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ABSTRACT

Post-training large language models (LLMs) face a critical limitation: they cannot
easily absorb new information or correct errors without costly retraining, which
often introduces unintended side effects. We present REPAIR (Robust Editing via
Progressive Adaptive Intervension and Reintegration), a lifelong editing frame-
work that enables precise, low-cost updates while safeguarding unrelated knowl-
edge. REPAIR is engineered to overcome the key hurdles in model editing.
It counters the instability and conflicts arising from large-scale sequential edits
through a closed-loop feedback system with dynamic memory management. To
enhance poor generalization from few-shot examples, it implements distribution-
aware optimization, which groups similar data for more effective learning. Finally,
by using frequent knowledge fusion and strong locality guards, it closes the loop
on traditional, distribution-agnostic methods that fail to account for unintended
ripple effects. Experiments show REPAIR boosts editing accuracy by 10%-30%
across multiple model families and significantly reduces knowledge forgetting.
This work provides a robust framework for creating reliable, scalable, and contin-

ually evolving LLMs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks.
However, their static nature prevents them from autonomously updating knowledge after pre-
training, leaving them unable to correct errors (e.g., hallucinations or outdated facts) or integrate
new information. Lifelong model editing has therefore emerged as a critical research direction, aim-
ing to enable continuous, efficient, and low-cost local updates that ensure models remain accurate
and relevant over time |Wang et al.[|(2024b). In contrast to full re-training or broad fine-tuning, edit-
ing focuses on precisely scoped modifications that preserve unrelated behaviors while delivering
immediate corrections at deployment time.

Despite steady progress, important
gaps remain as shown in Figure
(1) Large-scale sequential edit-
ing & coarse knowledge fusion.
As edits accumulate, models can
exhibit routing instability, conflicts
among edits, and even collapse; sta-
bilizing sequential updates without
broad side effects remains challeng-
ing \Gupta et al.| (2024); [Cohen et al.
(2024).  Semi-parametric designs
(e.g., SERAC Mitchell et al.| (2022b))
and discrete key—value adaptors (e.g.,
GRACE Hartvigsen et al.| (2023))
alleviate some failure modes and
support long edit streams, but still
face scope and auditing trade-offs
Mitchell et al.| (2022b); Hartvigsen
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Figure 1: Problems and our solutions. REPAIR achieves
closed-loop feedback, fine-grained knowledge integration,
weighted knowledge merging and consistent editing perfor-

mance.

et al.[(2023).The strategy for knowledge fusion remains underexplored, despite being the stage most
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prone to information lossWang et al.[(2024a)). (2) Few-shot editing. Under data-scarce conditions,
editors often struggle to form robust, generalizable changes beyond the exact prompt, motivating
gradient-transformation editors trained for locality (e.g., MEND Mitchell et al.| (2022a)) and broader
taxonomies of edit generalization Mitchell et al.| (2022a); [Wang et al.| (2024b)). (3) Open-loop and
distribution-agnostic learning. Many pipelines operate without feedback control, optimize on in-
discriminate batches, and under-stress-test ripple effects on related knowledge and reasoning, calling
for tighter evaluation and integration mechanisms |Cohen et al.| (2024));|Wang et al.| (2024b). Overall,
these issues highlight the tension between reliability, specificity, and scalability that any practical
editing system must resolve.

To address these challenges, we propose a framework named REPAIR (Robust Editting via
Progressive Adaptive Intervension and Reintegration), with targeted strategies: (1) Closed-loop
feedback with dynamic memory management that monitors edit performance and selectively re-
initializes underperforming modules to stabilize routing and consolidation at scale. Concretely, our
controller triggers health checks after each edit window and performs scoped resets or compaction
when drift is detected. (2) Distribution-aware optimization that reorganizes samples by similar-
ity and applies intra-batch distillation to enhance consistency and robustness in few-shot settings,
encouraging edits to generalize across paraphrases and nearby contexts rather than overfitting to sin-
gle prompts. (3) Frequent knowledge fusion that increases fusion cadence to prevent information
loss and ensure timely consolidation of new and existing knowledge, with guardrails that validate
locality before integration to avoid unintended side effects.

We compare REPAIR with several foundational model editing methods across three dimensions:
Memory, Attributes, and Behaviors (Table[I). Its core innovation lies in integrating a dual memory
system with parametric editing, complemented by error feedback, intra batch knowledge distillation,
and loss-aware subspaces merging. This design achieves high success rates and broad editing cov-
erage while minimizing side effects. In contrast, previous methods struggle with knowledge overlap
and loss, particularly in sequential editing, where large differences between adjacent samples hin-
der effective correction. Table[2]showcases cases where REPAIR outperforms baselines, offering a
better balance of Reliability, Generalization, and Locality.

Table 1: Comparison of current model editing methods. “v"” refers to “yes” and “well-
supported”, “x” refers to “no” or “badly-supported”, and “()” refers to “less-supported”. The three
metrics of Reliability, Generalization, and Locality denote the performance on lifelong editing.

| Memory | Attributes | Behaviors

Long-term Working Parametric Error  Knowledge

Methods Memory Memory Lifelong Reliability Generalization Locality Feedback Distillation

FT-EWC Kirkpatrick et al.|(2017)
ROME Meng et al.|(2022b)
MEMIT Meng et al.[(2023)
MEND Mitchell et al.|(2022a)
DEFER Mitchell et al.|(2022b)
GRACE Hartvigsen et al.|(2023)
WISE |Wang et al.{(2024a)

REPAIR \

AN I NN NN
SISO X X X X
AN NN NN NN
STSNNAX X XN
SIS NO0Ox x xS
SlaxX XXX XS
STEAX X X X X
S X X X X XXX
S X X X X X XX

Table 2: Failure cases study.Previous baselines(Wang et al.| (2024a)Hartvigsen et al.| (2023))often
encounter issues of repeating answers from previous questions and difficulty in correcting adjacent
knowledge during editing.

MethodPrompt Edit Target Post-Edit Output ~ Metrics

a) The genus Platypatrobus is part of the family? Arctiinae Arctiuc X ReliabilityX

b) The genus Platypatrobus is a part of what family - Yemen X GeneralizationX
¢) The genus Platypatrobus is part of the family? - Arctiinae v

c) When was the IAAF Combined Events Challenge launched? 2006 Armand X ReliabilityX

d) When does season 5 of ruby come out? October 14,2017 2006 X LocalityX
e)when does season 5 of ruby come out? - 2017v

In summary, our key contributions are:
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Figure 2: The overall structure of REPAIR. An edit, such as changing the capital of France from
”Lyon” to “Paris,” is stored as a parameter update, A6, in the Side Memory. An Error Sample
Monitor evaluates the performance of each edit (Outf). If the error rate, Erryp,csp, for an edit on a
new sample exceeds a threshold ¢, the Side Memory Pruning module removes the erroneous update.
The system then reintegrates new and error-prone samples for continuous learning.
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* We identify three critical challenges in model editing: (1) instability under large-scale se-
quential edits, (2) poor generalization in few-shot scenarios, and (3) inefficient learning
from open-loop, distribution-agnostic pipelines;

* We propose REPAIR, a novel framework to address these challenges by integrating a
dual-memory system with parametric editing. It introduces closed-loop error feedback,
distribution-aware optimization, and loss-aware subspaces merging to ensure robust and
precise updates.

* We validate REPAIR across diverse models (including LLaMA-3, Qwen-2.5,
DeepSeek-R1-1.5B, and GPT-2-XL), demonstrating a 15%-20% improvement in overall
editing performance over state-of-the-art methods and showing consistent, robust general-
ization.

2 METHODOLOGY

We propose a novel closed-loop lifelong model editing framework, denoted a REPAIR, which ad-
dresses the limitations of open-loop editing in distributed side-memory methods. Our framework,
as shown in Figure [2] integrates (1) closed-loop error feedback with dynamic memory manage-
ment; (2) distribution-aware batch reassembly with intra-batch knowledge distillation; (3) loss-
aware weighted knowledge merging.

2.1 PROBLEM SETUP

Definition 2.1 (Lifelong Model Editing) Given a pre-trained model fg (y|z), a sequential edit

stream {E;}1_| where & = {( i ,yz(t)) i=1, and auxiliary distributions G(x) (paraphrased inputs)
and U (unrelated contexts), the objective is to obtain updated parameters O that optimize the multi-
objective trade-off:

N LN
o= argmgne 320 (falal)ol?) 48 5 3B g [¢ (40”)]

reliability generalization
+ 9 Egnt [KL (fo,_, (|2) || fo(-|2))] + R(9, 6:—1) (D
———
locality stability

where (a, B,7) are hyperparameters controlling the reliability-generalization-locality-stability
trade-off, and R denotes a regularization term enforcing parameter smoothness across sequential
edits.
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2.2 DUAL MEMORY MECHANISM AND ROUTING

As shown in Figure [2| block 1: For dual memory-based editing methods, the dual memory mecha-
nism is typically deployed in the deep layers of the network. Specifically, for the value matrix W,,
of the target FFN layer, here create a copy as the side memory pool M, i.e.: M. S(O) = W, If the side
memory pool is activated, the output is computed as: 0, = ¢&( fTWk) - My, where ¢ denotes the
non-linear activation function, and o, represents the FFN output based on the side memory(Wang

et al. (20244a)).

During the inference phase, for moemory pool i, the activation score is defined as
Al (@) = [A@) - (W5 = Wo)|a- @)

where A(-) = a is the activation of the side memory’s corresponding FFN layer. Routing selects the

pool with the activation score. If max; Ag?t(x) < ¢, the main memory W, is used. Otherwise, the
side memory pool Mj is selected. To enforce discriminative routing, we use a margin-based loss.

The objective of the routing mechanism is to establish a clear decision boundary:
miré R(xe) ~ mir& R(x')>71> max R(x;) (3)

where 7 is a preset threshold, and £ and G; represent the edit and edit-irrelevant datasets, respec-
tively. This selective activation mechanism ensures that edited knowledge is only retrieved in rele-
vant contexts, thereby minimizing interference with the original model’s performance.

2.3  DISTRIBUTION-AWARE INTRA-BATCH KNOWLEDGE DISTILLATION

As shown in Figure block 2: A sample batch & = {x1, 29, ..., 2, }, and denote the corresponding
feature representations by o; = Norm(fy(z;), 4 = 1,...,n,). To improve the consistency and
stability of model updates during sequential edits, we organized samples into homogeneous batches
and performed intrabatch knowledge distillation. Samples with high mutual similarity are grouped

into abatch B = {z(® 2™ 2(=D1 Within each batch, the first sample 2(*) acts as a teacher,

while the remaining samples are students. We define the intra-batch knowledge distillation loss as
LKD =X Lcosine +0- Evariance (4)

where Leosine = 1 — m and Lyariance = % Doicq lloi — Omean||?. Minimizing £yq encourages

all samples in the batch to share similar knowledge, which in turn reduces potential conflicts when
updating the same network parameters §. The regularization term is used to maintain diversity
among features, preventing excessive uniformity.

If certain samples cannot be well-aligned with the batch (i.e., their £yq remains high after optimiza-
tion), this indicates that they do not belong to the same distribution cluster and are unlikely to be
effectively edited together. Such samples are removed from the batch and reclustered with other
samples to form new homogeneous groups. Formally, the final batch reassembly can be expressed
as

B = Recluster({x € B| Lya(z,B) < 6}), 5)

where € is a threshold controlling intra-batch consistency. This procedure ensures that sequential
parameter edits are performed on groups of samples with aligned knowledge, improving both sta-
bility and effectiveness of the model update. The convergence proof is provided in the Appendix 4]
and Appendix [2]

2.4 CLOSED-LOOP ERROR FEEDBACK AND MEMORY PRUNING

As shown in Figure[2] block 4: After each editing cycle, we evaluate the performance in a feedback
pool & of error response samples by comparing to the correctness threshold Teorect. For each shard

i, we define the error set & = {z € £ | i*(z) = i} and compute the error rate ™ for each
side memory pool, defined as the proportion of failed edits within the corresponding sample set:
pool __ |{z€&i|a(x)<Teomec }|

K &

When the pruning conditions are met (r; > Tprune OF |E| > TE), we execute the following procedure:
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1. Memory pool screening & pruning: Identify the side memory pool with the highest error
rate j = arg max; 7 .Remove the identified memory pool from the system.

2. Sample Reintegration & retraining: Recombine the remaining error samples to form a
new training set Eeyain. Retrain the new side memory pools using Eeqain-

This closed-loop feedback mechanism enables the system to dynamically identify and eliminate
underperforming memory units while optimizing the overall editing performance through sample
reorganization and iterative retraining. The time-convergence proof is provided in the Appendix 2]

2.5 MERGING WITH WEIGHTED TIES |[YADAV ET AL.[(2023)

As shown in Figureblock 3: After multiple updates, shards { W ;} produce deltas 7; = W ,—W,,.
We merge them with the weighted TIES operator based on : W) < W, + w; TIES ({r;}}_; W,).

The total loss integrates all components:
Liotal = Ledit + AaLa + AkDLKD- (6)

Leqit is the autoregressive cross-entropy. Leqit(W,,) = —log Pw: (y | x). To enforce discriminative
routing, we use a margin-based loss:

L, = min { max(0, Aget(z5) — 1)
(N
+ maX(Oa Y2 — Aact(xe)) =+ maX(O’ 7 (AaCK(ZE) B AaCl(zi)))}

For shard 4, consider || subspaces {61,...,0;}, each trained on a subset of samples &;. Let the
average training loss of subspaces §; be: £; = ﬁ > (eyyee,; Lf(2:0:),y), where £(-) is the task
: exp(—aLl;)
Sl exp(—aLl;)’
controlling sensitivity to the loss. The global network parameters are then obtained via weighted
averaging: ¢ = ) .", w; 6;. This loss-aware merging favors subspaces that achieve lower training
loss on their corresponding samples, promoting reliable knowledge integration.

loss. We define the merging weight of each subspaces as w; = with a > 0

3 EXPERIMENTS

In the experimental section, we design six evaluations to answer the following questions:

* Q1: Do the three key innovations (closed-loop feedback, discriminative pruning, and dis-
tribution reintegration) improve edit accuracy, generalization, and locality?

* Q2: Does the method generalize well to knowledge-intensive tasks such as question an-
swering and hallucination mitigation?

* Q3: Is the method effective across different parameter scales and diverse architectures,
including recent open-source models?

* Q4: Under distribution shift (e.g., on the Wikibig Edit dataset), does the method remain
robust and outperform existing methods?

* QS: Can the method maintain long-term stability and reliability in large-scale sequential
editing scenarios?

* Q6: What are the contributions and sensitivities of each component and hyperparameter to
overall performance?

3.1 EXPERIMENTAL SETUP

Datasets and Models. Autoregressive LLMs are ideal for evaluating model editing due to their
unidirectional causal structure, which allows predictable and traceable edits. This ensures clear
interpretability of edit generalization and locality. We evaluate widely used models (LLaMA-3-
8B, GPT2-XL) and recent models (Qwen2.5-7B, DeepSeek-R1-1.5B), using datasets such as ZsRE
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for closed-book QA, Wikibig Edit for editing performance, and a hallucination dataset to assess
generalization. For more details, refer to the Appendix 3}

Baselines.

* Direct Parameter Editors: Directly modify model weights (e.g., ROME |Gupta et al.
(2024), MEMIT Meng et al.|(2023), MEMIT-mass |Meng et al.| (2023)).

» Hypernetwork-Based Editors: Use an auxiliary network to generate parameter updates at
inference (e.g., MEND Mitchell et al.| (2022a))).

» External Memory-Based Editors: Leave the model unchanged and store edits in external
memory, retrieved via a routing mechanism (e.g., SERAC Mitchell et al.{(2022b), GRACE
Hartvigsen et al.|(2023)), WISE Wang et al.| (2024b)).

Implementation Details. experiments were conducted simultaneously using two GPUs: an A100
PClIe 80GB and an A100 SXM4 40GB. The code was implemented based on PyTorch 2.1, with
modifications built upon the original EasyEditor framework. The specific hyperparameter settings
are detailed in Appendix

Evaluation Metrics Each edited corpus instance comprises three components: the descriptor k.
used to perform the edit, an irrelevant prompt-answer pair k., to verify locality and a rephrase prompt
ki1oc to evaluate generalization performance across different expressions. To comprehensively evalu-
ate the optimization capability of the proposed method in addressing the continual learning trilemma,

we employ four metrics—edit accuracy: Rel = % 25:1 (fuy (x2) = y7), rephrase accuracy :
Gen = § 370, I fuy (x'2) = y2). locality : Loe = % 370, Wy (i) = fu (Xiae)- We use
the geometric mean of Rel., Gen., and Loc. to evaluate the overall editing performance, which bal-
ances metric sensitivity and interpretability, exhibits sensitivity to weak performance areas, and is
suitable for scenarios where all three metrics are equally important. OP = +/Rel. x Gen. x Loc. to
assess the holistic editing effectiveness. Here, 1(-) is the indicator function used to count the number
of successful predictions.

For the hallucination dataset specifically, we utilize perplexity(PPL) as the metric to assess editing
performance. PPL can be interpreted as the “average branching factor in predicting the next token,”
where a lower value indicates more accurate model predictions and suggests a reduced likelihood of

the edited model generating hallucinations. PPL = exp (—% f\il log P(y; |contexti))

3.2 MAIN RESULTS

Table [3| effevtively addressed Q1, Q4 and QS.
It has been rigorously evaluated across diverse
models and scales (N = 1, 30, 120, 1000)
of QA editing tasks, demonstrating state-of-
the-art performance. Fine-tuning-based meth-
ods achieve good accuracy and generalization
at small scales but suffer from catastrophic
forgetting and knowledge conflicts in large-
scale edits, leading to performance degradation.
GRACE excels in accuracy but has limited gen-
eralization, while WISE maintains strong local-
ity but sacrifices critical knowledge, reducing
editing accuracy. ROME-style methods are stable but overfit and struggle with generalization.

To address Q?2, Table shows REPAIR’s effectiveness in reducing hallucinations on the SelfCheck-
GPT dataset for LLaMA-3-8B across different editing scales. REPAIR balances reduced hallucina-
tions with preserved locality, making it highly effective for large-scale model editing.

To address Q3 and Q4, Table |3| and Figure [3| show that REPAIR’s closed-loop error feedback,
together with distribution-aware clustering and redistribution, yields consistently superior perfor-
mance across edit scales and exceptional stability for large-scale edits. Smaller models concen-
trate knowledge in narrower parameter subsets, enabling reliable local corrections but weaken-
ing long-term stability and generalization (i.e., maintaining accuracy while preserving unrelated

GrT2AL DecpSek RI-158. Quents T8

Figure 3: Average Editing Performance of Wik-
iBigEdit Across Different Models
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Table 3: Comparative results for QA on multi-scale editing (ZsRE and WikiBigEdit) /N: Num Edits.

N=1 N =30 N =120 N = 1000
Rel. Gen. Loc.| OP. |Rel. Gen. Loc.| OP. |Rel. Gen. Loc.| OP. |Rel. Gen. Loc.| OP. |
LLaMA-3-8B (ZsRE)

FT-L 0.57 0.52 0.96| 0.66 |0.35 0.35 0.52] 0.39 |0.29 0.26 0.21| 0.25 [0.19 0.15 0.02]| 0.08
FT-EWC 0.96 0.93 0.02| 0.26 |0.78 0.76 0.02| 0.23 {0.76 0.76 0.08| 0.36 {0.69 0.67 0.08 | 0.33
MEND 0.95 0.93 0.96| 0.95 |0.24 0.25 0.18] 0.22 |0.08 0.07 0.00| 0.00 {0.00 0.00 0.00| 0.00
ROME 0.85 0.80 0.99| 0.88 |0.61 0.60 0.68| 0.63 |0.22 0.22 0.04| 0.12 [0.01 0.01 0.01]| 0.01
MEMIT-M 0.84 0.81 0.99| 0.88 [0.73 0.72 0.95| 0.79 [0.70 0.65 0.82| 0.72 {0.63 0.63 0.62| 0.63
DEFER  0.68 0.58 0.56| 0.61 [0.65 0.47 0.36| 0.49 [0.20 0.12 0.27| 0.20 {0.03 0.03 0.74| 0.27
GRACE 0.97 0.36 1.00| 0.71 |0.96 0.17 1.00| 0.55 |0.94 0.14 1.00| 0.51 [0.93 0.08 1.00| 0.42
WISE 0.94 092 1.00| 0.95 |0.62 0.60 0.86| 0.68 |0.57 0.58 0.87| 0.66 [0.45 0.44 0.51| 0.47

REPAIR 0.94 0.92 1.00\ 0.95 \0.93 0.90 0.87\0.89T\0.76 0.74 1.00\0.83?\0.68 0.65 0.89\0.73T\
Qwen2.5-7B (ZsRE)

FT-L 0.68 0.63 0.93| 0.74 |0.28 0.23 0.44| 0.30 |0.13 0.11 0.10] 0.11 [0.08 0.06 0.02]| 0.05
FT-EWC 0.97 0.92 0.05| 0.35 |0.82 0.80 0.02| 0.24 [0.71 0.69 0.05| 0.29 |0.58 0.56 0.03| 0.21
MEND 0.96 0.95 0.96| 0.96 |0.31 0.31 0.27] 0.29 |0.15 0.14 0.03| 0.09 [0.02 0.02 0.00| 0.00
ROME 0.90 0.89 0.99| 0.93 |0.77 0.73 0.52] 0.66 |0.31 0.28 0.03| 0.14 |0.01 0.02 0.00| 0.00
MEMIT-M 0.84 0.81 0.99| 0.88 [0.73 0.72 0.95| 0.79 [0.70 0.65 0.82| 0.72 |0.52 0.51 0.57| 0.53
DEFER  0.74 0.67 0.88| 0.76 [0.58 0.51 0.44| 0.51 [0.22 0.21 0.43| 0.27 |0.14 0.08 0.25| 0.14
GRACE 097 0.41 0.98| 0.73 |0.97 0.2 1.00| 0.58 |0.95 0.08 0.98| 0.42 [0.94 0.02 1.00| 0.27
WISE 0.97 0.95 0.98| 0.97 [0.79 0.73 0.91| 0.80 |0.59 0.57 0.92| 0.68 |0.44 0.41 0.72| 0.51

REPAIR  0.98 0.95 1.00|0.98 1/0.93 0.90 0.93]0.921]0.81 0.80 0.92]0.841|0.72 0.70 0.67 |0.691|
DeepSeek-R1-1.5B (WikiBigEdit)

FT-L 0.71 0.68 0.93| 0.77 |0.26 0.20 0.76| 0.34 |0.13 0.11 0.37| 0.17 {0.02 0.02 0.08]| 0.03
FT-EWC 0.93 091 0.33| 0.65 [0.70 0.70 0.18| 0.45 [0.42 0.41 0.07| 0.23 |0.18 0.15 0.02| 0.08
MEND 0.91 0.87 0.95| 0.91 |0.43 0.38 0.10] 0.25 |0.24 0.23 0.08| 0.16 {0.03 0.03 0.02]| 0.05
ROME 0.86 0.83 0.97| 0.88 |0.72 0.71 0.67| 0.70 |0.18 0.18 0.02| 0.09 {0.01 0.0 0.01| 0.00
MEMIT-M 0.86 0.87 0.97| 0.90 [0.78 0.77 0.82| 0.79 [0.54 0.51 0.77| 0.60 {0.38 0.38 0.62| 0.45
DEFER  0.68 0.58 0.47| 0.35 [0.63 0.61 0.51| 0.58 [0.17 0.15 0.33| 0.20 {0.07 0.07 0.12| 0.08
GRACE 0.96 0.47 0.99| 0.76 |0.93 0.24 0.91| 0.59 |0.76 0.13 0.89| 0.44 [0.63 0.07 0.81| 0.33
WISE 0.89 0.91 0.98| 0.93 |0.76 0.74 0.89] 0.79 |0.64 0.65 0.83| 0.70 [{0.47 0.38 0.61| 0.48

REPAIR 0.98 0.93 0.98]0.961(0.84 0.83 0.91|0.867|0.71 0.69 0.90|0.761|0.58 0.54 0.81|0.631|

Method

Table 4: Main editing results for Hallucination task (SelfCheckGPT).

N=1 N =30 N =120 N =500
Method
Rel. (PPL]) Loc.(T) Rel.(l) Loc.(?) Rel.(}) Loc.(f) Rel.(l) Loc. (1)
LLaMA-3-8B

FT-L 4.27 0.96 3.15 0.71 34.52 0.43 51.31 0.26
FT-EWC 2.18 0.24 3.51 0.09 2.90 0.21 348 0.24
MEND 5.34 0.87 1.24 0.86 9.17 0.89 564.9 0.00
ROME 1.88 0.99 2.47 0.94 84.56 0.03 73.4 0.02
MEMIT-M 1.62 1.00 1.78 0.99 8.03 0.99 7.43 0.94
DEFER 1.29 0.23 4.12 0.28 8.91 0.19 15.16 0.12
GRACE 2.21 1.00 8.67 1.00 7.24 1.00 6.18 1.00
WISE 1.91 1.00 1.59 1.00 1.14 0.99 2.08 0.99
REPAIR 1.43 1.00 1.37 1.00 1.12 1.00 191 1.00

knowledge). Accordingly, DeepSeek-R1-1.5B attains higher immediate correction rates at small
edit_ Num, yet degrades quickly as N grows. For locality, LLaMA-3-8B and Qwen2.5-7B are
marginally stronger due to parameter redundancy; DeepSeek-R1-1.5B remains competitive only at
low N, then collapses under extreme multi-point editing. In contrast, larger models distribute knowl-



Under review as a conference paper at ICLR 2026

edge more broadly, and though harder to modify—successful edits generalize better across contexts.
At a medium scale (N=120), MEMIT-M and WISE show higher Rel., likely because REPAIR’s
pruning/reassembly introduces transient instability before sufficient error signals accumulate; how-
ever, at N=1000 their performance drops sharply, while REPAIR’s dynamic adjustment preserves
robustness and achieves the best overall metric. The error distribution can be seen in Appendix.

QA (w/o KD) QA (W/KD)

... ‘k‘ ;-‘“
. ‘%ﬂ 2
2ol ST e

T St e it RS i

Num_Edits ) Num_Edits

(©) (d)

Figure 4: Activation Score Visualization. Results on LLaMA-3 for the WikiBigEdit dataset
(N=1550) for the QA task and the SelfCheckGPT dataset for hallucination (N=600).

Figure |3| further addresses Q1 regarding the effectiveness of distillation. For external memory-
based editors, the ability to select the correct network for inference directly determines editing per-
formance. The activation score, which serves as a critical routing criterion in memory networks,
must exhibit statistically significant differences between new knowledge and irrelevant knowledge
to ensure both reliability and locality of edits. As shown in Figure [ (a) and (c), prior methods
relying solely on triple-boundary loss fail to adequately separate the activation scores of Dataedit,
Datarephrase, and Datay,., particularly in large-scale continual editing scenarios, leading to a
breakdown of the routing mechanism. This deficiency fundamentally limits their editing perfor-
mance. In contrast, by introducing intra-batch knowledge distillation, sample filtering, and samples
reintegration, KD, as shown in Figure ] (b) and (d), achieves a clear separation among the three
types of samples, thereby ensuring the proper functioning of the routing mechanism.

3.3 ABLATION STUDIES

(a) N=30 (b) N=60 (c) N=120 (d) N=1000
e wio distill & prune  --=-- w/o prune —+- w/o distil —— REPAIR

Figure 5: Performance comparison of different components. Each radar chart shows performance
on four metrics: Rel., gen., loc., and OP. on Qwen2.5 with ZsRE.
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The evaluation of the overhead and throughput of REPAIR can be found in the Appendix [7] To
answer Q6, we conducted comprehensive evaluations across four dimensions to assess the effec-
tiveness of each component of REPAIR and analyze critical hyperparameter sensitivity under dif-
ferent editing scales. Notably, REPAIR demonstrates robustness in large-scale editing scenarios
that prior methods fail to achieve. As the number of edits increases, REPAIR exhibits increasingly
pronounced advantages in overall performance: effective routing ensures strong locality, while the
error-feedback mechanism maintains continual reliability. As shown in Figure[5](a)—(d), the relative
contributions of REPAIR’s components vary across sample regimes but complement each other
seamlessly. In small-scale edits, pruning with error feedback substantially improves reliability,
while in large-scale scenarios, distribution-aware recognition and knowledge distillation become
more critical. Regarding hyperparameter analysis in Figure [6] we observe distinct performance pat-
terns: low thresholds fail to filter low-quality samples, limiting corrective opportunities; The total
number of edits is limited, and the filtered erroneous samples cannot receive sufficient corrective
training, which limits overall performance. A large number of erroneous samples in the early stage
undergo continuous learning, causing the model to quickly fall into local optima, leading to catas-
trophic degradation of generalization. Subsequent learning yields minimal improvement, resulting
in poor performance. In the upper-right quadrant, the absence of error feedback leaves many sub-
optimal samples, and the model editing efficiency is relatively high, approximating an open-loop
editing process. In the lower-right quadrant, the model training efficiency is the lowest, but ex-
cessive editing can introduce overfitting risks, wasting computational resources on edits with low
marginal utility.

Performance Score (OP.) Performance Score (OP.)
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- -
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Figure 6: Performance heatmap for the N=120 QA task on the LLaMA3 model. Figure (a)
shows the sensitivity analysis of two hyperparameters: the number of subspaces and the amount of
updated parameters; Figure (b) analyzes the impact of error threshold and maximum iteration count
on performance, with optimal performance observed at intermediate values.

4 CONCLUSION

In this work, we proposed REPAIR, a robust framework for lifelong model editing integrating error
closed-loop feedback, intra-batch knowledge distillation, and loss-aware subspaces merging. Ex-
tensive experiments demonstrate that REPAIR maintains high performance under small-scale edits
and exhibits remarkable robustness in large-scale editing scenarios, consistently outperforming ex-
isting baselines. These results highlight the potential of combining memory-aware strategies with
optimization-driven editing for reliable and precise model updates. The intra-group distillation ex-
plicitly encourages feature alignment among similar samples, guiding the elimination and recombi-
nation of inconsistent samples. The loss-aware merging assigns higher weights to subspaces achiev-
ing lower training loss, effectively preserving reliable knowledge and reducing information dilution.
Extensive experiments show that REPAIR consistently improves reliability and generalization, and
demonstrates clear advantages in large-scale editing scenarios, highlighting the effectiveness of co-
ordinated sample-level alignment and global reliability-aware merging.
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A STATEMENT

A.1 ETHICS STATEMENT

This work studies safe, auditable editing of large language models using only publicly available
datasets (ZsRE, WikiBigEdit, and a hallucination set) and off-the-shelf pretrained models; no human
subjects or personally identifiable data were collected. We follow all dataset/model licenses and the
double-blind review policy. Potential risks include misuse of editing to inject misinformation or to
weaken safety constraints, and unintended spillover of edits to unrelated behaviors. To mitigate these
risks, our framework emphasizes locality and closed-loop error checks before and after integration,
and we report reliability—generalization—and locality metrics to surface side effects. Upon release,
we will include guardrails such as edit logs, validation suites, reversible edits, and instructions for
responsible use. These design choices align with REPAIR’s stated goal of precise updates with
locality safeguards.

A.2 REPRODUCIBILITY STATEMENT

We will release our code, configs, and seeds to reproduce all results end-to-end after acceptance.
Scripts fetch data/models, fix environments, and regenerate all tables/figures with the exact metrics
(Rel./Gen./Loc./OP., PPL); hardware and hyperparameters are documented.

A.3 AI USAGE STATEMENT

We used large language model-based tools during writing and implementation for text polishing,
grammar and usage checks, and programming assistance (e.g., example code, refactoring, com-
ments, and script templates). All Al-generated suggestions were reviewed, revised, and validated
by the authors. The experimental design, data processing, result analysis, and conclusions were
conducted independently by the authors; Al tools do not constitute authorship or academic credit.
No sensitive or restricted data were provided to the tools, and they were not used to automatically
generate experimental results or to replace essential human judgment.
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B RELATED WORK

B.1 CONTINUAL LEARNING

Continual Learning (CL)—also known as Incremental Learning or Lifelong Learning—aims to en-
able models to learn sequentially from a stream of tasks without forgetting previously acquired
knowledge. The core challenge in CL is catastrophic forgetting, where adapting to new tasks leads
to a significant degradation in performance on earlier tasks [Kirkpatrick et al.|(2017); McCloskey &
Cohen| (1989). To address this, numerous methods have been proposed, which can be broadly cat-
egorized into five groups: regularization-based, replay-based, optimization-based, representation-
based, and architecture-based approaches.

Regularization-based methods mitigate forgetting by adding constraints to the loss function to pre-
serve important parameters or behaviors from previous tasks. For example, Elastic Weight Con-
solidation (EWC) leverages Fisher information to regularize parameter updates Kirkpatrick et al.
(2017), while Learning without Forgetting (LwF) uses knowledge distillation to maintain output
consistency |Li & Hoiem| (2018).

Replay-based methods retain or generate samples from previous tasks to approximate old data distri-
butions. Experience replay stores a subset of prior samples in a memory buffer|Lopez-Paz & Ranzato
(2017), whereas generative replay synthesizes pseudo-samples using deep generative models such
as GANs or VAEs|Shin et al.| (2017).

Optimization-based methods manipulate the optimization process itself to avoid interference be-
tween tasks. Gradient Episodic Memory (GEM) projects gradients so as not to increase loss on
previous tasks|Lopez-Paz & Ranzato| (2017), while Orthogonal Gradient Descent (OGD) promotes
updates that are orthogonal to gradient directions associated with past tasks [Farajtabar et al.| (2020).

Representation-based methods focus on learning robust and transferable features that are less prone
to forgetting. Self-supervised learning [Fini et al.| (2022) and large-scale pre-training Mehta et al.
(2023) have been shown to bolster CL performance by providing more stable representations.

Architecture-based methods Ran et al.| (2024); Rusu et al.[(2016); Mallya & Lazebnik!(2018)dynam-
ically expand or partition the network to allocate task-specific parameters. Progressive Networks add
new columns for each incoming task with lateral connections to prior columns Rusu et al.| (2016),
while PackNet iteratively prunes and reuses weights to free capacity for new tasks|Mallya & Lazeb-
nik| (2018).

Recent trends extend CL to more realistic and challenging settings, including class-incremental
learning (CIL), task-free CL (TFCL), online CL (OCL), and applications across object detection,
semantic segmentation, reinforcement learning, and natural language processing|Wang et al.|(2023).

B.2 MODEL EDITING

Model editing targets post-hoc modification of a trained model’s behavior to insert, correct, or re-
move specific knowledge, ideally without harming unrelated capabilities. A common taxonomy
distinguishes (i) direct / training-free parameter edits, (ii) learning-based editors that predict weight
updates, and (iii) semi-parametric systems that externalize edits via retrieval or memory; recent
surveys consolidate definitions, benchmarks, and open challenges Wang et al.| (2024b).

ROME locates causal mediators of factual associations in mid-layer feed-forward (MLP) modules
of Transformers and applies a rank-one update to edit a single fact Meng et al.| (2022a). MEMIT
extends this idea to mass editing, deriving multi-layer closed-form updates that scale to thousands
of edits in large models while maintaining stronger locality than prior methods Meng et al.| (2023)).
Although effective, subsequent analyses highlight stability issues under sequential edits and propose
remedies (Gupta et al.| (2024).

Early work framed editing as learning a small hypernetwork to predict weight deltas from an edit
specification: KnowledgeEditor (KE) learns constrained updates to change a model’s factual predic-
tion while preserving behavior on paraphrases |Cao et al.|(2021). MEND trains lightweight editor
networks to transform fine-tuning gradients, enabling fast, local edits at scale across architectures
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Table 5: Dataset statistics

Task Editing Data N Pre-edit(LLaMA/Qwen) Locality Data
QA ZsRE 1000 0.25/0.21 ACC NQ |Kwiatkowski et al.| (2019)
WikiBigEdit 500K 0.36/0.32 ACC NQ
Hallu.  SelfCheckGPT 600 28.7/29.1 PPL RedPajama |Together Computer| (2023)

Table 6: Hyperparameter settings

ZsRE on LLaMA-3
HYPER VALUE HYPER VALUE HYPER VALUE
Mask ratio 0.20 Edit_Ir 0.90 Err_Thresh 0.85

Aa 1.00 AKD 1.00 Max_iter 10000
Temperature 2.00 Act ratio 0.20 Layer_ID 29.00
Y1 2.00 V2 20.00 o 10.00
Niter 30.00 A 0.20 Act_ratio 0.30
ZsRE on Qwen2.5
Mask ratio 0.20 Edit_Ir 0.90 Err_Thresh 0.85
Aa 2.00 AKD 1.00 Max_iter 10000
Temperature 2.00 Act ratio 0.88 Layer_ID 23.00
Y1 5.00 ¥20 20.00 vy 10.0
Niter 50.00 A 0.30 Act_ratio 0.30

Selfcheck GPT on LLaMA-3-8B
Mask ratio 0.20 Edit_Ir 1.00 Err_Thresh 0.85

Aa 5.00 AKD 1.00 Max_iter 5000

Temperature 2.00 Act ratio 0.88 Layer_ID 27.00

71 5.00 V2 20.00 ¥ 10.00
Niter 50.00 A 0.20 Act_ratio 0.80

Mitchell et al.| (2022a). Instruction-driven variants further condition edits on natural-language in-
structions to improve usability and control |[Zhang et al.| (2024)).

Semi-parametric approaches such as SERAC store edits in an external key—value memory and learn
to route between the base model and retrieved counterfactuals, achieving strong reliability and speci-
ficity without permanently altering base parameters Mitchell et al.|(2022b). This design is attractive
when edits must be audited, reverted, or scoped to contexts.

Editing methods are typically assessed along reliability (does the change take effect), local-
ity/specificity (does unrelated behavior remain intact), and generalization (do edits transfer to para-
phrases and contexts). Standard benchmarks include CounterFact and zsRE Meng et al.| (2022c);
Levy et al.[(2017). Recent studies examine ripple effects beyond targeted facts, revealing broader
side impacts on reasoning and distributed knowledge, and call for more rigorous, stress-testing eval-
uations |Cohen et al.|(2024). Overall, direct, learning-based, and semi-parametric approaches offer
complementary trade-offs in edit scalability, controllability, and safety; combining precise local-
ization with guardrails (e.g., retrieval gating, edit scopes, or validation filters) remains an active
direction [Wang et al.| (2024b)).

C EXPERIMENTS DETAILS

The experiment details are given in Table[5] and hyperparameters are in Table[6]

Under identical hardware and batch configurations, the WISE baseline exhibits lower per-unit over-
head. REPAIR demonstrates a similar scaling slope but with a higher intercept, primarily attributable
to:
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Table 7: Main results for QA on DeepSeek-R1-1.5B N: Num Edits.

N=1 N =30 N =120 N = 1000

Method

Rel. Gen. Loc.| OP. |Rel. Gen. Loc.| OP. |Rel. Gen. Loc.| OP. |Rel. Gen. Loc.| OP. |

DeepSeek-R1-1.5B (ZsRE)

FT-L 0.43 0.42 0.95]0.56]0.32 0.33 0.46| 0.36 |0.21 0.21 0.15| 0.19 |0.17 0.15 0.09| 0.13
FT-EWC 0.97 0.94 0.15/0.52|0.82 0.81 0.02| 0.24 |0.63 0.64 0.02| 0.20 [0.57 0.56 0.02| 0.19
MEND 0.95 0.94 0.98(0.96|/0.42 0.42 0.18] 0.32 |0.18 0.12 0.07| 0.11 | 0.8 0.03 0.00| 0.00
ROME 0.87 0.87 0.99]0.91]0.66 0.64 0.72| 0.67 |0.17 0.18 0.09| 0.14 |0.01 0.01 0.01| 0.01
MEMIT-M 0.88 0.87 0.99[0.91(0.71 0.72 0.92| 0.78 {0.63 0.65 0.78] 0.68 |0.48 0.47 0.53| 0.49
DEFER 0.62 0.60 0.82]0.67|0.58 0.57 0.57| 0.57 |0.34 0.31 0.23] 0.29 [0.07 0.06 0.02| 0.04
GRACE 0.98 0.31 0.99/0.67|0.92 0.22 0.98| 0.58 {0.89 0.13 1.00| 0.49 {0.83 0.05 0.94| 0.34
WISE 0.92 0.90 1.00|0.94|/0.86 0.85 0.92] 0.88 [0.72 0.72 0.87| 0.77 {0.49 0.47 0.47| 0.48
REPAIR 0.93 0.93 1.00‘0.95‘0.91 0.89 0.87‘0.89?‘0.74 0.74 0.82‘0.77’”0.59 0.57 0.61‘0.59“

Table 8: Main results for QA (ZeRE) on multi-model editing with error distribution.

Method

N=1

N =30

Rel.

Gen.

Loc.

Rel.

Gen.

Loc.

LLaMA-3-8B
Qwen2.5-7B
DeepSeek-R1
GPT2-XL

0.94 £ 0.008
0.98 £0.02
0.93 £0.02
0.91£0.03

0.92+£0.01
0.95+0.03
0.92+£0.03
0.92+£0.03

1.0075:95  0.93 4 0.003 0.90 + 0.003 0.87 4 0.004
0.93 £0.01
0.87 £0.01
0.84 +0.01

1.00%5:05
0.99 £ 0.01
0.99 £ 0.01

0.93 +£0.04
0.91+0.01
0.88 £0.03

0.90 £0.03
0.89 £0.03
0.88 £0.02

Method

N =120

N = 1000

Rel.

Gen.

Loc.

Rel.

Gen.

Loc.

LLaMA-3-8B
Qwen2.5-7B

0.76 £0.03
0.81 £0.04
0.74 £0.03

0.74 £0.02
0.80 £ 0.05
0.74 £0.04

1.0074:05
0.92 £ 0.03
0.82£0.05

0.68 £0.05
0.72£0.05
0.59 +£0.02

0.65 £ 0.01
0.70 £0.04
0.57 £ 0.01

0.89 £ 0.04
0.67£0.03

DeepSeek-R1
GPT2-XL

0.61 £0.03

0.79£0.02 0.77+£0.01 0.80 £0.03 0.61£0.03 0.62+0.01 0.68£0.02

* Distribution-aware clustering and reorganization;

Additional forward/backward passes for in-batch distillation;

* The triggering frequency and cost of closed-loop pruning and retraining at large scales;

¢ The final merging (TIES) cost.
As N increases, the runtime curves of ROME, MEND, and FT-L exhibit significantly steeper growth,
becoming substantially expensive or nearly infeasible at N = 103.

Throughput demonstrates that WISE maintains approximately ~ 1.8 edits/min at large N, followed
by GRACE. REPAIR achieves ~ 0.8-0.9 edits/min at scale, lower than WISE and MEMIT-M,
consistent with expectations given its additional computational procedures.

Error bars (representing standard deviation across multiple runs) indicate that REPAIR exhibits
slightly higher variance than WISE, attributable to fluctuations in retriggering frequency and sample
distribution characteristics.

Relative overhead shows the time ratio of REPAIR to WISE increasing from ~ 1.6x to ~ 2.2x
with increasing scale.

D THEORETICAL ANALYSIS AND PROOF SKETCHES

We now provide theoretical justifications for the stability and convergence of the proposed REPAIR
framework. We introduce formal assumptions and derive lemmas and theorems that characterize the
behavior of our method.

15



Under review as a conference paper at ICLR 2026

Predicted Relative Cost vs Best Method (Log-Log) — LLaMA-3-8B
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Figure 7: Cost-Performance Assessment. The total runtime of each method scales approximately
linearly with the editing scale NV, appearing as straight lines with slopes close to 1 in log-log coor-
dinates. This indicates that the primary overhead is proportional to the number of edited entries.

D.1 PRELIMINARIES

Assumption 1 (Standard Optimization Setting). We assume that the loss function L(©) is L-smooth,
ie,

[VL(©1) = VL(O2)| < L||©; — O],
and bounded below by L* > —oc. Learning rates satisfy 1y > 0and )", ny = 00, Y, n? < oo.

D.2 STABILITY OF MASKED GRADIENT UPDATES

Lemma 1 (Norm Bound under Masked Updates). Let g; = Vi L and M; be a Bernoulli mask.
Then the masked update
AW, = —n(M; © g;)

. !/
satisfies | AWy |2 < 7l|gil2-
Proof. Since M, is a coordinate projection, M; ® g; removes certain entries of g; and never increases

its magnitude. Hence [[M; © gi|2 < [|g:[|2. Multiplying by 7 yields the claim. O

Theorem 1 (Inter-Shard Stability). Assume masks {M;} are sampled independently with overlap
probability p®. Then in expectation,

E[(M; ® gi, M; ® g;)] = p*(9i, 9)-

Thus, masking reduces the expected conflict between gradients of different shards.

Proof. For each coordinate p, Pr[M;(p) = 1,M;(p) = 1] = p*. Therefore, the expected inner
product between masked gradients is p? times the original inner product. This reduces cross-shard
interference and improves stability. O

D.3 CLOSED-LOOP RE-TRIGGER ANALYSIS

Assumption 2 (Error Reduction per Re-trigger). Suppose that each re-trigger reduces the error rate
of shard i by at least a fixed constant § > 0, unless it is already below the pruning threshold Ty une.

16
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(n)

%

Lemma 2 (Linear Error Decrease). Let r
sumption 2,

denote the error rate after n re-triggers. Under As-
rz(n) < rfo) — nd.
Theorem 2 (Finite-Time Convergence). If 7“2(0) is the initial error rate, then after at most
r0
N > i prune
- 1)
(N)

re-triggers, the error rate satisfies r;” ' < Tprune-

Proof. By Lemma 3, rgN) < 7“2(0) — NJ. Choosing N such that rgo) — N6 < Tprune ensures

convergence below threshold in finite time. O

D.4 OVERALL CONVERGENCE INTUITION

Theorem 3 (Closed-Loop Stability of REPAIR). Under Assumptions 1 and 2, the iterative process
combining masked updates, intra-batch distillation, and closed-loop re-trigger forms a contractive
mapping in expectation. Consequently, the system converges to a stable edited state with a bounded
error rate and without catastrophic forgetting.

Proof Sketch. Masked updates reduce the variance of parameter updates, intra-batch distillation
aligns outputs across samples, and re-trigger guarantees finite-time reduction of shard-level error
rates. Together, these components yield monotone improvement. By standard stochastic contraction
arguments, the process converges to a fixed point characterized by consistent batch predictions and
an error rate below Tprune. O

Lemma 3 (Zero-variance at any global minimizer). Let n = = 3" 0; and Loy = L3 [l0; —
wl[2. If not all o; are equal, then L,y > 0, while if o1 = -+ = 0,, = v (with |[v|| = 1) then
Lyar = 0. Hence every global minimizer of Lxp on (Sd_l)m must satisfy 01 = -+ = 0y =: V.
Lemma 4 (Unique global minimizer). Under the conclusion of Lemma |3} minimizing Lxp(v) =
ML= (v,u)) over||v|| = 1 gives the unique solution v* = u. Therefore the unique global minimizer
of Lxp on (ST=H™ is S* = [u, ..., ul.

Lemma 5 (Riemannian smoothness). Let M = (S%~1)™ and endow each block with the canonical
metric. Then Lkp is Lg-smooth on M in the Riemannian sense: there exists a constant

22 W

R Jr R

m m

such that for all S, 58" € M, || grad Lxp(S) — grad Lxkp(S")|| < Lg dista(S,S"). Sketch. For
each block 0;, V5, Lcos = —(A/m)u (constant), and V o, Loy = (29/m)(0; — p) with p depending
linearly on {o;}. Projecting to the tangent space by (I — 0,0, ) and using the Lipschitzness of the
projection map on S~ yields the bound.

LR<

Theorem 4 (Convergence of cosine+variance KD on the sphere). Consider Riemannian gradient
descent on M = (S=1)m:

ogtﬂ) = Ro§t>(—77t grad,, £KD(S75)) (t=1,...,m),

with the retraction R,(v) = (04 v)/||o + v||. If the step sizes satisfy either (a) a constant stepsize
0 < n: < 2/Lg, or (b) diminishing stepsizes Y, n; = 00, ., 17 < oo, then:

Lxp(St) + Lxkp(S™),  |lgrad Lkp(St)| — 0,
and every limit point of {S;} is a Riemannian critical point. By Lemma W) the unique global mini-
mizer is S* = [u, ..., u]; thus the sequence converges to S*.

Proof sketch. Riemannian smoothness (Lemmal3)) on the compact manifold M ensures the standard
descent lemma and monotone decrease for RGD under 0 < 1 < 2/Lpg, implying convergence of
function values and gradients to zero. By Lemmas the only global minimizer is S*, hence all
limit points coincide with S*. O

17
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D.5 STABILITY OF MASKED GRADIENT UPDATES

Let g; = Vyyr L € R%. A coordinate mask M; € {0,1}% acts by (M; © g;)p = Mi(p) gi p-
Lemma 6 (Norm Bound under Masked Updates). For any stepsize n > 0, the masked update
AW, ;= —n(M; © g;) satisfies

||AW1/;1||2 < nllgill2-

Proof. Coordinate-wise, | M;(p) g; »| < |gi,p| because M;(p) € {0, 1}. Hence || M; ® gill2 < ||gill2,
and multiplying by 7 yields the claim. O

Theorem 5 (Inter-Shard Inner-Product Scaling). Suppose that for each coordinate p, the masks
M;(p), M;(p) € {0, 1} are sampled independently with
Pr[M;(p) = 1] = Pr[M;(p) =1] =p, 0<p<1,
and masks are independent across coordinates and independent of g;,g;. Then, conditional on
9i> 95> )
E[(M; © gi, Mj © g5) | 9i, 951 = p” (9> 95)-
In particular, masking scales the expected cross-shard alignment/conflict by the factor p.

Proof. By linearity of expectation and independence, for each coordinate p, E[M;(p)M;(p)]
E[M;(p)] E[M;(p)] = p*. Summing over p yields the result.

Ol

D.6 CLOSED-LOOP RE-TRIGGER ANALYSIS

Assumption 3 (Error Reduction per Re-trigger). Let rz(n) denote the error rate of shard i after

n re-triggers. There exists 6 > 0 such that each re-trigger reduces error by at least § whenever
(n)

7; ' > Tprune-

Lemma 7 (Piecewise-Linear Error Decrease). Under Assumption E] foralln >0,

rgn) < max{ Tprune; rz@ —nd }

Proof. 1f rik) > Tprune, then rl(kﬂ) < rfk) — 4. Once rgk) < Tprune, the bound rgn) < Tprune
propagates for all n > k. Unrolling gives the stated maximum form. O
Theorem 6 (Finite-Time Hitting the Pruning Threshold). Let
0
N, WE )~ Torune)

5 —‘ where ()4 := max{z, 0}.

After at most N, re-triggers, we have rEN*) < Tprune-

Proof. By Lemma choose the smallest integer IV, such that 7"2(0) — N6 < Tprune- Then rgN*) <

Tprune- O

E ALGORITHMS

The pseudocode for error feedback, network pruning, sample knowledge distillation and reintegra-
tion, and the loss-based weighted ties merge strategy is as follows:
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Algorithm 1 REPAIR: Closed-Loop Lifelong Model Editing (Training)

Require: Pretrained model fy,; target FEN value matrix W,; #shards K’; mask ratio p; thresh-
olds (€, T&, Tprune, Teorrects €cons); Margins (y1,7v2,y); KD weights (X, 9) for Eq.(4); routing-loss
weight A\, ; batch size b; optional temperature 7" for soft KD.

1: Initialize side memories W/

v,1

pool &€ < {; residual pool R + 0.

+ W, and masks M; ~ Bernoulli(p) for ¢ = 1..K; feedback

2: for each incoming edit triple (2, Ye, Zioc) dO
3: i* + ASSIGNSHARD(Z,) > Shard assignment by activation score
4: B < FORMBATCHES({z.} UR, b) > Distribution-aware batching
5. foreachbatch B = {z(® ..., 2(®=V} € Bdo
6: i < ASSIGNSHARD (z()) > Target shard for this batch
7: Legir < AUTOREGCE(B) > Autoregressive cross-entropy
8: Lxp < INTRABATCHKD(B, A\, 9, T) > Eq.(4); optional soft KD
9: L, + ROUTINGMARGIN(B, v1,72,7) > Eq.(7)
10: Lpateh < Ledit + AaLact + Lxp
11: MASKEDUPDATE(W, ;, M, Lyach) >W/ .« W!. —n(M; ©VL)
12: FILTERANDRECLUSTER(B , €consy ) > Move high-LﬁD samples to residual pool
13: end for
14: (4, ¢) < EVALUATE(Ze, Ye ) > c € {0, 1} indicates success
15: if ¢ = 0 then
16: E— EU{(ze,ye)}
17: end if
18: if |€| > 7 or max; ERRORRATE(E, ¢) > Tpmune then
19: RETRIGGER(E) > Prune worst shard, rebuild, and retrain
20: end if
21: end for

22: LOSSAWARETIESMERGE({W) ,}/X,, W)

> Loss-aware weighted TIES merge

Algorithm 2 REPAIR Inference with Dual-Memory Routing

1: function ROUTEANDPREDICT(x)

2: compute a(x) < FFNACTIVATION(z)
3 fori =1..K do

4 A () [l alw) - (W), = W) |1
5: end for

6:  ifmax; Al (2) < ¢ then

7 return fy, (x; W)

8

: else _
9: 1* < arg max; A§§2 (x)
10: return [y, (z; W) ..
11: end if 7

12: end function

> Activation A(x) at the target FFN layer

> Route to main memory

> Route to side memory ¢*
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Algorithm 3 Subroutines

1:
2:

21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:

9:
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

20:

function ASSIGNSHARD(x) .
a 4 FENACTIVATION(z); AW < [la- (W], = Wy)|2, i = 1.K

return arg max; A®*) > Use the most active shard during training

3
4: end function
5:
6.
7
8

function FORMBATCHES(S, b) > Distribution-aware batching
0; + Norm(ModelFeat(z(")) fori =0,...,b— 1
Greedy seeding: pick (¥ = arg max,cg ﬁ > . cos(o(z),o(z"))
Build B + {2(®)} U Top-(b—1) nearest by cosine; remove B from S
Repeat until S is empty; return list of batches 3

end function
function AUTOREGCE(B) > Autoregressive edit 10ss Legjt
L+0
for x € B with target sequence y do
L L—Y 0 logpy(ys | y<r. o)
end for
return L/|B|
end function
function INTRABATCHKD(B, A\, 9, T) > Eq.(4); optional soft-KD
Compute o; + Norm(ModelFeat(z())) fori =0,...,b—1
T
Leos ¢ 747 i1 (1 - Ho‘i’uuooo‘on)
Omean <=+ 310 065 Lnar <= 3 X020 110 — Omeanl[3
L+ A Lcos + ﬁLvar
if 7" > 0 then > Optional: KL distillation for added stability
Get logits z;; p; = softmax(z;/T); L <+ L+ ﬁ Zl;ll KL(po||p:)
end if
return L
end function
function ROUTINGMARGIN(B, 71, 72,7) > Eq.(7)
L<+0
for each edit sample z. € B do
sample unrelated x;; compute A, = ACTDELTA(x.), A; = ACTDELTA(x;)
L <+ L+ max(0,A; —v1) +max(0,v2 — A.) + max(0,7 — (Ac — A;))
end for
return L/|B|
end function

function MAS KEDUPDATE(WAZ», M;, L) > Masked gradient to reduce cross-shard interference
9V L gn Mg b M, € {0, 1}hepe(W2)
W, ; < OptimizerStep(WY, ;, gm) > SGD/Adam, etc.

end function
function FILTERANDRECLUSTER(B, €cons, R)
for r € Bdo
xp () + per-sample KD vs. z(%)
if KKD(Z‘) > €cons then
move x to R
end if
end for
return
end function
function EVALUATE(z., Ye)
9 < ROUTEANDPREDICT(x.); ¢+ 1[§ = y.]
return (g, c)
end function
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Al

1

11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

PRUE RN

gorithm 4 Subroutines2
: function ERRORRATE(E, 7) > Error rate for shard ¢
&+ {z € £ | argmax; Afg[) (x) =1}
;o |{:E€5i|CORREC|'21;IFSS($)STCO"EC‘H
return r;
end function
procedure RETRIGGER(E) > Closed-loop pruning and retraining
j < arg max; ERRORRATE(E, i) > Identify worst-performing shard
Remove or reinitialize shard j: VV{,J- — Wy + oinic - N(0, 1); resample M,
Build & eqrain from £; form batches; retrain shards via MASKEDUPDATE + INTRABATCHKD
end procedure
function LOSSAWARETIESMERGE({ W) ; }, W) > Loss-aware weighted TIES merge
For each shard i: 7; < Wél — W,; compute training loss L; on its assigned data
—aL;
w; <— ﬁ

for each parameter index p do
S« {(i, 7ilpl, wi) HE,

if all 7;[p] share the same sign then
Sp] < >, wi 7 [p] > Consistent signs: weighted sum
else
i* + arg max;{w; |1;[p]|}; d[p] ¢ Ti[p] > Conflict: keep most trustworthy shard
end if
end for

W, < W, +6; return W,
end function
function FFNACTIVATION(x)
return activation A(z) at the target FFN layer
end function
function ACTDELTA(x)
return max; || A(x) - (W, ;
end function
function MODELFEAT(z)
return feature used for similarity (e.g., A(z) or last-token state)
end function
function NORM(v)
return v/||v]|2
end function
function CORRECTNESS(x)
return predicted correctness score for x
end function

= Wo)l2
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