier. We compare different dictionary
size: 16384 vs. 65536 and context range: 3-Pixel (d = 3) vs. Whole Image (d = 28 − 6 + 1). We
use 32 as the embedding dimension. As shown in the table, GloVe embedding works slightly worse
than SMT embedding.

Co-Occurrence Context Range SMT-VQ (16384) SMT-VQ (65536) SMT-VQ (GloVe, 100K)

Whole Image 99.0% 98.9% 98.8%
3 Pixels 99.2% 99.3% 99.0%

Table 2: Low dimensionality of MNIST patch space. The table shows the effect of the embedding
dimension of SMT on the KNN evaluation accuracy. With only a 4-dimensional embedding for
each patch, SMT can still achieve 98.8% KNN accuracy. The quick accuracy drop at 3-dimensional
embedding space may imply that the MNIST patch space can be approximately viewed as a 3-
manifold since the 4-dimensional patch embedding is L2-normalized and on a 3-sphere.

Emb Dim=2 Emb Dim=3 Emb Dim=4 Emb Dim=8 Emb Dim=16 Emb Dim=32

KNN Acc 97.1% 98.3% 98.8% 99.0% 99.1% 99.2%

CIFAR-10 and CIFAR-100. For the CIFAR benchmarks, we compare both fvq(·;D) and
fgq(·;D, t). The dictionary D used in fvq is learned through 1-sparse sparse coding, and the dictio-
nary D used in fgq is just randomly sampled from all image patches for efficiency purposes. Since
fvq with color patches underperforms that with grayscale patches, we choose to experiment mostly
with fgq on CIFAR benchmarks. For fgq , t is set to 0.3 with color patches and 0.45 with grayscale
patches. We choose the patch embedding dimension as 384. Further, with color patches, dropping
the first 16 embedding dimensions of P improves the accuracy by about 1%. We compare the per-
formance of SMT with SOTA SSL models, specifically, SimCLR and VICReg with a ResNet 18
backbone. We train these SSL models using random resized crop and random horizontal flip as de-
fault data augmentations. For a fair comparison, SMT training uses both the original version and the
horizontally flipped version of the training set. We also experiment with different color augmentation
schemes. For “Grayscale Image Only”, we train both SMT and SSL models using only grayscale
images. For “Original + Grayscale”, we train SMT on both color images and grayscale images,
then concatenates the embedding of each color image with the embedding of its grayscale version.
We train SSL models with additional “random grayscale” color augmentations. With a two-layer
deterministic construction using only image patches, SMT significantly outperforms SimCLR and
VICReg, with no color augmentation. With “Grayscale Image Only” color augmentation, SMT-GQ
achieves similar performance as SimCLR and VICReg. With “Original + Grayscale” augmenta-
tion, SMT-GQ performs on par with SimCLR and VICReg without colorjitter and several additional
color augmentations. With full data augmentation, SimCLR and VICReg outperform SMT-GQ.
However, we did not find a straightforward way to add these color augmentations to SMT-GQ. We
can observe the same trend on CIFAR-100. Interestingly, SMT-GQ always significantly outperforms
SimCLR and VICReg before we add color jittering and additional data augmentations. We provide
further ablation studies in Appendix. Appendix G and Appendix H study how context range and the
number of training samples affect the model performance. Appendix I studies different evaluation
schemes (KNN vs. linear probing). Appendix E shows that the performance of SMT will signifi-
cantly degrade if we replace spectral embedding with other dimension reduction algorithms that do
not respect locality.

Visualization. For a better understanding, we provide a visualization of the patch embedding space
with the 1-sparse feature in Figure 4. Given a dictionary D, each dictionary element is an image
patch in the whitened space. For a dictionary element shown in the red box, we can visualize its
nearest neighbors, measured by cosine similarity, in the embedding space. All the image patches
are unwhitened before visualization, where the detail is left to the Appendix C. In Figure 4, we can
see that the nearest neighbors are all semantically similar. a) is a slightly curved stroke of a digit
in MNIST. b) shows the patch of the center of a digit “4”. c) shows a part of a “wheel” of a car

5As the embedding is further L2 normalized, this is a 3-dimensional space.
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Table 3: Evaluation of SMT and SSL pretrained model on CIFAR-10. The table shows the eval-
uation result of SMT embedding and SSL pretrained models using KNN classifiers. We evaluated
these models using various color augmentation schemes. The details of how we add color augmen-
tation to each model are explained in section 3. We tried two sparse features for SMT: fvq and fgq.
For fgq , we tried two dictionary sizes: 8192 and 65536. Both SSL models use ResNet-18 as a back-
bone and are optimized for 1000 epochs through backpropagation; SMT uses a 2-layer architecture
and is analytically solved, which can be considered as 1 epoch.

Color Augmentation SMT-VQ (100K) SMT-GQ (8192) SMT-GQ (65536) SimCLR (ResNet18) VICReg (ResNet18)

Original Image — 79.2% 81.1% 68.3% 70.2%
Grayscale Image Only 78.4% 77.5% 78.9% 80.6% 81.3%
Original + Grayscale — 81.4% 83.2% 85.7% 83.7%
Full (ColorJitter etc.) — — — 90.1% 91.1%

Table 4: Evaluation of SMT and SSL pretrained model on CIFAR-100. The table shows
the performance of SMT embedding and two other SSL pretraining methods on the CIFAR-100
dataset. The data augmentation and different SMT variations we used in this experiment are the
same as those for evaluating CIFAR-10 dataset in Table 3. For CIFAR-100 dataset, without full
color augmentation, SMT always outperforms the two SSL pretraining methods.

Color Augmentation SMT-VQ (100K) SMT-GQ (8192) SMT-GQ (65536) SimCLR (ResNet18) VICReg (ResNet18)

Original Image — 50.8% 53.2% 32.4% 32.6%
Grayscale Image 46.6% 45.8% 48.9% 43.0% 43.9%

Original + Grayscale — 53.7% 57.0% 48.9% 46.0%
Full (ColorJitter etc.) — — — 63.7% 65.4%

in CIFAR. d) shows a part of “animal face”. These results are similar to the 2D results shown in
Figure 2. Overall, the representation transform brings similar points in the data space closer in the
representation space. Additional visualization for SMT on CIFAR-10 dataset is in Appendix M.

4 MORE RELATED WORKS

There are several intertwined quests closely related to this work. Here, we touch them briefly.

The state-of-the-art unsupervised methods. Deep learning [63; 66] is the engine behind the recent
revolution of AI. Given the right craftsmanship, deep neural networks are powerful optimization
tools to allow us express various engineering objectives conveniently. It has also revolutionized the
unsupervised visual representation learning in the past few years [113; 47; 18; 5]. Understanding the
engineering advancements can help us gain deeper theoretical insights and many efforts have been
made [85; 1; 70; 2; 94] towards this goal.

To model the patterns of the signal spaces. A central challenge of modeling the signals is the
formalization of a small set of ideas for constructing the representations of the patterns[43; 79].
Wavelet transform[72; 24] was formulated to handle the sparsity in the natural signals. Steerable
and shiftable filters[38; 101; 99] were introduced to handle the discontinuity of wavelet filters with
respect to the natural transformations. Basis pursuit[17; 16] finds decomposition of a signal by
a predefined dictionary, sparse coding[81; 82], and ICA[7; 56] were proposed to learn the filters
or dictionary from data. Before the sparse manifold transform[21], many important works have
paved the way and introduced topology and transformations between the dictionary elements[57;
58; 11]. There are also several important works studying the natural image patch space with non-
parametric methods and topological tools [67; 26; 12; 48]. Manifold learning[89; 105; 44] and
spectral clustering [33; 37; 95; 75; 80; 104; 93] was proposed to model the geometric structure in
the signal space. The geometric signal processing is also an increasingly important topic[96].

Modeling of biological visual system. Exploring the geometric or statistical structure of natural
signals are also strongly motivated by computational modeling of biological visual system. Many
properties of the visual system reflect the structure of natural images [100; 59]. An early success
of this quest was that the dictionary elements learned in an unsupervised fashion closely resemble
the receptive fields of simple cells in the V1 cortex[81; 82]. In order to further understand the
visual cortex, we need to develop theories that can help to elucidate how the cortex performs the
computationally challenging problems of vision [83]. One important proposal is that the visual
cortex performs hierarchical manifold disentanglement [31; 32]. The sparse manifold transform
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Figure 4: Visualization of dictionary elements’ neighborhoods in the SMT embedding space.
We plot 4 different dictionary element and their top nearest neighbors in four subfigures, respec-
tively. For each subfigure, the dictionary element is shown in the red box. Its neighboring patches
in the representation space are ordered by their cosine similarity to the dictionary element, where
the image patches in the top left have highest cosine similarity, and image patches on the bottom
right have lowest cosine similarity. This figure is qualitatively similar to Figure 2(f) except it is in a
high-dimensional space and the semantic meaning is more complex.

was formulated to solve this problem, which is supported by a recent perceptual and neuroscience
evidence [49; 50]. There are also several related seminal works on video linearization [112; 41; 40].

To build representation models from the first principles. The now classical models before deep
learning use to be relatively simpler [64; 108; 87; 60; 111; 115; 61], where sparsity was a widely
adopted principle. While the gap between the SOTA deep learning models and the simple models is
large, it might be smaller than many expect [23; 88; 10; 106]. The quest to build “white-box” models
from the first principles [14; 13; 71] for unsupervised representation remains an open problem.

5 DISCUSSION

In this paper, we utilize the classical unsupervised learning principles of sparsity and low-rank spec-
tral embedding to build a minimalistic unsupervised representation with the sparse manifold trans-
form [21]. The constructed “white-box” model achieves non-trivial performance on several bench-
marks. Along the way, we address fundamental questions and provide two complementary points of
view of the proposed model: manifold disentanglement and co-occurrence modeling. Further, the
proposed method has close connections with VICReg [5] and several other SOTA latent-embedding
SSL models [18; 117; 39]. However, there are several important limits to this work, which point to
potential future directions. 1) We need to scale the method to larger datasets, such as ImageNet. 2)
While a two-layer network achieves non-trivial performance, we need to further construct white-box
hierarchical models to understand how a hierarchical representation is formed [51; 53]. 3) While
spectral embedding is context-independent [86; 118], there is clear benefit in building contextu-
alized embedding [29; 91; 52; 36; 116; 73]. Building a minimalistic unsupervised representation
based on contextualized embedding is an attractive topic for additional research. 4) Although we
only focus on sparse feature in this paper, other features should also be explored. We can generalize
feature extraction function f in SMT to an arbitrary function as long as it can capture the locality
and structures in the signal space. For example, if we choose f as a quadratic expansion function,
Optimization 1 would reduce to slow feature analysis [112].

The evidence shows that there considerable promise in building minimalistic white-box unsuper-
vised representation learning models. Further reducing the gap with SOTA methods and under-
standing the mechanism behind this reduction can lead us towards a theory. Minimalistic engineer-
ing models are easier to analyze and help us build a theory to identify optimality and efficiency, and
a testable theory can also facilitate modeling biological learning systems. This work takes a step
towards these goals.
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[85] Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object classifica-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2865–2873, 2015.

[86] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

[87] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for
large-scale image classification. In European conference on computer vision, pp. 143–156.
Springer, 2010.

[88] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International Conference on Machine Learning, pp.
5389–5400. PMLR, 2019.

[89] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

[90] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[91] Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Iz-
abela Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek. Detecting formal thought disorder
by deep contextualized word representations. Psychiatry Research, 304:114135, 2021.

14



Published as a conference paper at ICLR 2023

[92] Lawrence K Saul and Sam T Roweis. Think globally, fit locally: unsupervised learning of
low dimensional manifolds. Journal of machine learning research, 4(Jun):119–155, 2003.

[93] Geoffrey Schiebinger, Martin J Wainwright, and Bin Yu. The geometry of kernelized spectral
clustering. The Annals of Statistics, 43(2):819–846, 2015.

[94] Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley,
Ludwig Schmidt, and Benjamin Recht. Neural kernels without tangents. In International
Conference on Machine Learning, pp. 8614–8623. PMLR, 2020.

[95] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[96] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst. The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains. IEEE signal processing magazine, 30
(3):83–98, 2013.

[97] Ravid Shwartz-Ziv, Randall Balestriero, and Yann LeCun. What do we maximize in self-
supervised learning? arXiv preprint arXiv:2207.10081, 2022.

[98] Jorge Silva, Jorge Marques, and João Lemos. Selecting landmark points for sparse manifold
learning. In Advances in neural information processing systems, pp. 1241–1248, 2006.

[99] Eero P Simoncelli and William T Freeman. The steerable pyramid: A flexible architecture
for multi-scale derivative computation. In Proceedings., International Conference on Image
Processing, volume 3, pp. 444–447. IEEE, 1995.

[100] Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation.
Annual review of neuroscience, 24(1):1193–1216, 2001.

[101] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger. Shiftable
multiscale transforms. IEEE transactions on Information Theory, 38(2):587–607, 1992.

[102] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and
computing, 14(3):199–222, 2004.

[103] Kihyuk Sohn and Honglak Lee. Learning invariant representations with local transformations.
arXiv preprint arXiv:1206.6418, 2012.

[104] X Yu Stella and Jianbo Shi. Multiclass spectral clustering. In Computer Vision, IEEE Inter-
national Conference on, volume 2, pp. 313–313. IEEE Computer Society, 2003.

[105] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[106] Louis Thiry, Michael Arbel, Eugene Belilovsky, and Edouard Oyallon. The unreason-
able effectiveness of patches in deep convolutional kernels methods. arXiv preprint
arXiv:2101.07528, 2021.

[107] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning
dynamics without contrastive pairs. In International Conference on Machine Learning, pp.
10268–10278. PMLR, 2021.

[108] Shimon Ullman. Object recognition and segmentation by a fragment-based hierarchy. Trends
in cognitive sciences, 11(2):58–64, 2007.
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Appendix

A PROBABILISTIC POINT OF VIEW EXAMPLE: SMT WORD EMBEDDING

Figure 5: Visualization of SMT word embedding. For each word “raccoon”, “February”, “Seattle”
and “aspirin”, we plot the top 10 words that are closest to it in the embedding space, and we show
the top 10 words that co-occur with it the most. Two words are close if the cosine similarity between
their SMT embedding is high. The co-occurrence is calculated based on the entire corpus. We count
two words that co-occurred once if they appear in the same context window. The co-occurrence is
plotted against the cosine similarity.

We use SMT to build word embedding for the vocabulary in WikiText-103 to illustrate the proba-
bilistic view of SMT. Unlike in Figure 2, where the neighbor of each data point x can be interpreted
as its Euclidean neighborhood, there is no such distance function in the natural language. Never-
theless, we could still define neighborhood for each word. We define the neighbor of each word as
other words that co-occur with it in a given context.

Like the manifold learning view, where the global geometry emerges despite only local neighbor-
hoods being used during training, such a phenomenon is also observed from the probabilistic point
of view. To visualize this phenomenon from a probabilistic point of view, we measure the co-
occurrence of each pair of words and the cosine similarity between them in their SMT embedding
space. In figure 5 (a), we show the top 10 words that are closest to “raccoon” and the top 10 words
that co-occur the most with “raccoon”. We can see words like “American,” and “population” co-
occur with “raccoon” a lot, but neither “American” nor “population” are close to “raccoon” in the
embedding space. Instead, words that are semantically related to “raccoon” are close to “raccoon”
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in the embedding space, like “squirrels”, “rabbits” and “wolves”, even though they rarely co-occur
with “raccoon.” The underlying reason is that these words share the same context patterns as “rac-
coon”. Although words like “American” and “population” can co-occur with “raccoon” in phrases
like ”American raccoon” and ”raccoon’s population,” these words also co-occur with other words in
very different contexts. Thus, they could not be embedded to be close “raccoon.”

We also illustrate three more examples in figure 5. In (b), we see words that occur with “February”
are other months like ”July,” ”June,” and ”September.” In (c), words co-occur with “Seattle” the most
are other large cities like “Dallas”, “Denver” and “Pittsburgh”, even though they rarely occur with
“Seattle.” Finally, in (d), the words co-occur with “aspirin” the most are names of other medicines.

B DETAILS FOR TRAINING WORD EMBEDDING USING SMT

Dataset. We use WikiText-103 corpus [76] to train SMT word embedding, which contains around
103 million tokens. We use “Basic English Tokenizer” from torchtext, which uses minimal text
normalization for the tokenizer. We tokenize and lowercase the WikiText-103 corpus, building a
vocabulary using the top 33,474 words with the highest frequency. Notice that this dataset is signif-
icantly smaller than the Wikipedia dump used to train GLoVe in the original paper [86]. Wikipedia
is also highly biased toward technical subjects, which is reflected in our word embedding.

SMT training. First, we choose the one-hot encoding as the sparse extraction function f . Each
token in the text corpus is considered a data point x⃗i; it is first transformed into a one-hot vector
by f , then encoded to be close to its neighbor via spectral embedding. In order to perform spectral
embedding, we need to define the neighbor(context) for each word in Optimization 1. In this case,
each word’s neighbor(context) is its previous four words and the next four words. We can then
calculate ADDTAT , V , and solve Optimization 1 for P . The representation of each word in the
vocabulary is simply each column of P. This is because f is one-hot encoding, for each word x⃗i, we
have β⃗i = Pf(x⃗i) = Pei = P⃗i.

C WHITENING OF THE IMAGE PATCHES

We consider all the square image patches with size T ×T ×c, where T is patch size, and c is channel
size, as flattened vectors of dimension T 2c. We first remove the mean from each patch. Instead of
calculating the global mean like in the normal whitening procedure, we calculate the contextual
mean. Let xi denote a image patch and let Ni = {xj : j ∈ n(i)} denote the neighboring patch for
xi. We can calculate the contextual mean of xi as µi =

1
||Ni||

∑
j∈Ni

xj . Let x̄i denote the mean
removed image patch, then x̄i = xi−µi. We could also simply calculate the global mean µ and use
it to center all the image patches. However, we found using contextual mean improve performance.

We apply the whitening operator to the mean-removed image patches. Let {x⃗i} denote the pre-
processed image patches. Then we have

x⃗i = (λI +Σ)−
1
2 x̄i

To “unwhiten” the patch for visualization, we multiply the whitened patch with the inverse of whiten
operator: (λI +Σ)

1
2 .

D 1-SPARSE DICTIONARY LEARNING

Given x⃗i ∈ Rd to be a data vector, and dictionary (codebook) Φ ∈ Rd×K , where d is the dimension
of the data and K is the number of dictionary elements, 1-Sparse Dictionary Learning, also known
as Vector Quantization (VQ problem [42]), can be formulated as:

min
α⃗i,Φ

∑
i

||x⃗i − Φα⃗i||2,

s.t. ||α⃗i||0 = 1, ||α⃗i||1 = 1, α⃗i ⪰ 0.

(4)

This is an NP-hard problem, but there are efficient heuristic algorithms to approximate the solu-
tion. The most well-known one is K-mean clustering, which can be interpreted as an expectation-
maximization (EM) algorithm for mixtures of Gaussian distributions. This is the algorithm we used
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to solve 1-sparse dictionary learning when we use the 1-sparse feature fvq in SMT. The exact algo-
rithm we used to solve the 1-sparse dictionary learning problem is in Algorithm 1. Notice that when
data is uniformly distributed on the domain, even a dictionary consisting of uniformly sampled data
point serve as a good enough approximation. This is the case for the toy example in Figure 2. In
this case, the dictionary Φ can be predefined instead of learned. For MNIST and CIFAR-10 data,
they are both assumed to be low dimensional data manifolds in high dimensional space. Thus, we
cannot apply k-mean directly to the raw signal due to the high dimensionality and sparsity of the
data. One way to alleviate this problem is to map the data to a unit sphere before applying k-mean.
This method is called spherical k-mean. More detailed motivations and advantages of this approach
are explained in the original paper [30]. The exact algorithm is also described in Algorithm 1.

Algorithm 1: Online 1-sparse dictionary learning heuristic (K-mean clustering)
Data: Data matrix X = [x⃗1, · · · , x⃗N ], η is learning rate.
Result: Dictionary (centroid) Φ = [ϕ⃗1, · · · , ϕ⃗K ], where each column is a dictionary element

Sparse code (label) A = [α⃗1, · · · , α⃗N ] for each data point.
1 initialization: Φ← 0, A← 0 ;
2 if spherical then
3 for i ∈ 1, · · · , n do
4 x⃗i =

x⃗i

||x⃗i||2
5 end
6 end
7 while not ϕ has not converge do
8 Find the sparse code for every data point;
9 for i ∈ 1, · · · , n do

10 α⃗i ← e⃗j∗ j∗ = argmaxj ||ϕ⃗j − x⃗i||2
11 end
12 Dictionary update;
13 Φ← Φ+ η

h⃗
⊙
∑

i(x⃗i − ΦT α⃗i), s.t. h⃗j = (
∑

i α⃗i)j ;
14 if spherical then
15 for j ∈ 1, · · · ,K do
16 ϕ⃗j =

ϕ⃗j

||ϕ⃗j ||2
17 end
18 end
19 end

E ABLATION STUDY: FEATURE DIMENSION AND EMBEDDING DIMENSION

Since SMT is a white box model, we can analyze how each component of SMT contributes to
unsupervised learning. Specifically, we break down SMT into two components: dimensionality
expansion using sparse features and dimensionality reduction through spectral embedding. We first
show that a sparse feature by itself is important in building a good representation. As shown in
Figure 6, we’re able to achieve 71 % evaluation accuracy using only general sparse features fgq on
the CIFAR-10 dataset. Please refer to Section 3 for the definition of general sparse features fgq.
Combining sparse features with whitening will further boost the performance to 75 %. However, the
performance does not increase as the number of features increases if we’re using only sparse features
and whitening. In contrast, if we combine sparse features and spectral embedding, the performance
increases as the number of features increases. This result implies that spectral embedding is also a
crucial element in obtaining a good representation.

To further show the necessity of spectral embedding, we did an experiment to replace spectral em-
bedding with PCA. PCA is a dimension reduction algorithm but does not enforce locality. In Fig-
ure 6(b), we see that if we’re using PCA as dimension reduction, the performance decreases mono-
tonically as we reduce the sparse feature to a lower dimension, which implies it is throwing away
useful information. On the other hand, for SMT, the performance first increases and then decreases,
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Figure 6: Ablation Studies. (a) Evaluation accuracy as a function of dictionary sizes on CIFAR-10
dataset. We tried three representations for ablation study purpose. (b) Evaluation accuracy as a func-
tion of reduction dimension on CIFAR-10 dataset. Reduction dimension corresponds to number of
principle components in PCA and embedding dimension in SMT. We use general sparse feature fgq
with threshold set to be 0.3, a dictionary of size 8192 and no color augmentation in this experiment.

as we increase the reduction dimension. The performance of SMT peaks when we use 500 as the
reduction dimension, which is much higher than PCA (79.4% vs 59.9%) with 500 components and
even higher than PCA with all principle components (79.4% vs 75.2%).

F HYPERPARAMETER FOR PRETRAINING DEEP SSL MODEL

For all the benchmark results on the deep SSL model, we follow the pretraining procedure used
in solo-learn. Each method is pretrained for 1000 epochs. We list the hyperparameter we used to
pretrain each model. For both methods, we use resnet-18 as the backbone, and a batch size of 256,
LARS optimizer, with 10 epochs of warmup follows by a cosine decay. For the SimCLR model, we
set the learning rate to be 0.4 and a weight decay of 1e-5. We also set the temperature to 0.2, the
dimension for the projection output layer to 256, and the dimension of the projection hidden layer
to 2048. For VICReg, we set the learning rate to 0.3 and a weight decay of 1e-4. We also set the
temperature to 0.2, and set the dimension for the projection output and hidden layer to 2048. We set
the weight for similarity loss and variance loss to 25, and the weight for covariance loss to 1.

We use the transform module in pytorchvision to implement data augmentations. By default, we
use “RandomResizedCrop” with min-scale equal to 0.08 and max-scale equal to 1.0. We also use
“RandomHorizontalFlip” and use 0.5 as the flip probability. For “Grayscale Image Only”, we apply
the “RandomGrayscale” transform with the grayscale probability to 1. For “Original + Grayscale,”
we set the grayscale probability to 0.5. For “Full” color data augmentation, we add “ColorJitter.”
For SimCLR, we use brightness = 0.8, contrast= 0.8, saturation=0.8, and hue=0.2 as its “ColorJitter”
parameter. For VICReg, we use brightness = 0.4, contrast= 0.4, saturation=0.2, hue=0.1 as its
“ColorJitter” parameter. We also add additional “Solarization” transform with probability 0.1 for
training VICReg.

G ABLATION STUDY: CONTEXT RANGE

Given an image patch {x⃗ij}, we define its neighbors to be other patches within a specific pixel range
from it on the same image, i.e., n(ij) = { lm; |i− l| ≤ d and |j−m| ≤ d}. We use d to denote the
“context range”. We showed the impact of context range on MNIST in table 1. The performance of
SMT decreases as we increase the context length. We also studied the effect of context length on the
CIFAR-10 dataset and showed the result in table 5. Unlike MNIST, the performance on CIFAR-10
dataset increases as the context window increases. This once again confirms that both the manifold
view and the probabilistic co-occurrence view are necessary to understand SMT. For CIFAR-10, the
images have lots of high-level structures. The key to building a good representation is the ability to
model the co-occurrence between different image patches. For example, in an image of an animal,
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Table 5: Ablation study on the context range used in SMT on CIFAR-10 dataset. We use general
sparse feature fgq with threshold set to be 0.3, a dictionary of size 8192 and no color augmentation
in this experiment.

Context Range (d) 4 6 12 24 32

KNN Accuracy 78.0 % 78.5 % 78.5 % 79.0 % 79.4%

Table 6: Ablation study on the number of training examples used in SMT and SimCLR on
CIFAR-10 dataset. We use general sparse feature fgq with threshold set to be 0.3, a dictionary of
size 8192 and no color augmentation in this experiment. We evaluate both method using soft KNN
classifier.

number of training examples 1000 2000 4000 8000 16000 32000 50000

SMT-GQ (8192, no color aug) 58.7 % 63.7 % 67.2 % 70.7 % 74.0 % 77.4 % 79.4 %

SimCLR (ResNet18, no color aug) 28.9 % 33.9 % 37.8 % 41.3 % 50.1 % 60.4 % 68.3 %

the animal’s “leg” and “head” might lie in two image patches far apart. But it is very important to
capture the fact that “leg” and “head” co-occur, because this is a unique trait for animals, which
requires the context range to be large. This also requires the probabilistic co-occurrence view. Many
image patches can be neighbors (co-occur), but they cannot all be encoded to the same point. Instead,
if we record the co-occurrence, patches that co-occur more often should be encoded closer than to
each other. On the other hand, MNIST is closer to a manifold, so co-occurrence is less informative
in this case. Modeling co-occurrence between image patches might result in overfitting. In order to
form a good representation, we need to use a small context range to capture slow features. This is
a lot like the formulation in the original sparse manifold paper, where they use consecutive video
frames to define context, which is essentially a context range of only 2 pixels.

H ABLATION STUDY: NUMBER OF TRAINING EXAMPLES

We experiment with the impact of a number of training examples on performance. The experiment is
done on the CIFAR10 dataset. The result is shown in table 6. The result shows SimCLR experienced
a much more significant performance drop compared to SMT when training with a limited amount
of data. The significant performance drop of the deep SSL method is likely due to the well-known
overfitting problem of complicated models like neural networks. This shows the advantages of SMT
as a simple white-box model.

I ABLATION STUDY: LINEAR PROBING VS KNN FOR EVALUATION

We experiment with using linear probing for evaluation instead of the KNN classifier. We also exper-
iment with the comparison between linear probing and KNN classifiers with a different number of
embedding dimensions. As shown in the table 7, with optimal embedding dimension, linear probing
accuracy is higher than KNN accuracy (81.0% vs 79.4% ). This implies that the linear layer learned
in SMT is not optimal for image classification, but it is still a pretty good representation for image
classification purposes. Most useful information for image classification is captured during this un-
supervised dimension reduction process. This explains why the optimal embedding dimension is
much higher (3200) when using a linear classifier compared to when using a KNN classifier (500).

J SOFT KNN EVALUATION

Classic K-nearest-neighbor classifier (hard KNN): for each data point x, which is labeled with k

class, let y, yj denote the label of x, xj . Then let ˆz(x) = 1
|n(x)|

∑
xj∈n(x) OneHot(yj), which

counts the average number of time x’s neighbors belong to each class. And q(x) = softmax(z(x)),
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Table 7: Comparing the performance of using linear probing or KNN classifier for evaluation
on CIFAR-10. We use general sparse feature fgq with threshold set to be 0.3, a dictionary of size
8192 and no color augmentation in this experiment.

Embedding dimension 50 110 210 350 500 800 1600 3200 6400 8192

KNN Accuracy 74.7 % 77.6 % 78.6 % 79.3 % 79.4 % 79.3 % 79.0 % 77.9 % 76.1 % 75.2 %

Linear Probing Accuracy 69.0 % 74.5 % 77.0 % 78.6 % 79.7 % 80.2 % 80.8 % 81.0 % 80.5 % 80.4 %

i.e. q(x)k =
exp(

z(x)k
T )∑

l exp(
z(x)l

T )
. This quantity is the estimated conditional probability that the data point

x belong to kth class, given temperature T , i.e. P(y = k|x). Finally, we simply assign the class with
largest conditional probability as the predicted class label i.e. ˆy(x) = argmaxk q(x)k.

Soft K-nearest-neighbor classifier (soft KNN): for a given data point x, instead of using only x’s
neighbors’ class label to estimate the conditional probability, we also we take into account of the co-
sine similarity between x to its neighbors. Instead of having ˆz(x) = 1

|n(x)|
∑

xj∈n(x) OneHot(yj),

we have ˆz(x) = 1
|n(x)|

∑
xj∈n(x) OneHot(yj)cos(xj , x). The rest of the algorithm is exactly the

same as hard KNN. In all the experiment, we set K = 30 and T = 0.03 for evaluation.

K CONNECTION TO DEEP LATENT-EMBEDDING SSL METHOD

The general formulation of SMT, as stated in Section 3, is:

min
P
∥PAD∥2F , s.t. PV PT = I (5)

where A denotes the sparse representation of the data.

Feature extraction: As discussed in Section 2, sparse features are used to capture locality and com-
positionality. There’s also other feature that might be used to serve the same purpose. We can
abstract such feature extractor as a function f : X → A.

Projection: As discussed in Section 2, we assume the sparse feature of the data is a low-dimensional
manifold that lies in a high-dimensional space. Thus, we seek an optimal map that projects the
sparse representation to the low dimensional space, such that points that are close in feature space
should also be close after the projection. In our setup, we use a linear function to approximate this
optimal projection function, but the projection function does not have to be linear in general. We
can abstract this projection function as a function g : A → Z .

Let Z = g(f(X)), then SMT objective can be generalized to the following form:

min
f,g
∥ZD∥2F , s.t. ZZT = I

Consider the objective for VICReg:

Lvic = α

d∑
k=1

max(0, 1−
√

(Cov(Z)kk)) + β
∑

i=1,j ̸=k

Cov(Z)2kj +
γ

N

∑
i

∑
j∈n(i)

|zi − zj |22

where Z = g(f(X)), and both feature extractor f and projector g are parametrized by neural
networks. Like discussed in [4], we use a friendlier variance loss: replacing the hinge loss at 1 as
square loss. We also assume α = β = γ = 1 for simplicity. Then we have:

Lvic =

d∑
k=1

(1−
√

(Cov(Z)kk)
2 +

∑
i=1,j ̸=k

Cov(Z)2kj +
1

N

∑
i

∑
j∈n(i)

|zi − zj |22

= ||ZZT − I||2F +
1

N

∑
i

∑
j∈n(i)

||zi − zj ||22

(6)

Thus,
min
f,g

Lvic = min
f,g

∑
i

∑
j∈n(i)

||zi − zj ||22, s.t. ZZT = I
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This is the same objective as Eq 1. We can construct D as the same first order derative operator as
the one described in Section 2, then we have:

min
f,g
∥ZD∥2F , s.t. ZZT = I

With generalized features and projects, we can formulate VICReg as a sparse manifold transform
problem. In VICReg, there is no close-form solution since both parameters f and g are parametrized
by neural networks. They are optimized with a stochastic gradient descent-based algorithm. As
discussed in [4], most SSL models can be reduced into the same form, which means they can all be
formulated into SMT objectives.

L INTERPRETING SIMILARITY LOSS AS FIRST-ORDER DIRECTIONAL
DERIVATIVE

Similarity can be considered as a first-order directional derivative of the representation transform
w.r.t. the similarity neighborhoods. A representation transform g maps a raw signal vector x⃗ into a
representation embedding β⃗, i.e., g : Rm → Rd. In SMT, g = Pf(·), where f is a sparse feature
function.

The definition of directional derivative is: Dûg(α) = limh→0
g(α+hû)−g(α)

h ,where û is the direction
we want to take the derivative and h is the infinitesimal change. In a discrete space, we represent the
dataset as a graph. Each data point is a node that connects to its neighbors. As we discussed at the
beginning of the paper, “similarity” neighborhoods can be defined by 1) temporal co-occurrence, 2)
spatial co-occurrence, 3) local metric neighborhoods in the raw signal space. The direction between
two neighboring raw signal points xi and xj is defined as their direction in the sparse feature space,
i.e., f(xj)− f(xi). Unlike in the real coordinate space, where we can take infinite direct directions
at each location, with the discrete setting, we can only take a finite number of directions at each data
point (the same number as the number of its neighbors). Moreover, since everything is discrete, the
infinitesimal change h = 1.

For example, we want to take the directional derivative at point xi and in the direction towards its
neighbor xj . Then we have û = f(xj)− f(xi), and

Dûg(xi) = Dûg(f(xi))

= lim
h→0

g(f(xi) + hû)− g(f(xi))

h
= g(f(xi) + (f(xj)− f(xi)))− g(f(xi))

= g(f(xj))− g(f(xi))

(7)

M VISUALIZATION FOR MISCLASSIFIED EXAMPLE FOR CIFAR-10

We provide the visualization for examples misclassified by our SMT + KNN model. In Figure 7,
the figure is divided into two panels, with 25 images on the left and 24 images on the right. In the
left panel, we show an image being classified on the top left corner and its 24 nearest neighbors. In
Figure 7, the image being classified is an image of a “dog”. Almost all of its 24 nearest neighbors
are “horses.” As a result, the “dog” image is misclassified as a “horse”. The right panels show
the patches with the highest cosine similarity to their corresponding patch in each of the 24 nearest
neighbors. One insight we can learn from these visualizations is that these misclassifications are
largely due to local-part matching. For example, a “deer” may look like a “horse” except for the
“deer horn” parts. However, “deer horn” parts may only contribute a small fraction in the similarity
measurement. As a result, the nearest neighbors of a “deer” may be almost all “horses”. To solve
this issue, again, we need to have a better understanding of hierarchical representation learning and
high-level concept formation.
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Figure 7: Misclassified example 1. A “deer” image is misclassified as horse.

Figure 8: Misclassified example 2. A “dog” image is misclassified as horse.

Figure 9: Misclassified example 3. A “deer” image is misclassified as horse.
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