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Abstract

Numerous recent works show that overparameterization implicitly reduces variance
for min-norm interpolators and max-margin classifiers. These findings suggest
that ridge regularization has vanishing benefits in high dimensions. We challenge
this narrative by showing that, even in the absence of noise, avoiding interpolation
through ridge regularization can significantly improve generalization. We prove
this phenomenon for the robust risk of both linear regression and classification, and
hence provide the first theoretical result on robust overfitting.

1 Introduction

Conventional statistical wisdom cautions the user who trains a model by minimizing a loss L(θ): if
a global minimizer achieves zero or near-zero training loss (i.e., it interpolates), we run the risk of
overfitting (i.e., high variance) and thus suboptimal prediction performance. Instead, regularization is
commonly used to reduce the effect of noise and to obtain an estimator with better generalization.
Specifically, regularization limits model complexity and induces worse data fit, for example via an
explicit penalty term R(θ). The resulting penalized loss L(θ) + λR(θ) explicitly imposes certain
structural properties on the minimizer. This classical rationale, however, does seemingly not apply to
overparameterized models: for example, large neural networks in practice exhibit good generalization
performance on i.i.d. samples even if L(θ) vanishes and label noise is present [36].

Since interpolators are not unique in the overparameterized regime, it is crucial to study the specific
implicit biases of interpolating estimators. In particular, for common losses, a large body of recent
work analyzes the properties of the solutions found via gradient descent at convergence (see e.g. [44,
12, 13, 22, 26, 27, 49, 31]). For example, for linear and logistic regression, it is well-known that
gradient descent converges to the min-`2-norm and max-`2-margin solutions, respectively [22, 27,
32, 49]. These interpolating estimators also minimize the respective penalized loss L(θ) + λ‖θ‖22 in
the limit of λ→ 0 [44].

A plethora of recent papers explicitly study generalization properties on min-`2-norm interpolators [15,
18, 23, 6, 33, 34, 35] and max-`2-margin solutions [14, 34, 46], and show that the variance decreases
as the overparameterization ratio increases beyond the interpolation threshold. While regularization
with λ > 0 is commonly known to reduce the risk at the interpolation threshold [23, 37], many
of these works are motivated by the second descent of the double descent phenomenon [7] which
suggests that regularization becomes redundant with sufficient overparameterization. Hence, previous
papers focus on highly overparameterized settings where the optimal regularization parameter satisfies
λopt ≤ 0 [29, 54, 43], implying that for large d/n, explicit regularization with λ > 0 is redundant or
even detrimental for generalization.
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(c) Linear classification

Figure 1: Avoiding interpolation can benefit robustness even in the overparameterized (d � n)
regime and for noiseless training data. We plot the robust accuracy gain of (a) early-stopped neural
networks compared to models at convergence, fit on sanitized (binary 1-3) MNIST that arguably
has minimal noise; and `2 regularized estimators compared to interpolators with λ → 0 for (b)
linear regression with n = 103 and (c) robust logistic regression with n = 103. See Appendix B for
experimental details and Sections 3 and 4 for the precise settings of (b) and (c).

Taking a step back, this narrative originated from theoretical and experimental findings that consider
the standard test risk with identically distributed training and test data. However, this measure
cannot reflect the robust risk of models when the test data has a shifted distribution, is attacked by
adversaries, or contains many samples from minority groups [19, 21, 40, 55]. In fact, mounting
empirical evidence suggests that regularization is indeed helpful for robust generalization, even in
highly overparameterized regimes where the benefits for the standard risk are negligible [42]. This
phenomenon is sometimes referred to as robust overfitting.

In the presence of noise, the following intuition holds true: since the robust risk amplifies estimation
errors, its variance is larger and hence regularization – such as early stopping – can be beneficial
for generalization [47]. However, we observe that even when estimating entirely noiseless signals,
robust overfitting persists! We observe this phenomenon in experiments with shallow neural networks
on sanitized image data depicted in Figure 1a and, in fact, even for linear models trained on high-
dimensional synthetic noiseless data. In particular, Figures 1b,1c show that min-`2-norm and robust
max-`2-margin interpolators (minimizers of the training loss for λ → 0), achieve a higher robust
risk than the corresponding regularized estimators that do not interpolate noiseless observations
(minimizers for λ > 0).

To date, our observations in the noiseless case cannot be explained by prior work. On the contrary,
they seem to contradict a simple intuition: if the min-`2-norm and robust max-`2-margin interpolators
exhibit large risks as λ → 0, the induced bias for a small `2-norm is potentially suboptimal and a
larger penalty weight λ > 0 should only degrade performance. In this paper, we provide possible
explanations that debunk this intuition in the high-dimensional overparameterized regime. We prove
for isotropic Gaussian covariates that a strictly positive regularization parameter λ systematically
improves robust generalization for linear and robust logistic regression. Empirically, we show that
early stopping and other factors that lead to a non-interpolating estimator achieve a similar effect.
Our results provide the first rigorous explanation of robust overfitting even in the absence of noise.

In Section 2, we formally define the setting that we use throughout our analysis. We then first
present precise asymptotic expressions for the robust risk for linear regression in Section 3 that
explicitly explain robust overfitting. Furthermore, in Section 4, we consider classification with
logistic regression and derive asymptotic results.

2 Risk minimization framework

In this section, we introduce the data generating process that we assume throughout our analysis, and
define the standard and robust risks that we use as evaluation metrics.
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2.1 Problem setting

This paper considers the supervised learning problem of estimating a mapping from d-dimensional
real-valued features x ∈ Rd to a target y ∈ Y ⊆ R given a training set of labeled samples D =
{(xi, yi)}ni=1. We assume that the feature vectors xi are drawn i.i.d. from the marginal distribution P
that we assume to be an isotropic Gaussian. We further focus on noiseless observations yi = 〈θ?, xi〉
for regression tasks and yi = sgn(〈θ?, xi〉) for classification tasks, respectively. However, the main
results are more general and apply to noisy observations as well. For regression, we assume additive
Gaussian noise with zero mean and σ2 variance, while for classification we flip a certain percentage
of the training labels.

This paper studies the high-dimensional asymptotic regime where d/n→ γ as both the dimensionality
d and the number of samples n tend to infinity. This high-dimensional setting is widely studied as it
can often – as in our experiments – yield precise predictions for the risk of the estimator when both the
input dimension and the data set size are large [9, 52]. It is also the predominant setting considered in
previous theoretical works that discuss overparameterized linear models [2, 14, 15, 23, 25, 24, 50].

2.2 Standard and robust risk

We now introduce the standard and robust evaluation metrics for regression and classification. Given
a pointwise test loss `test : R× R→ R, we define the standard (population) risk of an estimator θ̂ as

R(θ̂) := EX∼P`test

(
〈θ̂, X〉, 〈θ?, X〉

)
, (1)

where the expectation is taken over the marginal feature distribution P. Note that for any data-
dependent estimator θ̂, this risk is fixed if conditioned on the training data. Our asymptotic bounds
hold almost surely over draws of the training set. As standard in the literature, we choose the
square loss `test(u, v) = (u − v)2 for regression and the 0-1 loss `test(u, v) = 1sgn(u) 6=sgn(v) for
classification.

The broad application of ML models in real-world decision-making processes increases requirements
on their generalization abilities beyond i.i.d. test sets. For example, in the image domain, classifiers
should be robust and output the same prediction for perturbations of an image that do not change the
ground truth label (e.g., imperceptible `p-perturbations [19]). In this case, we say the perturbations are
consistent and the estimator that achieves zero robust population risk also has zero standard population
risk. For linear models in particular, one way to enforce consistency is to restrict perturbations to the
space orthogonal to the ground truth, as proposed in [41].

Motivated by the imperceptibility assumption and `p-adversarial attacks widely studied in the image
domain, we consider the adversarially robust risk of a parameter θ with respect to consistent `p-
perturbations

Rε(θ̂) := EX∼P max
δ∈Up(ε)

`test(〈θ̂, X + δ〉, 〈θ?, X〉) , (2)

with the perturbation set Up(ε) := {δ ∈ Rd : ‖δ‖p ≤ ε and 〈θ?, δ〉 = 0}.
In many scientific applications, security against adversarial attacks may not be the dominating
concern; one may instead require estimators to be robust against small distribution shifts. Earlier
work [48] has pointed out that distribution shift robustness and adversarial robustness are equivalent
for losses that are convex in the parameter θ. Similarly, in our setting, adversarial robustness against
consistent `p-perturbations implies distributional robustness against `p-bounded mean shifts in the
covariate distribution P (see Appendix A.3).

3 Min-`2-norm interpolation in robust linear regression

In the context of regression, we illustrate overfitting of the robust risk in Equation (2) with the
set of consistent `2-perturbations U2(ε). More precisely, we show that preventing min-`2-norm
interpolation on noiseless samples via ridge regularization improves the robust risk. We refer the
reader to Appendix C.1 for an intuitive explanation. Lastly, we note that due to the rotational
invariance of the problem, our results hold for sparse and dense ground truths θ? alike.
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3.1 Interpolating and regularized estimator

We study linear ridge regression estimates defined as

θ̂λ = arg min
θ

1

n

n∑
i=0

(yi − 〈θ, xi〉)2 + λ‖θ‖22. (3)

The min-`2-norm interpolator is the limit of the linear ridge regression estimate with λ→ 0 and is
given by

θ̂0 = arg min
θ
‖θ‖2 such that 〈θ, xi〉 = yi for all i. (4)

Note that the min-`2-norm interpolator is also the estimator that gradient descent on the unregularized
loss converges to, while ridge regression with λ > 0 corresponds to early-stopped estimators [1, 2].
Therefore, by proving that a ridge regularized estimator with λ > 0 significantly outperforms the
min-`2-norm interpolator with λ→ 0, we also show that early stopping benefits robust generalization.

Whenever the goal is to achieve a low robust risk, a popular alternative to using the standard linear
regression estimate in Equations (3),(4) is to consider adversarially trained estimators [19, 25].
However, `2-adversarial training in its usual form (i.e., with inconsistent perturbations) prevents
regression estimators from interpolating, and hence, has a similar effect to `2-regularization as we
discuss in more detail in Appendix C.2. On the other hand, training with consistent perturbations
as defined in the robust risk is equivalent to full knowledge of the direction of θ? and hence simply
recovers the ground truth in the noiseless case. Since our goal is to reveal the shortcomings of
interpolators compared to regularized estimators, we only analyze ridge estimators trained without
perturbations.

3.2 Robust overfitting in noiseless linear regression

The following theorem provides a precise asymptotic expression of the robust risk under consistent
`2-perturbations for the ridge regression estimate in Equation (3). The proof extends techniques from
previous works [23, 15] based on results from random matrix theory [3, 28] and can be found in
Appendix E. Without loss of generality, we can assume that ‖θ?‖2 = 1.
Theorem 3.1. Assuming the marginal input distribution P = N (0, Id), the robust risk (2) of the esti-
mator θ̂λ for λ > 0 (defined in (3)) with respect to consistent `2-perturbations U2(ε) asymptotically
converges to

Rε(θ̂λ)
a.s.−→ Rλ + ε2Pλ +

√
8ε2

π
PλRλ =: Rε,λ (5)

as d, n → ∞ with d/n → γ, where Pλ = Rλ − λ2(m(−λ))2 and
Rλ = λ2m′(−λ) + σ2γ(m(−λ)− λm′(−λ)) is the asymptotic standard risk, i.e., R(θ̂λ)

a.s.−→ Rλ.
The function m(z) is the Stieltjes transform of the Marchenko-Pastur law and is given by

m(z) =
1−γ−z−

√
(1−γ−z)2−4γz

2γz . Further, the limit limλ→0Rε,λ exists for all ε ≥ 0 and
corresponds to the asymptotic standard (ε = 0) and robust risks (ε > 0) of the min-`2-norm
interpolator θ̂0 (4).

We plot the precise asymptotic risks of the ridge estimate with optimal regularization parameter λopt
2

and of the min-`2-norm interpolator for λ→ 0 in Figure 2. For the robust risk, we use ε = 0.4. We
first observe in Figure 2a that ridge regularization reduces the robust risk even for d/n � 1 well
beyond the interpolation threshold – the regime where previous works show that the variance is
negligible, and hence, regularization does not improve generalization.

Moreover, Figure 2b illustrates that the beneficial effect of ridge regularization persists even for
noiseless data. This supports our statement that regularization not only helps to reduce variance, but
also reduces the part of the robust risk that is unaffected by noise in the overparameterized regime.
Furthermore, we show that experiments run with finite values of d and n (depicted by the markers in
Figure 2) closely match the predictions obtained from Theorem 3.1 for d, n→∞ and d/n→ γ. This

2Here we choose λ using the population risk oracle. In practice, one would resort to standard tools such as
cross-validation techniques that also enjoy theoretical guarantees (see e.g. [38]).
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Figure 2: Asymptotic theoretical predictions for d, n → ∞ (curves) and experimental results
with finite d and n = 103 (markers) for the robust (ε = 0.4) and standard risk of the min-`2-
norm interpolator (solid, interpolating) and the ridge regression estimate with optimal λ (dashed,
regularized) for (a) noisy data with σ2 = 0.2 and (b) noiseless data. We observe that the gap between
the robust risk of the interpolating and optimally regularized estimators persists even for noiseless
observations.

indicates that the high-dimensional asymptotic regime does indeed correctly predict and characterize
the high-dimensional non-asymptotic regime. Finally, even though Theorem 3.1 assumes isotropic
Gaussian covariates, we can extend it to more general covariance matrices following the same
argument as in [23], based on results from random matrix theory [28].

4 Max-`2-margin interpolation in robust linear classification

Unlike linear regression, adversarially trained binary logistic regression classifiers may still inter-
polate the training data, resulting in robust max-`2-margin interpolators as λ → 0. Hence, in this
section we train and evaluate classifiers with `∞-perturbation sets U∞(ε), a standard choice in the
experimental and theoretical classification literature [19, 24, 42, 47], but also discuss `2-perturbations
in Appendix D.3 for completeness. Our theoretical results show that the robust max-`2-margin
interpolator with λ→ 0 has a worse robust risk than a regularized predictor with λ > 0.

4.1 Interpolating and regularized estimator

As discussed in Section 3, a common method to obtain robust estimators is to use adversarial training.
However, for linear regression, adversarial training either renders interpolating estimators infeasible,
or requires oracle knowledge of the ground truth. In contrast, for linear classification, interpolation
is easier to achieve – it only requires the sign of 〈xi, θ〉 to be the same as the label yi for all i. In
particular, when the data is sufficiently high dimensional, it is possible to find an interpolator of the
adversarially perturbed training set.

We study the robust ridge-regularized logistic regression estimator with penalty weight λ > 0,

θ̂λ := arg min
θ

1

n

n∑
i=1

max
δ∈U∞(ε)

log(1 + e−〈θ,xi+δ〉yi) + λ‖θ‖22. (6)

In the limit λ → 0 the results in [44] imply that the robust ridge-regularized logistic regression
estimator from Equation (6) directionally aligns with the robust max-`2-margin interpolator:3

θ̂0 := arg min
θ
‖θ‖2 such that min

δ∈U∞(ε)
yi〈θ, xi + δ〉 ≥ 1 for all i. (7)

3While [44] only proves the result for ε = 0, it is straightforward to extend it to the general case where ε ≥ 0.
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Figure 3: Normalized robust margins and risks of empirical simulations using ε = 0.1 and d/n = 8,
with respect to (a) increasing 1/λ and (b) gradient descent iterations when minimizing Equation (6)
using λ = 0. Both ridge regularization and early stopping yield superior robust and standard risks.
Each experiment uses n = 103 and inconsistent `∞-perturbations for training. See Appendix B for
more details.

We say that the data is robustly separable if the robust max-`2-margin interpolator exists.

The robust max-`2-margin solution is an interpolating estimator of particular importance since it
directionally aligns with the estimator found by gradient descent [31]. Since the robust accuracy (i.e.,
the robust risk defined using the 0-1 loss) is independent of the norm of the estimator, we simply refer
to the robust max-`2-margin solution as the normalized vector θ̂0

‖θ̂0‖2
.

In this paper, we study two choices for the set of training perturbations U∞(ε):

inconsistent perturbations U∞(ε) = {δ ∈ Rd : ‖δ‖∞ ≤ ε} (8)

consistent perturbations U∞(ε) = {δ ∈ Rd : ‖δ‖∞ ≤ ε, 〈δ, θ?〉 = 0} (9)

Adversarial training with respect to inconsistent perturbations (8) is a popular choice in the literature
to improve the robust risk (e.g. [19, 24]). However, perturbed samples may cross the true decision
boundary, and hence, inconsistent perturbations effectively introduce noise during the training
procedure. In particular, in the data model with noiseless observations that we introduce in Section 4.2,
the ground truth function misclassifies approximately 8% of the labels when perturbing the training
data with inconsistent perturbations of size ε = 0.1.

As mentioned in the introduction, in this paper we are interested in verifying whether regularization
can be beneficial in high dimensions even in the absence of noise. Therefore, in the sequel we study
the impact of both inconsistent (8) and consistent (9) perturbations on robust overfitting.

4.2 Robust overfitting in noiseless linear classification

We now show empirically that regularization helps to improve the robust and standard risks when
training with noiseless data and derive precise asymptotic predictions for both risks. Throughout
this subsection we assume deterministic, and hence, noiseless training labels, i.e., yi = sgn〈xi, θ?〉.
Furthermore, as we discuss in Section 4.3, the inductive bias of the `∞-robust logistic loss encourages
sparse solutions. Since we are primarily interested in learning ground truth functions that match the
implicit bias of the estimator, we assume the sparse ground truth θ? = (1, 0, . . . , 0)T .

We first show robust overfitting experimentally on noiseless data when training with inconsistent
perturbations and subsequently demonstrate that overfitting persists even if the training procedure is
completely noiseless (i.e., using consistent training perturbations). Finally, we provide theoretical
evidence for our observations in the high-dimensional asymptotic limit.
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Training with inconsistent adversarial perturbations Figure 3a illustrates the robust margin
mini minδ∈U∞(ε)

1
‖θ‖2 yi〈θ, xi + δ〉 as well as the standard and robust risks of the estimator θ̂λ trained

using inconsistent adversarial perturbations on a synthetic data set with fixed overparameterization
ratio d/n = 8. We observe that decreasing the ridge coefficient well beyond the point where the
minimizer of the robust logistic loss (6) reaches 100% robust training accuracy (i.e., the robust margin
becomes positive) substantially hurts generalization.

In addition to varying the ridge coefficient λ, we notice that the same trends as for λ→ 0 also occur
for the gradient descent optimization path as the number of iterations t goes to infinity. Figure 3b
indicates that, similarly to ridge regularization, early stopping also avoids the robust max-`2-margin
solution that is obtained for t → ∞ and yields an estimator with significantly lower standard and
robust risks.

Training with consistent adversarial perturbations As discussed in Section 4.1, even for noiseless
training data, inconsistent perturbations can induce noise during the training procedure. Hence, one
could hypothesize that the noise induced by the inconsistent perturbations causes the overfitting
observed in Figure 3. To contradict this hypothesis, we also study adversarial training with consistent
perturbations. By definition, consistent perturbations do not cross the true decision boundary and
hence leave the training data entirely noiseless.

Figure 4a shows that the adversarially trained estimators (6),(7) with consistent and inconsistent
perturbations yield comparable robust risks. Moreover, robust overfitting occurs in both situations, as
the risk is higher for the interpolating estimator λ→ 0 compared to an optimal λ > 0. Hence, our
observations demonstrate that robust overfitting persists even if training with consistent perturbations
in an entirely noiseless setting. This observation is counter intuitive since, according to classical
wisdom, we would expect ridge regularization to only benefit in noisy settings where the estimator
suffers from a high variance.

We now prove this phenomenon using the next theorem. In particular, similar to Theorem 3.1 for
linear regression, we show that robust overfitting occurs in the high-dimensional asymptotic regime
where d/n→ γ as d, n→∞. We state an informal version of the theorem in the main text and refer
to Appendix F for the precise statement. The proof is inspired by the works [24, 46] and uses the
Convex Gaussian Minimax Theorem (CGMT) [20, 51].

Theorem 4.1 (Informal). Assume that ε = ε0/
√
d for some constant ε0 and θ? = (1, 0, · · · , 0)T .

Then, the robust and standard risks of the regularized estimator θ̂λ (6) (λ > 0) and of the robust
max-`2-margin interpolator (7) (λ → 0) with inconsistent (8) or consistent (9) adversarial `∞-
perturbations converge in probability as d, n→∞, d/n→ γ to:

R(θ̂λ)→ 1

π
arccos

(
ν?‖
ν?

)
and Rε(θ̂λ)→ R(θ̂λ) +

1

2
erf

(
ε0δ

?

√
2ν?

)
+ I

(
ε0δ

?

ν?
,
ν?‖
ν?

)
We denote by erf(.) the error function,

I(t, u) :=

∫ t

0

1√
2π

exp

(
−x

2

2

)
erf

(
xu√

2(1− u2)

)
dx,

and use the notation ν? =
√

(ν?⊥)2 + (ν?‖)
2, where ν?⊥, ν

?
‖ , δ

? are the unique solution of a scalar

optimization problem specified in Appendix F that depends on θ?, γ, ε0 and λ.

Since the theoretical expressions are hard to interpret, we visualize the asymptotic values of the
standard and robust risks from Theorem 4.1 in Figure 4b by solving the scalar optimization problem
specified in Appendix F. We observe that Theorem 4.1 indeed predicts the benefits of regularization
for robust logistic regression and that simulations using finite values of d and n follow the asymptotic
trend. We describe the full empirical setup in Appendix B.

4.3 Intuitive explanation and discussion

Even though we explicitly derive the precise asymptotic expressions of the standard and robust risks
in Theorem 4.1 that predict the benefits of regularization for generalization, it is difficult to extract
intuitive explanations for this phenomenon directly from the proof. We conjecture that a non-zero

7



Consistent, λ→ 0
Consistent, λopt

Inconsistent, λ→ 0
Inconsistent, λopt

2 4 6 8

d/n

0.0

0.1

0.2

0.3
R

ob
u

st
ri

sk

(a) Fixed ε = 0.1 for increasing d

Std., λ→ 0
Std., λ = 1

Robust, λ→ 0
Robust, λ = 1

3 4 5 6 7 8

d/n

0.0

0.2

0.4

0.6

P
op

u
la

ti
on

ri
sk

(b) Fixed n, d and asymptotic predictions

Figure 4: (a) Comparison of consistent and inconsistent `∞-perturbations for adversarial logistic
regression with respect to the degree of overparameterization d/n, using ε = 0.1 for both training and
evaluation. Note that both estimators behave very similarly, implying that the effect of inconsistency
is negligible for small ε. (b) Robust and standard risks of the robust max-`2-margin interpolator
(λ → 0) and robust ridge estimate (λ = 1) with consistent perturbations (9) using ε = 0.05 as a
function of the overparameterization ratio d/n for simulations (markers) and asymptotic theoretical
predictions from Theorem 4.1 (lines). We note that, for small values of γ, solving the optimization
problem that gives the theoretical predictions becomes numerically unstable. All simulations use
n = 103 samples from our data model; see Appendix B for further experimental details.

ridge penalty induces a more sparse θ̂λ (i.e., with a smaller `1/`2-norm ratio) than the robust max-
`2-margin solution θ̂0 and use simulations to support our claim. Since the `∞-adversarially robust
risk penalizes dense solutions with large ratio of the `1/`2-norms (see Lemma A.2 in Appendix A.2),
we expect more sparse estimators to have a lower robust risk. Indeed, Figure 5a shows that the
`1/`2-norm ratio strongly correlates with the robust risk of the estimator.

We begin by noting that, due to Lagrangian duality, minimizing the ridge-penalized loss (6) corre-
sponds to minimizing the unregularized loss constrained to the set of estimators θ with a bounded
`2-norm. This norm decreases as the ridge coefficient λ increases. In what follows, we provide
intuition on the effect of the ridge penalty λ on the sparsity of the estimator θ̂λ.

Large λ inducing a small `2-norm We first analyze the regularized estimator θ̂λ for large λ that
constrains solutions to have small `2-norm. We can therefore use Taylor’s theorem and the closed-
form expression of adversarial perturbations (see Lemma A.2 in Appendix A.2) to approximate the
unregularized robust loss from Equation (6) as follows:

1

n

n∑
i=1

log(1 + e−yi〈θ,xi〉+ε‖Π⊥θ‖1) ≈ 1

n

n∑
i=1

−yi〈xi, θ〉+ ε‖Π⊥θ‖1. (10)

As a consequence, the minimizer θ̂λ should result in a large robust average margin solution, that is, a
solution with large 1

n

∑n
i=1

1
‖θ‖2 (yi〈xi, θ〉 − ε‖Π⊥θ‖1). Indeed, we observe this using simulations

for finite d, n in Figures 5b and 5c. In particular, the objective in Equation (10) leads to a trade-off
between the sparsity of the estimator (via its convex surrogate, the `1-norm) and an average of the
sample-wise margins yi〈xi, θ〉. We note that such estimators have been well studied in the literature
and are known to achieve good performance in recovering sparse ground truths [5, 17, 39].

Small λ inducing a large `2-norm In contrast, a small ridge coefficient λ leads to estimators
θ̂λ with large `2-norms. In this case, the estimator approaches a large robust (minimum) margin
solution, i.e., a solution with large mini

1
‖θ‖2 (yi〈xi, θ〉 − ε‖Π⊥θ‖1) which is maximized by the

robust max-`2-margin interpolator (7). As a consequence, this leads to a trade-off between estimator
sparsity and the robust minimum margin mini

1
‖θ‖2 yi〈xi, θ〉. Due to the high dimensionality of the

input data, the training samples xi are approximately orthogonal. Thus, to achieve a non-vanishing
robust margin, estimators are forced to trade-off sparsity with all sample-wise margins instead of just
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Figure 5: (a) The `1-norm and the rescaled (by a factor of 10) robust risk of the estimator with respect
to 1/λ. (b) The robust average margin contrasted to the robust margin as a function of 1/λ. The
horizontal lines denote the corresponding values for θ?. (c) The ordered sample-wise robust margins
yi〈xi, θ〉 − ε‖Π⊥θ‖1 when interpolating and regularizing. For larger λ, the robust (minimum) margin
decreases while the robust average margin (horizontal lines) increases. We normalize the estimators,
i.e., ‖θ̂λ‖2 = 1, for all curves presented in the plots; see Appendix B for further experimental details.

the average. We reveal this trade-off in Figures 5a and 5b where the increase in `1/`2-norm ratios
corresponds to a decrease in the robust average margin and an increase in the robust margin.

Finally, we observe that the sparse ground truth is characterized by a large robust average
margin (horizontal dotted line in Figure 5b) and a small (minimum) robust margin (horizontal dashed
line). Therefore, we expect that the solution that is sparser and which satisfies the same properties
for the robust margin as the ground truth θ?, will achieve lower robust and standard risks. Indeed,
our findings indicate that the regularized estimator θ̂λ for large λ aligns better with θ?, compared to
the solution obtained for a small λ, and hence justify the better performance of ridge-regularized
predictors.

4.4 Benefits of an unorthodox way to avoid the robust max-`2-margin interpolator

In the previous subsections we focused on robustly separable data and studied the generalization
performance of regularized estimators that do not maximize the robust margin. Another way to
avoid the robust max-`2-margin solution is to introduce enough label noise in the training data. We
now show that, unexpectedly, this unorthodox way to avoid the robust max-margin solution can also
yield an estimator with better robust generalization than the robust max-`2-margin solution of the
corresponding noiseless problem.

Specifically, in our experiments we introduce noise by flipping the labels of a fixed fraction of the
training data. Figure 6 shows the robust and standard risks together with the training loss of the
estimator θ̂λ from Equation (6) trained with consistent perturbations for λ→ 0 with varying fractions
of flipped labels. For low noise levels, the data is robustly separable and the training loss vanishes
at convergence, yielding the robust max-`2-margin solution in Equation (7). For high enough noise
levels, the constraints in Equation (7) become infeasible and the training loss of the resulting estimator
starts to increase. As discussed in Subsection 4.3, this estimator has a better implicit bias than the
robust max-`2-margin interpolator and hence achieves a lower robust risk.

Even though it is well known that introducing covariate noise can induce implicit regularization [8],
our observations show that in contrast to common intuition, the robust risk also decreases when
introducing wrong labels in the training loss. In parallel to our work, the paper [30] shows that
training with corrupted labels can be beneficial for the standard risk.

However, we emphasize here that we do not advocate in favor of artificial label noise as a means to
obtain more robust classifiers. In particular, even if the data is not robustly separable, the estimator
with optimal ridge parameter λopt in Figure 6 still always outperforms the unregularized solution.
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Figure 6: Training loss and robust risks with respect to increasing training label noise for ε = 0.1,
d = 8× 103 and n = 103. We observe for unregularized estimators (λ→ 0) that, counterintuitively,
moderate amounts of label noise decrease the robust risk by avoiding the robust max-`2-margin
solution. While this might spuriously imply that injecting label noise increases robustness, estimators
with optimal ridge parameter λopt still outperform their unregularized counterparts in terms of robust
risk. Since the setting is noisy, we average the risks over five independent dataset draws and indicate
standard deviations via error bars.

Finally, we remark that a similar effect can also be observed when training with inconsistent perturba-
tions with large perturbation norm ε. We refer to Appendix D.1 for further discussion.

5 Related work
Understanding robust overfitting The current literature attempting to explain robust overfit-
ting [42] primarily focuses on the effect of noise and on the smoothness of decision boundaries
learned by neural networks trained to convergence [16, 47, 53]. A slightly different line of work [45]
shows that overparameterized models require regularization in order to achieve good classification
accuracy on all subpopulations. However, a theoretical understanding of the role of regularization is
still missing.

Theory for adversarial robustness of linear models Recent works [25, 24] provide a precise
description of the robust risks for logistic and linear regression when trained with adversarial attacks
based on the Convex Gaussian Minimax Theorem [20, 51]. The analysis focuses on inconsistent
attacks for both training and evaluation. For linear regression, the authors observe that adversarial
training with `2-perturbations mitigates the peak in the double descent curve around d = n and hence
acts similarly to ridge regularization as explicitly studied in [23]. Several other works focus on the
role of gradient descent in robust logistic regression. In particular, [56] proves that early stopping
yields robust adversarially-trained linear classifiers even in the presence of noise. Furthermore,
the results of [31] show that gradient descent on robustly separable data converges to the robust
max-`2-margin estimator (7).

6 Conclusion and future work

In this work, we show that overparameterized linear models can overfit with respect to the robust
risk even when there is no noise in the training data. Our results challenge the modern narrative
that interpolating overparameterized models yield good performance without explicit regularization
and motivate the use of ridge regularization and early stopping for improved robust generalization.
Perhaps surprisingly, we further observe that ridge regularization enhances the bias of logistic
regression trained with adversarial `∞-attacks towards sparser solutions, indicating that the impact of
explicit regularization may go well beyond variance reduction.

Future work Our simulations indicate that early stopping yields similar benefits as ridge regu-
larization in noiseless settings. However, we leave a formal proof for future work. Furthermore,
the double descent phenomenon has been proven for the standard risk on a broad variety of data
distributions and even for non-linear models such as random feature regression. It is still unclear how
our results translate to these settings. In particular, our theoretical analysis heavily makes use of the
closed-form solution of the adversarial attacks, and hence, cannot be applied to non-linear models in
a straightforward way.
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