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ABSTRACT

Multi-agent reinforcement learning (MARL) has attracted much research attention
recently. However, unlike its single-agent counterpart, many theoretical and algo-
rithmic aspects of MARL have not been well-understood. In this paper, we study
the emergence of coordinated behavior by autonomous agents using an actor-critic
(AC) algorithm. Specifically, we propose and analyze a class of coordinated actor-
critic (CAC) algorithms in which individually parametrized policies have a shared
part (which is jointly optimized among all agents) and a personalized part (which is
only locally optimized). Such a kind of partially personalized policy allows agents
to coordinate by leveraging peers’ experience and adapt to individual tasks. The
flexibility in our design allows the proposed CAC algorithm to be used in a fully
decentralized setting, where the agents can only communicate with their neighbors,
as well as in a federated setting, where the agents occasionally communicate with
a server while optimizing their (partially personalized) local models. Theoretically,
we show that under some standard regularity assumptions, the proposed CAC al-
gorithm requires O(ε−

5
2 ) samples to achieve an ε-stationary solution (defined as

the solution whose squared norm of the gradient of the objective function is less
than ε). To the best of our knowledge, this work provides the first finite-sample
guarantee for decentralized AC algorithm with partially personalized policies.

1 INTRODUCTION

We consider the multi-agent reinforcement learning (MARL) problem, in which a common environ-
ment is influenced by the joint actions of multiple autonomous agents, each aiming to optimize their
own individual objective. The MARL (Zhang et al., 2019; Lee et al., 2020) has received significant
attention recently due to their outstanding performance in many practical applications including
robotics (Stone & Veloso, 2000), autonomous driving (Shalev-Shwartz et al., 2016) and video games
(Tampuu et al., 2017). Many efficient algorithms have been proposed (Lowe et al., 2017; Espeholt
et al., 2018; Rashid et al., 2018), but unlike its single-agent counterpart, the theoretical understanding
of MARL is still very limited, especially in settings where there is no central controller to coordinate
different agents, so that the information sharing is limited (Zhang et al., 2019).

An important subclass of MARL – the so-called cooperative MARL – has become popular recently
due to its wide applications. In the cooperative MARL, the agents aim to collaborate with each other
to learn and optimize a joint global objective. To this end, local information exchange and local
communication may be used to jointly optimize a system-level performance measure (Zhang et al.,
2018; Grosnit et al., 2021; Zhang et al., 2021; Lu et al., 2021). Next, we provide a brief survey about
related works in cooperative MARL, and discuss their settings as well as theoretical guarantees.

Related Works. The systematic study of the cooperative MARL can be traced back to Claus &
Boutilier (1998); Wolpert et al. (1999), which extended Q-learning algorithm (Watkins & Dayan,
1992) or its variants to the multi-agent setting. More recently, there are a number of works that
characterize the theoretical performance of cooperative MARL algorithms in a fully observable,
decentralized setting (Kar et al., 2012; Zhang et al., 2018; Doan et al., 2019; Wang et al., 2020). In
such a setting, the agents are connected by a time-varying graph, and they can only communicate
with their immediate neighbors. Each agent observes the global state of the networked system and
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independently executes an action based on its own policy. Based on the joint actions by all agents, the
system will transit into the next state and thelocal rewards will be received. The goal of the agents
is to cooperatively maximize certain global reward, by communicating local information with their
neighbors. Under the above cooperative MARL setting, there are several lines of works which studied
different problem formulations, proposed new algorithms and analyzed their theoretical performance.

The �rst line of works about the coorperative and fully observable MARL has focused on developing
and analyzing policy evaluation algorithms, where the agents jointly estimate the global value function
for a given policy. In Wai et al. (2018), a decentralized double averaging primal-dual optimization
algorithm was proposed to solve the mean squared projected Bellman error minimization problem. It
is shown that the proposed algorithm converges to the optimal solution at a global geometric rate.
In Doan et al. (2019), the authors obtained a �nite-sample analysis for decentralized TD(0) method.
Their analysis is closely related to the theoretical results of decentralized stochastic gradient descent
method on convex optimization problems (Nedic et al., 2010).

However, the problem becomes much more challenging when the agents are allowed to optimize their
policies. A recent line of works has focused on applying and analyzing various policy optimization
methods in the MARL setting. In Zhang et al. (2018), the authors extended the actor-critic (AC)
algorithm (Konda & Tsitsiklis, 2000) to the cooperative MARL setting. The algorithm allows each
agent to perform its local policy improvement step while approximating the global value function.
A few more recent works have extended Zhang et al. (2018) in different directions. For example in
Grosnit et al. (2021), the authors considered the continuous action spaces and obtained the asymptotic
convergence guarantee under both off-policy and on-policy settings. Moreover, Zhang et al. (2021)
considered a new decentralized formulation where all agents cooperate to maximize general utilities
in the cooperative MARL system, it developed AC-type algorithms to �t this setting but still suffering
from high sampling cost in estimating the occupancy measure for all states and the nested loop of
optimization steps. A concurrent work (Chen et al., 2021) adopts large-batch updates in decentralized
(natural) AC methods to improve sample and communication ef�ciency, whose convergence rate
matches the analysis results of the corresponding centralized versions (Xu et al., 2020a). However,
the proposed algorithms in Chen et al. (2021) needs to generateO(� � 1 ln � � 1) samples to update
critic parameter before performing each actor update. It is worth noting, that all the above mentioned
works do not allow the agents to share their local policies.

Our Contributions. Although there have been a growing literature on analyzing theoretical aspects
of cooperative MARL, many challenges still remain, even under the basic fully observed setting.
For example, most of the cooperative policy optimization algorithms, assume relatively simple
collaboration mechanism, where the agents collaborate by jointly estimating the global value function,
while independentlyoptimizing their local policies. Such a form of collaboration decouples the
agents' policy optimization process, and it is relatively easy to analyze. However, it fails to capture
some intrinsic aspects of cooperative MARL, in the sense that when the agents' local tasks are similar
(a.k.a. thehomogeneoussetting), the agent's policy should also be closely related to each other. Such
an intuition has been veri�ed in MARL systems (Gupta et al., 2017; Terry et al., 2020b), multi-task
RL systems (Omidsha�ei et al., 2017; Zeng et al., 2020; Yu et al., 2020), Markov games (Vadori
et al., 2020) and mean-�eld multi-agent reinforcement learning (Liu et al., 2020; Li et al., 2021),
where parameter sharing scheme results in more stable convergence due to the bene�t of learning
homogeneity among different agents. However, it is not clear how to design and analyze more
sophisticated collaboration schemes which enable the agents to (partially) share their local policies to
help them leverage each other's experience and build better behavior strategies.

In this work, we aim at providing better theoretical and practical understandings about the cooperative
MARL problem. In particular, we consider the setting where the agents are connected by a time-
varying network, and they can access the common observations while having different reward
functions. We propose a Coordinated Actor-Critic (CAC) algorithm, provide the �nite-sample
analysis, and conduct extensive numerical experiments. Our speci�c contributions are given below:

� A Generic Formulation. We develop a new formulation of the cooperative MARL problem, which
allows the agents tocoordinatelyoptimize their individual actions, by parameterizing their individual
policies into asharedpart (which is jointly optimized among all agents) and apersonalizedpart
(which is only locally optimized). The proposed formulation is general, in the sense that it can be
used to cover a number of MARL settings. It can be used in afully decentralizedsetting, where the
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agents can only communicate with their neighbors, as well as afederatedsetting, where the agents
occasionally communicate with a server while optimizing their (partially personalized) local models.

� Finite-Time Analysis. We propose an algorithm for the generic problem setting, and show that
it requiresO(� � 5

2 ) samples to achieve an� -stationary solution. When being specialized to the
decentralized setting where agents do not share the local policies, our result matches the performance
bounds recently developed for centralized AC algorithms (Wu et al., 2020; Xu et al., 2020b). To the
best of our knowledge, this is the �rst result that shows �nite-sample guarantees for the decentralized
AC algorithm with partially shared policy parameters.

� Empirical Studies. Finally, we conduct extensive numerical experiments, which demonstrate the
effectiveness of the proposed algorithm. Our experiments suggest that in the situations where the
agents' tasks arehomogeneous, it is advantageous to partially personalize the policies for each agent;
when the tasks' are heterogeneous, then the agents are able to achieve satisfactory convergence results
by constructing their local policies without any parameter sharing.

Notation. k � k is used to denote thè2 norm for vectors and Frobenius norm for matrices. Further,
we useE[�] to denote expectation,P(�) to denote probability. For a square matrixA, we de�ne
c2(A); cmax (A) andcmin (A) as the second largest, the largest, and the smallest eigenvalues, respec-
tively. De�ne 1 as an all one vector with appropriate size. For any matrixM , M ij denotes the
element ini -th row andj -th column of matrixM . For matrixb := [ bT

1 ; bT
2 ; � � � ; bT

N ], we denote the
average of all row vectors in matrixb as�bT := 1

N � 1T b.

2 PRELIMINARIES

In this section, we introduce the background and formulation of the cooperative, fully observable
MARL in a decentralized system.

Suppose there are multiple agents aiming to independently learn and optimize a common global
objective, and each agent can communicate with its neighbors in a network with time-varying
topology. The common environment is observable by all the agents, and it is in�uenced by their joint
actions. To model the communication pattern among the agents, let us de�ne the time-varying graph
Gt = ( N ; Et ) consisting of a set ofN nodes and a set ofEt edges, withjN j = N andjEj = E . Each
nodei 2 N represents an agent andEt represents the set of communication links at timet so that the
agents are connected to their neighbors according to the linksEt .

Consider the MARL problem, formulated as a discrete-time Markov Decision Process (MDP)M :=
hS; A ; P; �; R ;  i , whereS is the �nite space for global states andA is the �nite space for joint action
a = f ai gN

i =1 ; � (s) : S ! [0; 1] denotes the initial state distribution;P(s0 j s; a) : S �A�S ! [0; 1]
denotes the transition probability;r i (s;a) : S � A ! R denotes the local reward function of agenti ;
 2 (0; 1) is the discounted factor. Furthermore, suppose the policy of each agenti is parameterized
by � i , then� := f � i gN

i =1 denotes the collections of all policy parameters in the multi-agent system.
Then� � (s) denotes the stationary distribution of each states under joint policy� � , andd� (�) denotes
the discounted visitation measure whered� (s) := (1 �  )

P 1
t =0  t � P � � (st = s j s0 � � ). Under

the joint policy� � , the probability for choosing any joint actiona := f ai gN
i =1 could be expressed as

� � (ajs) := � N
i =1 � i (ai js; � i ).

Consider the discrete-time MDP under in�nite horizon, the policy� � can generate a trajectory
� := ( s0; a0; s1; a1; � � � ) based on the initial states0 sampled from� (�). In this work, we consider
the discounted cumulative reward setting and the global value function is de�ned as below:

V� � (s) := E
� 1X

t =0

 t � �r (st ; a t ) j s0 = s
�
; (1)

where we de�ne�r (st ; a t ) := 1
N

P N
i =1 r i (st ; a t ) and the expectation is taken over the trajectory�

generated from joint policy� � . When� � is �xed, the value functionV� � (s) will satisfy the Bellman
equation (Bertsekas et al., 2000) for all statess 2 S:

V� � (s) = Ea � � � ( �j s) ;s0�P ( �j s;a ) [�r (s; a) +  � V� � (s0)] : (2)
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The objective of RL is to �nd the optimal policy parameter� � which maximizes the expected
discounted cumulative reward as below:

max
�

J (� ) := Es� � ( �) [V� � (s)] = E
� 1X

t =0

 t � �r (st ; a t )
�

= E
� 1X

t =0

 t

N

NX

i =1

r i (st ; a t )
�
: (3)

In order to optimizeJ (� ), one can compute the policy gradient (Sutton et al., 2000), expressed below:

r J (� ) :=
1

1 � 
Es� d� ( �) ;a � � � ( �j s) ;s0�P ( �j s;a )

��
�r (s; a) + V � � (s0)

�
r � log � � (ajs)

�
: (4)

3 THE PROPOSEDCOORDINATED ACTOR-CRITIC ALGORITHM

3.1 THE PROPOSEDFORMULATION

In this section, we describe our MARL formulation. Our proposed formulation is based upon(3), but
with the key difference that we no longer require the agents to have independent policy parameters
� i . Speci�cally, we assume that the agents can (partially) share their policy parameters with their
neighbors. Hence, each agent will decompose its policy into� i := f � s

i ; � p
i g, where the shared part� s

i
has the same dimension across all agents, and the personalized part� p

i will be kept locally. Although
such a kind of partially personalized policy structure may be relatively more dif�cult to analyze, it
has a number of potential advantages, as we list below:

� A Generic Model. We use the partial policy sharing as a generic setting, to cover the full spectrum
of strategies ranging from no sharing case (� s

i = 0 ; 8 i ) to the full sharing case ((� p
i = 0 ; 8 i )). This

generic model ensures that our subsequent algorithms and analysis can be directly used for all cases.

� Better Models for Homogeneous Agents. When the agents' local tasks have a high level of similarity
(a.k.a. thehomogeneoussetting), partially sharing models' parameters could achieve better feature
representation and guarantee that the agents' policies are closely related to each other. Additionally,
the shared parameters could leverage more data (i.e., data drawn from all agents) compared with
the personalized parameters, so the variance in the training process can be signi�cantly reduced,
potentially resulting in better training performance. Such an intuition has been veri�ed empirically in
reinforcement learning systems (Omidsha�ei et al., 2017; Yu et al., 2020; Zeng et al., 2020), where
sharing policies among different learners results in more stable convergence.

� Approximate Common Knowledge.A critical assumption often made in the analysis of multiagent
systems iscommon knowledge(Aumann, 1976). Intuitively, this implies agents have ashared
awareness of the underlying interaction. A key dif�culty in MARL is that agents are simultaneously
learning features of the underlying environment, thus common knowledge is not guaranteed. Thus
notions ofapproximatecommon knowledge have been proposed for MARL (Schroeder de Witt
et al., 2019). By relying on (partial) policy sharing mechanism, we hope to have some degree of
approximate common knowledge and this is what facilitates coordination.

The above partially personalized policy structure leads to the following MARL formulation:

max
�

J (� ) := Es� � ( �)

�
V� � (s)

�
= E

� 1X

t =0

 t � �r (st ; a t )
�

(5)

s:t : � s
i = � s

j if (i; j ) are neighbors

where� := f � s
i ; � p

i gN
i =1 is the collections of all local policy parameters� i := f � s

i ; � p
i g. To cast

problem (5) into a more tractable form, we perform the following steps.

First, we approximate the global reward function for anys 2 S anda 2 A . Speci�cally, we use
the following linear functionbr (s;a; � ) := ' (s; a)T � to approximate the global reward�r (s;a) :=
1
N

P N
i =1 r i (s;a), where' (�; �) : S � A ! RL is the feature mapping. Then the optimal parameter
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� � (� ) can be found by solving the following problem:

� � (� ) 2 arg min
�

Es� � � ( �) ;a � � � ( �j s)

�
� 1

N

NX

i =1

r i (s;a) � ' (s; a)T �
� 2

�
(6a)

= arg min
�

NX

i =1

Es� � � ( �) ;a � � � ( �j s)

h�
r i (s;a) � ' (s; a)T �

� 2
i

: (6b)

Second, we approximate the global value functionV� � (s) for anys 2 S under a �xed joint policy
� � . Speci�cally, we use the following linear functionbV(s; ! ) := � (s)T ! to approximate the global
reward functionV� � (s), where� (�) : S ! RK is a given feature mapping. Towards achieving the
above approximation, we can solve the following mean squared Bellman error (MSBE) minimization
problem (Tsitsiklis & Van Roy, 1997):

! � (� ) 2 arg min
!

Es� � � ( �) ;a � � � ( �j s) ;s0�P ( �j s;a )

"
� 1

N

NX

i =1

r i (s;a) +  bV (s0; ! ) � bV (s; ! )
� 2

#

(7a)

=arg min
!

X N

i =1
Es� � � ( �) ;a � � � ( �j s) ;s0�P ( �j s;a )

h�
r i (s;a) +  bV (s0; ! ) � bV (s; ! )

� 2
i

: (7b)

To separate the objective into the sum ofN terms (one for each agent), we introduce local copies
of w and � as f wi gN

i =1 , f � i gN
i =1 , and de�ne their vectorized versions! = [ ! 1; � � � ; ! N ]T and

� = [ � 1; � � � ; � N ]T . Similarly, we also de�ne! � (� ) := [ ! �
1 (� ); � � � ; ! �

N (� )]T and � � (� ) :=
[� �

1(� ); � � � ; � �
N (� )]T .

Summarizing the above discussion, problem(5) can be approximated using the following bi-level
optimization problem:

max
�

E
s� � ( � ) ;a � � � ( �j s)

s0�P ( �j s; a )

�
1
N

NX

i =1

�
br (s; a; � �

i (� )) +  � bV (s0; ! �
i (� ))

��
(8a)

s:t: ! � (� ) 2 arg min
!

NX

i =1

E
s� � � ( � ) ;a � � � ( �j s)

s0�P ( �j s; a )

�
�
r i (s; a) +  � bV (s0; ! i ) � bV (s; ! i )

� 2
�
; (8b)

� � (� ) 2 arg min
�

NX

i =1

Es� � � ( � ) ;a � � � ( �j s)

�
�
r i (s; a) � br (s; a; � i )

� 2
�
; (8c)

� s
i = � s

j ; ! �
i (� ) = ! �

j (� ); � �
i (� ) = � �

j (� ); if (i; j ) are neighbors: (8d)

In the subsequent discussion, we will refer to the problem of �nding the optimal policy� as the
upper-levelproblem, while referring to the problem of �nding the optimal! � (� ) and� � (� ) under a
�xed policy parameters as the lower-level problem.

3.2 THE PROPOSEDALGORITHM

In this subsection, we �rst present the assumptions related to network connectivity and communication
protocols in the multi-agent systems. Then we describe the proposed Coordinated Actor-Critic (CAC)
algorithm which is summarized in Algorithm 1.
Assumption 1(Network Connectivity). There exists an integerB such that the union of the consecu-
tiveB graphs is connected for all positive integers`. That is, the following graph is connected:

�
N ; E(` � B ) [ E (` � B + 1) � � � [ E (( ` + 1) B � 1)

�
; 8 ` � 1

whereN denotes the vertice set andE(t) denotes the set of active edges at timet.

Assumption 2(Weight Matrices). There exists a positive constantc such thatWt = [ W ij
t ] 2 R N � N

is doubly stochastic andW ii
t � c for all i 2 N . Moreover,W ij

t 2 [c;1) if (i; j ) 2 E(t), otherwise
W ij

t = 0 for all i; j 2 N .
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Algorithm 1 Coordinated Actor-Critic (CAC) Algorithm

1: Input: Parametersf � t gT � 1
t =0 , f � t gT � 1

t =0 , f � t gT � 1
t =0 . Initialize � i; 0; ! i; 0; � i; 0 for all i 2 N

2: for t = 0 ; 1; : : : ; T � 1 do
3: Data Sampling: st � � � t (�), a t := f ai;t � � i (�jst ; � i;t )gN

i =1 , st +1 � P (�jst ; a t )
4: Consensus Step: e! t = Wt � ! t , e� t = Wt � � t and e� s

t := Wt � � s
t

5: for i 2 N do
6: Constructe� i;t = f e� s

i;t ; � p
i;t g and update� i;t = r i;t +  � � (st +1 )T ! i;t � � (st )T ! i;t

7: ! i;t +1 = � R !

�
e! i;t + � t � � i;t � � (st )

�

8: � i;t +1 = � R �

�
e� i;t + � t �

�
r i;t � ' (st ; a t )T � i;t

�
� ' (st ; a t )

�

9: � i;t +1 = e� i;t + � t

�
' (st ; a t )T � i;t + � (st +1 )T ! i;t � � (st )T ! i;t

�
r � i log � i (ai;t jst ; � i;t )

10: end for
11: end for

Assumption 1 ensures that the graph sequence is suf�ciently connected for each agent to have repeated
in�uence on other agents. Assumption 2 is standard in developing decentralized algorithms (Nedic
et al., 2009), which could guarantee consensus results for shared parameter in each agent converging
to a common vector.

After presenting the assumptions related to the network topology in the decentralized system, we
are able to introduce the proposedCAC algorithm. TheCAC algorithm takes two main steps, the
policy optimization step (which optimizes� ), and policy evaluation step (which approximately solves
the lower-level problem in(8)), as we describe below. For simplicity, we denote�r (st ; a t ) as�r t and
r i (st ; a t ) asr i;t .

Policy Optimization. In this step, the agents optimize their local policy parameters, while trying to
make sure that the shared parameters are not too far from their neighbors.

Towards this end, each agenti �rst produces alocally averagedshared parameter by linearly
combining with its neighbors' current shared parameters. Such an operation can be expressed as

e� s
t := Wt � � s

t (9)

where� s
t := [ � s

1;t ; � s
2;t ; � � � ; � s

N;t ]T 2 RN � H is a matrix which stores all parametersf � s
i;t gN

i =1 , and
e� s

t is de�ned similarly. In the decentralized setting, the global reward�r t and the global value function
V� � t

(�) are not available for each agenti . Instead, the agents can locally estimate the global reward
and the global value function using some linear approximation, evaluated on their local variables, as
described in the previous subsection. As shown in line11of Algorithm 1, in a decentralized system,
we consider the policy optimization step for each agent as below:

� i;t +1 := e� i;t + � t � b� i;t � r � i log � i (ai;t jst ; � i;t ); 8i 2 N (10)

where b� i;t := br (st ; a t ; � i;t ) +  � bV (st +1 ; ! i;t ) � bV (st ; ! i;t ): (11)

Policy Evaluation. Next, we update the local parameters� i;t and! i;t , which parameterize the global
reward function and global value function. Towards this end, the parameters� i;t and! i;t will be
updated by �rst averaging over their neighbors, then performing one stochastic gradient descent step
to minimize the local objectives, which are de�ned as in(8b) - (8c)and under consensus constraints
(8d). That is, we have the following updates for� t and! t :

e� t = Wt � � t ; � i;t +1 = � R �

�
e� i;t + � t �

�
r i;t � br (st ; a t ; � i;t )

�
� r � i br (st ; a t ; � i;t )

�
; (12)

e! t = Wt � ! t ; ! i;t +1 = � R !

�
e! i;t + � t � � i;t � r ! i

bV(st ; ! i;t )
�

; 8i 2 N (13)

where we de�ne� i;t := r i;t +  � bV (st +1 ; ! i;t ) � bV (st ; ! i;t ): Moreover,� R ! (�) and� R � (�) are the
projection operators, withR! andR� being the predetermined projection radii which are used to
stabilize the update process (Tsitsiklis & Van Roy, 1997). Please see lines8-10 in Algorithm 1.
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4 THEORETICAL RESULTS

In this section, we �rst present Assumptions 3 - 4 about reward function and linear approximations
for policy evaluation. Then we show our theoretical results for the proposedCAC algorithm.
Assumption 3(Bounded Reward). All the local rewardsr i (s; a) are uniformly bounded, i.e., there
exist constantsRmax , for all i 2 N ands 2 S such thatjr i (s; a)j � Rmax .
Assumption 4 (Function Approximation). For each agenti , the value function and the global
reward function are both parameterized by the class of linear functions, i.e.,bV (s; ! i ) := � (s)T ! i
andbr (s;a; � i ) := ' (s; a)T � i where we denote� (s) := [ � 1(s); � � � ; � K (s)]T 2 RK and' (s;a) =
[' 1(s;a); � � � ; ' L (s;a)]T 2 RL are the feature vector associated withs and(s;a), respectively. The
feature vectors� (s) and' (s;a) are uniformly bounded for anys 2 S; a 2 A , i.e.,k� (s)k � 1 and
k' (s;a)k � 1. Furthermore, constructing the feature matrix� 2 RjSj� K which has[� k (s); s 2 S]T

as itsk-th column for anyk 2 K . Also constructing the feature matrix	 2 RjSj�jAj� L which has
[' l (s); s 2 S]T as its`-th column for anỳ 2 L . Then, we further assume both� and	 have full
column ranks.

Assumption 3 - 4 are common in analyzing TD with linear function approximation; see e.g., Konda &
Tsitsiklis (2000); Bhandari et al. (2018); Wu et al. (2020). With global observability, each agent could
construct linear function approximations of the global value function and global reward function.
Under these assumptions, it is guaranteed that there exist unique optimal solutions� � (� ) and! � (� )
to approximate the global reward function in(6) and the global value function in(7) with linear
functions. It is crucial to have the properties of unique optimal solutions in� � (� ) and! � (� ) for
constructing the convergence analysis of policy parameters� .

Due to space limitation, we relegate remaining technical assumptions (i.e., Assumptions 5 - 6) to
Appendix C and technical lemmas to Appendix D. We �rst present the convergence speed of the
variablesf ! t g andf � t g for the policy evaluation problem de�ned in(8b)- (8d). Please see Appendix
G for the detailed proof.
Proposition 1. Suppose Assumptions 1 - 6 hold. For any iterationt, by selecting stepsizes

� t =
� 0

T � 1
; � t =

� 0

T � 2
; � t =

� 0

T � 2

where0 < � 2 < � 1 < 1 and� 0; � 0; � 0 > 0 are some �xed constants, the following holds:

1
T

T � 1X

t =0

NX

i =1

�
E

�
k! i;t � ! � (� t )k2

�
+ E

�
k� i;t � � � (� t )k2

��

= O(T � 1+ � 2 ) + O(T � � 2 ) + O
�
T � 2 � 2� 1

�
+ O(T � 2� 1 +2 � 2 ) + O(T � 2+2 � 2 ) + O(T � 2� 2 )

where the expectation is taken over the data sampling procedure as shown in line 3 of Algorithm 1.

Compared with existing works (Wai et al., 2018; Doan et al., 2019) which established �nite-time
convergence guarantees for decentralized policy evaluation problems under the �xed policy, our
results in Proposition 1 are analyzed in a more challenging situation where both policies and critics
are updated in an alternating manner. Here, we must set� 1 > � 2 to ensure that the relation above is
useful. This is reasonable since the optimal critic parameter! � (� t ) is constantly drifting as the policy
parameters� t changes at each iteration, so the actor should update slowly compared with the critic.

Next, we study the convergence rate of policy parameters. We de�neQ := I � 1
N 11T and de�ne

the average gradient of shared policy parameters asr � s J (� ) := 1
N

P N
i =1 r � s

i
J (� ). We will show

that after averaging over the iterations, the expected stationarity condition violation for the policy
optimization problem de�ned in (8a) is small. Please see Appendix H for the proof.
Proposition 2. Under the same setting as Proposition 1, there exist two constant error term� app > 0
and� sp > 0. Algorithm 1 generates a sequence of policiesf � t g, which satis�es the following:

1
T

T � 1X

t =0

�
E

�
kQ � � s

t k2
�

+ N � E
�
kr � s J (� t )k2

�
+

NX

i =1

E
�
kr � p

i
J (� t )k2

��

= O(T � 1+ � 1 ) + O(T � � 1 ) + O(T � 1+ � 2 ) + O(T � � 2 ) + O
�
T � 2 � 2� 1

�
+ O(T � 2� 1 +2 � 2 )

+ O(T � 2+2 � 2 ) + O(T � 2� 2 ) + O (� app + � sp ) :
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Algorithm 2 Double Sampling Procedures

Input: Parametersf ! i;t gN
i =1 , f � i;t gN

i =1 , f � i;t gN
i =1 .

Double i.i.d. Sampling:
1) Samplest � � � t (�), a t := f ai;t � � i (�jst ; � i;t )gN

i =1 , st +1 � P (�jst ; a t )
2) Sample~st � d� t (�), ~a t := f ~ai;t � � i (�j~st ; � i;t )gN

i =1 , ~st +1 � P (�j~st ; ~a t )

The approximation error� app and sampling error� sp are de�ned in Appendix E. A few remarks
about the above results follow. First, one challenge in analyzing the convergence of Actor-Critic
algorithms is that the actor and critic updates are typically sampled from different distributions (i.e.,
the distribution mismatch problem). To see this, note that to obtain an unbiased estimator for the
policy gradient in(4), one needs to sample from the discounted visitation measured� (�), while to
obtain an unbiased estimator for the gradient of the MSBE in(7) (which is utilized to update the
critic parameters), one needs to sample from the stationary distribution� � (�). However, standard
implementations for AC methods in practice only use one sampling procedure for both actor and critic
updates (Mnih et al., 2016; Shen et al., 2020). Therefore, the mismatch between the two sampling
distributions inevitably introduces constant biases, and this is where the error term� sp comes from.

Second, at each local agenti , the value functionV� � (s) is approximated by� (s)T ! i and the global
reward function is approximated by' (s;a)T � i . Due to the linear approximation, the approximation
error is inevitable in the convergence analysis. Here, we use a constant term� app to quantify the
approximation error due to utilizing linear function for policy evaluation.

By combining previous Propositions, and by properly selecting the stepsize parameters� 1 and� 2,
we show the main result as below. In Appendix E, we will present more discussion about a special
case where there is no policy parameter sharing.
Theorem 1. (Convergence of theCAC Algorithm) Suppose Assumptions 1 - 6 hold. Consider
Algorithm 1 with partially shared policy parameters� := [ N

i =1 f � s
i ; � p

i g. Let � 1 = 3
5 and� 2 = 2

5 , it
holds that:

1
T

T � 1X

t =0

NX

i =1

�
E

�
k! i;t � ! � (� t )k2

�
+ E

�
k� i;t � � � (� t )k2

��
= O(T � 2

5 );

1
T

T � 1X

t =0

�
E

�
kQ � � s

t k2
�

+ N � E
�
kr � s J (� t )k2

�
+

NX

i =1

E
�
kr � p

i
J (� t )k2

��
= O(T � 2

5 ) + O(� app + � sp ):

As mentioned before, the sampling error� sp arises because there is a mismatch between the way
that estimators of the actor's and the critics' updates are obtained. To remove the sampling error,
one can implement separate sampling protocols for the critic and the actor. More speci�cally, we
can use two different i.i.d. samples at each iteration stept: 1) x t := ( st ; a t ; st +1 ) wherest � � � (�),
a t � � � (� j st ) andst +1 � P (� j st ; a t ); 2) ~x t := (~st ; ~a t ; ~st +1 ) where~st � d� (�), ~a t � � � (� j st )
and~st +1 � P (� j ~st ; ~a t ); see Algorithm 2. Thenx t and~x t will be utilized in policy evaluation and
policy optimization, respectively. The corollary below shows the convergence result for the modi�ed
CAC algorithm. Please see Appendix I for the proof.
Corollary 1. (Convergence under double sampling) Under the same setting as Theorem 1, consider
CAC with the double sampling procedures in Algorithm 2. The following result holds:

1
T

T � 1X

t =0

NX

i =1

�
E

�
k! i;t � ! � (� t )k2

�
+ E

�
k� i;t � � � (� t )k2

��
= O(T � 2

5 );

1
T

T � 1X

t =0

�
E

�
kQ � � s

t k2
�

+ N � E
�
kr � s J (� t )k2

�
+

NX

i =1

E
�
kr � p

i
J (� t )k2

��
= O(T � 2

5 ) + O(� app ):

5 NUMERICAL RESULTS

In this section, we present our simulation results on two environments: 1) the coordination game
(Osborne & Rubinstein, 1994); 2) the pursuit-evasion game (Gupta et al., 2017), which is built on the
PettingZoo platform (Terry et al., 2020a). Detailed experiment settings are present in Appendix A.
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Figure 1:Simulation Results. The averaged reward versus the learning process. We present the
algorithm performance on the coordination game and on the pursuit-evasion game. The performance
is averaged over10Monte Carlo runs.

Coordination Game: In this setting, there areN agents staying at a static state and they choose
their actions simultaneously at each time. After actions are executed at each timet, each agent
i receives its reward as:r i;t = ( ai;t � 3:5)2 +

P
j 6= i I f a j;t = a i;t g + � i;t where the action space is

f 0; 1; 2; � � � ; 7g, I f a j;t = a i;t g is an indicator function and� i;t is a random payoff following standard
Gumbel distribution. In this coordination game, there are multiple Nash equilibria where two optimal
equilibria are that all agents selecta = f 0g or a = f 7g simultaneously. In order to obtain high
rewards and achieve ef�cient equilibria, it is crucial for agents to coordinate with others while only
having limited communications.

Here, the communication graphGt between the agents is a complete graph every5 iterations, and
is not connected for the rest of time. We compare the performance ofCAC with three benchmark
algorithms: independent Actor-Critic (IAC); decentralized Actor-Critic (DAC) in Zhang et al. (2018);
mini-batch decentralized Actor-Critic (MDAC) in Chen et al. (2021). For each algorithm, we set
the actor stepsize and critic stepsize as0:05 and0:1. Theoretically, MDAC needsO(� � 1 ln � � 1)
batch size in its inner loop to update critic parameters before each update in policy parameters,
which is inef�cient in practice. Here, we set small batchB = 5 in the inner loop for MDAC to
achieve fast convergence. The simulation results on this coordination game are present in Fig.1
(two left �gures). According to the simulations, compared with the benchmarks, we see that the
CAC algorithm converges faster and has higher probability to achieve ef�cient equilibria due to the
use of policy sharing and coordination.

Pursuit-Evasion Game: there are two groups of nodes, pursuers (agents) and evaders. The pursuers
aim to obtain reward through catching evaders. In a two-dimensional environment, an evader is
considered caught if two pursuers simultaneously arrive at the evader's location. In order to catch an
evader, each pursuer should learn to cooperate with other pursuers to catch the evaders. From this
perspective, the pursuers share some similarities with each other since they need to follow similar
strategies to achieve their local tasks: simultaneously catching a same evader with other pursuers.

In Figure 1 (two right �gures), we compare the numerical performance of the proposedCAC algo-
rithm and two benchmarks: decentralized Actor-Critic (DAC) in Zhang et al. (2018); mini-batch
decentralized Actor-Critic (MDAC) in Chen et al. (2021). Each agent maintains two convolutional
neural networks (CNNs), one for the actor and one for the critic. Please see Figure 2 in Appendix
for the structure diagrams of actor network and critic network being used. In theCAC, two convolu-
tional layers of actor network will be regarded as shared policy parameters, and the output layer is
personalized (thus not shared).

The two sets of numerical results suggest that, when local tasks share a certain degree of similarity /
homogeneity,CAC algorithm with (partial) parameter sharing could achieve more stable convergence.

6 CONCLUSION

This paper develops a novel collaboration mechanism for designing robust MARL systems. Further,
it develops and analyzes a novel multi-agent AC method, where agents are allowed to (partially)
share their policy parameters with the neighbors to learn from different agents. To our knowledge,
this is the �rst non-asymptotic convergence result for two-timescale multi-agent AC methods. We
leave the extensions of our proposed algorithm to partially observable Markov decision process as
the future work.
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