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ABSTRACT

Analog dynamical accelerators (DXs) are a growing sub-field in computer ar-
chitecture research, offering order-of-magnitude gains in power efficiency and
latency over traditional digital methods in several machine learning, optimiza-
tion, and sampling tasks. However, limited-capacity accelerators require hybrid
analog/digital algorithms to solve real-world problems, commonly using large-
neighborhood local search (LNLS) frameworks. Unlike fully digital algorithms,
hybrid LNLS has no non-asymptotic convergence guarantees and no principled
hyperparameter selection schemes, particularly limiting cross-device training and
inference.

In this work, we provide non-asymptotic convergence guarantees for hybrid LNLS
by reducing to block Langevin Diffusion (BLD) algorithms. Adapting tools from
classical sampling theory, we prove exponential KL-divergence convergence for
randomized and cyclic block selection strategies using ideal DXs. With finite
device variation, we provide explicit bounds on the 2-Wasserstein bias in terms
of step duration, noise strength, and function parameters. Our BLD model pro-
vides a key link between established theory and novel computing platforms, and
our theoretical results provide a closed-form expression linking device variation,
algorithm hyperparameters, and performance.

1 INTRODUCTION

Computing research has long borrowed from the physical sciences. Sampling and optimization al-
gorithms such as simulated annealing (Kirkpatrick, [1984)), parallel tempering (J. Earl & W. Deem,
2005), and Langevin Monte Carlo (LMC) (Chewi et al., 2021) were directly inspired by physical
processes observed in nature. Novel dynamical formulations of classical algorithms such as Nes-
terov accelerated gradient and Polyak’s heavy-ball method (Kovachki & Stuart,[2021)) and stochastic
gradient descent (Orvieto & Lucchi, [2020) have provided optimized step-size schemes and insights
into iterate behavior.

Drawing on the close connection between computation and physics, a growing computer architec-
ture sub-field has proposed leveraging physical dynamics to accelerate computationally expensive
workloads using “dynamical accelerators” (DXs). Originally, research focused on combinatorial
optimization problems (Inagaki et al., | 2016; |Ushijima-Mwesigwa et al., 2017; Wang & Roychowd-
hury, 2019; |Afoakwa et al.l 2021; | Mohseni et al., 2022) and matrix-vector multiplication |Xiao et al.
(2022). However, the field has expanded to sampling for energy-based model training and infer-
ence (Vengalam et al., [2023) and generative inference in graph neural networks (Wu et al., 2024;
Song et al., [2024)).

The interest in analog acceleration coincides with novel proposals for “local update” algorithms,
where layer activations & are solutions to a minimization problem h; = argmin, f(h) (Scellier &
Bengiol, 2017; |Stern et al., [2021; Millidge et al., [2022; [Scellier et al., |2023). While costly in digital
systems, stochastic analog optimizers can effectively solve argmin,, f(h) in minimal time and en-
ergy (Wu et al.} 2024), making them suitable candidates for local-update learning implementations.

However, real-world problems are typically too large for dynamical accelerators to optimize in their
entirety, requiring routines to partition and iteratively sample/optimize subspaces (Booth et al., 2017}
Sharma et al.l 2022; Song et al., [2024)), most commonly using hybrid “large-neighborhood local
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search” (LNLS) frameworks (Ahuja et al.,|2002; Booth et al.|[2017). In hybrid LNLS, the DX is used
to perform alternating sampling/minimization over within-capacity subproblems. However, hybrid
LNLS has undergone little theoretical examination. No non-asymptotic convergence bounds yet
exist, limiting the appeal of hybrid LNLS compared with more well-understood digital algorithms.
Moreover, the effect of algorithm hyperparameters on convergence and their interplay with device
non-idealities is unclear. Models trained on one DX may require hyperparameter adjustment, if not
outright device-specific retraining, prior to inference on another (He et al.,[2019; [Long et al.|[2019).
Without non-asymptotic analysis linking device variation and accelerator convergence, accelerator
adaptation reduces to trial-and-error.

In this work, we provide the first explicit probabilistic convergence guarantees for hybrid LNLS
algorithms in activation sampling and optimization: a crucial first step in optimizing and analyzing
hybrid DX frameworks. We start by reducing hybrid LNLS to block sampling with continuous-
time, Langevin diffusion-based sub-samplers, to which we can apply tools from classical sampling
analysis. Two block selection rules for “block Langevin diffusion” (BLD) are examined, randomized
and cyclic, using ideal (Secs.[3.2]and [3.3)) and finite-variation (Sec [3.4) analog components. Under
a log-Sobolev inequality (LSI), we prove that ideal accelerators converge to the target distribution
exponentially fast. However, we show that finite device variation incurs a bias in W5 distance,
proportional to step duration and dependent on variation magnitude. We illustrate our findings with
numerical experiments on a toy Gaussian sampling problem, demonstrating the effect of device
variation and hyperparameter choice on W5 convergence.

Our contributions can be summarized as follows:

1. We provide novel bounds on randomized block diffusions using explicit constants (Theo-
rem |I), strengthening the results of Ding et al.| (2020)

2. We provide completely novel bounds for cyclic block diffusions (Theorem [2) by proving a
novel conditional sampling lemma for Kullback-Liebler divergence (Lemmal|I))

3. Using a Talagrand transportation inequality, we combine our ideal results with analysis fol-
lowing [Raginsky et al.|(2017) to provide non-asymptotic guarantees for DXs with analog
non-idealities (Theorem [3), applicable to both sampling and optimization tasks.

1.1 RELATED WORKS

Ding & Li/(2021) and Ding et al.| (2021) proposed and analyzed “randomized coordinate Langevin
Monte Carlo” (RCLMC) methods for sampling tasks using over and underdamped Langevin dy-
namics. Their methodology used Wasserstein coupling arguments akin to |Dalalyan| (2016)), in
contrast to our interpolation arguments following [Vempala & Wibisono| (2019). Accordingly, the
authors assumed a strongly-log concave target distribution: a much stronger assumption than an
LSI. Moreover, Ding et al.|(202 1)) provided insufficient analysis for the continuous-time case, focus-
ing primarily on the discrete RCLMC algorithm. DX algorithm analysis required continuous-time
bounds with explicit constants, necessitating our contributions.

Two algorithms related to BLD garnering recent interest are “coordinate ascent variational in-
ference” (CAVI), which performs variational inference over factorized “mean-field” distribu-
tions (Bhattacharya et al., 2023; |Arnese & Lacker, [2024)), and the split Gibbs sampler (SGS), which
alternates sampling over problem variables with augmented priors (Vono et al.l 2019} [2022). CAVI
is similar to BLD, and indeed the information theoretic analysis by |Lee|(2022) has a similar structure
to our proof of Lemma|[I} SGS has been likened to the ADMM opimization algorithm [Vono et al.
(2022), indicating there may be an equivalence to BLD akin to classical block optimization [Tibshi-
rani| (2017)).

A related class of works have analyzed the accuracy of analog matrix-vector multiplication (MVM)
accelerators in neural network inference (Klachko et al.,[2019; Xiao et al.|[2022)). MVM accelerators
are a restricted class of DXs minimizing min, cga ||y—Wx| |2: equivalent to performing MVM in the
analog domain. Our analysis generalizes MVM analysis and is applicable in more complex analog
settings such as generative sampling (Vengalam et al., 2023} Melanson et al., 2023} Wu et al.|[2024).

Optimization-based convergence analyses of specific DX architectures were carried out by [Ere-
mentchouk et al.| (2022)); |Pramanik et al.| (2023). Asymptotic convergence in expectation to the
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global minimizer was proved by Pramanik et al|(2023) in the zero-temperature limit with decreas-
ing stepsize, echoing our results in Sec. However, neither work accounted for the effect of device
variation or problem partitioning, and both focused on specific DX modalities (nonlinear electron-
ic/optical oscillators) rather than a general model of DX behavior. Information-theoretic analysis
conducted by [Dambre et al.| (2012); |[Hu et al.| (2023) have bounded the asymptotic computational
capabilities of DX systems, but not their probabilistic convergence.

2 BACKGROUND

2.1 DYNAMICAL ACCELERATORS

The first wave of dynamics-accelerated optimizers primarily targeted the Ising Spin Glass (ISG)
Hamiltonian from statistical physics, earning the appellation “Ising Machines”. The ISG Hamilto-
nian describes quadratic interactions between binary “spins”, which can be used to solve intractable
combinatorial problems (Lucas, [2014). Ising machines have been implemented using quantum
spins (Ushijima-Mwesigwa et al., [2017), electronic (Wang & Roychowdhury, 2019} |Albertsson &
Rusul 2023) and optical (Inagaki et al., 20165 [Honjo et al. [2021) oscillator phases, resistively-
coupled capacitors (Afoakwa et al., [2021), and many more besides (Mohseni et al., |2022). These
initial prototypes successfully optimized binary target functions, however recent architectures have
broader applications domains: with support for non-quadratic cost functions (Sharma et al.| 2023
Bashar & Shukla, 2023; |Bybee et al.| [2023)) and continuous values (Brown et al., [2024; |Wu et al.,
2024; [Song et al., [2024). Since these designs have moved beyond the ISG Hamiltonian, we term
this broader class simply as “dynamical accelerators” (DXs).

While the physical implementation differs between DXs, several proposals can be described by a
Langevin stochastic differential equation (SDE)

dxy = —Vh(ze, t)dt + /28(t) " LdW; (D

where z; = z(t) is the system state, dWW; is a Brownian noise term, h(z,t) is the determinis-
tic system potential, and 5(¢t) = 1/T(t) is the (also potentially time dependent) inverse pseudo-
temperature of the system.

x(t) represents the continuous, physical degrees of freedom of the optimizer/sampler, such as capac-
itor voltage (Afoakwa et al.,[2021) or oscillator phase (Inagaki et al., 2016;|Wang & Roychowdhury,
2019). Several DX prototypes have been shown to follow forms of Equation (2.1)), either intention-
ally to escape local minima (Wang & Roychowdhury, 2019; Sharma et al., 2023} |Aifer et al., 2023)
or unintentionally to model dynamic environment noise (Wang et al.l 2013). The potential h(x, t)
includes the target function f(z) along with optional time-dependent terms, such as a sub-harmonic
injection locking potential for binary applications (Wang & Roychowdhuryl 2019).

DXs are also prone to static “device variation” owing to analog non-idealities. Unlike the Brownian
term dW,, static non-idealities are not self-averaging, and result in a biased estimate g5(z) of the
gradient V f(x). In a quadratic function f(x) = x?Wax, for instance, the gradient estimate can
be described as gs(z) = (W + WT)z + oz, where §;; ~ N(0,A?) are fixed non-idealities in
device components. Previous studies have examined the impact of static variation on binary op-
timization (Albash et al., 2019) and matrix-vector multiplication (Xiao et al., 2022), but have not
extended to non-asymptotic convergence analysis for more general functions over R%.

2.2 LANGEVIN DIFFUSION
If we restrict our analysis to the time-homogeneous case where h(z,t) = f(x), 8(t) = 3, the
dynamics are Markovian with a constant stationary distribution
mp(x) o e AF@),
The Langevin SDE
dLUt = —Vf(.’l?t)dt + 2ﬁ_1th

produces a continuous sample path z(¢) with each (7), 7 > 0 acting as a random variable. The law
of x4, s (denoted iy = L(x4)), is described by the Fokker-Planck equation (FPE)

Oepe = BV iy + V- [1eV f ()]
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Figure 1: Illustration of the LNLS algorithm on a 3-block, 9-variable problem. [Left] An illustration
of the variable sample paths during algorithm execution. When a block is not being actively evolved,
the constituent variables remain fixed (gray). [Right] Logical partition of variables in an LNLS
framework, where one block is being actively evolved by the DX with the others resident in digital
memory. The digital host performs the control operations needed to read the block state, write back
to memory, and begin the next block evolution.

The Langevin SDE describes the physical evolution of x;, while the FPE describes the change in the
sample distribution ji; in measure space. If 7z satisfies a log-Sobolev inequality (LSI, see Sec. E[),
then p; converges to 73 exponentially fast in measure space (Theorem 1 [Vempala & Wibisono,
2019)

D (pue[7) < €277 Dicr, (o | 7) 2)

where Dx, ( /LtHﬂ' f we(z) log ’;‘ @) g & f e log d“‘ is the Kullback-Leibler (KL) divergence
between two probability measures and 1/7 is the log- Sobolev constant.

Recalling the Otto-Villani theorem (Theorem 1 Otto & Villani, [2000), an LSI inequality further
implies a Talagrand transportation inequality

9\ 1/2
Wa(jue, ) < (7) Drer (el )

where Wa(py, m) = infyeciu.n ([ ||z — yH%u(m,y)da@dy)l/2 is the 2-Wasserstein distance be-
tween u; and 7 and v € C(pu, ) is a coupling over u, 7. Convergence in Dk, under an LSI there-
fore implies convergence in W5, allowing us to state bounds in both. Crucially for our purposes,
the 2-Wasserstein distance is a metric over probability distributions, allowing use of the triangle
inequality (Raginsky et al.l 2017).

As 8 — oo, mg(z) concentrates around the minimizer(s) of f. This observation permits us to unite
optimization and sampling using annealing schemes (Kirkpatrick} 1984} |Chiang et al.| [1987; Chak
et al.,|2023)) which gradually increase (3 to escape early local minima and (hopefully) find the global
minimum, indicating a direction for future work extending BLD. Previous works have also used
bounds on convergence to g at constant § to bound optimizer hitting times Zhang et al.|(2017) and
expected excess risk (Raginsky et al.l 2017; |Xu et al., 2020; |[Farghly & Rebeschini, [2021; Zhang
et al.,[2023)) in non-convex optimization.

3 MAIN RESULTS

3.1 LNLS AS BLOCK SAMPLING

DXs have a finite capacity. To solve problems exceeding that capacity, hybrid analog/digital
algorithms are necessary. A popular candidate for hybrid optimization/sampling is the Large-
Neighborhood Local Search (LNLS) framework (Raymond et al., [2023; [Booth et al., |2017; |Ahuja
et al., [2002; Sharma et al., |2022), where a local solver (the DX) is used to optimize/sample blocks
of variables { By, B, ..., By} conditioned on the rest of the problem state, illustrated in Fig.

We can formalize LNLS by borrowing notation from classical coordinate descent (Nesterov 20124
Beck & Tetruashvili, 2013). We assume the Cartesian product decomposition R? = )( | Bi sat-
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Algorithm 1 Block Langevin Diffusion (BLD)

1: procedure BLD(z( € dom(f), Decomposition {By, ..., By}, Step Size Set A € RY})
2 for £ > 0 do
3: Choose By, (Random or Deterministic)
4 Sample:
Ak Ak
Tyl = T, —/ Ukvf(ﬂﬂk)dt+/ Upv/28-1dW,
0 0
5: end for

6: end procedure

isfies B; N B; = () for i # j and each block subspace B; has dimension d;. LNLS frameworks
essentially perform block Gibbs sampling from each conditional distribution up,|p,...5,, Where
each block is chosen at random or in a deterministic order.

To express updates in R, we decompose 14 = S°"_ U; where each U; € R?* has ones along

diagonal indices corresponding to unit vectors in B; and zeros elsewhere. Then Zi’:l UVf(x)=
V f(z) and we can express the SDE for a single block B; diffusion as

do = —U;V f(z)dt + Ui\/2B-1dW,. 3)

Equation (3.1)) leaves the conditioned dimensions B; = {j € {1,...,d} : j € B;} invariant. Each
block diffusion occurs in continuous time, but the blocks are swapped at discrete steps. Accordingly,
we denote ¥ as the iterate at time # in block step & and uF as its associated probability distribution.
When each block is evolved at constant 3 according to Equation (3.1, LNLS becomes equivalent
to a block sampling algorithm, Block Langevin Diffusion (BLD), shown in Algorithm[I} BLD is a
continuous-time generalization of “randomized coordinate Langevin Monte Carlo” (RCLMC) stud-
ied in Ding et al| (2021)); Ding & Li (2021). By reducing LNLS to a block Langevin algorithm,
we can tractably analyze algorithm performance using well-developed tools from stochastic process
analysis. The BLD framework given in Algorithm|I]leaves open the choice of block selection. Here
we consider randomized and cyclic selection rules, denoted Randomized Block Langevin Diffusion
(RBLD) and Cyclic Block Langevin Diffusion (CBLD) respectively.

Throughout our analysis, we make the following assumptions on f. Without loss of generality, we
assume that min f(2) = 0 with (not necessarily unique) minimizer z* = 0.
Assumption 1. f is continuously differentiable

Assumption 2. 75 x exp[—3f(z)] satisfies a log-Sobolev inequality (LSI) with Cyg; = % if, for
all distributions p with finite second moment

FI(pl|7g)
Dic ) & [ ) o ;‘Egdaz <o [u) o ﬁggwdx

where FI(p||mg) is the (relative) Fisher information. An LSI condition is the sampling equivalent
of a Polyak-FLojasiewicz (PL) “gradient domination” inequality in optimization, where Dkr, (4|7 3)
is our objective function(al) and FI(u/||7g) is a “gradient norm”. An LSI can hold even in non-log-
concave distributions, making it a more general assumption than the strong log-concavity presumed
by [Ding & Li| (2021). Examples include globally strongly log-concave measures with bounded
regions of non-log concavity (Raginsky et al., [2017; [Ma et al., 2019), high-temperature spin sys-
tems (Bauerschmidt & Bodineau, [2019) and heavy-tailed distributions which are not strongly log-
concave.

3.2 RANDOMIZED BLOCK LANGEVIN DIFFUSION

In the randomized case, we select the next variable block according to the probability distribution
¢ € Rb. Ding et al. (2021) analyzed RCLMC using Wasserstein coupling arguments, however our
analysis builds on the traditional proof of Equation (2.2)) which relies on the de Bruijin identity

9y Dir(pellmg) = 67" Fl(pe||v)
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which, when combined with the LSI, proves exponential convergence since — FI(u||v) <
—2vDxy,(pue||mp). In the same vein, we use probabilistic arguments in Appendix to prove a
de Bruijin inequality

0y Dcr, (el mp) < —Gmin8~" Fl(pe )
where ¢,y is the minimum block probability in ¢.

By integrating and expanding the inequality, we easily obtain convergence in Dxp, (1F || 7), expressed
in Theorem[I] We also prove convergence for a discrete-time variant (RBLMC) in Appendix

Theorem 1 (RBLD DKL(ufHﬂ'g Convergence). Let 0 = (Bj, ..., By) be a given block permutation
and let A = (A1,...,\y) € R® be the sampling times for each block, \; > 0. For any mg
exp[—Sf (xg} satisfying Assumptions|l|and |2} and any B > 0O, the sample distribution after k steps
of RBLD (u”) satisfies

1 ) )
DKL (/,LkH’]T) S 6_2’Y6 ®min Amink DKL (MO”,R_)

3.3 CycLic BLOCK LANGEVIN DIFFUSION

While our randomized results tighten existing theory, real-world instances of LNLS often use cyclic
orderings Sharma et al.| (2022); |Song et al.| (2024); /Wu et al.| (2024)), as they are more amenable to
direct hardware and software optimization and are easier to implement in practice.

However, unlike RBLD, we cannot easily prove a “de Bruijin inequality” for CBLD. Instead, we
make extensive use of the chain lemma for D,

Dk (pullv) = Eup [Drn(pasllvas)] + Dxu(psllve)-

where A, B are disjoint subspaces of R, AU B = R, and y, v are measures supported on
R? with p 4| denotes the measure over A conditioned on B = b for arbitrary b. Note that

if we set A = B;, B = B;, the CBLD diffusion will result in exponential contraction in
By [Dxu(kp, 5 V5, 5,)] while leaving Dxr (15, |vg,) constant. CBLD then trivially results

in non-increasing Dxr, (115 ||75), however expressing descent across iterations is more subtle due to
the sub-additivity of KL-divergence.

Taking inspiration from Beck & Tetruashvili| (2013)), we bound descent across b steps, an entire “cy-
cle” over the problem space, expressed in a general lemma for D, (1 || 7) (proved in Appendix

Lemma 1 (Cyclic K L Contraction). Let the set C = {C1,...,Cy} € ]RZ_ satisfy 0 < C; < 1, and
let D; € R be arbitrary constants D; > 0 and let m be an arbitrary distribution with finite second
moment. Suppose (u°, i, ...) is a sequence of measures satisfying for k > 1 and n = k mod b

Dkw(n"|[ms) < Cp Dxw(u"~*|Im) + (1 — Cu) Dxw(py 'limg, ) + Da

Then we can bound
b

Dk (1| 7) < O Dicr (0 |m) + > D;
=1

where Cryax = max{C1,...,Cp}.

When D; = 0, Lemma|[I]can be seen as an information-theoretic bound on the change in global KL-
divergence from the application of factorized noise channels on p, mg. ILee|(2022) lower bounded
the KL-divergence in Bayesian coordinate ascent variational inference by similarly comparing the
change in Dy, across conditioned steps. However, their focus was on inference over mean-field
parametric distributions rather than the broader class of LSI Gibbs measures, making Lemma [I| a
stronger result.

The convergence of CBLD follows by choosing D; = 0, Ciax = e~ 278 Amin

Theorem 2 (CBLD Dxp, (¥ ||) Convergence). Let @ = (By, ..., By) be a given block permutation
and let X = (A\1,..., \p) € RY be the sampling times for each block, \; > 0. For any T3 X
exp[—Bf (x)]bsatisfying Assumptions|I|and 2| and any 3 > 0, the sample distribution after kb steps
of CBLD (u*?) satisfies

G
Dkp (pF?|m) < e7278 Amink Dyey (10| ).
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When D; # 0, Lemma|[T]accounts for biased sampling algorithms, such as Langevin Monte Carlo
(LMC). Accordingly, we combine Lemma [I] with existing LSI bounds for LMC from [Chewi et al.
(2021) to prove convergence for a discrete time “cyclic block Langevin Monte Carlo” in Appendix|[C]

For RBLD and CBLD, the convergence is limited by the shortest step duration Ap,;, and minimal
block probability ¢.,;n. For constant block sizes, the optimal choice for both CBLD and RBLD
is therefore constant A\; = A; = X and uniform ¢; = 1/b. This contrasts discrete-time block op-
timization, where distinct step sizes/probability distributions provide advantage on ill-conditioned
problems (Nesterov}, 2012; [Beck & Tetruashvili,2013; Ding et al.,2021) due to the effect of varying
Lipschitz constants in discretization error terms. In the case of constant A with uniform ¢, RBLD
and CBLD have identical descent bounds, as we numerically demonstrate in Section E} This con-
siderably simplifies hyperparameter selection for ideal devices, reducing from O(b) parameters to 1
(A). In the following section we continue to assume a constant step duration A for simplicity, though
future analyses may reveal more optimized step size selections for finite-variation devices.

3.4 FINITE VARIATION

Theorems [[|and [2] provide optimistic lower bounds for DX sampling, however a real machine will
have analog errors perturbing the target function (Albash et al.| 2019; [Melanson et al.| [2023). As
a generalization of |Albash et al.| (2019), we model a DX with analog variation with a “perturbed”
gradient oracle gs(x) : R — R, where § € D denotes a fixed perturbation from arbitrary domain
D. Unlike stochastic optimization, which assumes that the perturbation changes with each gradient
evaluation, DX perturbations are fixed for each device. To provide guarantees under device variation,
we need to restrict the perturbations and functions permitted:

Assumption 3. For fixed § € D, there exist constants M, B > 0 such that
IV f(z(t) — gs(z())]* < M|z (t)||* + B
Assumption 4. f is L-smooth and, for fixed § € D, gs is G-Lipschitz continuous. That is, for all

z,y € R?
[Vf(z) =Vl < Lz -yl

lgs(x) = gs(W)|l < Gllz —yll.
Assumption 5. f and gs are (m, c¢)-dissipative and (m, ¢)-dissipative respectively, i.e., there exists
positive constants m > 0, ¢, m, ¢ > 0 such that for all = € R4

(Vf(2),2) > mllz]? - c,
(Vgs(@),) > mlje]> — c.

Assumption [3| limits the Euclidean distance between V f and g5, with the constants M and B ap-
pearing in later bounds. Assumption [5]is a common assumption in analyses of stochastic gradient
sampling algorithms (Raginsky et al., [2017} |L1 & Wang, 2022 |Zhang et al., |2023)). Specificall
it enables us to bound the ideal Langevin second moment E|[[y*(#)[|? in the proof of Theorem
Assumption 4] is not directly used in our proofs, but is required for a Girsanov change of measure.
Assumptions% and[5]both restrict the type of perturbation with Assumption[5|also limiting the mag-
nitude. Assumptions 3 and 5 are both reasonable, as DX variation typically manifests as additive or
multiplicative perturbations in analog components implementing V f [Xiao et al.| (2022); Aifer et al.
(2023).

Take the example of a Gaussian potential f(z) = 1z7S "1z with g5(z) = X~ o(1+6)z, where § €
R4*4 js a “perturbation matrix” with d;; ~ A'(0, A?) and o denotes a component-wise Hadamard
product. Regardless of the standard deviation A, we satisfy Assumptions [3] and ] with M and L
both equal to the maximal magnitude eigenvalue of § and ¥~! respectively with B = 0. However,
if ¥~1(1+ &) has negative eigenvalues there is no m > 0 satisfying Assumption placing an upper
limit on the perturbation strength.

Assumption 6.

The density of the initial law p satisfies

Ko = log/ e‘ledd,uo < 00.
Rd
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In practice, dynamical accelerators typically operate over bounded domains, such as the unit hy-
percube (Afoakwa et al., [2021)) or unit circle (Wang & Roychowdhuryl 2019; Inagaki et al., 2016),
hence the iterate magnitude is bounded in any case. However, bounding over the entire space would
provide insufficiently tight upper bounds and our methodology assumes that the measures are sup-
ported on R?. We leave consideration of domains with bounded support to future work, potentially
applying methods from reflected Langevin diffusion theory (Bubeck et al.l 2018).

We begin by stating the following bound on the distance between the measures of ideal and perturbed
BLD, proved in Appendix D}

Lemma 2 (Finite Variation Block Langevin W5 Distance). Ler x(t), yi(t) be the states of non-
ideal and ideal block Langevin systems respectively, with_associated probability laws u¥,vF. For
any wg x exp[—Bf(x)] satisfying Assumptions and With 8> %, stochastic gradient oracle
g(x) satisfying Assumption initial distribution p° satisfying Assumpti()n@ and kX > 1 we have
the following bound

WQ(Mk,Vk) < \/Co [(01 + \/CT) + (Cy + \/@)\[\ kA

where Cy, C1, and Cy are given in Appendix|D]

From previous discussions, setting ¢; = 1/b, A; = A unifies the bounds for RBLD and CBLD. In
this regime, we can prove the following statement as a simple consequence of the triangle inequality
Wa(p, v) < Wa(p,n) + Wa(n, v) and the Otto-Villani theorem

Theorem 3 (Finite-Variation BLD W2 Convergence).

2\ /2 o
Wz(ub’“,m)<(7> R/ vy pr

. \/co (€4 VB0 + (€t VB

Following |Raginsky et al.| (2017), if we choose kA = %log 27”21);%(”0% and set A <

4
£y , we have
Blog[24/2 Dk (u0[7)/ (v/7¢)]

24/2D 0
Wa(ub* 7g) g% - \@{ o+ VG log:\%(“m +ey/Cor+ \/072} )

v

We thereby obtain a total bound on the Wasserstein error O(log é + ¢) for arbitrary € > 0. Our
Wasserstein bound has a finite lower bound with respect to epsilon: non-ideal devices introduce
bias. Unlike discrete LMC, the bias in Equation (3.4) does not result from a forward-flow dis-
cretization (Wibisono}, 2018 |[Chewi et al.| [2021)). Instead, the constants Cy, C7, Cs are solely due to
finite analog variation. For M = 0, B = 0, we recover exponential, unbiased convergence in Ws.
However, akin to LMC, practitioners can select the step size A and the injected noise 3 to control
the bias. Higher temperatures (lower [3) result in a lower bias, as expected from the application of a
noisy channel in measure space. Moreover, DX users/designers typically characterize M, B during
device calibration: simultaneously lowering the impact of analog non-ideality and allowing for a
rough bound on the distribution bias (See Section C.2.a of Melanson et al.,[2023).

A Wasserstein bound suffices as a performance guarantee in sampling tasks such as Boltzmann
machine inference Hinton et al.| (2006) or statistical physics simulation (Hamerly et al., 2019; [Ng
et al., [2022; Inaba et al., 2023). For optimization, assuming quadratic function growth with 5 > %
and a dissapative gradient oracle (see Appendix D] for discussion) allows the use of a continuity
inequality (Lemma 6 of [Raginsky et al.l |2017) and second moment bound (Proposition 11 of
Raginsky et al.,2017) to bound E « [f(2)] —Ex, [f(x)] and Er, [f ()] — min,cga f(z) respectively

E,t[f(@)] — B, [f(2)] < (Mo + B)Wa (s mp). )
Br, [f(0)] ~ miy f(2) < 5 log (ﬂf (f N 1)> ©
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where 02 = max{E,s [¢?], Er, [z*]} (given in Appendix [D). Combining Equations (3.4) and (3.4),
we obtain

By 0)] - i () < g og (5 (5 41) ) + (010 -+ YWt my)

= 0(% log 8d + (M + B)(e + loge™!)).

Controlling the first term requires increasing 3 (lower-magnitude Brownian noise) in tandem with
problem dimension. Conversely, controlling the second term requires Ak o< 5, A % i.e., more
iterations with lower step duration with increasing (. In digital algorithms, we are free to choose
A arbitrarily small to meet given precision requirements (though the program convergence may be
impracticably slow). Dynamical accelerators typically have a practical lower bound on A (e.g., a
digital clock period), translating into an effective upper bound on f3.

4 NUMERICAL EXPERIMENTS

As an illustrative example, we simulated CBLD and RBLD behavior in Gaussian sampling. Gaus-
sian distributions permit closed-form solutions for Wa (N (21, £1), N (22, X32)), allowing for a quan-
titative estimate of convergence. Moreover, several proposed use cases for DXs rely on Gaussian
sampling, including matrix inversion (Atifer et al., 2023)) and uncertainty quantification (Melanson
et al., [2023). Other works have also proposed using DXs to optimize strongly-convex functions of
the form f(z) = (z — p)T W (z — 1) (Wu et al.l 2024;|Song et al., 2024), making Gaussian analysis
practical as well as tractable. As discussed in the preceding section, our bounds provide expected
function gap guarantees from sampling 7 = N'(0,28~1W 1), where optimization would occur in
the 5 — oo limit.

We simulate DX sampling a d = 50 Gaussian with zero mean and a random covariance matrix X.
Simulation parameters are based on the analog electronic DX proposed in |Afoakwa et al.|(2021);
Sharma et al.[ (2023); [Song et al.| (2024), with time determined by the device R - C' constant (6.2
ns). For each datapoint, we compute the empirical mean and covariance of the recorded sample
distribution. Appendix [A]gives more details on our experimental configuration.

We focus on the rates of convergence and their dependence on algorithm parameters (step duration
A, block count b, etc.) rather than the exact W5 value. Fig. shows the convergence in W5 for
ideal-component sampling using block counts b € {1,2,5,10} compared to simulated time (O(kb))
while Fig. shows the same data relative to the number of “whole-space” cycles (O(k)). As
expected, BLD requires O(b) more time to match the W decay of full-gradient LD, with RBLD and
CBLD being roughly equivalent. However, normalizing by the block count demonstrates that each
method is equally efficient relative to whole-problem cycles, as expected from a simple comparison
of Equation (2.2)) with Theorems [T]and [2] Figs.[2dand [2d|compare varying step durations A for
b = 5 BCLD. While all step sizes lead to the same convergence rate with respect to time, larger step
sizes lead to larger decay w.r.t. whole problem cycles, again as expected from Theorems |1| and
Finally, we perturb the similarity matrix £~! with componentwise variation 3;; = 3;;(1 + &;5),
8;j ~N(0,A). Fig. shows the impact on W5 convergence with increasing perturbation strength.
For small perturbations, the deviation from ideal is minimal. However, the distribution bias is clear
for § = 0.3. Atd = 0.4, X is no longer positive-definite, causing the iterate to diverge (not shown
on plot). § € {0.1,0.2,0.3} satisfied Assumption [5] but § = 0.4 did not, in line with discussion in
the preceding section.

5 CONCLUSION

In this work, we provide novel bounds for hybrid dynamical/digital sampling algorithms leveraging
continuous Langevin diffusion. Our bounds extend to both ideal and non-ideal components, with
the latter providing an explicit trade-off between W5 bias, step size, and device non-idealities. We
analyze randomized and cyclic selection rules, finding them to be equivalent in Dk, contraction with
iteration count held constant. Our findings are supported by numerical experiments on Gaussian
sampling, observing the expected linear O(b) slowdown in measure-space convergence compared to
fully-dynamical LD. Our bounds imply concrete tradeoffs in convergence rate and bias in problem
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Figure 2: Estimated W (u¥, 7) for BLD sampling methods. (c)-(e) use BLCD, given the close
similarity between BCLD and RCLD shown in (a) and (b)

and device constants, providing valuable information to device designers, potential DX adopters,
and future analyses.

5.1 LIMITATIONS AND DIRECTIONS FOR FUTURE WORK

In this work, we focused on the continuous activation inference stage. However, even in DX systems
model weights are updated in discrete time, either by the digital controller (Song et al., [2024) or by
a discrete step in the analog domain (Vengalam et al., 2023). Developing a theoretical framework
which provides convergence guarantees for both activation inference and model updates would be a
boon to DX research.

We assumed that the inference takes place over R, however DXs generally optimize over bounded
subspaces such as the unit circle (Inagaki et al., 2016) or unit hypercube (Afoakwa et al., |2021).
Previous work on projected (Bubeck et al., 2018)) and mirror (Ahn & Chewil [2021) Langevin dy-
namics successfully applied LMC methods to constrained sampling. Future work analyzing DX
operation using projections could provide concrete bounds for capped-voltage optimizers |Afoakwa
et al.| (2021) and insights from Mirror-LMC could provide insights for DX designers to increase
sampling/optimization efficiency.

Assumptions [2] and [5] provide useful bounds for many ML and optimization problems over con-
tinuous domains. However, DX applications include discrete choice problems and/or significantly
non-convex potentials, such as mixed integer programming. Future bounds necessarily involve more
general assumptions than the v-LSI class considered here. Analog accelerators also typically use
low-precision (< 8b) DACs and ADCs for input/output (Xiao et al.,[2022)), making studies of quan-
tizated convergence/expected function gap critical for real-world applications.

Finally, our work focuses on a simplified LNLS framework. While dynamics-accelerated LNLS is
popular in literature (Sharma et al., [2022; Raymond et al. [2023; Wu et al., [2024), our work leaves
open the question of whether additional digital steps, such as a Metropolis-Hastings filter or replica
exchange, could improve the non-asymptotic accuracy or convergence rate.
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SUPPLEMENTARY MATERIALS

Here we provide proofs and explanations of experimental methods. Additionally, we apply our
analysis to bound Dy, for discrete-time variants of RBLD and CBLD (RBLMC and CBLMC).

A EXPERIMENTAL METHODS

A.1 DIFFUSION SIMULATION

We simulate Langevin SDEs wusing a second-order Leimkuhler-Matthews integration
scheme (Leimkuhler & Matthews, [2013) with a time step size of 1 x 107'? seconds. Block
diffusions are simulated for a fixed number of steps (50, 100, or 500 for the plots generated),
then the block is switched either cyclically or randomly, depending on the algorithm. The total
CBLD/RBLD step counts are chosen to ensure that each simulation has the same total simulation
time (2 x 107 time steps), allowing for a 1:1 comparison in total optimizer time.

We take the resistively coupled BRIM architecture from |Afoakwa et al.| (2021) with the Langevin
perturbations proposed by [Sharma et al.|(2023) as our baseline DX. The BRIM architecture is more
easily extensible to general classes of real-valued functions (Sharma et al.,[2023; [Song et al.| [2024;
Wu et al., [2024) than oscillator-based DXs (Wang & Roychowdhury, [2019; [Inagaki et al., 2016),
motivating the selection.

We model the device using 310 kOhm resistors and 20 fF capacitors, leading to an RC time constant
of 6.2 ns and an effective step size of 6.2 psec, which we use to plot total estimated DX time. These
circuit parameters are comparable to those proposed in literature (Afoakwa et al.|[2021; Zhang et al.,
2022), however different device parameters will simply rescale the x-axis.

A.2 TARGET POTENTIAL

As stated in the main text, we choose a Gaussian target measure to obtain a direct estimate of
convergence rather than using proxy statistical observables, as done in [Ding & Li| (2021). The
d = 50 Gaussian used to produce Fig. 2] was generated using the following procedure:

1. Generate a 50 x 50 matrix X! with elements ~ Unif][—5, 5]
2. Make the matrix symmetric by setting £~ = 1(S7! 4 (71)7)

3. If the minimum eigenvalue i, is negative, set 3! = 71 + 1.2\ nin 50

The resulting matrix is symmetric and positive-definite, making it a valid similarity matrix. We then
invert ¥! to obtain the target covariance matrix . We choose [—5, 5] as the distribution to test a
larger range of perturbation strengths A € [0.1,0.4], as the W5 diverged much earlier (A < 0.2)
with a uniform [—1, 1] distribution.

As our focus is sampling rather than optimization, we set 5 = 1 for simplicity. We also assume the
Gaussian mean is zero, making the target distribution:

1, Tsy—1

m(z)xe 2% ¥ T

A.3  SAMPLING PROCEDURE

We recorded one sample after every 10 block updates (thinning parameter of 10) to reduce the impact
of highly correlated samples and to make the subsequent steps more computationally efficient. We
neglect any burn-in period, as the purpose of our experiment is to see the convergence in distribution

(i.e., the necessary length of burn-in). The empirical mean 7, € R? and covariance ;, € R%*¢
after collecting k samples were computed by

1 k
T = EZX:,D
i=1

Xk
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where X € R¥*F¥ ig the matrix of samples, Zle X. ; denotes a row(dimension)-wise summation,
and (X — Ty) is a column (sample)-wise subtraction.

With our estimated distribution, we compute the W5 distance from the target Gaussian using the
closed-form expression

W2(N (T, k), N (0, %)) = |[Z4]|* + Tr [Ek + 3 -2/ VESVE . (7

We compute Equation (A.3) every 5000 samples to produce the plots in Fig. 2] The 5000 sample
count was chosen to balance figure resolution (enough data points) with computational time, as the
empirical covariance matrix calculation scaled O(d? - S(t)?), where S(t) is the total number of
samples collected up to time ¢ (O(d - S(T')) to compute the empirical mean, then O((d - S(T))?) to
compute the outer product).

B RANDOMIZED BLOCK LANGEVIN DIFFUSION (RBLD)

In this section we provide proofs relating to Randomized Block Langevin Diffusion (RBLD, the
focus of the main text) and a time-discretized version, Randomized Block Langevin Monte Carlo
(RBLMC). RBLMC was previously introduced in [Ding et al.| (2021) as a coordinate-wise scheme,
however we examine block partitions. Moreover, our results using y-LSI target measures are more
general than the strongly log-concave convergence results given in that work.

Algorithm gives the structure of RBLD/RBLMC sampling, where ¢ = {¢1, ..., ¢y} is a discrete
probability mass function over coordinate block indices.

B.1 CONTINUOUS TIME ITERATION

Algorithm 2 Randomized Block Langevin Dynamics (RBLD)
1: procedure RBLD(z¢ € dom(f), Block Distribution ¢ over {Bh, ..., By}, Step Size Set A €
RY%)
+
2: for k > 0 do

3: Choose By, ~ ¢
4: Sample:
Tyl = Th 7/ UV f (xy,)dt +/ Up/2B8-1dW,
0 0
5: end for

6: end procedure

We first consider the case when each diffusion occurs in continuous time. For a single iteration, we
can formulate the evolution of the system by the following It6 SDE:

dz = —UpV (f(a:)dt + \/25—1th>

To prove continuous-time descent in K L-divergence, we combine standard Langevin gradient flow
arguments with methodology inspired by Ref. [Vempala & Wibisono (2019) when considering ex-
pectation terms.

B.2 FOKKER-PLANCK EQUATION

Let p1; be the law of x at time ¢, and let y1,|o be the measure jointly conditioned @ on the state at time
0 and @ the choice of block By. Within a single step, 1o will obey the Fokker-Planck continuity
equation

Aeprejo = TrlUnB~ V2 piyyo] + div(peoUe V f (1))

If we were tracking the diffusion over a single block, we would take expectation over the starting
state xg while conditioning on the block index. However, as discussed in the main text, we take a
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“meta-Eulerian” perspective. Instead of tracking one block diffusion, our approach finds the average
behavior of an ensemble of diffusion processes, each independently sampling their blocks according
to ¢. We therefore take expectation over both zy and By to derive the change in the “ensemble”

measure fi;.

Therefore we have

By = Tr[B7 UV ] + Ediv (1o U V f ()]

Where we have defined Uy, £ (¢1Un, ..., ¢pU,) € R¥4.
Let v be the joint law of (x¢, By ). Note that
i (xe|wo, Br)v(xo, Br) = () v (o, Bi|ve)
—Mt(ﬂft)l/(fcokfu By )v(Bglx)
= pe(xy)v(zo|zy, Br)v(By)
= pe(xe)v(zo|Ts, Br)dr.

Then we can express the second term as

b
E[div(ueoUr V f(24))] = diV(Z/,ut(xt|x0,i)Uka(xt)l/(xo,i)dxo)

= div qu [ e faiywaolars ivdzo)

= dlv(ut(:lct)U¢Vf(1’t))

since

b
Z¢iUin(9€t) =UyVf(21).

i=1
Therefore, the FPE of the “meta-Eulerian” RBLD process is

Oy = Tr[B7 UGV ] + div(p Uy V f (24)).

Note that the we can use the identity V f(z) = 371V log 75 to re-express the FPE as
—1 1243
Orpr =V - (5 uUsV log m) .

B.3 K L-DIVERGENCE CONTRACTION

Lemma 3. B
DKL(,U/tHﬂ-) < DKL(MOHTF)@_QB Y AminPmin

()

Proof. The proof follows conventional analyses of Langevin diffusion processes, e.g., see |Vempala
& Wibisono| (2019); (Chewil (2024); |(Chewi et al.[(2021). However, we complete the proof anew for

completeness, as well as to show the differences with baseline LD.

With the time evolution of the measure, we can now express the time evolution of the KL-divergence

Ot Dxr, (e ||7) :8,5/ +(z) log (( ))dx

/ B4t () log Mt(( ))

Jdx

=0

(x)
= — IOMtI X tt (T )Ax
/@#t( )lgﬁ(x)d +/8/u( )d
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where the second term is equal to zero since
/8t,ut(x)da: = at/,ut(a:)dx = 0[1] =0.
Using Eqn. (B.2)), we then have

o, DKL(Mt||7T> — /{V . (ﬂ_lutUd’V log ::;) } log ’lj:((f)) dzx.

Through integration by parts, we obtain

dx

3

0 Diccplm) = =5 | <U¢utV10g b T log )

~

e (x

_BIE, [<U¢v1og %,Vlog ‘W@ >} .

Uy is positive-definite with minimum eigenvalue ¢y, therefore

2
9y Dxr(pel|m) = = B7'E,, {<U¢Vlog Bt Viog () >} < B bmink,, [HVlOg BH ]
™ () T

= - ﬂilqsminFI(,utHﬂ') S _26717¢Inin DKL(,ut”ﬂ-)

where the last inequality utilizes the y-LSI. Here we highlight a principle difference between LD
and RBLD analysis. In LD, we have the “de Brujin identity”

0y Dk (el m) = *QBflVFI(HtHﬂ')-
However, for RBLD we have a “de Brujin inequality”

Oy DKL(///tHW) < _ﬁ_17¢minFI(Nt||7T)~

We now integrate up to \y. Since this step size depends on the choice of By, we take expectation of
Dkr (p||7) over k

U
E[Dxr (p]l7)] < E[e>77 ¢min ] Dy, (puge—1 [|)

or deterministically
Dkr (]| m) < e 2787 $minAmin Dxr (p—1]|7).
Expanding the inequality k times yields the result. O

B.4 RCLMC: EULER-MARUYAMA DISCRETIZATION

We now extend our analysis to discrete-time Randomized Block Langevin Monte Carlo (RBLMC),
shown in Algorithm. 3] While the continuous-time diffusion can be implemented on dynamical

Algorithm 3 Randomized Block Langevin Monte Carlo (RBLMC)
1: procedure RBLMC(xo € dom(f), Block Distribution ¢ over {Bj, ..., By}, Step Size Set A €
R®)
2: for £ > 0do

3: Choose By, ~ ¢, sample £ ~ N(0,1)
4: Set:

Tht1 = T — /\kUka(CUk) + Ui/ 26_1>\k§
5: end for

6: end procedure

hardware, digital applications require an error bound in the discrete-setting. The following derivation
closely follows the methods of [Vempala & Wibisono| (2019) by modeling the divergence of the
discrete scheme from a continuous-time interpolation.
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‘We now consider the SDE
dz = Up[-V f(xo)dt + /287 1dWy]

where x is the initial state. The SDE has the solution

y = 2o + Up[=V f(z0)t + V207 1E]
for t € [0, \,] and & ~ N(0, I%). Conditioned on the initial state ¢ and the choice of i, we have
the FPE

Oettikwy = BV tazo + V + efhe,oo Ui V f (0).
Taking expectation over both sides (as previously) yields
Oep = TrB™ UV iy me] + V - Elpaejr o UiV f (20)]-

Again noting that the choice of block and the initial state x( are independent, we can express the
expectation as

Elts(k,20 UV f (0)] Z@/ (@e]i, wo)v (20)UsV f (20)dwo.

Note that while x( and ¢; are independent random variables, they are not independent when condi-
tioned on x;. We then have

Gip(xe]i, xo)v(20) =

Tt|l, T ) (5607 )
x)v (2o, i|Ty)

(@i, z
= p(wy)
= p(z)v(wolt, 1) dife,
= p(x4)

x)v(zo|Te, 1)

Then

b
Zgbl/ (xe]i, 20)v(20) UiV f (x0)dxo :2¢i/u(xt)u(moa:t,i)UZ-Vf(xo)dato

— n(e) [ V(oo UsV S (o)day

= mUE[V f(z0)].
We then have the following FPE
Oy =TT~ UV ] + V- [ USE[V f (a0)]]
=V [B7UsV e + 1 UE[V f(w0)]].

Combining our previous argument with the analysis of Vempala & Wibisono| (2019)), we have

01 Drs ) = 0 | (o) og 2 o

/ By (2) log pe( )
@)

— [V 157 Ui + ULV (o0 log L:((f)) “

__ / <51U¢wt + UGBV f(x0)]], V log f:((;)) > d

=- / <ﬂ1U¢utV10g pe + B UgpeVlogm — 87111V log 7 + 1 UE[V f (20)]], V log

__ / <B—1U¢MtV1og M 1UGELY (o) — V f(2)]] V log ';f((f)) > N

a1 1/2 Mt() 1/2 ) — 2 1/2 o M
— 67 B0}V 1og ) P+ B U} BV ) - Vo)) U 2V 1o )
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where we have used the fact that Uy is a diagonal matrix with non-negative entries, so Uy =
U;/QU;)/2 = (U;/Q)TU;/Q. Then we have (by Cauchy-Schwartz and Young’s)

BI( U3/ EIV 20 ~ ¥ an)} UV log ‘j:<j)>]<E[|U;/2E[Vf<xt>—Vf<xo>]||2]+1E||U;/2wog e

— BV} (Vo) = ¥ fao)l 2]+ FEIU 9 log 2 P

We can decompose the first term as

E[|[U,[V f(20) — V£ (x0)]]|*) Z@IUNf (1) — UV f (o) |-

i=1
In line with the presentation in the draft{Chewi (2024) we apply Lemma 16 from|Chewi et al.|(2021)),
which only requires smoothness and L? integrability in the marginal potential:

Lemma 4 (Lemma 16 of |Chewi et al.[(2021)). Assume probability measure w e~ f(@) ¢ p2 (]Rd)
has L-smooth potential f. Then for any probability measure |

Eu(IVFI?] < FI(ul7) + 2dL.

By the smoothness of f, we have:

E||UxV f(2¢) — UeV f(20)||* < 2L7E||zy — wo|® = 2L7E||UxtV £ (20) + Uk V2Wy |2
S2LIPE(URV f (o) + Uk V f () — UiV f (z4)|* + E[2d; L7 1]
LS2LAPR| ULV f (o) — UV f(x0)||? + 2L2E|UpV f (1) || + E[2d; L7t].

Suppose t < A,

E|UeV f(2¢) — UpV f(z0)|* < EIE||Uka(93o) — UpV f(0)||* + 2L7E|UpV f (20) ||” + E[2d; L71).

[\)

Hence
E||UxV f () = UpV f(x0)|* < ALFE| ULV f (1) ||* + E[4d; L7t].
Plugging in Lemma ] yields
E||UxV f(z¢) — UpV f(20)|* < AL FI(p|[7) + E[8td; L7 + 4d; L1].

Assume \; < 7V4¢L Then

b b b
B> ul4t L3 F (s s, ) + 8L + 4, T3] < RIS P00 Rl g ) + 3 i8I + AdiL24]

=1 =1 =1

Qbmin
4

b
+ ) ¢il8d; L3t + 4d; L3t]]

i=1

b
< FI(pe|mE_ ¢
=1

b
FI(pellm) + ]E[Z $il8d; Lt* + 4d; L))

=1

TR BT (py||7) + E[6d; L2t).

_ d)min
4

¢m1n

‘We then have

0y Dxr, (pe||m) < —

%FI(/MHW) + 6E[d; L7]t < —Gminy Dxcr, (e ||7) + 6E[d; L71].
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We start by multiplying both sides by e ~?min7* and integrating from ¢ = 0 to )\,

KL(uy,||m) < =7 9minXi Dy (o) + 3E[d; L2AZ).

Taking expectation over ¢ then gives the result

E[K L, )] < Egle ™" o] Dicy, (ol | ) + BE[di LIA]

Iterating gives

k

EK L)) < Ele ™74 )¥ Dig (uo[r) + SE[dSLENF) D Bl oo
=0

4p

< e_7¢min/\ik DKL T +
o (ﬂ0|| ) ’Y¢min>\min

where we first bound using the minimum step size, then apply the power series bound

and then apply

k k 1
§ :E[876717¢min)\i}i < § :677¢minAmin <

- -1 - e_'Y¢min)\min
=0 =0

1
l—e—a

< % to obtain
a

1 4
< .
1 — e A7 7 9minAmin = 367 1YPminAmin

C CycLIC BLOCK LANGEVIN DIFFUSION

In this section we provide proofs relating to Cyclic Block Langevin Diffusion (CBLD, the focus of
the main text) and a time-discretized version, Cyclic Block Langevin Monte Carlo (CBLMC).

The CBLD sampling algorithm is shown in Algorithm [4}

Algorithm 4 Cyclic Block Langevin Diffusion/Monte Carlo (CBLD)

10:

1:
2
3:
4:
5
6

7
8:
9:
0

procedure CBLD(zo € dom(f), Block Permutation o = {By, ..., By}, Step Sizes A € RY)
for k > 0 do
Set x’S'H =z
forn=1tobdo
Choose B,, = o,

Sample:
)\n An
Tpal = Tp — U,V f(x)dt + / Up/ 287\, dW;
0 0
end for
Set 2F+1 = g t1
end for

end procedure

A crucial identity used in our analysis is the “chain lemma” for K L-divergence. For any two distri-
butions p

Dxr (pe]|m) = E[Dxkr (e 517 5)] + DxL B (1)

where B is a subspace of R?, Dk, (1|7 ) is the K L-divergence of 4, and 7 conditioned on an
element of B, and Dy, g(u|m) is the K L-divergence of p; and 7 marginalized over R \ B. We
also state two trivial lemmas for any ~-LSI distribution . We first state an equivalent definition of
Assumption 2}
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Definition 1 (Alternative LSI). 73 « exp[—S8f(z)] satisfies a log-Sobolev inequality (LSI) with
Crsr = % if for all smooth g:

1
E[g°log g°] — Ex,[g°]10g Ex, [g7] < o B [1Vgll?]

p(x)

where the equivalence with the previous statement follows by choosing ¢*(z) = @)

Lemma 5. Suppose A, B are disjoint subspaces of R? with AU B = R%. Then the A marginal v
also satisfies v-LSI.

Proof. By the LSI, for any smooth g : R? — R
E, [¢°logg*] —E, [¢°] logE, [¢°] <E, [[|Vg[’].
For g : A — R, we can re-express the terms as
E,,BIAEVAMf logg2] —Euppa (]EVA [QQ} logE, [92]) <E,;,E A [||Vg||2] )
Since E, , ,[g(2)] = g(z) forall z € A, we simplify to

E A [g2 logg2] -E A [gz] logE, [92] <E,A [HVg||2] .

Recall that the sub-step dynamics are described by the SDE

dz = U, [—v Fla)dt + \/%dwt} . )

We can then derive the coordinate Fokker-Planck equation:

Lemma 6. Let ji;,, be the law of x at time t € [0, \,,] described by the SDE in Equation (©), where
Ht|zo 1S conditioned on the starting state xo. Then 8t“t,§k o = 0 and

8tut»Bn|§kam0 = ﬁ_1v2 "HB,|By.xo +V- (MBn|§k,movf(xt))
is the Fokker-Planck equation for the subspace diffusion.

Proof. The second claim is trivially shown using It6’s Lemma. Note that since p, 5 B0 is only
supported on B,,:

L. TT[’BilUnVQ'U't’BvJEmIO} = ﬁilv? "ut,BMEn,wo

2.V Mt}Bn|§mzovf(xt) =V- Mt,Bn|§mm0v.f(xt)

Then we have

6t“t,Bn|§k,wo =p7v? “HB.[Brwxo T V- (HB,L|§k,mOVf($t))-
We now use this to prove the first claim.
Consider the law of = in sub-step n conditioned on the initial state zo given by ;.. Note that
Htlzo = M, B, |Bp,x0Mt,Bolzo”
By the Fokker-Planck equation associated with the SDE and the product rule, we have:
O btz Zﬁ_lTT[Ugvzﬂﬂxo] + V- ()2 Un V [ (1))
Mt,En\zoatMt,Bn [Bo,zo T He,B, |§n,xoat:“t,§n\zo :B_ITT[UEVQI‘%,B”|§n,xoﬂt,§n|m0]
Vo (b5, B w0 Pt B oo Un V f(2))-
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Note that

5_1TT[UEV2Mt,Bn\Emmgutﬁn\zo] = 5_1Mt,§n|xovz "My B, By .o
and
V- (Mt,B"\En,xout,En\mDUnvf(x)) = ﬂt,ﬁn\mov : (Ht73n|§mwovf($))-
We then have
@

—1v72
’ut:gnlafo (at’ut:Bn IEn;ID - B v ’ lJJt;Bn‘En;a:O B v ’ (lJJt;Bn‘Enﬂfo vf(l'))) = 'utaBn |§n~,w08t'ut7§n‘w0.

We assume that /1, is supported on R, therefore ), = ot B lwo P, B | Brszo > O-

As previously discussed, 1td’s lemma implies @ is 0. For equality to hold, then, d;p, 5 =0. [

We prove the following technical lemma for later use in the descent bound:

Lemma 7. Suppose A, B are disjoint subspaces of R?. Then we have

Dkr(pallma) < Dxi(paisllmas)-
Proof. Note that forallz € A

pa(z) = /BNA,B(iL’ay)d'!J = /BMA(:vly)uB(y)dy = Eyeplpazly)] £ Eplpa)s)-

By the convexity of the K L-divergence and Jensen’s Inequality

Dxv(pallma) = KL(Eg[pap]|Ep([rap]) < Ep[Dkr(asllmas)] = Dru(uas|mas)-
O
Lemma 7] can be considered a restatement of the “data processing inequality”. Removing the con-

ditioning on subspace B effectively reduces the available information, akin to a noisy channel,
decreasing the divergence between distributions.

Lemma 8.

1 -1
Dk (pnllmg) < €277 A [Dip (pn—1|7)] + (1 — 2 2) Diy, 5, (po|)

Proof. Using Lemmal6] we can show by standard arguments [Vempala & Wibisono| (2019); [Chewi
et al.| (2021) that within sub-step n:

Dxe(yz, I78,) < Dxv(uop, Img,)e " (10)
Using (C) and the chain rule for K L-divergence
Dxr(pn[7) = E [Dxr(u1j]lm5)] + Dxr 3, (1o| ™)
<e 2R [DkL(ttn—118]75)] + DkL 5, (Hn—1]m)
= ¢ Dyt (pn-17) = Dice 3, (Ha—11m)] + Dict. 3, (k-1 |)
= e Dy, (1 )] + (1= e77) Dt 5, (a1 | ).

O

An immediate consequence of Lemma [§]is that the K L-divergence is non-increasing, as stated in
the following Corollary.

Corollary 1. Foralli € {1,...,b}, Dkr(pi||7) < Dxuy(pol|7)
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C.1 PROOF OF LEMMA/[I]

Proof. We prove the claim by induction on b. The claim is immediately evident for b = 1 as a
consequence of (8| with Cp,ax = C1, since B = (.

Now we assume the inductive hypothesis for some b — 1 > 1 and prove the claim for b > 2 blocks.

We start by applying Lemma [8]twice to obtain terms relating to step b — 2, obtaining
Dxr(psllm) <Cy Dk (p-1m) + (1 = Cp) Dxr(py,_y 5, I75,) + Db
Second descent expansion: <C,Cy—1 Dxr(pp—2[|7) + (1 — Cp) Dxr(py,_, 5, 175,)
+ Cy(1 = Cp—1) Dxr(1y_o 5,175, ,) + Db+ CyDp1

From here, we note that Dx1,(11,_; 5, |75, ) satisfies the theorem conditions, since all blocks in By,
have been sampled. We can therefore apply the inductive hypothesis and obtain

b—1
Dxr(po]|m) <CoCh—1 Dk (pp—2[|7) + Crmax(1 — Cp) Dk (kg 5, I75,) + (1 — Cy) ZDi
i—1

+ Cp(1 = Cp—1) Dxi(py_o 5, I3, _,) + Db+ CoDp—1.
Using Lemma [/} we can upper bound

Dxn(—o5, 75, ) < DrLlty—25, 115, 175, 115, )
and then apply the chain lemma

Dkr(k—25, 118y 2 175, 11By_2) = DrL(me—2[m) — Dxr(tv-2,8,-. I75,_,)
to obtain
Dk (ps||m) <CpCh—1 Dxr(pp—2m)
+ Cp(1 = Cp—1) Dxr(po—2lm) — Co(1 — Cp—1) Dk (v—2,8, . [|I75, )
b—1

+ (1= Cb) > Di + Conax(1 = C) Dki (g 5, 175,) + Do + CyDp_1.
i=1

We can define By, ,—1 = By, N By_1 (all variable blocks except the last two) and apply the chain
lemma

Dxw(po 3, I75,) = Pxulio 5, , s, 175,118, ) T Prrlo,B, 175, ).
to obtain the bound
Dkr(up]|m) <CpChy—1 Dk (pp—2/m)
+ Cp(1 = Cp—1) Dxr(pp—2l|7) — Cp(1 — Cy—1) Dr(po—2,8,_, 7B, )

b1
+(1-Cy)) D
i=1

+ Cmax(l - Cb) DKL(/LO,EM_lleil ||7T§b’b_1\3b_1) + Omax(l - Cb) DKL(H07Bb71 ||7TBb—1)
+ Dy + CpyDy—;.
We can regroup the terms and cancel CgDy_1 — CgDp_1 = 0 yields

Dxr(p]|m) <Cp Dir(po—2||7)
b—2

= Cb(Crmax DKL(’LLOva,bfl\Bb—l ||7T§b,b—1|Bb—1) + Z D)
i=1

- Cb(l - bel) DKL(/’(‘b727Bb—1 ||7TBb—1)
+ Cmax Dxr (10 B, , 5, 178, , 1 15,_,) T Cmax(1 = Cp) Dxw(po,5, -, [75,,)

b—1

+ Dy + Z D;.
i—1
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By applying the inductive hypothesis in reverse, we can show

bb—1
—Cy(Crmax Do By 118y ITBy o3 ) T D Di) < =CoDkr(iy 13,0 1m0 |75, 118y )-

i=1
Substituting this into the second line, we have

Dxr (]| ) <Cp Dir(po—2||7)
—Co Dy 53,, 5 17,4 15,,) = Ob(l = Co1) Drr(ps—2,8, |75, )

+ Cmax Do 3, , 15, 175, ,_118,_,) + Cmax(1 = Cp) Dxr.(p0,5, 175, )

We can once again expand the terms

DKL(’ub—ZEb,ba\Bb,l Hﬂ-ﬁb.b—l‘Bb—l)

C(max DKL ('Uloagb,b—l\Bb7] ||7T§b’b_1 |Bb_1)'

Using the chain lemma and canceling the single block terms gives

Dxr (p]|m) <Cp Dir(po—2||7)
— Gy Dk (’ub*ZEb
+ Cimax Dxv. (19 5, 175,) — CoCmax Dxr.(ko,5, , 175, )

b
+Y D
=1

Since Crax > Cp_1 by definition, we can disregard CpCy_1 Dxr.(tto—2.8, ,||7TB,_1) —
CyCrmax D1 (tto—2,8, |78, ) < 0.

ﬂ'Eb) + CyChy—1 Dk1 (Mb—27Bb—1 7B, ,)

We now add zero to the right hand side via
0=CyKL(y_ p,18,) — Col L(1y_3 p,1B,)-

We then have the three terms

b
Cy Dxw(pp—2|7) + > Di,

=1
—Cy DKL(NZ)72,§I, ||7T§b) - CbKL(/J’b—Z,B;AEb)a (11)
Cmax DKL(MO,Ebnﬂ—Eb) + CbKL(/‘Lb—Z,BHEb)’ (12)

Note that the previous time steps left 4, , p 5, invariant, hence KL(w,_, 5, 5,)
KL(p, g, 5,)- Then by applying the chain lemma to (C.I) and (C.I), we obtain

b

Dxr(pp|lm) <Cp Dicr(po—2/|m) — Cp D (pp—2||7) + Crmax Dxr(poll7) + Z D;
i=1
b

=Cmax Dxr.(to]|7) + Z D;

i=1

which completes the proof. O
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Algorithm 5 Cyclic Block Langevin Monte Carlo (CBLMC)

1: procedure CBLD(z € dom(f), Block Permutation o = {Bj, ..., By}, Step Sizes A € R%)
2 for £ > 0 do

3: Set zf ! = 2k

4 forn =1tobdo

5 Choose B,, = o, sample & ~ N(0, I9)

Tny1l = Tp — AnUan(xk) +Ux 2/8_1)\n£

6 end for i
. k41 _ o k+1

7: Set z"t! = xy

8 end for

9: end procedure

As discussed in the main text, Lemma [I|can be used to trivially bound both the continuous (C; =
e=2%87" D, = 0) and discrete (C; = e 8", D; = 3d; L?)\?) cases. Discrete-time CBLMC is
shown in Algorithm 3]

For CBLMC, we additionally assume that the potential is L-smooth (Assumption [4). From [Beck
& Tetruashvili| (2013)), this implies each block has a separate smoothness constant L; < L. From
applying [Vempala & Wibisono| (2019) with the modification using Lemma [ proposed in [Chewi
(2024), each block step has the descent

g1 _ _ .31 —
Dir(u™||m) <emF 7 Dyr () + (1 — e ) Diw (g lmg) + 3L7diA7.

When iterated for kb cycles, we obtain the bound

. -1 4
Dict (1]lm) <78 Doy () 4+ 3 S L.
min i=1

D PROOF OF THEOREM [3

We begin by recalling the following Lemmas from literature:

Lemma 9 (Uniform L? bound on Langevin Diffusion (Lemma 3 of [Raginsky et al.|(2017))). Let
f : RY — R be a differentiable function satisfying Assumption @ For a random variable x(t) =

2(0) — [V f(a(s))ds + [ AW, we have the bound

ot d/B+c Com

Elllz(®)]1%] < E[lz(0)[*le~™ + — —(1-e 2m).

Lemma 10 (Wasserstein bound from Relative Entropy (Corollary 2.3 of Bolley & Villani|(2005))).
Let i, v be two probability measures on some measurable space X equipped with measurable

distance 9, and let ¢ : X — RT be a non-negative measurable function. Assume that xg € X,
a > 0 such that [ e*?@02)" dy(x) is finite. Then

1/4
Wa < C | Dk (p|v)? + <DKL(MHV)) ]

2

where

sy o (13 o D(50.2)" e
C =2 inf 7(§+10g e dv(z)) .

zo€EX \ (¥

In addition, we adapt the following Lemma from [Raginsky et al.|(2017)

Lemma 11 (Exponential L? Integrability of Block Langevin Diffusion). Let f : R? — R be a dif-
ferentiable function satisfying Assumption and let 2% (t) = x(0) — fot UiV f(z(s))ds+ fot UpdW;
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be a random variable in R? across some number of iterations k, where 25:1 U; = 14. Suppose the
initial state x is drawn from some L satisfying Assumption @and B > 2/m. Then on iteration k

x? dmax
log E [enxﬁuz} < Ko+ 2(c+ 5 JEN.

Proof. Define G(2F) £ el=t1” By It6’s lemma, on iteration k of BLD we have

dG(zF) = -2 <xf, Uka(xf» ell=el® gt 4 2527_1Tr [U,f(?e““:mQI + 4:vTa:e“”’f”2)} dt
+ /28 («F,U) eletI? qw,
=—2(a}, UV f(a})) G(t)dt
+2d, 87 G(af)dt + 4| U ||* 871 G(af)dt + /2B (f, Ui) G(xF)dW;.
Integrating and summing across k steps, we obtain

k

G(}) =G(=") + >

i=1

A A
+/ 2dkﬂ*1G(x,’f)dt+/ V2B (af,Up) G(xF)dw, | .
0 0

A
2 [ [ (o UV b)) + 257 Uk 12) Gl
0

Applying the dissapativity condition and assuming 8 > 2/m, we can bound the first integrand as

— (@b UkV f(af)) + 287 | Uaf > < 287" —m) Y (af;)* +e<c

JjEB;
which results in
k A A
G(z%) = G2 + Z 2(c+dip™h) / G(xhydt + / V2BG(xf) (x}, UpdWy) .
i=1 0 0

As stated in Raginsky et al.| (2017), each It6 integral fo)\ V2BG(xf) (xf, UgdWy) is a zero-mean
Martingale. Taking expectations over both sides and applying Assumption 6] yields

A
E[G(a5)] = E[G(«”)] + Z 2(c+dpBf) /O E[G(af)]dt

kX
< €50 4 2+ dmae i) / E[G(a)dt.
0

where the integrability of E[G (xF)] across block steps follows from the continuity of x¥ across each
block step k. By Gronwell’s Lemma, we then have the result. O

Theorem [3] follows as a consequence of Lemma [2] by applying the Otto-Villani theorem coupled
with the triangle inequality for W5 as stated in the main text.

D.1 PROOF OF LEMMA 2]

Proof. Let ¥ and v} be the laws of SGBLD and BLD at times ¢ and iteration k respectively with
iterates z* (52, y*¥(s). We assume that each process selects the same variable blocks at each iteration,

ie. B = BE.
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dl/f as
duf

Using the Girsanov formula, we can express the Radon-Nikodym derivative

Vk t
Zlfk =exp[§ /O (UeVF (" () = Urg=(y" (1)), ~UxV £ (4" ())ds + Ud W)

! g/0 (URVF (5" (5)) = Urga (" (1), UeV F (5" (5)) + Uk.gz<y’€<t)>>]

—oxp | § [ (WA - Vg6 ) = § [ T4 - Ui )P

Setting ¢ = Ay, we can express Dxr, (uf ||vF) as

v

E
dpy

1

k k
Dice, (b [[0) = — / dyik 1og 1 —

i

A
1 s - ngz@'“(s))n%s] .

Using Assumption 3] we obtain

k ﬂ A ) .
Dt () = 3 L | v - ngxy%s))n?ds]
7,;1
<D

k A
ﬂ —ms 7 di+c —ms
SZL/O M E[y (0)]2 + TE (1 - e7)) + B
i=1

B[ o iz 2
1 M E|ly*(s)||* + B“ds
0

where we have applied Lemma(9]in the last line. Integrating, we obtain

b M? M?2(d,
Dra i) < 3 G | M5

i=1

M2y emmmpy )2 + (mt 4 - 1)) 4 B

m3\?

Expanding e~™* and leveraging that mA > 1 — e~ > m\ —

k
BM2\_
Die (e v) < >~ E2 2Bl (0)
i=1

H2+ Mz)‘Q(dz +Cﬁ) + BB2t
4 4

By repeatedly expanding Lemma 9] we obtain

k—1
M2 A _ . M2>\2 dz+ c M2>\2 dz+ c B2>\k
Drc (ebl) < 3 2Py e M4 ) MOV 4 ), P
1=0
M2BAE M X?(diax k BBk
S 45 Ko ( 4 +ﬁC) +B 4

£ (C1 + CoA) k.
where we have defined for convenience
M? B?
Bk + B
4 4

[I>

(&1

and
M?(dmax + Bc)

Cy & 1

By Lemma|[10} we can bound W3 (uf, vf) as

1/472
Dt ) ? + () ]

W3 (g, v) <4C?
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Setting o = 1, d(x) = ||||*/?, and p = 1/2, we obtain from Lemma 11

40% < (12 + 4ko + 8(2¢ + d‘;‘" VEA).

Note that for any a > 0, we have (1/a + (%)1/4)2 < 2a + 2+/a, since

al/?

a1/2 a
(\/’_F( )1/4) a+23/4a3/4+2T_a+(21/4 1/4)(21/2 1/2)4_21?4_ 21/2

1/2

By Young’s inequality, (2*/4a!/*)(2'/2a'/?) < 2‘3@ + 5173, hence

1/2 1 2[
/N2 _ o, /414y (91/2 41/ a
(Va+ (3 ) = 0+ (21461 (212a1?) + S 5172 = (1+\/§)+ 5 <2 +2va.

plugging in Lemma|[T1} and assuming kA > 1, k > X we have
W3 (uf,vF) < 202 [ Dicw (ullv) + v/Dicr.(ul]v)]

<12+ (k0 + (26 + dua/B)) [ (1 + CoNIN + V/(C1 T ng)m} (kX)

<(12 4 8(k0 + (26 + dm/ ) | (Co + VEIWAE + (1 + @] (kA
=C3|(Co + V/Co)V Ak + (Cr + /C) | (BA)?

We thereby obtaining Lemma [2] with:
CO = (12 + 8(‘%0 =+ (20 + dmax/ﬂ)))a

M?*Brky , BB?
o= =
1 4 + 4 )
M2 dm'lX
0, 2 M 2 70)

D.2 CONSTANTS IN EXPECTED FUNCTION GAP BOUNDS

We start by recalling the Lemma from |Polyanskiy & Wu! (2016)):

Lemma 12 (Wasserstein Continuity for Quadratic-Growth Potentials). Let u, m be probability dis-
tributions with finite second moments and let f : R4 — R be a continuously differentiable function
satisfying |V f(x)||? < c1||z||* + co. Then we have

‘/f Japu(z /f \r(z

where o = /max[E, [[[z[]”], Ex[[|=]*]]

< (e10 + co)Wa(p, )

Raginsky et al[(2017) bound the constant % = max E,« [2?], Ex, [2%] using an unbiased oracle. As
discussed in the main text, DXs have fixed device variation from analog errors, precluding unbiased
estimation. However, DX errors take the form of perturbations in the underlying function, i.e. the
target function characteristics are intact. For instance, DXs with quadratic potential targets (Aifer
et al., 2023} Song et al.| [2024) are still optmizing/sampling quadratic functions. Accordingly, As-
sumptions 4] and [3] that the DX gradient retains both Lipschitz continuity and dissipativity, are
reasonable. Assuming g5 is (m, ¢)-dissipative, we have from Lemma 3 of [Raginsky et al.| (2017):

(e < o + “EP.

Then
9 c+d/B c¢+d/B

0° = Kg + max s
m m
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