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ABSTRACT

Offline reinforcement learning (RL) leverages previously collected data for policy
optimization without any further active exploration. Despite the recent interest in
this problem, its theoretical foundations in neural network function approxima-
tion setting remain limited. In this paper, we study the statistical theory of offline
RL with deep ReLU network function approximation. In particular, we establish
the sample complexity of Õ

(
κ1+d/α · ε−2−2d/α

)
for offline RL with deep ReLU

networks, where κ is a measure of distributional shift, d is the dimension of the
state-action space, α is a (possibly fractional) smoothness parameter of the under-
lying Markov decision process (MDP), and ε is a user-specified error. Notably,
our sample complexity holds under two novel considerations, namely the Besov
dynamic closure and the correlated structure that arises from value regression for
offline RL. While the Besov dynamic closure generalizes the dynamic conditions
for offline RL in the prior works, the correlated structure renders the existing anal-
yses improper or inefficient. To our knowledge, our work is the first to provide
such a comprehensive analysis for offline RL with deep ReLU network function
approximation.

1 INTRODUCTION

Offline reinforcement learning (Lange et al., 2012; Levine et al., 2020) is a practical paradigm of
reinforcement learning (RL) where logged experiences are abundant but a new interaction with the
environment is limited or even prohibited. The fundamental offline RL problems concern with how
well previous experiences could be used to evaluate a new target policy, known as off-policy eval-
uation (OPE) problem, or to learn the optimal policy, known as off-policy learning (OPL) problem.
We study these offline RL problems with infinitely large state spaces, where the agent must rely
on function approximation such as deep neural networks to generalize across states from an offline
dataset without any further exploration. Such problems form the core of modern RL in practical
settings (Levine et al., 2020; Kumar et al., 2020; Singh et al., 2020), but no work has provided a
comprehensive and adequate analysis of the statistical efficiency for offline RL with neural network
function approximation.

On the theoretical side, predominant sample-efficient results in offline RL focus on tabular environ-
ments with small finite state spaces (Yin & Wang, 2020; Yin et al., 2021; Yin & Wang, 2021), but
as these methods scale with the number of states, they are infeasible for the settings with infinitely
large state spaces. While this tabular setting has been extended to large state spaces via linear en-
vironments (Duan & Wang, 2020; Tran-The et al., 2021), the linearity assumption often does not
hold for many RL problems in practice. Theoretical guarantees for offline RL with general and
deep neural network function approximations have also been derived, but these results are either
inadequate or relatively disconnected from practical settings. In particular, while the finite-sample
results for offline RL with general function approximation (Munos & Szepesvári, 2008; Le et al.,
2019) depend on an inherent Bellman error which could be large or uncontrollable in practice, other
analyses (Yang et al., 2019) rely on an inefficient data splitting technique to deal with the highly
correlated structures arisen in value regression for offline RL and use a relatively strong dynamic
assumption. It therefore remains unclear whether offline RL can provably work in a more general
dynamic condition and the highly correlated structure of value regression.
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In this paper, we provide a statistical theory of both OPE and OPL with neural network function
approximation in a broad generality. In particular, our contributions are:

• First, we achieve a generality for the guarantees of offline RL with neural network function
approximation via two novel considerations: (i) we introduce a new structural condition
namely Besov dynamic closure which generalizes the existing dynamic conditions for of-
fline RL with neural network function approximation and even includes MDPs that need
not be continuous, differentiable or spatially homogeneous in smoothness; (ii) we take into
account the highly correlated structure of the value estimate produced by a regression-based
algorithm from the offline data. This correlated structure plays a central role in the statis-
tical efficiency of an offline algorithm but the prior results (Munos & Szepesvári, 2008;
Le et al., 2019; Yang et al., 2019) improperly ignore this structure or avoid it using an
inefficient data splitting approach.

• Second, we prove that an offline RL algorithm based on fitted-Q iteration (FQI) can achieve
the sample complexity of Õ

(
κ1+d/α · ε−2−2d/α

)
where κ measures the distributional shift

in the offline data, d is the input dimension, α is a smoothness parameter of the underlying
MDP, and ε is a user-specified error. Notably, our guarantee holds under a general condition
encompassing the dynamic conditions in the existing works while it does not require any
data splitting as in (Yang et al., 2019). The data splitting approach splits the offline data
into K disjoint folds where K is the number of iterations in their algorithm. As the sample
complexity of such data splitting scales linearly with K where K can be arbitrarily large in
practice, the guarantee in (Yang et al., 2019) is highly inefficient for offline RL. Moreover,
our analysis also improves upon the analysis in (Le et al., 2019) that incorrectly ignores the
correlated structure of offline value estimate.

Notation. Let Lp(X , µ) = {f : X → R | ‖f‖p,µ := (
∫
X |f |

pdµ)1/p < ∞} be the space of
measurable functions for which the p-th power of the absolute value is µ-measurable, C0(X ) =
{f : X → R | f is continuous and ‖f‖∞ < ∞} be the space of bounded continuous functions,
Cα(X ) be the Hölder space with smoothness parameter α ∈ (0,∞)\N, Wm

p (X ) be the Sobolev
space with regularitym ∈ N and parameter p ∈ [1,∞], andX ↪→ Y be continuous embedding from
a metric space X to a metric space Y . Denote by P(Ω) the set of probability measures supported in
domain Ω. For simplicity, we use ‖ · ‖µ for ‖ · ‖p,µ when p = 2. Denote by ‖ · ‖0 the 0-norm, i.e.,
the number of non-zero elements, and a ∨ b = max{a, b}. For any two real-valued functions f and
g, we write f(·) . g(·) if there is an absolute constant c independent of the function parameters (·)
such that f(·) ≤ c · g(·). We write f(·) � g(·) if f(·) . g(·) and g(·) . f(·). We write f(·) ' g(·)
if there exists an absolute constant c such that f(·) = c · g(·).

2 RELATED WORK

The majority of the theoretical results for offline RL focus on tabular settings and mostly on OPE
task where the state space is finite and an importance sampling -related approach is possible (Precup
et al., 2000; Dudı́k et al., 2011; Jiang & Li, 2015; Thomas & Brunskill, 2016; Farajtabar et al., 2018;
Kallus & Uehara, 2019). The main drawback of the importance sampling-based approach is that
it suffers high variance in long horizon problems. The high variance problem is later mitigated by
the idea of formulating the OPE problem as a density ratio estimation problem (Liu et al., 2018;
Nachum et al., 2019a; Zhang et al., 2020a;b; Nachum et al., 2019b) but these results do not provide
sample complexity guarantees. The sample-efficient guarantees for offline RL are obtained in tabular
settings in (Xie et al., 2019; Yin & Wang, 2020; Yin et al., 2021; Yin & Wang, 2021). Jiang & Li
(2016) derive Cramer-Rao lower bound for discrete-tree MDPs.

For the function approximation setting, as the state space of MDPs is often infinite or continuous,
some form of function approximation is deployed in approximate dynamic programming such as
fitted Q-iteration, least squared policy iteration (Bertsekas & Tsitsiklis, 1995; Jong & Stone, 2007;
Lagoudakis & Parr, 2003; Grünewälder et al., 2012; Munos, 2003; Munos & Szepesvári, 2008; An-
tos et al., 2008; Tosatto et al., 2017), and fitted Q-evaluation (FQE) (Le et al., 2019). A recent
line of work studies offline RL in non-linear function approximation (e.g, general function approx-
imation and deep neural network function approximation) (Le et al., 2019; Yang et al., 2019). In
particular, Le et al. (2019) provide an error bound of OPE and OPL with general function approxi-
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mation but they ignore the correlated structure in the FQI-type algorithm, resulting in an improper
analysis. Moreover, their error bounds depend on the inherent Bellman error that can be large and
uncontrollable in practical settings. More closely related to our work is (Yang et al., 2019) which
also considers deep neural network approximation. In particular, Yang et al. (2019) focused on an-
alyzing deep Q-learning using a disjoint fold of offline data for each iteration. Such approach is
considerably sample-inefficient for offline RL as their sample complexity linearly scales with the
number of iterations K which is very large in practice. In addition, they rely on a relatively re-
stricted smoothness assumption of the underlying MDPs that hinders their results from being widely
applicable in more practical settings.

Since the initial version of this paper appeared, a concurrent work studies offline RL with general
function approximation via local Rademacher complexities (Duan et al., 2021). While both papers
independently have the same idea of using local Rademacher complexities as a tool to study sample
complexities in offline RL, our work differs from (Duan et al., 2021) in three main aspects. First, we
focus on infinite-horizon MDPs while (Duan et al., 2021) work in finite-horizon MDPs. Second, we
derive an explicit sample complexity while the sample complexity in (Duan et al., 2021) depends
on the critical radius of local Rademacher complexity. Bounding the critical radius for a complex
model under the correlated structure is highly non-trivial. Duan et al. (2021) provided the specialized
sample complexity for finite classes, linear classes, kernel spaces and sparse linear spaces but it is
unclear how their result can apply to more complex models such as a deep ReLU network. Moreover,
we propose a new Besov dynamic closure and establish the sample compelxity using a uniform
convergence argument which appear absent in Duan et al. (2021).

3 PRELIMINARIES

We consider reinforcement learning in an infinite-horizon discounted Markov decision process
(MDP) with possibly infinitely large state space S, continuous action space A, initial state distribu-
tion ρ ∈ P(S), transition operator P : S ×A → P(S), reward distribution R : S ×A → P([0, 1]),
and a discount factor γ ∈ [0, 1). For notational simplicity, we assume that X := S × A ⊆ [0, 1]d

but our results readily generalizes to the case when A is finite.

A policy π : S → P(A) induces a distribution over the action space conditioned on states. The Q-
value function for policy π at state-action pair (s, a), denoted by Qπ(s, a) ∈ [0, 1], is the expected
discounted total reward the policy collects if it initially starts in the state-action pair,

Qπ(s, a) := Eπ

[ ∞∑
t=0

γtrt|s0 = s, a0 = a

]
,

where rt ∼ R(st, at), at ∼ π(·|st), and st ∼ P (·|st−1, at−1). The value for a policy π is V π =
Es∼ρ,a∼π(·|s) [Qπ(s, a)], and the optimal value is V ∗ = maxπ V

π where the maximization is taken
over all stationary policies. Alternatively, the optimal value V ∗ can be obtained via the optimal
Q-function Q∗ = maxπ Q

π as V ∗ = Es∼ρ [maxaQ
∗(s, a)]. Denote by Tπ and T ∗ the Bellman

operator and the optimality Bellman operator, respectively, i.e., for any f : S ×A → R

[Tπf ](s, a) = Er∼R(s,a)[r] + γEs′∼P (·|s,a),a′∼π(·|s′) [f(s′, a′)]

[T ∗f ](s, a) = Er∼R(s,a)[r] + γEs′∼P (·|s,a)

[
max
a′

f(s′, a′)
]
,

we have TπQπ = Qπ and T ∗Q∗ = Q∗.

We consider the offline RL setting where a learner cannot explore the environment but has access
to a fixed logged data D = {(si, ai, s′i, ri)}ni=1 collected a priori by certain behaviour policy η. For
simplicity, we assume that {si}ni=1 are independent and η is stationary. Equivalently, {(si, ai)}ni=1
are i.i.d. samples from the normalized discounted stationary distribution over state-actions with
respect to η, i.e., (si, ai)

i.i.d.∼ µ(·, ·) := (1 − γ)
∑∞
t=0 γ

tP(st = ·, at = ·|ρ, η) where s′i ∼
P (·|si, ai) and ai ∼ η(·|si). This assumption is relatively standard in the offline RL setting (Munos
& Szepesvári, 2008; Chen & Jiang, 2019; Yang et al., 2019) and is used merely for the sake of
theoretical analysis. The goals of OPE and OPL are to estimate V π and V ∗, respectively from D.
The performance of OPE and OPL estimates are measured via sub-optimality gaps.
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For OPE. Given a fixed target policy π, for any value estimate V̂ computed from the offline data D,
the sub-optimality of OPE is defined as

SubOpt(V̂ ;π) = |V π − V̂ |.

For OPL. For any estimate π̂ of the optimal policy π∗ that is learned from the offline data D, we
define the sup-optimality of OPL as

SubOpt(π̂) = Eρ [V ∗(s)−Q∗(s, π̂(s))] ,

where Eρ is the expectation with respect to (w.r.t.) s ∼ ρ.

3.1 DEEP RELU NETWORKS AS FUNCTION APPROXIMATION

In practice, the state space is often very large and complex, and thus function approximation is
required to ensure generalization across different states. Deep networks with the ReLU activation
offer a rich class of parameterized functions with differentiable parameters. Deep ReLU networks
are state-of-the-art in many applications, e.g., (Krizhevsky et al., 2012; Mnih et al., 2015), including
offline RL with deep ReLU networks that can yield superior empirical performance (Voloshin et al.,
2019). In this section, we describe the architecture of deep ReLU networks and the associated
function space which we use throughout this paper. Specifically, aL-height,m-width ReLU network
on Rd takes the form of

fL,mθ (x) = W (L)σ
(
W (L−1)σ

(
. . . σ

(
W (1)σ(x) + b(1)

)
. . .
)

+ b(L−1)
)

+ b(L),

where W (L) ∈ R1×m, b(L) ∈ R,W (1) ∈ Rm×d, b(1) ∈ Rm, W (l) ∈ Rm×m, b(l) ∈ Rm,∀1 < l <
L, θ = {W (l), b(l)}1≤l≤L, and σ(x) = max{x, 0} is the (element-wise) ReLU activation. We define
Φ(L,m, S,B) as the space of L-height, m-width ReLU functions fL,mθ (x) with sparsity constraint
S, and norm constraintB, i.e.,

∑L
l=1(‖W (l)‖0+‖b(l)‖0) ≤ S,max1≤l≤L ‖W (l)‖∞∨‖b(l)‖∞ ≤ B.

Finally, for some L,m ∈ N and S,B ∈ (0,∞), we define the unit ball of ReLU network function
space FNN as

FNN :=

{
f ∈ Φ(L,m, S,B) : ‖f‖∞ ≤ 1

}
.

We further write FNN (X ) to emphasize the domain X of deep ReLU functions in FNN but often
use FNN when the domain context is clear. The main benefit of deep ReLU networks is that in
standard non-parametric regression, they outperform any non-adaptive linear estimator due to their
higher adaptivity to spatial inhomogeneity (Suzuki, 2018).

3.2 REGULARITY

In this section, we define a function space for the target functions for which we study offline RL.
Note that a regularity assumption on the target function is necessary to obtain a nontrivial rate of
convergence (Györfi et al., 2002). A common way to measure regularity of a function is through
the Lp-norm of its local oscillations (e.g., of its derivatives if they exist). This regularity notion
encompasses the classical Lipschitz, Hölder and Sobolev spaces. In particular in this work, we
consider Besov spaces. Besov spaces allow fractional smoothness that describes the regularity of a
function more precisely and generalizes the previous smoothness notions. There are several ways
to characterize the smoothness in Besov spaces. Here, we pursue a characterization via moduli of
smoothness as it is more intuitive, following (Giné & Nickl, 2016).
Definition 3.1 (Moduli of smoothness). For a function f ∈ Lp(X ) for some p ∈ [1,∞], we define
its r-th modulus of smoothness as

ωt,pr (f) := sup
0≤h≤t

‖∆r
h(f)‖p, t > 0, r ∈ N,

where the r-th order translation-difference operator ∆r
h = ∆h ◦∆r−1

h is recursively defined as

∆r
h(f)(·) := (f(·+ h)− f(·))r =

r∑
k=0

(
r

k

)
(−1)r−kf(·+ k · h).
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Remark 3.1. The quantity ∆r
h(f) captures the local oscillation of function f which is not necessarily

differentiable. In the case the r-th order weak derivative Drf exists and is locally integrable, we
have

lim
h→0

∆r
h(f)(x)

hr
= Drf(x),

ωt,pr (f)

tr
≤ ‖Drf‖p and

ωt,pr+r′(f)

tr
≤ ωt,pr′ (Drf).

Definition 3.2 (Besov space Bαp,q(X )). For 1 ≤ p, q ≤ ∞ and α > 0, we define the norm ‖ · ‖Bαp,q
of the Besov space Bαp,q(X ) as ‖f‖Bαp,q := ‖f‖p + |f |Bαp,q where

|f |Bαp,q :=


(∫∞

0
(
ωt,pbαc+1

(f)

tα )q dtt

)1/q

, 1 ≤ q <∞,

supt>0

ωt,pbαc+1
(f)

tα , q =∞,

is the Besov seminorm. Then, Bαp,q := {f ∈ Lp(X ) : ‖f‖Bαp,q <∞}.

Intuitively, the Besov seminorm |f |Bαp,q roughly describes the Lq-norm of the lp-norm of the α-
order smoothness of f . Having defined Besov spaces, a natural question is what properties Besov
spaces have and how these spaces are related to other function spaces considered in the current
literature of offline RL? It turns out that Besov spaces are considerably general that encompass
Hölder spaces and Sobolev spaces as well as functions with spatially inhomogeneous smoothness
(Triebel, 1983; Sawano, 2018; Suzuki, 2018; Cohen, 2009; Nickl & Pötscher, 2007). We summarize
the key intriguing characteristics of Besov spaces and their relation with other spaces:

• (Monotonicity in q) For 1 ≤ p ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞ and α ∈ R, Bαp,q1(X ) ↪→
Bαp,q2(X );

• (With Lp spaces) L2(X ) ↪→ B0
2,2(X ), B0

p,1(X ) ↪→ Lp(X ) ↪→ B0
p,∞(X ) for 1 ≤ p ≤ ∞,

and Bαp,q(X ) ↪→ Lr(X ) for α > d(1/p− 1/r)+ where r = bαc+ 1;

• (With C0(X )) Bαp,q(X ) ↪→ C0(X ) for 1 ≤ p, q ≤ ∞, α > d/p;

• (With Sobolev spaces) Bm2,2(X ) = Wm
2 (X ) for m ∈ N;

• (With Hölder spaces) Bα∞,∞(X ) = Cα(X ) for α = (0,∞)\N.

In particular, the Besov space Bαp,q reduces into the Hölder space Cα when p = q = ∞ and α is
positive and non-integer while it reduces into the Sobolev space Wα

2 when p = q = 2 and α is a
positive integer. We further consider the unit ball of Bαp,q(X ):

B̄αp,q(X ) := {g ∈ Bαp,q : ‖g‖Bαp,q ≤ 1 and ‖g‖∞ ≤ 1}.

To obtain a non-trivial guarantee, certain assumptions on the distribution shift and the MDP reg-
ularity are necessary. Here, we introduce such assumptions. The first assumption is a common
restriction that quantifies the distribution shift in offline RL.
Assumption 3.1 (Concentration coefficient). There exists κµ <∞ such that ‖ dνdµ‖∞ ≤ κµ for any
realizable distribution ν, where a distribution ν is said to be realizable if there exist t ≥ 0 and policy
π̄ such that ν(s, a) = P(st = s, at = a|s1 ∼ ρ, π̄),∀s, a.

Intuitively, the finite κµ in Assumption 3.1 asserts that the sampling distribution µ is not too far away
from any realizable distribution uniformly over the state-action space. κµ is finite for a reasonably
large class of MDPs, e.g., for any finite MDP, any MDP with bounded transition kernel density,
and equivalently any MDP whose top-Lyapunov exponent is negative (Munos & Szepesvári, 2008).
Chen & Jiang (2019) further provided natural problems with rich observations generated from hid-
den states that has low concentration coefficients. These suggest that low concentration coefficients
can be found in fairly many interesting problems in practice. We present a simple (though stronger
than necessary) example for which Assumption 3.1 holds.
Example 3.1. If the transition density P (s′|s, a) is sufficiently stochastic and the behaviour policy ν
has a sufficient uniform coverage over the action space, i.e., there exist absolute constants c1, c2 > 0
such that for any s, s′ ∈ S, there exists an action a ∈ A such that P (s′|s, a) ≥ 1/c1 and η(a|s) ≥
1/c2,∀s, a, then we can choose κµ = c1c2.
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Next, we introduce a completeness assumption.
Assumption 3.2 (Besov dynamic closure). ∀f ∈ FNN (X ),∀π, Tπf ∈ B̄αp,q(X ) for some p, q ∈
[1,∞] and α > d

p∧2 .

Assumption 3.2 signifies that for any policy π, the Bellman operator Tπ applied on any ReLU net-
work function in FNN (X ) results in a Besov function in B̄αp,q(X ). Moreover, as Tπf f = T ∗f

where πf is the greedy policy w.r.t. f , Assumption 3.2 also implies that T ∗f ∈ B̄αp,q(X ) if
f ∈ FNN (X ). This kind of completeness assumption is relatively standard and common in the
offline RL literature (Chen & Jiang, 2019); yet our Besov dynamic closure is sufficiently general
that encompasses almost all the previous completeness assumptions in the literature. For example,
a simple (yet considerably stronger than necessary) sufficient condition for Assumption 3.2 is that
the expected reward function r(s, a) and the transition density P (s′|s, a) for each fixed s′ are the
functions in the Besov space Bαp,q(X ), regardless of any function approximator f and any policy
π. Such a condition on the transition dynamic is common in the RL literature; for example, linear
MDPs Jin et al. (2020) posit a linear structure on the expected reward and the transition density as
r(s, a) = 〈φ(s, a), θ〉 and P (s′|s, a) = 〈φ(s, a), λ(s′)〉 for some feature map φ : X → Rd0 and
signed measures λ(s′) = (λ(s′)1, . . . , λ(s′)d0). To make it even more concrete, we present a simple
example for the sufficient condition above.
Example 3.2 (Reproducing kernel Hilbert space (RKHS) with Matérn kernels). Define kh,l the
Matérn kernel with smoothness parameter h > 0 and length scale l > 0. If both the expected
reward function r(·) and the transition density gs′(·) := P (s′|·) at any s′ ∈ S are functions in
the RKHS of Matérn kernel kh,l where h = α − d/2 > 0 and l > 0, then Assumption 3.2 holds
for p = q = 2. This is due to the norm-equivalence between the above RKHS and the Sobolev
space Wα

2 (X ) (Kanagawa et al., 2018) and the degeneration from Besov spaces to Sobolev spaces
as Bα2,2(X ) = Wα

2 (X ).

More generally, our Besov dynamic closure assumption also encompasses the dynamic condition
considered in the prior result (Yang et al., 2019). In particular, as remarked earlier, the Besov space
Bαp,q reduces into the Hölder space Cα and Sobolev spaceWα

2 at p = q =∞, α ∈ (0,∞)\N, and at
p = q = 2, α ∈ N, respectively. Moreover, our dynamic assumption only requires the boundedness
of a very general notion of local oscillations of the underlying MDP; that is, the underlying MDP
can be discontinuous or non-differentiable (e.g., when α ≤ 1/2 and p = 2), or even have spatially
inhomogeneous smoothness (e.g., when p < 2).

The condition α > d
p∧2 guarantees a finite bound for the compactness and the (local) Rademacher

complexity of the considered Besov space. When p < 2 (thus the condition above becomes α >
d/p), a function in the corresponding Besov space contains both spiky parts and smooth parts, i.e.,
the Besov space has inhomogeneous smoothness (Suzuki, 2018). In particular, when α > d/p,
each equivalence class [f ]λ, f ∈ Bαp,q(Rd), i.e., modulo equality λ-almost everywhere, contains a
unique continuous representative. In addition, this representative has partial derivatives of order at
least α − d/p; thus α − d/p is called the differential dimension of the Besov space. Finally, we
remark that linear MDPs (Jin et al., 2020) corresponds to Assumption 3.2 with α = 1 and p = q
on a p-norm bounded domain. However, the additional condition α > d

p∧2 is not necessary for the
particular case of linear MDPs. This is due to the fact that there is a closed-form solution to the
value regression problem in linear MDPs and the size of the linear models for MDP is controllably
small without any additional smoothness assumption (rather than the completeness assumption). Of
course, our analysis addresses significantly more complex and general settings than linear MDPs
which we believe is more important than recovering the optimal condition in linear MDPs.

4 ALGORITHM AND THEORY

4.1 ALGORITHM

Now we turn to the main algorithm and the main result. We study a FQI-type algorithm, namely
least-squares value iteration (LSVI) for both OPE and OPL with the pseudo-code presented in Al-
gorithm 1 where we denote ρπ(s, a) = ρ(s)π(a|s). The algorithm is nearly identical to (Duan &
Wang, 2020) but with deep neural network function approximation instead of linear models. As
such, it can be considered as a generalization.
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Algorithm 1 Least-squares value iteration (LSVI)

1: Initialize Q0 ∈ FNN .
2: for k = 1 to K do
3: If OPE (for a fixed policy π): yi ← ri + γ

∫
AQk−1(s′i, a)π(da|s′i),∀i

4: If OPL: yi ← ri + γmaxa′∈AQk−1(s′i, a
′),∀i

5: Qk ← arg minf∈FNN
1
n

∑n
i=1(f(si, ai)− yi)2

6: end for
7: If OPE, return VK = ‖QK‖ρπ =

√
Eρ(s)π(a|s) [QK(s, a)2]

8: If OPL, return the greedy policy πK w.r.t. QK .

The idea of LSVI is appealingly simple: it does the best it could with all the offline data using
least-squares regression over a function space. The algorithm arbitrarily initializes Q0 ∈ FNN and
iteratively computes Qk as follows: at each iteration k, the algorithm constructs a new regression
data {(xi, yi)}ni=1 where the covariates xi are (si, ai) and the Bellman targets yi are computed
following dynamic programming style. In particular, depending on whether this is an OPE or OPL
problem, yi are computed according to line 3 and line 4 of Algorithm 1, respectively. It then fits the
function class FNN to the constructed regression data by minimizing the mean squared error at line
5. This type of algorithm belongs to the fitted Q-iteration family (Munos & Szepesvári, 2008; Le
et al., 2019) that iteratively uses least-squares (value) regression to estimate the value functions. The
main difference in the algorithm is here we use deep neural networks as function approximation for
generalization to unseen states and actions in a complex MDP.

On the computational side, solving the non-convex optimization at line 5 of Algorithm 1 can be
highly involved and stochastic gradient descent is a dominant optimization method for such a task
in deep learning. In particular, (stochastic) gradient descent is guaranteed to converge to a global
minimum under certain structural assumptions (Du et al., 2019a;b; Allen-Zhu et al., 2019; Nguyen,
2021). Here, as we only focus on the statistical properties of LSVI, we assume that the minimizer
at line 5 is attainable. Such a oracle assumption is common when analyzing the statistical properties
of an RL algorithm with non-linear function approximation (Yang et al., 2019; Chen & Jiang, 2019;
Duan et al., 2021; Wang et al., 2019; 2020; Jin et al., 2021).

4.2 CORRELATED STRUCTURE

We remark the correlated structure in Algorithm 1. The target variable yi computed at line 3 and line
4 of the algorithm depends on the previous estimate Qk−1 which in turn depends on the covariate
xi := (si, ai). This induces a complex correlated structure across all iterations where the current
estimate depends on all the previous estimates and the past data. In particular, one of the main
difficulties caused by such correlated structure is that conditioned on each xi, the target variable
yi is no longer centered at [T ∗Qk−1](xi) for OPL (or at [TπQk−1](xi) for OPE, respectively),
i.e., E [[T ∗Qk−1](xi)− yi|xi] 6= 0. This correlated structure hinders a direct use of the standard
concentration inequalities (e.g. Hoeffding’s inequality, Bernstein inequality). Prior results either
improperly ignore the correlated structure in their analysis (Le et al., 2019) or directly avoid it by
estimating each Qk on a separate fold of the original data (Yang et al., 2019). The data splitting
approach in (Yang et al., 2019), which splits the original data into K disjoint folds, helps remove
the correlated structure but scales the sample complexity linearly with K where K can be arbitrarily
large. In contrast, we overcome the correlated structure via a uniform convergence argument by
considering deterministic coverings of the target function space T ∗FNN without the need for the
inefficient data splitting.

4.3 THEORETICAL ANALYSIS

Our main result is a sup-optimality bound for LSVI in both OPE and OPL settings.

Theorem 4.1. Under Assumption 3.1 and Assumption 3.2, for any ε > 0, δ ∈ (0, 1],K > 0, if n

satisfies that n &
(

1
ε2

)1+ d
α log6 n + 1

ε2 (log(1/δ) + log log n), then with probability at least 1 − δ,
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the sup-optimality of Algorithm 1 isSubOpt(VK ;π) ≤
√
κµ

1−γ ε+ γK/2

(1−γ)1/2
for OPE,

SubOpt(πK) ≤ 4γ
√
κµ

(1−γ)2 ε+ 4γ1+K/2

(1−γ)3/2
for OPL.

In addition, the optimal deep ReLU network Φ(L,m, S,B) that obtains such sample complexity (for
both OPE and OPL) satisfies

L � logN,m � N logN,S � N, and B � N1/d+(2ι)/(α−ι),

where ι := d(p−1 − (1 + bαc)−1)+ and N � n

1
2
+

(
2+ d2

α(α+d)

)−1

1+ 2α
d is the number of parameters to

approximate a function in the Besov space.

Remark 4.1. The role of deep ReLU networks in offline RL is to guarantee a maximal adaptivity
to the (spatial) regularity of the functions in Besov space and obtain an optimal approximation er-
ror rate that otherwise were not possible with other function approximation such as kernel methods
(Suzuki, 2018). Moreover, by the equivalence in the functions that a neural architecture can com-
pute (Yarotsky, 2017), Theorem 4.1 also readily holds for any other continuous piece-wise linear
activation functions with finitely many line segments M where the optimal network architecture
only increases the number of units and weights by constant factors depending only on M .
Remark 4.2. The optimal ReLU network that realizes our sample complexity can be further sim-
plified as L = O(log n) and m = O(

√
n log n). That is, the optimal ReLU network is relatively

“thinner” than overparameterized neural networks that have been recently studied in the literature
(Arora et al., 2019; Allen-Zhu et al., 2019; Hanin & Nica, 2019; Cao & Gu, 2019; Belkin, 2021)
where the width m is a high-order polynomial of n. As overparameterization is a key feature for
such overparameterized neural networks to obtain a good generalization, it is natural to ask why a
thinner neural network in Theorem 4.1 also guarantees a strong generalization for offline RL even
when the network is not in the overparameterization regime? Intuitively, it is due to that the optimal
ReLU network in Theorem 4.1 is regularized by a strong sparsity which resonates with our practical
wisdom that we can use a sparsity-based regularization to prevent over-fitting and achieve a better
generalization. In particular, as the total number of parameters in the considered neural network is
p = md + m + m2(L − 2) = O(N2 log3N) while the number of non-zeros parameters S only
scales with N , the optimal ReLU network in Theorem 4.1 is relatively sparse.

Theorem 4.1 states that LSVI incurs a sub-optimality which consists of the statistical error (the
first term) and the algorithmic error (the second term). While the algorithmic error enjoys the fast
linear convergence to 0, the statistical error reflects the fundamental difficulty of the problems. The
statistical errors for both OPE and OPL cases are bounded by the distributional shift κµ, the effective
horizon 1/(1−γ), and the user-specified precision ε for n satisfying the inequality given in Theorem
4.1. In particular, the sample complexity does not depend on the number of states as in tabular MDPs
(Yin & Wang, 2020; Yin et al., 2021; Yin & Wang, 2021) or the inherent Bellman error as in the
general function approximation (Munos & Szepesvári, 2008; Le et al., 2019). Instead, it explicitly
scales with the (possible fractional) smoothness α of the underlying MDP and the dimension d of
the input space. Importantly, this guarantee is established under the correlated structure of the value
estimate in the algorithm and the Besov dynamic closure encompassing the dynamic conditions of
the prior results. Thus, Theorem 4.1 is the most comprehensive result we are aware of for offline RL
with deep neural network function approximation.

Moreover, to further develop an intuition on our sample complexity, we compare it with the prior
results. Regarding the tightness of our result, our sample complexity ε−2−2d/α (ignoring the log
factor and the factor pertaining to κµ and effective horizon) nearly matches the nonparametric re-
gression’s minimax-optimal sample complexity ε−2−d/α (Kerkyacharian & Picard, 1992; Giné &
Nickl, 2016) even though in our case we deal with a more complicated correlated structure in a
value iteration problem instead of a standard non-parametric regression problem. This gap is neces-
sary and expected due to the correlated structure in the algorithm. We remark that it is possible to
retain the rate ε−2−d/α if we split the offline data D into K (given in Algorithm 1) disjoint subsets
and estimate each Qk in Algorithm 1 using a separate disjoint subsets. This however scales the
sample complexity linearly with K which could be arbitrarily large in practice.

8



Under review as a conference paper at ICLR 2022

Table 1: The state-of-the-art (SOTA) statistical theory of offline RL with function approximation.
Here, the distributional shift measure κ can be defined differently in different works.

Work Function Regularity Tasks Sample complexity Remark
Yin & Wang (2020) Tabular Tabular OPE Õ

(
κ
ε2 · |S|

2 · |A|2
)

minimax-optimal
Duan & Wang (2020) Linear Linear OPE Õ

(
κ
ε2 · d

)
minimax-optimal

Le et al. (2019) General General OPE/OPL N/A improper analysis
Yang et al. (2019) ReLU nets Hölder OPL Õ

(
K · κ2+ d

α · ε−2− d
α

)
no data reuse

This work ReLU nets Besov OPE/OPL Õ
(
κ1+ d

α · ε−2−2 dα

)
data reuse

To show the significance of our sample complexity, we summarize our result and compare it with
the prior results in Table 1. From the leftmost column to the rightmost one, the table describes the
related works, the function approximations being employed, the regularity conditions considered to
establish theoretical guarantees, the offline RL tasks considered, the sample complexity obtained,
and the important remarks or features of each work. Here, |S| and |A| are the cardinalities of the
state and action space when they are finite. Specifically, the “data reuse” in Table 1 means that
an algorithm reuses the data across all iterations instead of splitting the original offline data into
disjoint subsets for each iteration and the regularity column specifies the regularity assumption on
the underlying MDP. Based on this comparison, we make the following observations. First, with
simpler models such as tabular and linear MDPs, it requires less samples to achieve the same sub-
optimality precision ε than more complex environments such as Hölder and Besov MDPs. This
should not come as a surprise as the simpler regularities are much easier to learn but they are too
strong as a condition to hold in practice. Second, as remarked earlier that Besov smoothness is
more general than Hölder smoothness considered in (Yang et al., 2019), our setting is more practical
and comprehensive as it covers more scenarios of the regularity of the underlying MDPs than the
prior results. Third, our result obtains an improved sample complexity as compared to that in (Yang
et al., 2019) where we are able to get rid of the dependence on the algorithmic iteration number K
which can be arbitrarily large in practice. On the technical side, we provide a unifying analysis that
allows us to account for the complicated correlated structure in the algorithm and handle the complex
deep ReLU network function approximation. This can also be considered as a substantial technical
improvement over (Le et al., 2019) as Le et al. (2019) improperly ignores the correlated structure
in their analysis. In addition, the result in (Le et al., 2019) does not provide an explicit sample
complexity as it depends on an unknown inherent Bellman error. Thus, our sample complexity
improves over the result of the data splitting method and holds with in a broader context by our
Besov dynamic closure.

Finally, we provide a detailed proof for Theorem 4.1 in Section A. The proof has four main com-
ponents: a sub-optimality decomposition for error propagation across iterations, a Bellman error
decomposition using a uniform convergence argument, a deviation analysis for least-squares value
regression with deep ReLU networks using local Rademacher complexities via a localization argu-
ment, and an upper bound minimization step to obtain an optimal deep ReLU architecture.

5 CONCLUSION

We presented the sample complexity of offline RL with deep ReLU network function ap-
proximation. We proved that the FQI-type algorithm can achieve the sample complexity of
Õ
(
κ1+d/α · ε−2−2d/α

)
under highly correlated structures and a general dynamic condition namely

the Besov dynamic closure. We also provided various insights into the benefits and the effects of
deep neural networks in offline RL.

We close with a future direction. Although the finite concentration coefficient assumption is rel-
atively standard in offline RL, can we develop a weaker, non-uniform assumption that can still
accommodate offline RL with non-linear function approximation? While such a weaker data cov-
erage assumptions do exist for offline RL in tabular settings (Rashidinejad et al., 2021), it seems
non-trivial to generalize this condition to the function approximation setting.
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A PROOF OF THEOREM 4.1

We now provide a complete proof of Theorem 4.1. The proof has four main components: a sub-
optimality decomposition for error propagation across iterations, a Bellman error decomposition us-
ing a uniform convergence argument, a deviation analysis for least squares with deep ReLU networks
using local Rademacher complexities and a localization argument, and a upper bound minimization
step to obtain an optimal deep ReLU architecture.

STEP 1: A SUB-OPTIMALITY DECOMPOSITION

The first step of the proof is a sub-optimality decomposition, stated in Lemma A.1, that applies
generally to any least-squares Q-iteration methods.
Lemma A.1 (A sub-optimality decomposition). Under Assumption 3.1, the sub-optimality of VK
returned by Algorithm 1 is bounded as

SubOpt(VK) ≤


√
κµ

1−γ max
0≤k≤K−1

‖Qk+1 − TπQk‖µ +
γK/2

(1− γ)1/2
for OPE,

4γ
√
κµ

(1−γ)2 max
0≤k≤K−1

‖Qk+1 − T ∗Qk‖µ +
4γ1+K/2

(1− γ)3/2
for OPL.

where we denote ‖f‖µ :=
√∫

µ(dsda)f(s, a)2,∀f : S ×A → R.

The lemma states that the sub-optimality decomposes into a statistical error (the first term) and an
algorithmic error (the second term). While the algorithmic error enjoys the fast linear convergence
rate, the statistical error arises from the distributional shift in the offline data and the estimation
error of the target Q-value functions due to finite data. Crucially, the contraction of the (optimality)
Bellman operators Tπ and T ∗ allows the sup-optimality error at the final iteration K to propagate
across all iterations k ∈ [0,K − 1]. Note that this result is agnostic to any function approximation
form and does not require Assumption 3.2. The result uses a relatively standard argument that
appears in a number of works on offline RL (Munos & Szepesvári, 2008; Le et al., 2019).

Proof of Lemma A.1. We will prove the sup-optimality decomposition for both settings: OPE and
OPL.

(i) For OPE. We denote the right-linear operator by Pπ· : {X → R} → {X → R} where

(Pπf)(s, a) :=

∫
X
f(s′, a′)π(da′|s′)P (ds′|s, a),

for any f ∈ {X → R}. Denote Denote ρπ(dsda) = ρ(ds)π(da|s). Let εk := Qk+1 − TπQk,∀k ∈
[0,K − 1] and εK = Q0 −Qπ . Since Qπ is the (unique) fixed point of Tπ , we have

Qk −Qπ = TπQk−1 − TπQπ + εk−1 = γPπ(Qk−1 −Qπ) + εk−1.

By recursion, we have

QK −Qπ =

K∑
k=0

(γPπ)kεk =
1− γK+1

1− γ

K∑
k=0

αkAkεk

where αk := (1−γ)γk

1−γK+1 ,∀k ∈ [K] and Ak := (Pπ)k,∀k ∈ [K]. Note that
∑K
k=0 αk = 1 and Ak’s

are probability kernels. Denoting by |f | the point-wise absolute value |f(s, a)|, we have that the
following inequality holds point-wise:

|QK −Qπ| ≤
1− γK+1

1− γ

K∑
k=0

αkAk|εk|.

We have

‖QK −Qπ‖2ρπ ≤
(1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

(
K∑
k=0

αkAk|εk|(s, a)

)2
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(a)

≤ (1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

K∑
k=0

αkA
2
kε

2
k(s, a)

(b)

≤ (1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

K∑
k=0

αkAkε
2
k(s, a)

(c)

≤ (1− γK+1)2

(1− γ)2

(∫
ρ(ds)π(da|s)

K−1∑
k=0

αkAkε
2
k(s, a) + αK

)
(d)

≤ (1− γK+1)2

(1− γ)2

(∫
µ(ds, da)

K−1∑
k=0

αkκµε
2
k(s, a) + αK

)

=
(1− γK+1)2

(1− γ)2

(
K−1∑
k=0

αkκµ‖εk‖2µ + αK

)

≤ κµ
(1− γ)2

max
0≤k≤K−1

‖εk‖2µ +
γK

(1− γ)
.

The inequalities (a) and (b) follow from Jensen’s inequality, (c) follows from ‖Q0‖∞, ‖Qπ‖∞ ≤ 1,
and (d) follows from Assumption 3.1 that ρπAk = ρπ(Pπ)k ≤ κµµ. Thus we have

SubOpt(VK ;π) = |VK − V π|

=

∣∣∣∣Eρ,π[QK(s, a)]− Eρ[Qπ(s, a)]

∣∣∣∣
≤ Eρ,π [|QK(s, a)−Qπ(s, a)|]

≤
√
Eρ,π [(QK(s, a)−Qπ(s, a))2]

= ‖QK −Qπ‖ρπ

≤
√
κµ

1− γ
max

0≤k≤K−1
‖εk‖µ +

γK/2

(1− γ)1/2
.

(ii) For OPL. The sup-optimality for the OPL setting is more complex than the OPE setting but
the technical steps are relatively similar. In particular, let εk−1 = T ∗Qk−1 − Qk,∀k and π∗(s) =
arg maxaQ

∗(s, a),∀s, we have

Q∗ −QK = Tπ
∗
Q∗ − Tπ

∗
QK−1 + Tπ

∗
QK−1 − T ∗QK−1︸ ︷︷ ︸

≤0

+εK−1

≤ γPπ
∗
(Q∗ −QK−1) + εK−1

≤
K−1∑
k=0

γK−k−1(Pπ
∗
)K−k−1εk + γK(Pπ

∗
)K(Q∗ −Q0)(by recursion). (1)

Now, let πk be the greedy policy w.r.t. Qk, we have

Q∗ −QK = Tπ
∗
Q∗︸ ︷︷ ︸

≥TπK−1Q∗

−TπK−1QK−1 + TπK−1QK−1 − T ∗QK−1︸ ︷︷ ︸
≥0

+εK−1

≥ γPπK−1(Q∗ −QK−1) + εK−1

≥
K−1∑
k=0

γK−k−1(PπK−1 . . . Pπk+1)εk + γK(PπK−1 . . . Pπ0)(Q∗ −Q0). (2)

Now, we turn to decompose Q∗ −QπK as

Q∗ −QπK = (Tπ
∗
Q∗ − Tπ

∗
QK) + (Tπ

∗
QK − TπKQK)︸ ︷︷ ︸

≤0

+(TπKQK − TπKQπK )

≤ γPπ
∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK ).
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Thus, we have

(I − γPπK )(Q∗ −QπK ) ≤ γ(Pπ
∗
− PπK )(Q∗ −QK).

Note that the operator (I − γPπK )−1 =
∑∞
i=0(γPπK )i is monotone, thus

Q∗ −QπK ≤ γ(I − γPπK )−1Pπ
∗
(Q∗ −QK)− γ(I − γPπK )−1PπK (Q∗ −QK). (3)

Combining Equation (3) with Equations (1) and (2), we have

Q∗ −QπK ≤ (I − γPπK )−1

(
K−1∑
k=0

γK−k(Pπ
∗
)K−kεk + γK+1(Pπ

∗
)K+1(Q∗ −Q0)

)
−

(I − γPπK )−1

(
K−1∑
k=0

γK−k(PπK . . . Pπk+1)εk + γK+1(PπK . . . Pπ0)(Q∗ −Q0)

)
.

Using the triangle inequality, the above inequality becomes

Q∗ −QπK ≤ 2γ(1− γK+1)

(1− γ)2

(
K−1∑
k=0

αkAk|εk|+ αKAK |Q∗ −Q0|

)
,

where

Ak =
1− γ

2
(I − γPπK )−1

(
(Pπ

∗
)K−k + PπK . . . Pπk+1

)
,∀k < K,

AK =
1− γ

2
(I − γPπK )−1

(
(Pπ

∗
)K+1 + PπK . . . Pπ0

)
,

αk = γK−k−1(1− γ)/(1− γK+1),∀k < K,

αK = γK(1− γ)/(1− γK+1).

Note that Ak is a probability kernel for all k and
∑
k αk = 1. Thus, similar to the steps in the OPE

setting, for any policy π, we have

‖Q∗ −QπK‖2ρπ ≤
[

2γ(1− γK+1)

(1− γ)2

]2
(∫

ρ(ds)π(da|s)
K−1∑
k=0

αkAkε
2
k(s, a) + αK

)

≤
[

2γ(1− γK+1)

(1− γ)2

]2
(∫

µ(ds, da)

K−1∑
k=0

αkκµε
2
k(s, a) + αK

)

=

[
2γ(1− γK+1)

(1− γ)2

]2
(
K−1∑
k=0

αkκµ‖εk‖2µ + αK

)

≤ 4γ2κµ
(1− γ)4

max
0≤k≤K−1

‖εk‖2µ +
4γK+2

(1− γ)3
.

Thus, we have

‖Q∗ −QπK‖ρπ ≤
2γ
√
κµ

(1− γ)2
max

0≤k≤K−1
‖εk‖µ +

2γK/2+1

(1− γ)3/2
.

Finally, we have

SubOpt(πK) = Eρ [Q∗(s, π∗(s))−Q∗(s, πK(s))]

≤ Eρ [Q∗(s, π∗(s))−QπK (s, π∗(s)) +QπK (s, πK(s))−Q∗(s, πK(s))]

≤ ‖Q∗ −QπK‖ρπ∗ + ‖Q∗ −QπK‖ρπK

≤
4γ
√
κµ

(1− γ)2
max

0≤k≤K−1
‖εk‖µ +

4γK/2+1

(1− γ)3/2
.
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STEP 2: A BELLMAN ERROR DECOMPOSITION

The next step of the proof is to decompose the Bellman errors ‖Qk+1 − TπQk‖µ for OPE and
‖Qk+1 − T ∗Qk‖µ for OPL. Since these errors can be decomposed and bounded similarly, we only
focus on OPL here.

The difficulty in controlling the estimation error ‖Qk+1 − T ∗Qk‖2,µ is that Qk itself is a random
variable that depends on the offline dataD. In particular, at any fixed k with Bellman targets {yi}ni=1
where yi = ri + γmaxa′ Qk(s′i, a

′), it is not immediate that E [[T ∗Qk](xi)− yi|xi] = 0 for each
covariate xi := (si, ai) as Qk itself depends on xi (thus the tower law cannot apply here). A naive
and simple approach to break such data dependency of Qk is to split the original data D into K
disjoint subsets and estimate each Qk using a separate subset. This naive approach is equivalent to
the setting in (Yang et al., 2019) where a fresh batch of data is generated for different iterations.
This approach is however not efficient as it uses only n/K samples to estimate each Qk. This is
problematic in high-dimensional offline RL when the number of iterations K can be very large as
it is often the case in practical settings. We instead prefer to use all n samples to estimate each
Qk. This requires a different approach to handle the complicated data dependency of each Qk. To
circumvent this issue, we leverage a uniform convergence argument by introducing a deterministic
covering of T ∗FNN . Each element of the deterministic covering induces a different regression target
{ri + γmaxa′ Q̃(s′i, a

′)}ni=1 where Q̃ is a deterministic function from the covering which ensures

that E
[
ri + γmaxa′ Q̃(s′i, a

′)− [T ∗Q̃](xi)|xi
]

= 0. In particular, we denote

yQki = ri + γmax
a′

Qk(s′i, a
′),∀i and f̂Qk := Qk+1 = arg inf

f∈FNN

n∑
i=1

l(f(xi), y
Qk
i ), and fQk∗ = T ∗Qk,

where l(x, y) = (x − y)2 is the squared loss function. Note that for any deterministic Q ∈ FNN ,
we have fQ∗ (x1) = E[yQ1 |x1],∀x1, thus

E(lf − lfQ∗ ) = ‖f − fQ∗ ‖2µ,∀f, (4)

where lf denotes the random variable (f(x1)−yQ1 )2. Now letting fQ⊥ := arg inff∈FNN ‖f−f
Q
∗ ‖2,µ

be the projection of fQ∗ onto the function class FNN , we have

max
k
‖Qk+1 − T ∗Qk‖2µ = max

k
‖f̂Qk − fQk∗ ‖2µ

(a)

≤ sup
Q∈FNN

‖f̂Q − fQ∗ ‖2µ
(b)
= sup

Q∈FNN
E(lf̂Q − lfQ∗ )

(c)

≤ sup
Q∈FNN

{
E(lf̂Q − lfQ∗ ) + En(lfQ⊥

− lf̂Q)
}

= sup
Q∈FNN

{
(E− En)(lf̂Q − lfQ∗ ) + En(lfQ⊥

− lfQ∗ )
}

≤ sup
Q∈FNN

(E− En)(lf̂Q − lfQ∗ )︸ ︷︷ ︸
I1,empirical process term

+ sup
Q∈FNN

En(lfQ⊥
− lfQ∗ )︸ ︷︷ ︸

I2,bias term

, (5)

where (a) follows from that Qk ∈ FNN , (b) follows from Equation (4), and (c) follows from that
En[lf̂Q ] ≤ En[lfQ ],∀f,Q ∈ FNN . That is, the error is decomposed into two terms: the first term
I1 resembles the empirical process in statistical learning theory and the second term I2 specifies the
bias caused by the regression target fQ∗ not being in the function space FNN .

STEP 3: A DEVIATION ANALYSIS

The next step is to bound the empirical process term and the bias term via an intricate concentration,
local Rademacher complexities and a localization argument. First, the bias term in Equation (5) is
taken uniformly over the function space, thus standard concentration arguments such as Bernstein’s
inequality and Pollard’s inequality used in (Munos & Szepesvári, 2008; Le et al., 2019) do not apply
here. Second, local Rademacher complexities (Bartlett et al., 2005) are data-dependent complexity
measures that exploit the fact that only a small subset of the function class will be used. Lever-
aging a localization argument for local Rademacher complexities (Farrell et al., 2018), we localize
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an empirical Rademacher ball into smaller balls by which we can handle their complexities more
effectively. Moreover, we explicitly use the sub-root function argument to derive our bound and
extend the technique to the uniform convergence case. That is, reasoning over the sub-root func-
tion argument makes our proof more modular and easier to incorporate the uniform convergence
argument.

Localization is particularly useful to handle the complicated approximation errors induced by deep
ReLU network function approximation.

STEP 3.A: BOUNDING THE BIAS TERM VIA A UNIFORM CONVERGENCE CONCENTRATION
INEQUALITY

Before delving into our proof, we introduce relevant notations. LetF−G := {f−g : f ∈ F , g ∈ G},
letN(ε,F , ‖·‖) be the ε-covering number ofF w.r.t. ‖·‖ norm,H(ε,F , ‖·‖) := logN(ε,F , ‖·‖) be
the entropic number, let N[](ε,F , ‖ · ‖) be the bracketing number of F , i.e., the minimum number of
brackets of ‖·‖-size less than or equal to ε, necessary to coverF , letH[](ε,F , ‖·‖) = logN[](ε,F , ‖·
‖) be the ‖ · ‖-bracketing metric entropy of F ,let F|{xi}ni=1 = {(f(x1), ..., f(xn)) ∈ Rn|f ∈ F},
and let T ∗F = {T ∗f : f ∈ F}. Finally, for sample set {xi}ni=1, we define the empirical norm

‖f‖n :=
√

1
n

∑n
i=1 f(xi)2.

We define the inherent Bellman error as dFNN := supQ∈FNN inff∈FNN ‖f −T ∗Q‖µ. This implies
that

d2
FNN := sup

Q∈FNN
inf

f∈FNN
‖f − T ∗Q‖2µ = sup

Q∈FNN
E(lfQ⊥

− lfQ∗ ). (6)

We have

|lf − lg| ≤ 4|f − g| and |lf − lg| ≤ 8.

We have

H(ε, {lfQ⊥ − lfQ∗ : Q ∈ FNN}|{xi, yi}ni=1, n
−1‖ · ‖1)

≤ H(
ε

4
, {fQ⊥ − f

Q
∗ : Q ∈ FNN}|{xi}ni=1, n

−1‖ · ‖1)

≤ H(
ε

4
, (F − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1)

≤ H(
ε

8
,FNN |{xi}ni=1, n

−1‖ · ‖1) +H(
ε

8
, T ∗FNN |{xi}ni=1, n

−1‖ · ‖1)

≤ H(
ε

8
,FNN |{xi}ni=1, ‖ · ‖∞) +H(

ε

8
, T ∗FNN , ‖ · ‖∞)

For any ε′ > 0 and δ′ ∈ (0, 1), it follows from Lemma B.2 with ε = 1/2 and α = ε′2, with
probability at least 1− δ′, for any Q ∈ FNN , we have

En(lfQ⊥
− lfQ∗ ) ≤ 3E(lfQ⊥

− lfQ∗ ) + ε′2 ≤ 3d2
FNN + ε′2, (7)

given that

n ≈ 1

ε′2

(
log(4/δ′) + logEN(

ε′2

40
, (FNN − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1)

)
.

Note that if we use Pollard’s inequality (Munos & Szepesvári, 2008) in the place of Lemma B.2, the
RHS of Equation (7) is bounded by ε′ instead of ε′2(i.e., n scales withO(1/ε′4) instead ofO(1/ε′2)).
In addition, unlike (Le et al., 2019), the uniform convergence argument hinders the application of
Bernstein’s inequality. We remark that Le et al. 2019 makes a mistake in their proof by ignoring the
data-dependent structure in the algorithm (i.e., they wrongly assume that Qk in Algorithm 1 is fixed
and independent of {si, ai}ni=1). Thus, the uniform convergence argument in our proof is necessary.
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STEP 3.B: BOUNDING THE EMPIRICAL PROCESS TERM VIA LOCAL RADEMACHER
COMPLEXITIES

For any Q ∈ FNN , we have

|lfQ⊥ − lfQ∗ | ≤ 2|fQ⊥ − f
Q
∗ | ≤ 2,

V[lfQ⊥
− lfQ∗ ] ≤ E[(lfQ⊥

− lfQ∗ )2] ≤ 4E(fQ⊥ − f
Q
∗ )2.

Thus, it follows from Lemma 1 (with α = 1/2) that with any r > 0, δ ∈ (0, 1), with probability at
least 1− δ, we have

sup{(E− En)(lf̂Q − lfQ∗ ) : Q ∈ FNN , ‖f̂Q − fQ∗ ‖2µ ≤ r}

≤ sup{(E− En)(lf − lg) : f ∈ FNN , g ∈ T ∗F , ‖f − g‖2µ ≤ r}

≤ 3ERn
{
lf − lg : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r

}
+ 2

√
2r log(1/δ)

n
+

28 log(1/δ)

3n

≤ 6ERn
{
f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r

}
+ 2

√
2r log(1/δ)

n
+

28 log(1/δ)

3n
.

STEP 3.C: BOUNDING ‖Qk+1 − T ∗Qk‖µ USING LOCALIZATION ARGUMENT VIA SUB-ROOT
FUNCTIONS

We bound ‖Qk+1−T ∗Qk‖µ using the localization argument, breaking down the Rademacher com-
plexities into local balls and then build up the original function space from the local balls. Let ψ be
a sub-root function (Bartlett et al., 2005, Definition 3.1) with the fixed point r∗ and assume that for
any r ≥ r∗, we have

ψ(r) ≥ 3ERn
{
f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r

}
. (8)

We recall that a function ψ : [0,∞) → [0,∞) is sub-root if it is non-negative, non-decreasing and
r 7→ ψ(r)/

√
r is non-increasing for r > 0. Consequently, a sub-root function ψ has a unique fixed

point r∗ where r∗ = ψ(r∗). In addition, ψ(r) ≤ √rr∗,∀r ≥ r∗. In the next step, we will find a
sub-root function ψ that satisfies the inequality above, but for this step we just assume that we have
such ψ at hand. Combining Equations (5), (7), and (8), we have: for any r ≥ r∗ and any δ ∈ (0, 1),
if ‖f̂Qk−1 − fQk−1

∗ ‖22,µ ≤ r, with probability at least 1− δ,

‖f̂Qk−1 − fQk−1
∗ ‖22,µ ≤ 2ψ(r) + 2

√
2r log(2/δ)

n
+

28 log(2/δ)

3n
+ 3d2

F + ε′2

≤
√
rr∗ + 2

√
2r log(2/δ)

n
+

28 log(2/δ)

3n
+ (
√

3dF + ε′)2,

where

n ≈ 1

4ε′2

(
log(8/δ) + logEN(

ε′2

20
, (FNN − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1)

)
.

Consider r0 ≥ r∗ (to be chosen later) and denote the events

Bk := {‖f̂Qk−1 − fQk−1
∗ ‖22,µ ≤ 2kr0},∀k ∈ {0, 1, ..., l},

where l = log2( 1
r0

) ≤ log2( 1
r∗

). We have B0 ⊆ B1 ⊆ ... ⊆ Bl and since ‖f − g‖2µ ≤
1,∀|f |∞, |g|∞ ≤ 1, we have P (Bl) = 1. If ‖f̂Qk−1 − f

Qk−1
∗ ‖2µ ≤ 2ir0 for some i ≤ l, then

with probability at least 1− δ, we have

‖f̂Qk−1 − fQk−1
∗ ‖22,µ ≤

√
2ir0r∗ + 2

√
2i+1r0 log(2/δ)

n
+

28 log(2/δ)

3n
+ (
√

3dFNN + ε′)2

≤ 2i−1r0,
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if the following inequalities hold√
2ir∗ + 2

√
2i+1 log(2/δ)

n
≤ 1

2
2i−1√r0,

28 log(2/δ)

3n
+ (
√

3dFNN + ε′)2 ≤ 1

2
2i−1r0.

We choose r0 ≥ r∗ such that the inequalities above hold for all 0 ≤ i ≤ l. This can be done by
simply setting

√
r0 =

2

2i−1

(√
2ir∗ + 2

√
2i+1 log(2/δ)

n

)∣∣∣∣
i=0

+

√
2

2i−1

(
28 log(2/δ)

3n
+ (
√

3dFNN + ε′)2

)∣∣∣∣
i=0

. dFNN + ε′ +

√
log(2/δ)

n
+
√
r∗.

Since {Bi} is a sequence of increasing events, we have

P (B0) = P (B1)− P (B1 ∩Bc0) = P (B2)− P (B2 ∩Bc1)− P (B1 ∩Bc0)

= P (Bl)−
l−1∑
i=0

P (Bi+1 ∩Bci ) ≥ 1− lδ.

Thus, with probability at least 1− δ, we have

‖f̂Qk−1 − fQk−1
∗ ‖µ . dFNN + ε′ +

√
log(2l/δ)

n
+
√
r∗ (9)

where

n ≈ 1

4ε′2

(
log(8l/δ) + logEN(

ε′2

20
, (FNN − T ∗FNN )|{xi}ni=1, n

−1‖ · ‖1))

)
.

STEP 3.D: FINDING A SUB-ROOT FUNCTION AND ITS FIXED POINT

It remains to find a sub-root function ψ(r) that satisfies Equation (8) and thus its fixed point. The
main idea is to bound the RHS, the local Rademacher complexity, of Equation (8) by its empirical
counterpart as the latter can then be further bounded by a sub-root function represented by a measure
of compactness of the function spaces FNN and T ∗FNN .

For any ε > 0, we have the following inequalities for entropic numbers:

H(ε,FNN − T ∗FNN , ‖ · ‖n) ≤ H(ε/2,FNN , ‖ · ‖n) +H(ε/2, T ∗FNN , ‖ · ‖n),

H(ε,FNN , ‖ · ‖n) ≤ H(ε,FNN |{xi}ni=1, ‖ · ‖∞)
(a)

. N [(logN)2 + log(1/ε)], (10)
H(ε, T ∗FNN , ‖ · ‖n) ≤ H(ε, T ∗FNN , ‖ · ‖∞) ≤ H[](2ε, T

∗FNN , ‖ · ‖∞)

(b)

≤ H[](2ε, B̄
α
p,q(X ), ‖ · ‖∞)

(c)

. (2ε)−d/α, (11)

where N is a hyperparameter of the deep ReLU network described in Lemma B.9, (a) follows
from Lemma B.9, and (b) follows from Assumption 3.2, and (c) follows from Lemma B.8. Let
H := FNN − T ∗FNN , it follows from Lemma B.5 with {ξk := ε/2k}k∈N for any ε > 0 that

EσRn{h ∈ H −H : ‖h‖n ≤ ε} ≤ 4

∞∑
k=1

ε

2k−1

√
H(ε/2k−1,H, ‖ · ‖n)

n

≤ 4

∞∑
k=1

ε

2k−1

√
H(ε/2k,FNN , ‖ · ‖∞)

n
+ 4

∞∑
k=1

ε

2k−1

√
H(ε/2k, TπFNN , ‖ · ‖∞)

n

≤ 4ε√
n

∞∑
k=1

2−(k−1)
√
N ((logN)2 + log(2k/ε)) +

4ε√
n

∞∑
k=1

2−(k−1)

√( ε

2k−1

)−d/α
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.
ε√
n

√
N((logN)2 + log(1/ε)) +

ε1−
d
2α

√
n
,

where we use
√
a+ b ≤

√
a+
√
b,∀a, b ≥ 0,

∑∞
k=1

√
k

2k−1 <∞, and
∑∞
k=1

(
1

21− d
2α

)k−1

<∞.

It now follows from Lemma B.4 that
EσRn{f ∈ F , g ∈ T ∗F : ‖f − g‖2n ≤ r}

≤ inf
ε>0

[
EσRn{h ∈ H −H : ‖h‖µ ≤ ε}+

√
2rH(ε/2,H, ‖ · ‖n)

n

]
.

[
ε√
n

√
N((logN)2 + log(1/ε)) +

ε1−
d
2α

√
n

+

√
2r

n

√
N((logN)2 + log(4/ε)) +

√
2r

n
(ε/2)

−d
2α

]∣∣∣∣
ε=n−β

� n−β−1/2
√
N(log2N + log n) + n−β(1− d

2α )−1/2 +

√
r

n

√
N(log2N + log n) +

√
rn−

1
2 (1− βdα ) =: ψ1(r),

where β ∈ (0, αd ) is an absolute constant to be chosen later.

Note that V[(f − g)2] ≤ E[(f − g)4] ≤ E[(f − g)2] for any f ∈ FNN , g ∈ T ∗FNN . Thus, for
any r ≥ r∗, it follows from Lemma B.1 that with probability at least 1 − 1

n , we have the following
inequality for any f ∈ FNN , g ∈ T ∗FNN such that ‖f − g‖2µ ≤ r,

‖f − g‖2n

≤ ‖f − g‖2µ + 3ERn{(f − g)2 : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}+

√
2r log n

n
+

56

3

log n

n

≤ ‖f − g‖2µ + 3ERn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}+

√
2r log n

n
+

56

3

log n

n
≤ r + ψ(r) + r + r ≤ 4r,

if r ≥ r∗ ∨ 2logn
n ∨ 56logn

3n . For such r, denote Er = {‖f − g‖2n ≤ 4r}∩{‖f − f∗‖2µ ≤ r}, we have
P (Er) ≥ 1− 1/n and

3ERn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}
= 3EEσRn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}

≤ 3E
[
1ErEσRn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2µ ≤ r}+ (1− 1Er )

]
≤ 3E

[
EσRn{f − g : f ∈ FNN , g ∈ T ∗FNN , ‖f − g‖2n ≤ 4r}+ (1− 1Er )

]
≤ 3(ψ1(4r) +

1

n
)

. n−β−1/2
√
N(log2N + log n) + n−β(1− d

2α )−1/2 +

√
r

n

√
N(log2N + log n)

+
√
rn−

1
2 (1− βdα ) + n−1 =: ψ(r)

It is easy to verify that ψ(r) defined above is a sub-root function. The fixed point r∗ of ψ(r) can be
solved analytically via the simple quadratic equation r∗ = ψ(r∗). In particular, we have
√
r∗ . n−1/2

√
N(log2N + log n) + n−

1
2 (1− βdα ) + n−

β
2−

1
4 [N(log2N + log n)]1/4

+ n−
β
2 (1− d

2α )− 1
2 + n−1/2

. n−
1
4 ((2β)∧1)+1)

√
N(log2N + log n) + n−

1
2 (1− βdα ) + n−

β
2 (1− d

2α )− 1
2 + n−1/2 (12)

It follows from Equation (9) (where l . log(1/r∗)), the definition of dFNN , Lemma B.9, and
Equation (12) that for any ε′ > 0 and δ ∈ (0, 1), with probability at least 1− δ, we have

max
k
‖Qk+1 − T ∗Qk‖µ . N−α/d + ε′ + n−

1
4 ((2β)∧1)+1)

√
N(log2N + log n) + n−

1
2 (1− βdα )
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+ n−
β
2 (1− d

2α )− 1
2 + n−1/2

√
log(1/δ) + log log n (13)

where

n &
1

4ε′2

(
log(1/δ) + log log n+ logEN(

ε′2

20
, (FNN − T ∗FNN )|{xi}ni=1, n

−1 · ‖ · ‖1))

)
.

(14)

STEP 4: MINIMIZING THE UPPER BOUND

The final step for the proof is to minimize the upper error bound obtained in the previous steps
w.r.t. two free parameters β ∈ (0, αd ) and N ∈ N. Note that N parameterizes the deep ReLU
architecture Φ(L,m, S,B) given Lemma B.9. In particular, we optimize over β ∈ (0, αd ) and
N ∈ N to minimize the upper bound in the RHS of Equation (13). The RHS of Equation (13) is
minimized (up to log n-factor) by choosing

N � n
1
2 ((2β∧1)+1) d

2α+d and β =

(
2 +

d2

α(α+ d)

)−1

, (15)

which results in N � n
1
2 (2β+1) d

2α+d . At these optimal values, Equation (13) becomes

max
k
‖Qk+1 − T ∗Qk‖µ . ε′ + n−

1
2 ( 2α

2α+d+ d
α )
−1

log n+ n−1/2
√

log(1/δ) + log log n, (16)

where we use inequalities n−
β
2 (1− d

2α )− 1
2 ≤ n− 1

2 (1− βdα ) � N−α/d = n−
1
2 ( 2α

2α+d+ d
α )
−1

.

Now, for any ε > 0, we set ε′ = ε/3 and let

n−
1
2 ( 2α

2α+d+ d
α )
−1

log n . ε/3 and n−1/2
√

log(1/δ) + log log n . ε/3.

It then follows from Equation (16) that with probability at least 1 − δ, we have maxk ‖Qk+1 −
T ∗Qk‖µ ≤ ε if n simultaneously satisfies Equation (14) with ε′ = ε/3 and

n &

(
1

ε2

) 2α
2α+d+ d

α

(log2 n)
2α

2α+d+ d
α and n &

1

ε2
(log(1/δ) + log log n) . (17)

Next, we derive an explicit formula of the sample complexity satisfying Equation (14). Using Equa-
tions (13), (17), and (15), we have that n satisfies Equation (14) if

n & 1
ε2

[
n

2β+1
2

d
2α+d (log2 n+ log(1/ε))

]
,

n &
(

1
ε2

)1+ d
α ,

n & 1
ε2 (log(1/δ) + log log n) .

(18)

Note that β ≤ 1/2 and d
α ≤ 2; thus, we have(

1− 2β + 1

2

d

2α+ d

)−1

≤ 1 +
d

α
≤ 3.

Hence, n satisfies Equations (17) and (18) if

n &

(
1

ε2

)1+ d
α

log6 n+
1

ε2
(log(1/δ) + log log n).

B TECHNICAL LEMMAS

Lemma B.1 (Bartlett et al. (2005)). Let r > 0 and let

F ⊆ {f : X → [a, b] : V[f(X1)] ≤ r}.
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1. For any λ > 0, we have with probability at least 1− e−λ,

sup
f∈F

(Ef − Enf) ≤ inf
α>0

(
2(1 + α)E [RnF ] +

√
2rλ

n
+ (b− a)

(
1

3
+

1

α

)
λ

n

)
.

2. With probability at least 1− 2e−λ,

sup
f∈F

(Ef − Enf) ≤ inf
α∈(0,1)

(
2(1 + α)

(1− α)
Eσ [RnF ] +

√
2rλ

n
+ (b− a)

(
1

3
+

1

α
+

1 + α

2α(1− α)

)
λ

n

)
.

Moreover, the same results hold for supf∈F (Enf − Ef).

Lemma B.2 (Györfi et al. (2002, Theorem 11.6)). Let B ≥ 1 and F be a set of functions f : Rd →
[0, B]. Let Z1, ..., Zn be i.i.d. Rd-valued random variables. For any α > 0, 0 < ε < 1, and n ≥ 1,
we have

P

{
sup
f∈F

1
n

∑n
i=1 f(Zi)− E[f(Z)]

α+ 1
n

∑n
i=1 f(Zi) + E[f(Z)]

> ε

}
≤ 4EN(

αε

5
,F|Zn1 , n−1‖ · ‖1) exp

(
−3ε2αn

40B

)
.

Lemma B.3 (Contraction property (Rebeschini, 2019)). Let φ : R→ R be a L-Lipschitz, then

EσRn (φ ◦ F) ≤ LEσRnF .

Lemma B.4 (Lei et al. (2016, Lemma 1)). Let F be a function class and Pn be the empirical
measure supported on X1, ..., Xn ∼ µ, then for any r > 0 (which can be stochastic w.r.t Xi), we
have

EσRn{f ∈ F : ‖f‖2n ≤ r} ≤ inf
ε>0

[
EσRn{f ∈ F − F : ‖f‖µ ≤ ε}+

√
2r logN(ε/2,F , ‖ · ‖n)

n

]
.

Lemma B.5 ( Lei et al. (2016, modification)). Let X1, ..., Xn be a sequence of samples and Pn be
the associated empirical measure. For any function class F and any monotone sequence {ξk}∞k=0
decreasing to 0, we have the following inequality for any non-negative integer N

EσRn{f ∈ F : ‖f‖n ≤ ξ0} ≤ 4

N∑
k=1

ξk−1

√
logN (ξk,F , ‖ · ‖n)

n
+ ξN .

Lemma B.6 (Pollard’s inequality). Let F be a set of measurable functions f : X → [0,K] and let
ε > 0, N arbitrary. If {Xi}Ni=1 is an i.i.d. sequence of random variables taking values in X , then

P

(
sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

f(Xi)− E[f(X1)]

∣∣∣∣ > ε

)
≤ 8E [N(ε/8,F|X1:N

)] e
−Nε2

128K2 .

Lemma B.7 (Properties of (bracketing) entropic numbers). Let ε ∈ (0,∞). We have

1. H(ε,F , ‖ · ‖) ≤ H[](2ε,F , ‖ · ‖);

2. H(ε,F|{xi}ni=1, n
−1/p ·‖·‖p) = H(ε,F , ‖·‖p,n) ≤ H(ε,F|{xi}ni=1, ‖·‖∞) ≤ H(ε,F , ‖·

‖∞) for all {xi}ni=1 ⊂ dom(F).

3. H(ε,F − F , ‖ · ‖) ≤ 2H(ε/2,F , ‖ · ‖)), where F − F := {f − g : f, g ∈ F}.
Lemma B.8 (Entropic number of bounded Besov spaces (Nickl & Pötscher, 2007, Corollary 2.2)).
For 1 ≤ p, q ≤ ∞ and α > d/p, we have

H[](ε, B̄
α
p,q(X ), ‖ · ‖∞) . ε−d/α.
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Lemma B.9 (Approximation power of deep ReLU networks for Besov spaces (Suzuki, 2018, a mod-
ified version)). Let 1 ≤ p, q ≤ ∞ and α ∈ ( d

p∧2 ,∞). For sufficiently large N ∈ N, there exists a
neural network architecture Φ(L,m, S,B) with

L � logN,m � N logN,S � N, and B � Nd−1+ν−1

,

where ν := α−δ
2δ and δ := d(p−1 − (1 + bαc)−1)+ such that

sup
f∗∈B̄αp,q(X )

inf
f∈Φ(L,W,S,B)

‖f − f∗‖∞ . N−α/d.
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