
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Graphein - a Python Library for Geometric Deep Learning and Network
Analysis on Biomolecular Structures and Interaction Networks

Anonymous Authors1

Abstract

Geometric deep learning has broad applications
in biology, a domain where relational structure
in data is often intrinsic to modelling the
underlying phenomena. Currently, efforts in
both geometric deep learning and, more broadly,
deep learning applied to biomolecular tasks
have been hampered by a scarcity of appropriate
datasets accessible to domain specialists and
machine learning researchers alike. To address
this, we introduce Graphein as a turn-key tool for
transforming raw data from widely-used bioin-
formatics databases into machine learning-ready
datasets in a high-throughput and flexible manner.
Graphein is a Python library for constructing
graph and surface-mesh representations of
biomolecular structures, such as proteins, nucleic
acids and small molecules, and biological
interaction networks for computational analysis
and machine learning. Graphein provides utilities
for data retrieval from widely-used bioinformatics
databases for structural data, including the Protein
Data Bank, the AlphaFold Structure Database,
chemical data from ZINC and ChEMBL, and
for biomolecular interaction networks from
STRINGdb, BioGrid, TRRUST and RegNetwork.
The library interfaces with popular geometric
deep learning libraries: DGL, Jraph, PyTorch
Geometric and PyTorch3D though remains
framework agnostic as it is built on top of the
PyData ecosystem to enable inter-operability
with scientific computing tools and libraries.
Graphein is designed to be highly flexible,
allowing the user to specify each step of the data
preparation, scalable to facilitate working with
large protein complexes and interaction graphs,
and contains useful pre-processing tools for
preparing experimental files. Graphein facilitates
network-based, graph-theoretic and topological
analyses of structural and interaction datasets
in a high-throughput manner. We envision
that Graphein will facilitate developments in
computational biology, graph representation

learning and drug discovery.

Availability and implementation: Graphein
is written in Python. Source code, example
usage and tutorials, datasets, and docu-
mentation are made freely available under
the MIT License at the following URL:
https://anonymous.4open.science/
r/graphein-3472/README.md

1. Introduction
The functional roles of macromolecules are intricately tied
to the complex three dimensional structures they adopt.
Many biological functions are mediated by interacting
biomolecular entities, often through direct physical con-
tacts governed by their 3D structures. Recent develop-
ments in protein folding have given rise to an explosion
of structural data available to machine learning practitioners
[1, 2]. Highly-accurate protein structure prediction using
AlphaFold2 has been applied at the proteome scale to hu-
mans and 20 key model organisms [1, 3]. Recent work
making use of these data have demonstrated the power of
GNNs applied to protein structures methods over models
trained on large corpora of sequences alone [4] for protein
representation learning and highlighted the importance of
carefully considering the graph representation.

We anticipate a significant growth in the availability of
biomolecular structural and interaction data in the coming
years as both computational and experimental techniques
mature. In particular, we identify structural interactomics as
an emerging application area for geometric deep learning
as sparse experimental structural coverage of interactomes
can be annotated with modelled macromolecular structures.
However, the question of how to best leverage and inte-
grate these data with other modalities remains. A recent
review of biomedical knowledge graph datasets identifies
graph composition, feature and metadata incorporation and
reproducibility as key challenges [5]; we believe these are
vital considerations for structural and interactomic data. To
address these issues, we present Graphein, a flexible tool
that provides greater control over the data engineering and

https://anonymous.4open.science/r/graphein-3472/README.md
https://anonymous.4open.science/r/graphein-3472/README.md


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Graphein - a Python Library for Geometric Deep Learning on Biomolecular Structures and Interaction Networks

Machine Learning-Ready Datasets

Interactome

Raw Biological Forms

Figure 1. Graphein rapidly transforms and integrates raw biological and chemical data into actionable machine learning-ready datasets.

featurisation process of structural data, abstracting away
cumbersome data preparation tasks and facilitating repro-
ducible research.

Graphein provides a bridge for geometric deep learning
into structural interactomics through convenient structure
retrieval and graph creation tools. Our library interfaces
with several protein structure databases to leverage decades
of structural biology research as well as recent develop-
ments in protein folding. These advances have resulted in
a large pool of experimentally-determined and modelled
protein structures, with massive potential to inform future
research [6, 1]. To realise this potential, Graphein addition-
ally represents these graphs at different levels of granularity,
including atom, residue, secondary structure and chain-level
graphs, and populates the corresponding node and edge at-
tributes with informative features, enabling a wide range of
downstream applications of geometric deep learning.

Representing Structural Biomolecular Data It is not
yet clear how best to represent these data in machine learn-
ing experiments. It has been shown that structure-based
methods frequently outperform sequence-based methods
and that the choice of architecture shows strong task depen-
dency [7]. 3D Convolutional Neural Networks (3DCNNs)
have been routinely applied to grid-structured representa-
tions of protein structures and sequence-based methods have
proved commonplace [8, 9, 10]. Surface-based methods
have proved effective for predicting protein-protein and
protein-ligand interactions [11, 12]. Nonetheless, these rep-
resentations fail to capture relational information in the con-
text of intramolecular contacts and the internal chemistry
of the biomolecular structures. Furthermore, these meth-
ods are often computationally inefficient due to convolving
over large regions of empty space, and computational con-
straints often require the volume of the protein considered to
regions of interest, thereby losing global structural informa-
tion. For instance, in the case of protein-ligand interaction
and binding affinity prediction, central tasks in data-driven

drug discovery, this often takes the form of restricting the
volume to be centred on a binding pocket, thereby losing
information about allosteric sites on the protein and possible
conformational rearrangements that contribute to molecular
recognition. Furthermore, 3D volumetric representations
are not rotationally invariant, a deficiency that is often mit-
igated using costly data augmentation techniques. Graphs
suffer relatively less from these problems as they are trans-
lationally and rotationally invariant. Structural descriptors
of position can be leveraged and meaningfully exploited by
architectures such as Equivariant Neural Networks (ENNs),
which ensure geometric transformations applied to their
inputs correspond to well-defined transformations of the
outputs.

Macromolecular structures and biological interaction net-
works can naturally be represented as graphs at different
levels of granularity and abstraction with edges denoting
intramolecular, regulatory and functional interactions or
spatial relationships. The graph structure can further be
elaborated by assigning metadata and numerical features to
nodes and edges as well as the whole graph. These features
can represent, for instance, chemical properties of residues
or atoms, secondary structure assignments or solvent ac-
cessibility metrics of the residue or descriptions of geom-
etry. Edge features can include bond or interaction types
as well as distances. Graph features can include functional
annotations or sequence-based descriptors. In the context
of interaction networks, structural data can be overlaid on
protein nodes providing a multi-scale view of biological
systems and function. By providing a toolkit for integrating
data across these domains Graphein provides a bridge for
geometric deep learning into structural interactomics.

2. Related Work
Geometric Deep Learning Tools Geometric deep learn-
ing methods have demonstrated their suitability for tasks
across domains. In part, this has been fuelled by the develop-
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ment of libraries that provide easy access to non-Euclidean
data objects and models from the literature. Deep Graph
Library (DGL) [13] and PyTorch Geometric [14] are the
main open-source frameworks built for PyTorch [15]. Other
tools include: Graph Nets [16] for Sonnet [17]/Tensorflow
[18] and Jraph [19] for JAX [20]. Whilst several of these
provide datasets and simple featurisation schemes relevant
to the life sciences, these are typically focussed on small
molecules [13, 14]. However, data preparation for geomet-
ric deep learning in structural biology and interactomics is
yet to receive the same attention and tools addressing this
bottleneck can greatly accelerate research in these domains
[21].

Datasets and Benchmarks In-built dataset support is
a common feature of geometric deep learning frame-
works. More specialised libraries, such as DGL-LifeSci,
DeepChem and TorchDrug, provide datasets, featurisation,
neural network layers and pre-trained models for tasks in-
volving small molecules in the life sciences, computational
chemistry and drug development [22, 23, 24]. TorchDrug
and DeepChem provide reinforcement learning environ-
ments to fine tune generative models for physicochemical
properties such as drug-likeness (QED) and lipophilicity
(LogP). Therapeutics Data Commons provides raw datasets
for small molecule and biologics tasks [25]. However, none
of these tools address the transformation of macromolecular
structures into machine learning-ready formats or provide
comprehensive utilities for the generation of new datasets.

Biomolecular tasks are included in many graph represen-
tation learning benchmarks. The Open Graph Bench-
mark (OGB) includes graph property prediction tasks on
small molecules, link prediction tasks (ogbl-ppa) based
on protein-protein interaction prediction and a biomedi-
cal knowledge graph (ogbl-biokg), and a node clas-
sification task based on prediction of protein function
(ogbn-proteins) [26]. The TUDataset contains three
biologically-motivated benchmark datasets for graph classi-
fication, (PROTEINS, ENZYMES and DD) relevant to appli-
cations in structural biology [27]. For PROTEINS and DD
the goal is to predict whether or not a protein is an enzyme
and these are derived from the same data under differing
graph construction schemes [28, 29]. ENZYMES provides a
task based on assigning Enzyme Commission (EC) numbers
to graph representations of enzyme structures derived from
the BRENDA database [30]. However, these collections
have been abstracted away from the underlying biological
data and computing additional features and metadata is cum-
bersome. More recently, ATOM3D provides a collection
of benchmark datasets for structurally-motivated tasks on
biomolecules and show leveraging structural information
consistently improves performance, and that the choice of
architecture significantly impacts performance depending

on the task context [7].

Tools for Working with Biomolecular Graphs Whilst
tools exist for transforming protein structures into graphs,
they typically focus on visualisation and traditional bioin-
formatics analyses for specific use-cases and cannot be con-
veniently used for developing deep learning models [31].
GraProStr is a web-server that enables users to submit struc-
tures for conversion into a graph which can be downloaded
as textfiles [32]. This provides users with limited control
over the construction process, low-throughput and limited
featurisation support. Furthermore GraProStr provides no
utilities for machine learning or unifying structural and inter-
actomic data. Mayavi, and GSP4PDB & LIGPLOT provide
utilities for visualising protein structures and protein-ligand
interaction as graphs, respectively [33, 34, 35]. Bionoi
is a library for representing protein-ligand interactions as
voronoi diagram images specifically for applications in ma-
chine learning [36]. PyUUL is a recent tool designed for
transforming biological structures into formats suitable for
computer vision tasks, such as voxels and point clouds.
However, graph-based representations and interaction data
are not addressed [21]. The lack of fine-grained control
over the construction and featurisation, public APIs for
high-throughput programmatic access, ease of integrating
data modalities, and incompatibility with deep learning li-
braries motivated the development of Graphein as machine
learning-first library.

3. Graphein
Graphein provides utilities for constructing geometric repre-
sentations of protein and RNA structures, small moleculure,
protein-protein interaction networks, and gene regulatory
networks. The library provides high- and low-level APIs,
appropriate for both novice and experienced users. The high-
level API constructs geometric representations of structural
and interaction data from standard biological identifiers.
The low-level API offers a fine-grained customisation of the
graph selection from the input data, allowing users to define
their own data preparation, graph construction and featur-
isation functions in a consistent manner. Graphein is built
on the PyData Stack to allow for easy inter-operability with
standard scientific computing tools and deep learning frame-
work agnosticism. Graphein is organised into submodules
for each of the supported modalities (Figure 2).

3.1. Protein Structure Graphs

Graphein interfaces with the PDB and the AlphaFold Struc-
ture Database to create geometric representations of protein
structures. Furthermore, users can supply their own .pdb
files, enabling pre-processing with standard bioinformatics
tools and pipelines. An overview of featurisation schemes
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Figure 2. Overview of graph and mesh construction and featurisation schemes for data modalities supported by Graphein. Modules are
inter-operable allowing protein or RNA structure graph construction to be applied to nodes in regulatory networks.

is provided in Supplementary Information A.

Node Representations Graphs can be constructed for all
chains contained within a polypeptide structure, or for a
user-defined selection of chains. This is useful in contexts
where regions of interest on a protein may be localised to
a single chain. For residue-level graphs, users can choose
between atom-based positional information, or sidechain
centroids. Sidechain centroids are calculated as the centre
of gravity of the deprotonated residue. Residue-level graph
nodes can be featurised with a one-hot encoding of amino
acid type, physicochemical and biochemical properties re-
trieved from the ExPaSY ProtScale [37] which includes
61 descriptors such as iso-electric points, mutability and
transmembrane tendencies. Additional numerical features
can be retrieved from AAIndex [38]. Low-dimensional
embeddings of amino acid physicochemical properties are
provided from Kidera et al. [39] and Meiler et al [40]. In
addition to fixed embeddings, sequence embeddings can be
retrieved from large pre-trained language models, such as
the ESM-1b Transformer model [41] and BioVec [42]. Sec-
ondary structural information can be included via a one-hot
encoded representation of eight state secondary structure
and solvent accessibility metrics (ASA, RSA, SSA) com-
puted by DSSP [43]. x, y, z positions are added as node
features. Vector-based features capturing important aspects
of protein structure, such as sidechain position and dynamics
derived from Normal Mode Analysis, are provided. These

have been shown to be highly informative features [44] and
have the potential to be meaningfully incorporated in equiv-
ariant neural network models. Functionality for user-defined
node or edge features is also provided with useful utilities
allowing for computation or aggregation of features over
constituent chains. Figure 2 illustrates an overview of the
mesh and graph construction methods as well as the node
and edge featurisation schemes; Figure 3 shows example
visualisations of graph and meshes produced by Graphein.

Edge Representations Graphein provides utilities in the
high-level API for a number of edge-construction schemes.
The low-level API provides a simple and intuitive way for
users to define novel edge construction schemes. Edge
construction methods are organised into distance-based, in-
tramolecular interaction-based, and atomic structure-based
submodules. Each of these edge construction methods are
composable to produce multirelational graphs. This is par-
ticularly useful for models that operate on different levels to
capture varying aspects of the underlying network.

Functionality for computing intramolecular graph edges
is provided through distance-based heuristics as well as
through an optional dependency, GetContacts [45]. Eu-
clidean distance-based edges can be computed with a user-
defined threshold. Functionality for constructing k-nearest
neighbour graphs, where two vertices are connected by an
edge if they are among the k-nearest neighbours by Eu-
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Residue Graphs

Point Clouds

SurfacesSubgraphs

Atomic Graphs

Secondary Structure Graphs

Chain Graphs

Figure 3. Representation types for structural data processed with Graphein. Plots generated with Graphein’s visualisation tools.

clidean distance is included. Graph edges can also be added
on the basis of the Delaunay triangulation. Delaunay tri-
angles correspond to joining points that share a face in the
3D Voronoi diagram of the protein structures. For distance-
based edges, a Long Interaction Network (LIN) parameter
controls the minimum required separation in the amino acid
sequence for edge creation. This is useful to reduce the
number of noisy edges under distance-based edge creation
schemes. Edge featurisation for atom-level graphs is pro-
vided by annotations of bond type and ring status.

Protein-Ligand Graphs & Subgraphs Graphein pro-
vides powerful selection methods for extracting subgraphs
from regions of interest within macromolecular structures.
Proteins are often large and the region of the structure rel-
evant to a given task may be localised to a region of the
structure. For instance, we can extract binding pocket sub-
graphs based on a known ligand pose as well as subgraphs
of interfaces in the case of complexed structures, or surface-
subgraphs that retain only solvent-exposed residues.

3.2. Protein Structure Meshes

Geometric deep learning applied to surface representations
of protein structures have demonstrated promise on a vari-
ety of tasks in the context of structural biology and struc-
tural interactomics [11, 46]. The protein structure mesh
module consists of a wrapper for PyMOL, a commonplace
molecular informatics visualisation tool, and Pytorch3D
[47]. PyMol is used to produce a .Obj file from either a

PDB accession code or a provided .PDB file, enabling the
use of pre-processed structures. Pytorch3D is used to pro-
duce a tensor-based representation of the protein surface as
vertices and faces. Users can pass any desired parameters or
commands controlling the surface calculation to PyMol via
a configuration object. These parameters include specifying
solvent inclusion, solvent probe radius, surface type, and
resolution. We provide sane defaults for first-time users. To
our knowledge, this is the first application of PyTorch3D for
protein structure data.

3.3. Molecules

Featurisation schemes and computational analysis of small
molecular graphs are a relatively mature area of research.
Typically, nodes represent atoms and edges denote the chem-
ical bonding structure between them. Junction trees are a
compact representation of molecular graphs, coarsening the
graph such that nodes represent molecular substructures
[48]. Graphein provides utilities for working with both of
these representations and conformer generation to enable
models operating on molecules embedding in 3D space
which has been shown to be highly effective for representa-
tion learning [49]. Graphein provides extensive featurisation
options for molecules and also supports working with molec-
ular fragments enabling workflows in fragment-based drug
design. Molecular structure data can be retrieved from both
ZINC [50] and ChEMBL [51]. Furthermore, the wealth of
curated metadata, such as bioactivity, from ChEMBL can
be queried and used in featurisation.
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3.4. RNA Structures

Ribonucleic Acid (RNA) is a nucleotide biopolymer capa-
ble of forming higher-order structural arrangements through
self-association mediated by complementary base pairing
interactions. Graphein provides utilities for constructing sec-
ondary structure graphs and 3D of RNA structures, taking
as input a crystallographic structure or an RNA sequence
and an associated string representation of the secondary
structure in dotbracket notation [52]. Graphs can be con-
structed using two types of bonding between nucleotides:
phosphodiester bonds between adjacent bases, and base-
pairing interactions between complementary bases specified
by the dotbracket string (Figure 4). Graphein also supports
addition of pseudoknots - structural motifs composed of
interactions between intercalated hairpin loops specified in
the dotbracket notation.

3.5. Interaction Networks

Interactomics presents a clear application of geometric deep
learning as these data are fundamentally relational in struc-
ture. Biomolecular entities can be represented as nodes, and
their associated functional relationships and physical interac-
tions can be represented as edges with associated metadata,
such as the direction and nature of regulation. For a full dis-
cussion of applications, datasets and modelling techniques
we refer readers to the reviews by [5] and [53]. Graphein
implements interaction graph construction from protein-
protein interaction and gene regulatory network databases.
Interaction graphs integrate networks from several sources
and can be constructed in a highly customisable way (see
Supplementary Information B, C for a summary of user-
definable parameters) with the ability to overlay structural
models for the biomolecular species involved.

3.5.1. PROTEIN-PROTEIN INTERACTION NETWORKS

Many of the functional roles of proteins are carried out by
larger assemblies of protein complexes and many biological
processes are regulated through interactions mediated by
physical contacts. Understanding these functions is central
to characterising healthy and diseased states of biological
systems. Graphein interfaces with widely-used databases
of biomolecular interaction data for easy retrieval and con-
struction of graph-based representations of protein-protein
interactions.

STRING is a database of more than 20 billion known and
predicted functional and direct physical protein-protein in-
teractions between 67.6 million proteins across 14,094 or-
ganisms [54]. Predicted interactions in STRING are derived
from genomic context, high-throughput experimental pro-
cedures, conservation of co-expression, text-mining of the
literature and aggregation from other databases. STRING
is made freely available by the original authors under a

Creative Commons BY 4.0 license.

BioGRID is a database that archives protein interaction
data from model organisms and humans, curated from high-
throughput studies and individual studies. The database
contains 2,127,726 protein and genetic interactions curated
from 77,696 publications [55]. BioGRID is made available
for academic and commercial use by the original authors
under the MIT License.

3.5.2. GENE REGULATORY NETWORKS

Gene regulatory networks (GRNs) consist of collections
of genes, transcription factors (TFs) and other regulatory
elements, and their associated regulatory interactions. Re-
constructing transcriptional regulatory networks is a long-
standing problem in computational biology in its own right
due to its relevance to characterising healthy and diseased
states of cells, and these data can provide meaningful signal
in other contexts such as multi-modal modelling of bio-
logical systems and phenomena. Graphein supports GRN
graph construction from two widely-used databases, allow-
ing users to easily unify datasets and construct graph repre-
sentations of these networks.

TRRUST is a database of regulatory interactions for hu-
man and mouse interactomes curated from the literature
via a sentence-based text-mining approach [56]. The cur-
rent release contains 8,427 / 6,490 regulatory interactions
with associated regulatory directions (activation/repression)
over 795 / 827 transcription factors and 2,067 / 1,629 non-
transcription factor genes for humans and mice, respectively.
TRRUST is made freely available by the original authors
for non-commercial research under a Creative Commons
Attribution-ShareAlike 4.0 International License.

RegNetwork is a database of transcription-factor and
miRNA mediated regulatory interactions for humans and
mice [57]. RegNetwork is an aggregation of 25 source
databases from which the regulatory network is popu-
lated and annotated. The latest release contains 14,981 /
94,876 TF-gene, 361 / 129 TF-TF, 21,744 / 25,574 TF-
miRNA, 171,477 / 176,512 miRNA-gene and 25,854 /
26,545 miRNA-TF interactions over 1,456 / 1,328 transcrip-
tion factors, 1,904 / 1,290 miRNAs and 19,719 / 18,120
genes for humans and mice, respectively. The dataset is
made publicly available by the original authors.

4. Datasets
As example workflows, we make available two graph-based
protein structure datasets focussed on tasks where relational
inductive biases appear intuitively useful and demonstrate
how Graphein can help formulate different tasks from the
same underlying dataset.
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Figure 4. Example RNA Secondary Structure Graph. RNA Secondary structures can be represented as dotbracket strings and multi-
relational graphs. Blue edges indicate phosphodiester backbone linkages, red edges indicate base-pairing interactions and green edges
indicate pseudoknot pairings.
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Figure 5. Graphein can facilitate the integration of structural and
biomolecular interaction data to enable geometric deep learning
research in structural interactomics. 3D visualisations of graphs
are generated using Graphein.

PPISP - Protein Protein Interaction Site Prediction
The first, based on the collections outlined in [58], con-
sists of 420 protein structures, with node labels indicating
whether a residue is involved in a protein-protein interac-
tion - a task central to structural interactomics [59]. The
data originate from co-crystallised structures of the com-
plexes in the RCSB PDB. The authors make available a
set of additional node features based on Position-Specific
Scoring Matrices (PSSMs), providing evolutionary context
as to which protein-protein interaction sites are typically
conserved, which can be incorporated with the structural
node features calculated by Graphein. This dataset was used
in [60] in conjunction with Graphein to compute the protein
structure graph inputs to a Message-Passing Neural Process
model which achieved state-of-the-art performance.

PSCDB - Protein Structural Change Database The
second dataset, based on Protein Structural Change
Database (PSCDB) [61], consists of 904 paired examples
of bound and unbound protein structures that undergo 7

classes of conformational rearrangement motion. Prediction
of conformational rearrangement upon ligand binding is a
longstanding problem in computational structural biology
and has significant implications for drug discovery and de-
velopment. Two tasks can be formulated with this dataset.
The first is the graph classification task of predicting the
type of motion a protein undergoes upon ligand binding,
the second is framing prediction of the rearrangement it-
self as an edge prediction task between the paired bound
and unbound protein structure graphs. These tasks provide
utility in improving understanding of protein structural dy-
namics in drug development, where molecules are typically
docked into largely rigid structures with limited flexibility
in the binding pockets in high-throughput in silico screens.
PSCDB is made publicly available by the original authors
and we provide a processed version in our repository.

ccPDB We derive four datasets, each with a graph and a
node classification task from the ccPDB [62]. The ccPDB
provides collections of protein structures and annotations of
interactions with various molecular species. The proteins
are high-quality, non-redundant sets (25% sequence identity)
with maximum resolution of 3 Å, minimum sequence length
of 80 residues. Node-level annotations of interaction are
provided in each case with the cutoff set at 4 Å. ccPDB is
made freely available online.

• PROTEINS_METAL contains protein structures that
bind 7 types of metal ions (Fe, Mg, Ca, Mn, Zn, Co,
Ni; n = 215 / 1,908 / 1,402 / 521 / 1,660 / 201 / 355).

• PROTEINS_NUCLEOTIDES contains protein struc-
tures that bind 8 species of nucleotides (ATP, ADP,
GTP, GDP, NAD, FAD, FMN, UDP; n = 313 / 353 /
83 / 120 / 140 / 172 / 117 / 68)

• PROTEINS_NUCLEIC contains protein structures
that bind DNA or RNA polymers (n = 560 / 415).

• PROTEINS_LIGAND contains protein structures that
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bind 7 species of ligands (SO4, PO4, NAG, HEM,
BME, EDO, PLP; n = 3312 / 1299 / 727 / 176 / 191 /
1507 / 65).

5. Machine Learning Utilities
Here we introduce the different machine learning utilities
that Graphein provides. They include modules to convert
graph object into machine learning-ready formats, manip-
ulate and visualise graphs, appropriately split datasets to
avoid data-leaking, several usage tutorials and template note-
books.

Conversion & Dataset Classes Convenience utilities for
converting between NetworkX [63] graph objects and
commonly-used geometric deep learning library data ob-
jects are provided for DGL, PyTorch Geometric and Jraph.
Underlying graph objects are based on NetworkX, enabling
conversion to other formats. We provide wrapped PyTorch
Geometric dataset classes which handle downloading of
structures and preparation of graphs. As the required user
inputs are a list of identifiers, labels (optionally) and a
Graphein config, these are very lightweight formats for
sharing entire pre-rocessing pipelines that can be readily
reused and adapted by others.

Adjacency Tensors, Diffusion Matrices & Line Graphs
Graphein provides utilities for computation of diffusion
matrices (and related adjacency matrices) to (1) facilitate ex-
ploration of biological data with models that leverage these
representations, and (2) aid in the construction of diffusion
matrices for graph neural networks. We also provide utili-
ties for computing line graphs. Performing edge message
passing on line graphs [64] has been shown to be highly
effective in representation learning on 3D molecules and
protein structures [4].

Visualisation Built-in interactive tools are provided for
each of the modalities supported to allow inspection of data
in pre and post-processing. Further utilities for analysing
and plotting graph properties are provided.

Data Splitting Splitting datasets of protein structures re-
quires some consideration to avoid leaking data through ho-
mologous proteins as proteins with low-levels of sequence
identity can adopt very similar folds. In most cases (i.e.
where the data have not already been filtered for redun-
dancy), random sampling is unsuitable as the data are un-
likely to be independent due to evolutionary relationships.
We provide utilities for splitting and clustering datasets
based on sequence homology using BLAST.

6. Usage
Example usage and workflows are provided in the doc-
umentation. Examples and tutorials are provided as
runnable notebooks detailing use of the high and low-
level APIs for the data modalities currently supported
by Graphein, and the ease of ingesting novel structural
datasets into a suite of geometric deep learning mod-
els. Source code is made available via anonymised
GitHub: https://anonymous.4open.science/
r/graphein-3472/README.md.

7. Conclusion
Geometric deep learning has shown promise in computa-
tional biology and structural biology. However, the availabil-
ity of processed datasets is a research bottleneck. Graphein
is a Python library designed to facilitate construction of
datasets for geometric deep learning applied to biomolecu-
lar structures and interactions. By providing tools for these
modalities, we hope to facilitate research in data-driven
structural interactomics. We make available two example
datasets for protein-protein interaction site prediction (node
classification) and protein conformational rearrangement
prediction (graph classification and edge prediction) as well
as extensive documentation and tutorial notebooks.

Whilst graphs are a natural representation of biological in-
teraction data, hypergraphs may provide a higher-fidelity
representation of the underlying biological relationships.
Many interactions are contextual, or require multiple obli-
gate interactors, which can be represented by hyperedges be-
tween several entities required for a functional or structural
relationship. We are also pursuing richer representations of
dynamics, both in structural data and in interactions as these
are central biological components that are beyond the scope
of the present release. These features will be included in
subsequent releases and the API design of Graphein makes
it simple for users to write and contribute their own work-
flows. Graphein implements a high-level and low-level API
to enable rapid and fine-grained control of data preparation.
Graphein is provided as Free Open Source Software under
a permissive MIT License which we hope will encourage
the community to contribute customised workflows to the
library. We hope that Graphein serves to further progress
in the field and reduce friction in processing structural and
interaction data for geometric deep learning. The library
also provides utility in preparing protein structure and in-
teractomics graphs for graph-theoretic and topological data
analyses which we hope will draw further insight from the
computational biology community.

https://anonymous.4open.science/r/graphein-3472/README.md
https://anonymous.4open.science/r/graphein-3472/README.md
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