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Abstract

In the era of Large Language Models (LLMs),001
generative linguistic steganography has be-002
come a prevalent technique for hiding infor-003
mation within model-generated texts. However,004
traditional steganography methods struggle to005
effectively align steganographic texts with orig-006
inal model-generated texts due to the lower en-007
tropy of the predicted probability distribution of008
LLMs. This results in a decrease in embedding009
capacity and poses challenges for decoding ste-010
gos in real-world communication channels.011
To address these challenges, we propose a012
semantic steganography framework based on013
LLMs, which constructs a semantic space and014
maps secret messages onto this space using015
ontology-entity trees. This framework offers016
robustness and reliability for transmission in017
complex channels, as well as resistance to text018
rendering and word blocking. Additionally, the019
stegos generated by our framework are indistin-020
guishable from the covers and achieve a higher021
embedding capacity compared to state-of-the-022
art steganography methods, while producing023
higher quality stegos.024

1 Introduction025

With the rapid iterations of Large Language Mod-026

els (LLMs) (Touvron et al., 2023; Du et al., 2022),027

texts generated by LLMs flood cyberspace, provid-028

ing a thriving environment for generative linguistic029

steganography (Yang et al., 2021a, 2019a; Dai and030

Cai, 2019; Ziegler et al., 2019; Shen et al., 2020;031

Kaptchuk et al., 2021; de Witt et al., 2023; Ding032

et al., 2023; Yang et al., 2019b, 2021b, 2024; Wang033

et al., 2023). As a technique for hiding information034

in model-generated texts, mainstream steganogra-035

phy methods (Kaptchuk et al., 2021; de Witt et al.,036

2023; Ding et al., 2023) focus on aligning stegano-037

graphic texts (stegos for short) with original model-038

generated texts (covers for short).039

However, current steganography techniques have040

two major weak points.041

Low Symbol-level Entropy. Given the same 042

text prefix, the entropy of the predicted probability 043

distribution of LLMs is likely to be lower than that 044

of GPT-2 (Alec Radford, 2019) or BERT (Devlin 045

et al., 2019). The main reason is that LLMs have 046

learned more data and are able to make more ac- 047

curate predictions. But for SOTA provably secure 048

steganography algorithms (Kaptchuk et al., 2021; 049

de Witt et al., 2023; Ding et al., 2023), entropy is 050

an upper bound on the embedding capacity. A large 051

decrease in entropy leads to a dramatic decrease in 052

embedding capacity. Nevertheless, it seems that the 053

more powerful models have lower entropy. As fig- 054

ure 1 shows, with the same steganography method 055

Arithmetic Coding (AC) (Ziegler et al., 2019), the 056

embedding rate of ChatGLM-2-6B is about 1/4 ∼ 057

1/5 lower than that of ChatGLM-2-6B-int4. With 058

stricter top-k truncation and more detailed prompt- 059

ing, the embedding rate may decrease further. 060

Not Robust. When applying these steganogra- 061

phy methods to real-world communication chan- 062

nels, particularly in social networks, we have found 063

that most received stegos cannot be decoded. This 064

problem is caused by three main reasons: 065

(1) Text Rendering. It involves the transcod- 066

ing and merging of format control characters like 067

spaces, tabs, and newlines, which may be stripped 068

when at the beginning or end of a sentence. It 069

also includes deceptive practices with line breaks 070

and tabs, which can confuse the decoding system. 071

While the transcoding and stripping process may be 072

reversible, the merging is not, leading to inevitable 073

decoding errors. 074

(2) Word Blocking. Social communication 075

channels censor specific words or phrases deemed 076

inappropriate, offensive, or undesirable. It is a 077

common feature in online platforms and messaging 078

apps. However, if words in the stegos are removed, 079

decoding will fail. 080

(3) Ambiguous Tokenizing. It occurs when the 081

tokenizer used in this process results in a single 082
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(a) AC + ChatGLM2-6B-int4

(b) AC + ChatGLM2-6B

Figure 1: Perplexity(PPL) and embedding rate of ste-
gos generated by Arithmetic Coding(AC)(Ziegler et al.,
2019) with ChatGLM2-6B-int4/ChatGLM2-6B. The
left axis represents PPL, while the right two axes rep-
resent embedding rate, estimated in bits per sentence
and bits per token. Prompt 1 is null, while prompts
2-4 require the model to generate a single given word,
namely “the”, “like”, or “Washington”, respectively.

sentence having two equivalent lists of token IDs.083

This frequently occurs in LLMs.084

The challenges of applying LLMs to state-of-the-085

art steganography methods highlight the lack of ro-086

bustness of symbolic token-level embedding in cy-087

berspace. It is necessary to search for a steganogra-088

phy method that can generate robust stegos. There-089

fore, we have proposed a semantic steganography090

framework based on LLMs. This framework pri-091

marily constructs a semantic space and uses LLMs092

to generate responses that belong to a subset of093

that space. To ensure the rationality of LLMs’094

output and their embedding capacity, we mapped095

the secret messages onto a semantic space using096

ontology-entity trees. During the decoding phase,097

the semantic information in stegos will be retrieved098

and converted back into secret messages.099

Compared to the symbol-based steganography100

techniques, our framework has the following ad-101

vantages:102

• Our framework is more reliable and robust for103

transmission in network environments. The104

stegos generated by our method are able to105

resist ambiguous tokenizing and text render-106

ing. As for word blocking, our steganography107

techniques can be decoded correctly with a 108

high probability. 109

• The stegos in our framework are directly gen- 110

erated by LLMs, making them completely in- 111

distinguishable from the covers. Compared 112

to symbolic imperceptibility, we should focus 113

on semantic imperceptibility. We can ensure 114

semantic imperceptibility by using provably 115

secure sampling methods (de Witt et al., 2023; 116

Kaptchuk et al., 2021; Ding et al., 2023). 117

• Our framework achieves a higher embedding 118

capacity than state-of-the-art steganography 119

methods under the same prompt and gener- 120

ation configurations while producing higher- 121

quality stegos. 122

2 Methods 123

2.1 Construct the Semantic Space 124

Semantic space is a set in which sentences are rep- 125

resented based on their meanings and relationships. 126

And the basic step of our steganography framework 127

is to construct the semantic space. 128

Various methods exist for constructing a seman- 129

tic space. 130

(1) Classifiers. In previous work (Zhang et al., 131

2021), classifiers were used to control the semantic 132

information at the sentence level, but such classi- 133

fiers need training and are not easy to share with 134

the receiver. To ensure objectivity, avoid using 135

emotions or main themes as they are not realistic 136

due to limited semantic space and restricted embed- 137

ding capacity. Additionally, the meanings inside 138

the sentence are mostly unused. 139

(2) Embeddings. The embedding output of lan- 140

guage models can be used to construct a semantic 141

space, but this method seems to be too sensitive and 142

difficult to design. While this does not affect the 143

encoding method, it can confuse the decoding pro- 144

cess. We believe that using the embedding output 145

of language models is feasible and requires further 146

exploration. 147

(3) Entities. Entities are considered to be effec- 148

tive and efficient for steganography encoding. The 149

capacity of steganography is associated with the 150

number of entities, because the more entities we 151

have, the more bits we can use to uniquely represent 152

each entity. So adding more entities is a feasible 153

and convenient approach to expanding capacity. 154

We prefer to use Entities to construct the seman- 155

tic space because there exists a helpful structure 156
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Figure 2: Construction of ontology-entity tree.

called the ontology-entity tree. This tree comprises157

multiple top layers of concepts and the final layer158

of entities. The paths within this tree indicate a pro-159

cess of gradual refinement from a vague concept to160

a specific entity, offering additional information to161

describe the final entity.162

Open-sourced ontology-entity trees do not typ-163

ically contain information about the frequency of164

these entities or the relationships between them.165

This information is essential for estimating seman-166

tic distribution. Therefore, we embarked on con-167

structing our own ontology-entity tree.168

We extracted entities using the PaddleNLP UIE169

model (PaddleNLP, 2021). The dataset used for170

extraction and construction of the semantic space171

is LCCC (Wang et al., 2020), a large-scale cleaned172

dataset containing 12 million daily conversations.173

Based on the extraction results, we hand-crafted174

two layers of concepts to construct the ontology-175

entity tree.176

Ultimately, we produced a three-layer tree. The177

first level of the tree includes fundamental concepts178

such as “person” and “location”. The subsequent179

level comprises subconcepts like “tourism location”180

or “educational location”. The final level contains181

entities such as “Las Vegas” or “Taj Mahal”, which182

belong to the subconcept “tourism location”.183

This tree also provides additional information184

to assist language models in generating decodable185

responses and determining which entity to use. The186

model may get confused when the entity “Wash-187

ington" is given, since it could represent a person188

or a location. But if we use the path from the189

root of the tree to the leaf node of the entity, we190

can get a detailed entity like “Location/Tourism191

Location/Washington". Therefore the words that192

have multiple meanings can be distinguished and193

correctly extracted.194

For any entity ei ∈ E , we construct an extrac-195

tion method Extei . Using the extraction method196

Extei we can extract the number of entity ei that197

appears in a sentence, denoted as Extei(S) = ni.198

This extraction method can be completed by LLMs199

with appropriate prompts or other machine learning 200

modules. 201

We define the type of a sentence as follows: 202

The type of sentence S is en1
1 ...e

n|E|
|E| , where ei ∈ 203

E is an entity, ni = Extei(S) is the times that ei 204

appears in sentence S. 205

For instance, consider the sentence “An apple 206

a day, keeps the doctor away” with the entities 207

“apple” and “doctor”. From this, we can determine 208

that the type of this sentence is apple1doctor1. 209

We define the length of a type |T | as the number 210

of entities inside the sentence. 211

|T | =
|E|∑
i=1

ni (1) 212

For the sake of clarity, we provide a definition 213

of the partial order relation between types: type 214

T (1) = e
n
(1)
1

1 · · · e
n
(1)
|E|

|E| is not greater than type 215

T (2) = e
n
(2)
1

1 · · · e
n
(2)
|E|

|E| if and only if 216

∀i ∈ {1, 2, · · ·, |E|}, n(1)
i ≤ n

(2)
i (2) 217

We can also define an add operation on the type, 218

which represents combining 2 sentences into one. 219

T (1) + T (2) = e
n
(1)
1 +n

(2)
1

1 · · · e
n
(1)
|E|+n

(2)
|E|

|E| (3) 220

Sentences with the same type are highly corre- 221

lated as they are likely referring to the same entities 222

and have a relationship. We define class C to de- 223

note the set of possible sentences that share the 224

same type. 225

C(en1
1 · · ·e

n|E|
|E| ) = {S|type(S) = en1

1 · · ·e
nM
M } (4) 226

In the end, the semantic space is defined as the 227

set of all possible classes. 228

S = {C(en1
1 · · · e

n|E|
|E| )|ei ∈ E , ni ∈ N+} (5) 229

Instead of generating a sentence with specific 230

attributes, we prefer to determine and arrange the 231

entities that should appear in the output. 232
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Algorithm 1 Compute the probability of each node

Input: Ontology-entity tree To, type prefix Tpre,
empirical distribution p(C(T ))

Output: Probabilities of nodes P (·)
1: · · · Initial probabilities of nodes in tree
2: for node ∈ To do
3: P (node)← 0
4: end for
5: · · · Assign probabilities to entities
6: sum← 0
7: for e ∈ E do
8: for C(T ) ∈ S and p(C) ̸= 0 do
9: if Tpre + e ≤ T then

10: P (e)← P (e) + p(C(T ))
11: end if
12: end for
13: sum← sum+ P (e)
14: end for
15: · · · Assign probabilities to stop sampling
16: P (stop)← p(C(Tpre))
17: sum← sum+ p(C(Tpre))
18: · · · Normalization
19: for e ∈ To ∪ {stop} do
20: P (e)← P (e)/sum
21: end for
22: · · · Accumulate probabilities to nodes
23: for Entity e ∈ To do
24: parent← e.parent
25: while parent ̸= T.ROOT do
26: P (parent)← P (parent) + P (e)
27: end while
28: end for
29: return P (·)

2.2 Sample from the Semantic Distribution233

This section discusses a secure method of sampling234

from the semantic space.235

For provably secure symbolic steganography236

methods such as METEOR (Kaptchuk et al.,237

2021), MEC (de Witt et al., 2023), and DIS-238

COP (Ding et al., 2023), it is expected that239

the model-generated stegos are indistinguishable240

from the model-generated covers. That means241

DKL(p(cover)||p(stego)) = 0 (Cachin, 1998).242

To ensure the KL divergence is 0, secure sampling243

methods are often designed. As our method does244

not alter the sampling strategy of LLM, the stegos245

remain the same as the covers.246

Although there is no difference between stegos247

and covers from a symbolic perspective, there is248

Algorithm 2 Sample(To, C, p(·), Fkey) a type from
semantic space

Input: Ontology-entity tree To, empirical distribu-
tion p(C(T )), cipher bits C, PRF Fkey

Output: Target type Tt

1: · · · Randomize cipher bits
2: B ← Fkey(C)
3: Tt ← null
4: · · · Select entities one by one
5: while pointer ̸= stop do
6: · · · Get probabilities of nodes in tree
7: P (·)← Assign(To, Tt, p(C(T )))
8: sum← 0
9: · · · Select nodes layer by layer

10: pointer ← ROOT
11: while pointer.child ̸= null do
12: for node ∈ pointer.child do
13: if sum + P (node) ≥

∑n
i=1 bi ∗ 2−i

then
14: pointer ← node
15: B ← B[n :]
16: break
17: end if
18: sum← sum+ P (node)
19: end for
20: if sum < bi/2 then
21: pointer ← stop
22: end if
23: end while
24: Tt ← Tt + pointer
25: end while

still a sampling issue from a semantic perspective. 249

To begin with, we need to consider the empirical 250

semantic distribution. 251

As the semantic space is made up of classes that 252

represent different types, we must first extract sen- 253

tence types from a large corpus and then estimate 254

their probability by their frequency. In cases where 255

the entities within a sentence cannot be obtained, a 256

prediction model can be used. An empirical seman- 257

tic distribution can then be constructed by either 258

counting sentences or training a model. 259

To sample from this distribution, randomized 260

methods are necessary to ensure secure sampling. 261

Pseudo-random functions (PRFs) are commonly 262

used to convert a secret bit stream into a pseudo- 263

random bit stream that follows a uniform distribu- 264

tion. The definition of PRFs is as follows. 265

Fkey : {0, 1}s → {0, 1}s is PRF if for all P.P.T. 266
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Sampling from Level I

Sampling from Level II

Sampling from Level III

Generation Phase

Extraction Agent
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Extraction Phase

First Generation:
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nightlife, world-class entertainment, and bustling casinos."

Generation Agent

Description of Tasks: 
Please generate a sentence with "Las Vegas"

Additional Information: 
Las Vegas is a location of tourism.

Check Agent

Not contain "Las Vegas"?

Influent?
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Any other entity?

Hint for regeneration: 
Please regenerate a fluent sentence with "Las Vegas",

do not generate other LOCATION-related entities.
Regeneration 1

"Las Vegas is a popular tourist destination known for its vibrant
nightlife, world-class entertainment, and bustling casinos." Good, no errors.
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Check
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Bit Stream: [0, 1, 0, 0, 0, 0, 1, 0, ...]

Figure 3: Workflow of our framework, with a simple example. A type “Las Vegas1” is selected according to
the secret bit stream. The LLMs follow the instructions and generate a sentence “Las Vegas is a popular tourist
destination known for its vibrant nightlife, world-class entertainment, and bustling casinos. ”, which belongs to the
class of type “Las Vegas1”.

classifiers C and key,267

|Pr(CFkey(1s) = 1)−Pr(CO(1s) = 1)| ≤ 1

poly(s)
(6)268

where O is an oracle that randomly generates bits269

and poly(·) denotes polynomial functions.270

The first step in sampling is to use a key and a271

PRF to invert the ciphertext into a uniformly dis-272

tributed bitstream. Then the problem is to map the273

bit stream into entities.274

Since a uniformly distributed bit stream B =275

[b1, b2, · · ·, b|B|] can be mapped to a decimal B̂ =276 ∑|B|
i=1 2

−ibi ∼ Unif [0, 1]. Then Arithmetic Cod-277

ing (AC) can be used to map the decimal B̂ to278

an probability interval which represents a class in279

semantic space.280

In our practice, the algorithms used for sampling281

are referenced in Alg. 1 and 2. For layers of an on-282

tology entity tree, secret bits can be embedded in a283

path in the tree representing an entity (from ROOT284

to that entity). It is possible to sample entities one 285

by one, and these entities are finally combined to 286

form a type, then let LLM generate a stego belong- 287

ing to the class that relates to this type in seman- 288

tic space. As for decoding, it is a simple reverse 289

progress. In this way, secret bits can be sequentially 290

embedded in nodes of the ontology-entity tree. 291

2.3 Feedback CoT for Stego Generation 292

A class is chosen for LLMs to generate after sam- 293

pling from the semantic distribution. However, 294

making LLMs generate sentences that belong to 295

the class is not always successful. A rejection sam- 296

pling method must be used for LLMs to generate 297

correct sentences. 298

We proposed a method called feedback Chain 299

of Thought(CoT) to increase the success rate of 300

generation. 301

Since each entity corresponds to a path in the 302

ontology entity tree, additional information describ- 303

ing the entities will be part of the prompt. In the 304
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generation process, the LLM for generating stegos305

is called Generation Agent (GA). To check whether306

the generated stego satisfies the sampled class, an-307

other LLM called Check Agent (CA) is used. For308

each generation loop, CA will return a hint for309

regeneration or it will consider the generated sen-310

tence compliant and return the approval. With the311

feedback from CA, GA is able to efficiently adjust312

the generated sentence and quickly converge to a313

correct version.314

Feedback CoT reduces the number of iterations315

and saves a lot of time in the experiment. A result316

about feedback CoT in section 3.1 shows that it is317

able to decrease the perplexity of generated stegos318

and reduce the times of regeneration.319

2.4 Workflow of Our Framework320

As Fig.3 shown, our framework works in 3 phases.321

(1) Embedding Phase: With a secret bit stream322

and a provably secure probability coding method,323

we use Alg.2 to sample a type from the seman-324

tic distribution. During the sampling process, the325

paths of entities that selected are preserved for the326

next phases.327

(2) Generation Phase: We use the paths of enti-328

ties and a description of task for GA to generate a329

primitive stego. Then the feedback loop starts run-330

ning. CA generates a hint for regeneration and GA331

is instructed by CA to correct the stego. Finally,332

CA confirms that stego meets the requirements and333

gives permission to proceed to the next step.334

(3) Extraction Phase: An LLM named extrac-335

tion agent(EA) is instructed to extract the type of336

sentence. Since the type represents an interval of337

probability [l, h], the decoding involves comput-338

ing bit stream B ∈ {0, 1}n that satisfies
∑n

i=1 bi ∗339

2−i ∈ [l, h] and
∑n

i=1 bi ∗ 2−i ± bn ∗ 2−n /∈ [l, h].340

3 Experiment & Result341

We use ChatGLM2-6B and ChatGLM2-6B-int4 as342

agents. ChatGLM2-6B-int4 is a weaker version of343

ChatGLM2-6B, but this model is extremely fast344

and only uses 6GB of GPU RAM.345

AC (Ziegler et al., 2019) is used as a baseline346

in our experiments for 2 reasons. It produces high347

quality stegoes and the embedding capacity is close348

to the entropy limit. We also tested 2 more base-349

lines, METEOR (Kaptchuk et al., 2021) and DIS-350

COP (Ding et al., 2023). Details are shown in351

appendix.352

For our experiments, we used a server equipped353

with 4 RTX 3090 GPUs. The experiments consist354

Metrics PPL Distinct-3 GPT-4 score
AC-6B 2065.73 0.8024 5.6381
AC-6B-int4 2206.96 0.8009 5.3290
RS-6B 2027.34 0.8050 5.6419
RS-6B-int4 2085.65 0.8001 5.1578
Ours-6B 869.79 0.8753 7.3624
Ours-6B-int4 855.70 0.8742 7.1527

Table 1: Linguistic quality of the generated texts. AC
(Ziegler et al., 2019) stands for arithmetic coding of
generated stegos and RS stands for randomly generated
covers. 6B and 6B-int4 stand for ChatGLM2-6B and its
4-bit quantified version.

Metrics
ER

MSR
bit/sentence bit/token

AC-6B 2.5695 0.1788 0.459
AC-6B-int4 3.6863 0.2648 0.376
RS-6B - - 0.463
RS-6B-int4 - - 0.457
Ours-6B 28.5088 0.3958 0.893
Ours-6B-int4 27.8945 0.4130 0.884

Table 2: Embedding rate (ER) and mission success rate
(MSR) of AC, RS and ours.

of 3 parts. First, we measured the quality of our 355

stegos and compared them with stegos generated 356

by AC (Ziegler et al., 2019) and model-generated 357

covers by random sampling. Then we tested the 358

robustness of our method and AC against attacks 359

that ignore/preserve the semantics of the original 360

sentence. 361

3.1 Quality of Stegos 362

The linguistic quality of stegos is estimated by per- 363

plexity(PPL), distinct-n, and GPT-4 semantic ratio- 364

nality score. The PPL and distinct-n are calculated 365

as PPL = exp
(
− 1

N

∑N
i=1 log p(xi|x1:i−1)

)
and 366

distinct-n = count(unique ngrams)
count(ngrams) . PPL represents 367

the fluency of stegos and distinct-n measures the 368

diversity. 369

The prompt used for GPT-4 to measure seman- 370

tic rationality is: You are a professional linguist, 371

analyse the following sentences in terms of their 372

semantic fluency and rationality and give them a 373

score between 0 and 10. 374

For this part of the experiment, we utilized 375

ChatGLM2-6B/ChatGLM2-6B-int4 to generate 376

text. AC (Ziegler et al., 2019) was employed to 377

generate stegos, while the models were allowed to 378

perform random sampling to generate covers. Dur- 379
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Attacks
Random

Paraphrase
SC

Insert Delete Replace Swap SNR=5 SNR=15 SNR=60

AC-6B

|T | = 1 0.034 0.012 0.016 0.010 0 0 0 0.0021
|T | = 2 0.049 0.025 0.044 0.037 0 0 0 0.0021
|T | = 3 0.073 0.057 0.065 0.028 0 0 0 0.0021
|T | = 4 0.070 0.056 0.061 0.021 0 0 0 0.0021

AC-6B-int4

|T | = 1 0.031 0.027 0.026 0.017 0 0 0 0.0051
|T | = 2 0.052 0.032 0.059 0.047 0 0 0 0.0037
|T | = 3 0.065 0.053 0.052 0.038 0 0 0 0.0003
|T | = 4 0.072 0.033 0.057 0.052 0 0 0 0.0000

Ours-6B

|T | = 1 0.933 0.837 0.840 0.848 0.4203 0.8364 0.8370 0.8446
|T | = 2 0.874 0.704 0.701 0.712 0.2869 0.7187 0.7819 0.7898
|T | = 3 0.852 0.625 0.627 0.619 0.2340 0.6249 0.7243 0.7339
|T | = 4 0.814 0.577 0.555 0.561 0.2111 0.5279 0.6683 0.6780

Ours-6B-int4

|T | = 1 0.931 0.821 0.823 0.817 0.4175 0.7778 0.7836 0.8132
|T | = 2 0.869 0.700 0.681 0.702 0.2819 0.7601 0.7676 0.7764
|T | = 3 0.832 0.608 0.607 0.605 0.2273 0.5943 0.7321 0.7334
|T | = 4 0.774 0.545 0.542 0.513 0.1827 0.5330 0.6599 0.6862

Table 3: Decoding success rates of AC and ours, under attacks that ignore/preserve semantics. |T | represents the
length of type.

ing generation, we set the top-p truncation to 0.8380

and the temperature to 0.8, following the genera-381

tion configurations used by ChatGLM (Du et al.,382

2022). The results are presented in Tab.1.383

Our framework generates stegos with a lower384

PPL than AC/RS. This is due to the CA checking385

the fluency of the stegos and providing prompts386

for the GA to regenerate. The feedback from CoT387

significantly improves the quality of the stegos.388

We also tested the embedding rate (ER) and the389

“mission success rate” (MSR), which indicates the390

probability of generated texts meeting the require-391

ments in prompts. Further details can be found in392

Tab.2.393

Since the prompt is very restrictive on the model394

output, the entropy of the model predicted distribu-395

tion is relatively low. This leads to the extreme phe-396

nomenon that in some generated sentences, which397

are mostly longer than 5 tokens, AC is not able398

to embed a single bit. However, such sentences399

are ubiquitous in application scenarios. This re-400

sult indicates that the entropy is compressed by401

LLMs and prompts with clear requirements. The402

redundant space on the symbolic space has become403

difficult to use.404

With the help of feedback CoT, the MSR of ours405

is about 2 times of AC and RS. The average num-406

ber of loops in feedback CoT is 0.6312. 58.15% of407

the sentences are allowed for output without regen-408

eration and 29.25%/8.31%/4.22% of the sentences409

require 1/2/3 iterations. Since the MSR of RS is 410

0.463, the MSR of the simplest rejection sampling 411

with n iterations can be estimated by MSRn = 412∑n
i=1 0.463 ∗ (1− 0.463)n−1 = 1− (1− 0.463)n. 413

So to increase the MSR to 0.893, n is about 3.5945. 414

Feedback CoT can reduce the number of iterations 415

to 17% of the simplest rejection sampling. 416

3.2 Robustness Against Attacks that Ignore or 417

Preserve Semantics 418

In this section, we first test the robustness of 419

our method and AC against attacks that ignore 420

semantics. These attacks include random in- 421

sert/delete/replace/swap tokens in a sentence. Then 422

we test the robustness of our method and AC 423

against attacks that preserve semantics. These at- 424

tacks include paraphrasing and semantic commu- 425

nication (SC) (Xie et al., 2021; Qin et al., 2023). 426

Unlike randomly changing 1∼2 tokens, these at- 427

tacks completely change all of the tokens, but they 428

have a probability to preserve the meaning of the 429

original sentence. Details of these attacks are given 430

below. 431

Random Insert. Copy a random token from the 432

sentence and insert it at a random position. 433

Random Delete. Delete a random token. 434

Random Replace. Copy a random token from 435

the sentence and replace it with another random 436

token. 437

Random Swap. Pick two random tokens from 438
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(a) Bertscore after paraphrasing
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(b) Bertscore after semantic communication (SNR=5)

Figure 4: Bertscore (Zhang et al., 2020) of stegos attacked by paraphrasing and semantic communication. The
contour line in the middle represents F1 score, and the estimated marginal distributions of the two samples are
plotted on the top and right sides.

the sentence and swap them.439

Paraphrase. The prompt we used for GPT-440

4 to paraphrase is: You are an excellent editor.441

Rewrite the following sentences, keeping them442

about the same length and leaving the semantics443

as unchanged as possible.444

Semantic communication. Semantic communi-445

cation methods (Xie et al., 2021; Qin et al., 2023)446

are designed to overcome the extremely high noise447

level. These methods have a probability of trans-448

mitting the correct meaning of sentences instead of449

the correct symbols.450

Results are shown in Tab.3. The probability dis-451

tribution predicted by LLM is changed so that AC’s452

decoding is a disaster. In most cases, AC cannot453

decode the correct secret bits, and in most of these454

surviving examples, the attacks are targeted at the455

end of the sentence. Therefore, the prefix of the456

decoded bits is likely to be the same as the encoded457

bits, which will be judged as success. In contrast,458

our stegos shows explicit robustness against these459

attacks. Since secret bits are embedded in entities,460

attacks that randomly change tokens have a rela-461

tively low probability of destroying these entities.462

In some cases, the tokens that denote entities are463

changed, but the LLMs are able to correctly extract464

entities from perturbed tokens. This part of the465

robustness depends on the ability of the LLMs to466

correct sentences.467

Paraphrasing and SC completely change the sen-468

tences. As mentioned before, when the tokens are469

changed and the model prediction is different, AC470

is unable to decode. Our stegos retain some robust- 471

ness against paraphrasing, and more than half can 472

be decoded under SC. 473

However, paraphrasing and SC seem to subtly 474

change the semantics. We measure the BertScore 475

(Zhang et al., 2020) of our stegos and paraphras- 476

ing/SC stegos to clarify the semantic noise level. 477

As shown in Fig. 4, the samples that could be de- 478

coded correctly are concentrated in the high-F1 re- 479

gion. In the paraphrased samples whose Bertscore 480

F1 is more than 0.8/0.9, the decoding success rate 481

is more than 60%/75%. The statistics of semantic 482

communication in the same situation is 85%/90%. 483

The result shows that most of our stegos remain 484

robust under attacks that preserve semantics well. 485

4 Conclusion 486

In this paper, we propose a semantic steganog- 487

raphy framework based on LLMs. We use enti- 488

ties to build the semantic space with the help of 489

ontology-entity tree, leverage Feedback CoT for 490

rejection sampling, and apply AC for efficient en- 491

coding and decoding. Experiments showe that our 492

framework are robust against attacks that ignore 493

or preserve semantics. The embedding capacity of 494

our framework is much higher than traditional sym- 495

bolic steganography, while the quality of generated 496

text is also better. Since our framework is able to 497

work with black-box LLMs’ API, it is easy to apply 498

our method to construct covert communications in 499

the real world scenario. 500
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5 Limitations501

Our framework is difficult to operate in a low502

semantic-level entropy condition, which is different503

from the symbolic-level entropy. When the entities504

and relations in a sentence are fixed, like given the505

prompt “1+1=”, there is no redundancy to embed506

bits because the answer is just “2”.507

The LLM used for this framework will affect508

the quality and robustness of the stegos. Therefore,509

we recommend using those large LLMs with open510

APIs. However, if the local use of LLMs is a ne-511

cessity, the need for GPU resources becomes a lim-512

itation. In our experiments, we used ChatGLM-6B-513

int4, which requires a maximum of 6GB of GPU514

RAM. Calculated as the product of GPU memory515

and time in use, generating a sentence takes about516

12.0754 GB·s.517

6 Ethics Statement518

We propose a steganography framework based on519

LLMs. Due to the convenience of accessing LLMs,520

this method may have an impact on the security of521

LLMs generated texts. In our future work, we will522

study the detection method against LLMs gener-523

ated steganographic texts. In our implementation524

and experiments we follow the licence of the used525

scientific artifacts.526
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A An Example of Generation &646

Regeneration647

As Sec.2.4 presents, the generated stegos will be648

checked by CA and regenerate if necessary. With649

the entities “many years” and “Mr. Kee”, an simple650

example of regeneration is shown below:651

Prompt: Write a sentence containing the follow-652

ing keywords: many years, Mr Kee. In this case,653

many years is the element of time category, and654

no other time-like element should appear in the655

sentence. Mr Kee is an element in person category,656

no other person-like element should appear in the657

sentence.658

Generation v0: Mr. Kee dedicated many years659

to teaching the children of the village.660

Feedback of CA: “Children” should not be in 661

the sentence because it is an element in person 662

category. 663

Regeneration v1: Mr. Kee toiled for many years 664

on his beloved farm. 665

Feedback of CA: “Farm” should not be in the 666

sentence because it is an element in location cate- 667

gory. 668

Regeneration v2: Mr. Kee fostered wisdom over 669

many years. 670

Feedback of CA: Good. No errors. 671

It is important to mention that the completeness 672

of entities affects the rationality of stegos. Since we 673

decide that some entities should be in the sentence 674

and the others should not, the sentence might be 675

somewhat strange if the chosen entities are not 676

related. 677

B An Example of Paraphrase & Semantic 678

communication 679

We trained the model proposed by (Xie et al., 2021) 680

in Chinese corpus. The impact of paraphrasing and 681

semantic communication is presented below. 682

Entities: 演员,观众 683

Stego: 电影中的群众演员为影片增色不 684

少，他们的不懈努力得到了观众的高度认 685

可。 686

Paraphrased stego: 影片里的临时演员为电 687

影增添了丰富的色彩，他们孜孜不倦的付出赢 688

得了广大观众的赞誉。 689

Stego after semantic communication(SNR=5): 690

电影中的阮演员为诲真相产生了不少，他们的 691

弹努力得到了观众的高度认可认可。 692

Stego after semantic communication(SNR=15): 693

中的群众演员为多个灵感色不少，他们的不懈 694

努力得到了观众的高度认可。 695

Stego after semantic communication(SNR=60): 696

中的群众演员为多个冲突色不少，他们的不懈 697

努力得到了观众的高度认可。 698

In this case, the entities演员 and观众 are not 699

changed after paraphrase. Even those decoding 700

methods based on retrieving are able to decode the 701

correct bits. 702

Although the sentence attacked by semantic com- 703

munication appears to make no sense, it still con- 704

tains the correct entities and can be decoded appro- 705

priately. 706
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C Additional Experiments707

Method PPL Dist-3 bit/sent bit/tok MSR
Ours 869.79 0.8753 28.5088 0.3958 0.893

METEOR 2461.97 0.8179 2.1547 0.1747 0.458
DISCOP 2524.63 0.8317 2.4573 0.1755 0.461

Table 4: Comparison with METEOR(Kaptchuk et al.,
2021) and DISCOP(Ding et al., 2023), testing by
ChatGLM2-6B.

Method PPL Dist-3 bit/sent bit/tok MSR
AC 2065.73 0.8024 2.5695 0.1788 0.459

AC+prompt1 3297.14 0.9315 3.9218 0.2673 0.326
AC+prompt2 3622.07 0.9567 4.5410 0.3154 0.375

Table 5: Comparison with prompts that will cause high-
entropy responses, testing by ChatGLM2-6B. Prompt 1
is You are a creative writer. Prompt 2 is Please give a
high entropy response.
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