
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REPAIR: ROBUST EDITING VIA PROGRESSIVE ADAP-
TIVE INTERVENTION AND REINTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training large language models (LLMs) face a critical limitation: they cannot
easily absorb new information or correct errors without costly retraining, which
often introduces unintended side effects. We present REPAIR (Robust Editing via
Progressive Adaptive Intervension and Reintegration), a lifelong editing frame-
work that enables precise, low-cost updates while safeguarding unrelated knowl-
edge. REPAIR is engineered to overcome the key hurdles in model editing.
It counters the instability and conflicts arising from large-scale sequential edits
through a closed-loop feedback system with dynamic memory management. To
enhance poor generalization from few-shot examples, it implements distribution-
aware optimization, which groups similar data for more effective learning. Finally,
by using frequent knowledge fusion and strong locality guards, it closes the loop
on traditional, distribution-agnostic methods that fail to account for unintended
ripple effects. Experiments show REPAIR boosts editing accuracy by 10%-30%
across multiple model families and significantly reduces knowledge forgetting.
This work provides a robust framework for creating reliable, scalable, and contin-
ually evolving LLMs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks.
However, their static nature prevents them from autonomously updating knowledge after pre-
training, leaving them unable to correct errors (e.g., hallucinations or outdated facts) or integrate
new information. Lifelong model editing has therefore emerged as a critical research direction, aim-
ing to enable continuous, efficient, and low-cost local updates that ensure models remain accurate
and relevant over time Wang et al. (2024b). In contrast to full re-training or broad fine-tuning, edit-
ing focuses on precisely scoped modifications that preserve unrelated behaviors while delivering
immediate corrections at deployment time.

Where did Newton live?

Where was Newton born?

Merge

In-batch
distillation Pruning

Error Monitor

Re-Editing

Where is Newton's hometown?

Merge
London Woolsthorpe

Edit Dataset

Figure 1: Problems and our solutions. REPAIR achieves
closed-loop feedback, fine-grained knowledge integration,
weighted knowledge merging and consistent editing perfor-
mance.

Despite steady progress, important
gaps remain as shown in Figure
1. (1) Large-scale sequential edit-
ing & coarse knowledge fusion.
As edits accumulate, models can
exhibit routing instability, conflicts
among edits, and even collapse; sta-
bilizing sequential updates without
broad side effects remains challeng-
ing Gupta et al. (2024); Cohen et al.
(2024). Semi-parametric designs
(e.g., SERAC Mitchell et al. (2022b))
and discrete key–value adaptors (e.g.,
GRACE Hartvigsen et al. (2023))
alleviate some failure modes and
support long edit streams, but still
face scope and auditing trade-offs
Mitchell et al. (2022b); Hartvigsen
et al. (2023).The strategy for knowledge fusion remains underexplored, despite being the stage most

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

prone to information lossWang et al. (2024a). (2) Few-shot editing. Under data-scarce conditions,
editors often struggle to form robust, generalizable changes beyond the exact prompt, motivating
gradient-transformation editors trained for locality (e.g., MEND Mitchell et al. (2022a)) and broader
taxonomies of edit generalization Mitchell et al. (2022a); Wang et al. (2024b). (3) Open-loop and
distribution-agnostic learning. Many pipelines operate without feedback control, optimize on in-
discriminate batches, and under-stress-test ripple effects on related knowledge and reasoning, calling
for tighter evaluation and integration mechanisms Cohen et al. (2024); Wang et al. (2024b). Overall,
these issues highlight the tension between reliability, specificity, and scalability that any practical
editing system must resolve.

To address these challenges, we propose a framework named REPAIR (Robust Editting via
Progressive Adaptive Intervension and Reintegration), with targeted strategies: (1) Closed-loop
feedback with dynamic memory management that monitors edit performance and selectively re-
initializes underperforming modules to stabilize routing and consolidation at scale. Concretely, our
controller triggers health checks after each edit window and performs scoped resets or compaction
when drift is detected. (2) Distribution-aware optimization that reorganizes samples by similar-
ity and applies intra-batch distillation to enhance consistency and robustness in few-shot settings,
encouraging edits to generalize across paraphrases and nearby contexts rather than overfitting to sin-
gle prompts. (3) Frequent knowledge fusion that increases fusion cadence to prevent information
loss and ensure timely consolidation of new and existing knowledge, with guardrails that validate
locality before integration to avoid unintended side effects.

We compare REPAIR with several foundational model editing methods across three dimensions:
Memory, Attributes, and Behaviors (Table 1). Its core innovation lies in integrating a dual memory
system with parametric editing, complemented by error feedback, intra batch knowledge distillation,
and loss-aware subspaces merging. This design achieves high success rates and broad editing cov-
erage while minimizing side effects. In contrast, previous methods struggle with knowledge overlap
and loss, particularly in sequential editing, where large differences between adjacent samples hin-
der effective correction. Table 2 showcases cases where REPAIR outperforms baselines, offering a
better balance of Reliability, Generalization, and Locality.

Table 1: Comparison of current model editing methods. “✓” refers to “yes” and “well-
supported”, “×” refers to “no” or “badly-supported”, and “⃝” refers to “less-supported”. The three
metrics of Reliability, Generalization, and Locality denote the performance on lifelong editing.

Memory Attributes Behaviors

Methods Long-term
Memory

Working
Memory Parametric Lifelong Reliability Generalization Locality Error

Feedback
Knowledge
Distillation

FT-EWC Kirkpatrick et al. (2017) ✓ × ✓ ✓ ✓ ✓ × × ×
ROME Meng et al. (2022b) ✓ × ✓ × × × × × ×
MEMIT Meng et al. (2023) ✓ × ✓ × × × × × ×
MEND Mitchell et al. (2022a) ✓ × ✓ × × × × × ×
DEFER Mitchell et al. (2022b) × ✓ ✓ ✓ ⃝ × × × ×
GRACE Hartvigsen et al. (2023) × ✓ × ✓ ✓ × ✓ × ×
WISE Wang et al. (2024a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×

REPAIR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Failure cases study.Previous baselines(Wang et al. (2024a)Hartvigsen et al. (2023))often
encounter issues of repeating answers from previous questions and difficulty in correcting adjacent
knowledge during editing.

MethodPrompt Edit Target Post-Edit Output Metrics

a) The genus Platypatrobus is part of the family? Arctiinae Arctiuc ✗ Reliability✗
b) The genus Platypatrobus is a part of what family - Yemen ✗ Generalization✗
c) The genus Platypatrobus is part of the family? - Arctiinae ✓

c) When was the IAAF Combined Events Challenge launched? 2006 Armand ✗ Reliability✗
d) When does season 5 of ruby come out? October 14, 2017 2006 ✗ Locality✗
e)when does season 5 of ruby come out? - 2017✓

In summary, our key contributions are:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Error-prone
Samples

New Samples
Data Reintegration

Side Memory Pruning

Side Memory StoreIn-Batch Distillation

 batches

teacher

student distilled memory

In-
batch
group

The capital of France is Lyon ParisEdit
Model Editing

Error Sample Monitor

The capital of France is Paris.

Mount Everest is located in Africa.

Figure 2: The overall structure of REPAIR. An edit, such as changing the capital of France from
”Lyon” to ”Paris,” is stored as a parameter update, ∆θ, in the Side Memory. An Error Sample
Monitor evaluates the performance of each edit (Outei). If the error rate, Errthresh, for an edit on a
new sample exceeds a threshold ϵ, the Side Memory Pruning module removes the erroneous update.
The system then reintegrates new and error-prone samples for continuous learning.

• We identify three critical challenges in model editing: (1) instability under large-scale se-
quential edits, (2) poor generalization in few-shot scenarios, and (3) inefficient learning
from open-loop, distribution-agnostic pipelines;

• We propose REPAIR, a novel framework to address these challenges by integrating a
dual-memory system with parametric editing. It introduces closed-loop error feedback,
distribution-aware optimization, and loss-aware subspaces merging to ensure robust and
precise updates.

• We validate REPAIR across diverse models (including LLaMA-3, Qwen-2.5,
DeepSeek-R1-1.5B, and GPT-2-XL), demonstrating a 15%–20% improvement in overall
editing performance over state-of-the-art methods and showing consistent, robust general-
ization.

2 METHODOLOGY

We propose a novel closed-loop lifelong model editing framework, denoted a REPAIR, which ad-
dresses the limitations of open-loop editing in distributed side-memory methods. Our framework,
as shown in Figure 2, integrates (1) closed-loop error feedback with dynamic memory manage-
ment; (2) distribution-aware batch reassembly with intra-batch knowledge distillation; (3) loss-
aware weighted knowledge merging.

2.1 PROBLEM SETUP

Definition 2.1 (Lifelong Model Editing). Given a pre-trained model fθ0(y|x), a sequential edit
stream {Et}Tt=1 where Et = {(x(t)

i , y
(t)
i)}Ni=1, and auxiliary distributions G(x) (paraphrased inputs)

and U (unrelated contexts), the objective is to obtain updated parameters θT that optimize the multi-
objective trade-off:

θt = argmin
θ

α
1

N

N∑
i=1

ℓ
(
fθ(·|x(t)

i), y
(t)
i

)
︸ ︷︷ ︸

reliability

+β
1

N

N∑
i=1

E
x′∼G(x(t)

i)

[
ℓ
(
fθ(·|x′), y

(t)
i

)]
︸ ︷︷ ︸

generalization

+ γ Ex∼U
[
KL

(
fθt−1(·|x) ∥ fθ(·|x)

)]︸ ︷︷ ︸
locality

+R(θ, θt−1)︸ ︷︷ ︸
stability

(1)

where (α, β, γ) are hyperparameters controlling the reliability-generalization-locality-stability
trade-off, and R denotes a regularization term enforcing parameter smoothness across sequential
edits.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 DUAL MEMORY MECHANISM AND ROUTING

As shown in Figure 2, block 1: For dual memory-based editing methods, the dual memory mecha-
nism is typically deployed in the deep layers of the network. Specifically, for the value matrix Wv

of the target FFN layer, here create a copy as the side memory pool Ms, i.e.: M (0)
s = Wv If the side

memory pool is activated, the output is computed as: os = ϕ(fTWk) ·Ms, where ϕ denotes the
non-linear activation function, and os represents the FFN output based on the side memory(Wang
et al. (2024a)).

During the inference phase, for moemory pool i, the activation score is defined as

∆
(i)
act(x) = ∥A(x) · (W ′

v,i −Wv)∥2. (2)

where A(·) = a is the activation of the side memory’s corresponding FFN layer. Routing selects the
pool with the activation score. If maxi ∆

(i)
act(x) ≤ ε, the main memory Wv is used. Otherwise, the

side memory pool Ms is selected. To enforce discriminative routing, we use a margin-based loss.
The objective of the routing mechanism is to establish a clear decision boundary:

min
xe∼E

R(xe) ∼ min
x′∼U

R(x′) > τ > max
xi∼G

R(xi) (3)

where τ is a preset threshold, and E and Gi represent the edit and edit-irrelevant datasets, respec-
tively. This selective activation mechanism ensures that edited knowledge is only retrieved in rele-
vant contexts, thereby minimizing interference with the original model’s performance.

2.3 DISTRIBUTION-AWARE INTRA-BATCH KNOWLEDGE DISTILLATION

As shown in Figure 2 block 2: A sample batch E = {x1, x2, . . . , xn}, and denote the corresponding
feature representations by oi = Norm(fθ(xi), i = 1, . . . , n,). To improve the consistency and
stability of model updates during sequential edits, we organized samples into homogeneous batches
and performed intrabatch knowledge distillation. Samples with high mutual similarity are grouped
into a batch B = {x(0), x(1), . . . , x(b−1)}. Within each batch, the first sample x(0) acts as a teacher,
while the remaining samples are students. We define the intra-batch knowledge distillation loss as

LKD = λ · Lcosine + θ · Lvariance (4)

where Lcosine = 1 − oi·o0
∥oi∥∥o0∥ and Lvariance = 1

N

∑N
i=1 ∥oi − omean∥2. Minimizing Lkd encourages

all samples in the batch to share similar knowledge, which in turn reduces potential conflicts when
updating the same network parameters θ. The regularization term is used to maintain diversity
among features, preventing excessive uniformity.

If certain samples cannot be well-aligned with the batch (i.e., their Lkd remains high after optimiza-
tion), this indicates that they do not belong to the same distribution cluster and are unlikely to be
effectively edited together. Such samples are removed from the batch and reclustered with other
samples to form new homogeneous groups. Formally, the final batch reassembly can be expressed
as

B∗ = Recluster
(
{x ∈ B | Lkd(x,B) < ϵ}

)
, (5)

where ϵ is a threshold controlling intra-batch consistency. This procedure ensures that sequential
parameter edits are performed on groups of samples with aligned knowledge, improving both sta-
bility and effectiveness of the model update. The convergence proof is provided in the Appendix 4
and Appendix 2.

2.4 CLOSED-LOOP ERROR FEEDBACK AND MEMORY PRUNING

As shown in Figure 2 block 4: After each editing cycle, we evaluate the performance in a feedback
pool E of error response samples by comparing to the correctness threshold τcorrect. For each shard
i, we define the error set Ei = {x ∈ E | i∗(x) = i} and compute the error rate rpool

i for each
side memory pool, defined as the proportion of failed edits within the corresponding sample set:
rpool
i = |{x∈Ei|a(x)≤τcorrect}|

|Ei|

When the pruning conditions are met (ri > τprune or |E| > τE), we execute the following procedure:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1. Memory pool screening & pruning: Identify the side memory pool with the highest error
rate j = argmaxi r

pool
i .Remove the identified memory pool from the system.

2. Sample Reintegration & retraining: Recombine the remaining error samples to form a
new training set Eretrain. Retrain the new side memory pools using Eretrain.

This closed-loop feedback mechanism enables the system to dynamically identify and eliminate
underperforming memory units while optimizing the overall editing performance through sample
reorganization and iterative retraining. The time-convergence proof is provided in the Appendix 2.

2.5 MERGING WITH WEIGHTED TIES YADAV ET AL. (2023)

As shown in Figure 2 block 3: After multiple updates, shards {W ′
v,i} produce deltas τi = W ′

v,i−Wv .
We merge them with the weighted TIES operator based on : W ′

v ←Wv + ωi TIES
(
{τi}ki=1;Wv

)
.

The total loss integrates all components:

Ltotal = Ledit + λaLa + λKDLKD. (6)

Ledit is the autoregressive cross-entropy. Ledit(W
′
v) = − logPW ′

v
(y | x). To enforce discriminative

routing, we use a margin-based loss:

La = min

{
max(0,∆act(xi)− γ1)

+ max(0, γ2 −∆act(xe)) + max(0, γ − (∆act(xe)−∆act(xi)))

} (7)

For shard i, consider ∥ subspaces {θ1, . . . , θk}, each trained on a subset of samples Ei. Let the
average training loss of subspaces θi be: Li =

1
|Ei|

∑
(x,y)∈Ei

ℓ(f(x; θi), y), where ℓ(·) is the task

loss. We define the merging weight of each subspaces as wi = exp(−αLi)∑M
j=1 exp(−αLj)

, with α > 0

controlling sensitivity to the loss. The global network parameters are then obtained via weighted
averaging: θ =

∑M
i=1 wi θi. This loss-aware merging favors subspaces that achieve lower training

loss on their corresponding samples, promoting reliable knowledge integration.

3 EXPERIMENTS

In the experimental section, we design six evaluations to answer the following questions:

• Q1: Do the three key innovations (closed-loop feedback, discriminative pruning, and dis-
tribution reintegration) improve edit accuracy, generalization, and locality?

• Q2: Does the method generalize well to knowledge-intensive tasks such as question an-
swering and hallucination mitigation?

• Q3: Is the method effective across different parameter scales and diverse architectures,
including recent open-source models?

• Q4: Under distribution shift (e.g., on the Wikibig Edit dataset), does the method remain
robust and outperform existing methods?

• Q5: Can the method maintain long-term stability and reliability in large-scale sequential
editing scenarios?

• Q6: What are the contributions and sensitivities of each component and hyperparameter to
overall performance?

3.1 EXPERIMENTAL SETUP

Datasets and Models. Autoregressive LLMs are ideal for evaluating model editing due to their
unidirectional causal structure, which allows predictable and traceable edits. This ensures clear
interpretability of edit generalization and locality. We evaluate widely used models (LLaMA-3-
8B, GPT2-XL) and recent models (Qwen2.5-7B, DeepSeek-R1-1.5B), using datasets such as ZsRE

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for closed-book QA, Wikibig Edit for editing performance, and a hallucination dataset to assess
generalization. For more details, refer to the Appendix 5.

Baselines.

• Direct Parameter Editors: Directly modify model weights (e.g., ROME Gupta et al.
(2024), MEMIT Meng et al. (2023), MEMIT-mass Meng et al. (2023)).

• Hypernetwork-Based Editors: Use an auxiliary network to generate parameter updates at
inference (e.g., MEND Mitchell et al. (2022a)).

• External Memory-Based Editors: Leave the model unchanged and store edits in external
memory, retrieved via a routing mechanism (e.g., SERAC Mitchell et al. (2022b), GRACE
Hartvigsen et al. (2023), WISE Wang et al. (2024b)).

Implementation Details. experiments were conducted simultaneously using two GPUs: an A100
PCIe 80GB and an A100 SXM4 40GB. The code was implemented based on PyTorch 2.1, with
modifications built upon the original EasyEditor framework. The specific hyperparameter settings
are detailed in Appendix C.

Evaluation Metrics Each edited corpus instance comprises three components: the descriptor ke
used to perform the edit, an irrelevant prompt-answer pair k′e to verify locality and a rephrase prompt
kloc to evaluate generalization performance across different expressions. To comprehensively evalu-
ate the optimization capability of the proposed method in addressing the continual learning trilemma,
we employ four metrics—edit accuracy: Rel = 1

N

∑N
n=1 l(fωN

(xn
e) = yn

e), rephrase accuracy :
Gen = 1

N

∑N
n=1 l(fωN

(x′n
e) = yn

e), locality : Loc = 1
N

∑N
n=1 l(fωN

(xn
loc) = fω0(x

n
loc). We use

the geometric mean of Rel., Gen., and Loc. to evaluate the overall editing performance, which bal-
ances metric sensitivity and interpretability, exhibits sensitivity to weak performance areas, and is
suitable for scenarios where all three metrics are equally important. OP = 3

√
Rel.× Gen.× Loc. to

assess the holistic editing effectiveness. Here, l(·) is the indicator function used to count the number
of successful predictions.

For the hallucination dataset specifically, we utilize perplexity(PPL) as the metric to assess editing
performance. PPL can be interpreted as the ”average branching factor in predicting the next token,”
where a lower value indicates more accurate model predictions and suggests a reduced likelihood of
the edited model generating hallucinations. PPL = exp

(
− 1

N

∑N
i=1 logP (yi|contexti)

)
3.2 MAIN RESULTS

GPT2-XL DeepSeek R1-1.5B Qwen2.5-7B LLaMA3-8B
0

20

40

60

80

Pe
rf

or
m

an
ce

 S
co

re
(%

)

67

78

86
88

60

75

84
87

72

90
93

91

60pre edit avg.

72pre edit avg.

80pre edit avg.

84pre edit avg.

Rel.
Gen.
Loc.

Figure 3: Average Editing Performance of Wik-
iBigEdit Across Different Models

Table 3 effevtively addressed Q1, Q4 and Q5.
It has been rigorously evaluated across diverse
models and scales (N = 1, 30, 120, 1000)
of QA editing tasks, demonstrating state-of-
the-art performance. Fine-tuning-based meth-
ods achieve good accuracy and generalization
at small scales but suffer from catastrophic
forgetting and knowledge conflicts in large-
scale edits, leading to performance degradation.
GRACE excels in accuracy but has limited gen-
eralization, while WISE maintains strong local-
ity but sacrifices critical knowledge, reducing
editing accuracy. ROME-style methods are stable but overfit and struggle with generalization.

To address Q2, Table 4 shows REPAIR’s effectiveness in reducing hallucinations on the SelfCheck-
GPT dataset for LLaMA-3-8B across different editing scales. REPAIR balances reduced hallucina-
tions with preserved locality, making it highly effective for large-scale model editing.

To address Q3 and Q4, Table 3 and Figure 3 show that REPAIR’s closed-loop error feedback,
together with distribution-aware clustering and redistribution, yields consistently superior perfor-
mance across edit scales and exceptional stability for large-scale edits. Smaller models concen-
trate knowledge in narrower parameter subsets, enabling reliable local corrections but weaken-
ing long-term stability and generalization (i.e., maintaining accuracy while preserving unrelated

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Comparative results for QA on multi-scale editing (ZsRE and WikiBigEdit) N : Num Edits.

Method N = 1 N = 30 N = 120 N = 1000

Rel. Gen. Loc. OP. Rel. Gen. Loc. OP. Rel. Gen. Loc. OP. Rel. Gen. Loc. OP.

LLaMA-3-8B (ZsRE)

FT-L 0.57 0.52 0.96 0.66 0.35 0.35 0.52 0.39 0.29 0.26 0.21 0.25 0.19 0.15 0.02 0.08
FT-EWC 0.96 0.93 0.02 0.26 0.78 0.76 0.02 0.23 0.76 0.76 0.08 0.36 0.69 0.67 0.08 0.33
MEND 0.95 0.93 0.96 0.95 0.24 0.25 0.18 0.22 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.00
ROME 0.85 0.80 0.99 0.88 0.61 0.60 0.68 0.63 0.22 0.22 0.04 0.12 0.01 0.01 0.01 0.01
MEMIT-M 0.84 0.81 0.99 0.88 0.73 0.72 0.95 0.79 0.70 0.65 0.82 0.72 0.63 0.63 0.62 0.63
DEFER 0.68 0.58 0.56 0.61 0.65 0.47 0.36 0.49 0.20 0.12 0.27 0.20 0.03 0.03 0.74 0.27
GRACE 0.97 0.36 1.00 0.71 0.96 0.17 1.00 0.55 0.94 0.14 1.00 0.51 0.93 0.08 1.00 0.42
WISE 0.94 0.92 1.00 0.95 0.62 0.60 0.86 0.68 0.57 0.58 0.87 0.66 0.45 0.44 0.51 0.47

REPAIR 0.94 0.92 1.00 0.95 0.93 0.90 0.87 0.89↑ 0.76 0.74 1.00 0.83↑ 0.68 0.65 0.89 0.73↑
Qwen2.5-7B (ZsRE)

FT-L 0.68 0.63 0.93 0.74 0.28 0.23 0.44 0.30 0.13 0.11 0.10 0.11 0.08 0.06 0.02 0.05
FT-EWC 0.97 0.92 0.05 0.35 0.82 0.80 0.02 0.24 0.71 0.69 0.05 0.29 0.58 0.56 0.03 0.21
MEND 0.96 0.95 0.96 0.96 0.31 0.31 0.27 0.29 0.15 0.14 0.03 0.09 0.02 0.02 0.00 0.00
ROME 0.90 0.89 0.99 0.93 0.77 0.73 0.52 0.66 0.31 0.28 0.03 0.14 0.01 0.02 0.00 0.00
MEMIT-M 0.84 0.81 0.99 0.88 0.73 0.72 0.95 0.79 0.70 0.65 0.82 0.72 0.52 0.51 0.57 0.53
DEFER 0.74 0.67 0.88 0.76 0.58 0.51 0.44 0.51 0.22 0.21 0.43 0.27 0.14 0.08 0.25 0.14
GRACE 0.97 0.41 0.98 0.73 0.97 0.2 1.00 0.58 0.95 0.08 0.98 0.42 0.94 0.02 1.00 0.27
WISE 0.97 0.95 0.98 0.97 0.79 0.73 0.91 0.80 0.59 0.57 0.92 0.68 0.44 0.41 0.72 0.51

REPAIR 0.98 0.95 1.00 0.98 ↑ 0.93 0.90 0.93 0.92↑ 0.81 0.80 0.92 0.84↑ 0.72 0.70 0.67 0.69↑
DeepSeek-R1-1.5B (WikiBigEdit)

FT-L 0.71 0.68 0.93 0.77 0.26 0.20 0.76 0.34 0.13 0.11 0.37 0.17 0.02 0.02 0.08 0.03
FT-EWC 0.93 0.91 0.33 0.65 0.70 0.70 0.18 0.45 0.42 0.41 0.07 0.23 0.18 0.15 0.02 0.08
MEND 0.91 0.87 0.95 0.91 0.43 0.38 0.10 0.25 0.24 0.23 0.08 0.16 0.03 0.03 0.02 0.05
ROME 0.86 0.83 0.97 0.88 0.72 0.71 0.67 0.70 0.18 0.18 0.02 0.09 0.01 0.0 0.01 0.00
MEMIT-M 0.86 0.87 0.97 0.90 0.78 0.77 0.82 0.79 0.54 0.51 0.77 0.60 0.38 0.38 0.62 0.45
DEFER 0.68 0.58 0.47 0.35 0.63 0.61 0.51 0.58 0.17 0.15 0.33 0.20 0.07 0.07 0.12 0.08
GRACE 0.96 0.47 0.99 0.76 0.93 0.24 0.91 0.59 0.76 0.13 0.89 0.44 0.63 0.07 0.81 0.33
WISE 0.89 0.91 0.98 0.93 0.76 0.74 0.89 0.79 0.64 0.65 0.83 0.70 0.47 0.38 0.61 0.48

REPAIR 0.98 0.93 0.98 0.96↑ 0.84 0.83 0.91 0.86↑ 0.71 0.69 0.90 0.76↑ 0.58 0.54 0.81 0.63↑

Table 4: Main editing results for Hallucination task (SelfCheckGPT).

Method N = 1 N = 30 N = 120 N = 500

Rel. (PPL ↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑) Rel. (↓) Loc. (↑)

LLaMA-3-8B

FT-L 4.27 0.96 3.15 0.71 34.52 0.43 51.31 0.26
FT-EWC 2.18 0.24 3.51 0.09 2.90 0.21 3.48 0.24
MEND 5.34 0.87 1.24 0.86 9.17 0.89 564.9 0.00
ROME 1.88 0.99 2.47 0.94 84.56 0.03 73.4 0.02
MEMIT-M 1.62 1.00 1.78 0.99 8.03 0.99 7.43 0.94
DEFER 1.29 0.23 4.12 0.28 8.91 0.19 15.16 0.12
GRACE 2.21 1.00 8.67 1.00 7.24 1.00 6.18 1.00
WISE 1.91 1.00 1.59 1.00 1.14 0.99 2.08 0.99

REPAIR 1.43 1.00 1.37 1.00 1.12 1.00 1.91 1.00

knowledge). Accordingly, DeepSeek-R1-1.5B attains higher immediate correction rates at small
edit Num, yet degrades quickly as N grows. For locality, LLaMA-3-8B and Qwen2.5-7B are
marginally stronger due to parameter redundancy; DeepSeek-R1-1.5B remains competitive only at
low N, then collapses under extreme multi-point editing. In contrast, larger models distribute knowl-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

edge more broadly, and though harder to modify—successful edits generalize better across contexts.
At a medium scale (N=120), MEMIT-M and WISE show higher Rel., likely because REPAIR’s
pruning/reassembly introduces transient instability before sufficient error signals accumulate; how-
ever, at N=1000 their performance drops sharply, while REPAIR’s dynamic adjustment preserves
robustness and achieves the best overall metric. The error distribution can be seen in Appendix.

(a) (b)

0 100 200 300 400 500 600
Num_Edits

0

20

40

60

80

A
ct

iv
at

io
n

Sc
or

e

Hallucination(w/o KD)
Rewrite prompt
Locality prompt

(c)

0 100 200 300 400 500 600
Num_Edits

0

10

20

30

40

50

A
ct

iv
at

io
n

Sc
or

e

Hallucination(w/ KD)
Rewrite prompt
Locality prompt

(d)

Figure 4: Activation Score Visualization. Results on LLaMA-3 for the WikiBigEdit dataset
(N=1550) for the QA task and the SelfCheckGPT dataset for hallucination (N=600).

Figure 3 further addresses Q1 regarding the effectiveness of distillation. For external memory-
based editors, the ability to select the correct network for inference directly determines editing per-
formance. The activation score, which serves as a critical routing criterion in memory networks,
must exhibit statistically significant differences between new knowledge and irrelevant knowledge
to ensure both reliability and locality of edits. As shown in Figure 4 (a) and (c), prior methods
relying solely on triple-boundary loss fail to adequately separate the activation scores of Dataedit,
Datarephrase, and Dataloc, particularly in large-scale continual editing scenarios, leading to a
breakdown of the routing mechanism. This deficiency fundamentally limits their editing perfor-
mance. In contrast, by introducing intra-batch knowledge distillation, sample filtering, and samples
reintegration, KD, as shown in Figure 4 (b) and (d), achieves a clear separation among the three
types of samples, thereby ensuring the proper functioning of the routing mechanism.

3.3 ABLATION STUDIES

(a) N=30 (b) N=60 (c) N=120 (d) N=1000

Figure 5: Performance comparison of different components. Each radar chart shows performance
on four metrics: Rel., gen., loc., and OP. on Qwen2.5 with ZsRE.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The evaluation of the overhead and throughput of REPAIR can be found in the Appendix 7. To
answer Q6, we conducted comprehensive evaluations across four dimensions to assess the effec-
tiveness of each component of REPAIR and analyze critical hyperparameter sensitivity under dif-
ferent editing scales. Notably, REPAIR demonstrates robustness in large-scale editing scenarios
that prior methods fail to achieve. As the number of edits increases, REPAIR exhibits increasingly
pronounced advantages in overall performance: effective routing ensures strong locality, while the
error-feedback mechanism maintains continual reliability. As shown in Figure 5 (a)–(d), the relative
contributions of REPAIR’s components vary across sample regimes but complement each other
seamlessly. In small-scale edits, pruning with error feedback substantially improves reliability,
while in large-scale scenarios, distribution-aware recognition and knowledge distillation become
more critical. Regarding hyperparameter analysis in Figure 6, we observe distinct performance pat-
terns: low thresholds fail to filter low-quality samples, limiting corrective opportunities; The total
number of edits is limited, and the filtered erroneous samples cannot receive sufficient corrective
training, which limits overall performance. A large number of erroneous samples in the early stage
undergo continuous learning, causing the model to quickly fall into local optima, leading to catas-
trophic degradation of generalization. Subsequent learning yields minimal improvement, resulting
in poor performance. In the upper-right quadrant, the absence of error feedback leaves many sub-
optimal samples, and the model editing efficiency is relatively high, approximating an open-loop
editing process. In the lower-right quadrant, the model training efficiency is the lowest, but ex-
cessive editing can introduce overfitting risks, wasting computational resources on edits with low
marginal utility.

=0.1 =0.2 =0.3 =0.5 =0.8
=0.9

8

Parameter Mask Ratio

k=2

k=3

k=4

k=5

k=6

k=8

k=10

M
er

ge
 N

um

0.883 0.924 0.877 0.767 0.584 0.432

0.861 0.893 0.853 0.732 0.543 0.449

0.834 0.861 0.820 0.743 0.587 0.381

0.806 0.792 0.784 0.705 0.639 0.329

0.742 0.723 0.711 0.682 0.667 0.426

0.725 0.712 0.675 0.659 0.712 0.493

0.713 0.679 0.633 0.626 0.712 0.511

Performance Score (OP.)

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce
 S

co
re

 (O
P.)

(a)

N=20
0

N=50
0

N=10
00

N=15
00

N=20
00

N=25
00

Max Edit Inter

=0.6

=0.75

=0.8

=0.85

=0.9

=0.95

=1

Er
ro

r T
hr

es
ho

ld

0.491 0.566 0.687 0.710 0.691 0.602

0.534 0.667 0.733 0.728 0.668 0.615

0.726 0.861 0.893 0.914 0.779 0.630

0.769 0.891 0.924 0.902 0.684 0.601

0.621 0.723 0.833 0.772 0.667 0.642

0.510 0.648 0.714 0.554 0.524 0.603

0.478 0.553 0.652 0.715 0.513 0.547

Performance Score (OP.)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pe
rfo

rm
an

ce
 S

co
re

 (O
P.)

(b)

Figure 6: Performance heatmap for the N=120 QA task on the LLaMA3 model. Figure (a)
shows the sensitivity analysis of two hyperparameters: the number of subspaces and the amount of
updated parameters; Figure (b) analyzes the impact of error threshold and maximum iteration count
on performance, with optimal performance observed at intermediate values.

4 CONCLUSION

In this work, we proposed REPAIR, a robust framework for lifelong model editing integrating error
closed-loop feedback, intra-batch knowledge distillation, and loss-aware subspaces merging. Ex-
tensive experiments demonstrate that REPAIR maintains high performance under small-scale edits
and exhibits remarkable robustness in large-scale editing scenarios, consistently outperforming ex-
isting baselines. These results highlight the potential of combining memory-aware strategies with
optimization-driven editing for reliable and precise model updates. The intra-group distillation ex-
plicitly encourages feature alignment among similar samples, guiding the elimination and recombi-
nation of inconsistent samples. The loss-aware merging assigns higher weights to subspaces achiev-
ing lower training loss, effectively preserving reliable knowledge and reducing information dilution.
Extensive experiments show that REPAIR consistently improves reliability and generalization, and
demonstrates clear advantages in large-scale editing scenarios, highlighting the effectiveness of co-
ordinated sample-level alignment and global reliability-aware merging.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 6491–6506, Online and Punta Cana, Dominican Republic, 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL https:
//aclanthology.org/2021.emnlp-main.522/.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283–298, 2024. doi: 10.1162/tacl a 00644. URL https://aclanthology.
org/2024.tacl-1.16/.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for con-
tinual learning. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 108 of Pro-
ceedings of Machine Learning Research, pp. 3762–3773. PMLR, Aug 2020. URL https:
//proceedings.mlr.press/v108/farajtabar20a.html.

Enrico Fini, Victor G. Turrisi da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, and
Julien Mairal. Self-supervised models are continual learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9621–9630, June 2022.
URL https://openaccess.thecvf.com/content/CVPR2022/html/Fini_
Self-Supervised_Models_Are_Continual_Learners_CVPR_2022_paper.
html.

Ayush Gupta, Han Liu, Agastya Sharma, Di Jin, Neil Zhenqiang Gong, Sameer Singh, and Chenhao
Tan. Rebuilding ROME: Resolving model collapse during sequential model editing. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2024. URL https://aclanthology.org/2024.emnlp-main.1210/.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh
Ghassemi. Aging with GRACE: Lifelong model editing with discrete key-value adap-
tors. In Advances in Neural Information Processing Systems (NeurIPS), 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
95b6e2ff961580e03c0a662a63a71812-Paper-Conference.pdf. NeurIPS
2023.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/10.
1073/pnas.1611835114.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, , and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pp. 333–342, Vancouver, Canada, August 2017. Association for
Computational Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.
org/K17-1034/.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2018. doi: 10.1109/TPAMI.2017.2773081. URL
https://doi.org/10.1109/TPAMI.2017.2773081.

10

https://aclanthology.org/2021.emnlp-main.522/
https://aclanthology.org/2021.emnlp-main.522/
https://aclanthology.org/2024.tacl-1.16/
https://aclanthology.org/2024.tacl-1.16/
https://proceedings.mlr.press/v108/farajtabar20a.html
https://proceedings.mlr.press/v108/farajtabar20a.html
https://openaccess.thecvf.com/content/CVPR2022/html/Fini_Self-Supervised_Models_Are_Continual_Learners_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Fini_Self-Supervised_Models_Are_Continual_Learners_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Fini_Self-Supervised_Models_Are_Continual_Learners_CVPR_2022_paper.html
https://aclanthology.org/2024.emnlp-main.1210/
https://proceedings.neurips.cc/paper_files/paper/2023/file/95b6e2ff961580e03c0a662a63a71812-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/95b6e2ff961580e03c0a662a63a71812-Paper-Conference.pdf
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://www.pnas.org/doi/10.1073/pnas.1611835114
https://aclanthology.org/K17-1034/
https://aclanthology.org/K17-1034/
https://doi.org/10.1109/TPAMI.2017.2773081

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for contin-
ual learning. In Advances in Neural Information Processing Systems 30 (NeurIPS
2017), pp. 6467–6476, 2017. URL https://papers.nips.cc/paper/
7225-gradient-episodic-memory-for-continual-learning.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single net-
work by iterative pruning. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 7765–7773, 2018. doi: 10.1109/CVPR.2018.
00810. URL https://openaccess.thecvf.com/content_cvpr_2018/papers/
Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.pdf.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In The Psychology of Learning and Motivation, volume 24, pp.
109–165. Academic Press, 1989. doi: 10.1016/S0079-7421(08)60536-8. URL https://www.
sciencedirect.com/science/article/pii/S0079742108605368.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investi-
gation of the role of pre-training in lifelong learning. Journal of Machine Learning Research, 24
(214):1–50, 2023. URL https://www.jmlr.org/papers/v24/22-0496.html.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Advances in Neural Information Processing Systems (NeurIPS), 2022a.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf. NeurIPS 2022.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022b.

Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov, and David Bau Lab. Counterfact:
A benchmark for evaluating knowledge editing locality and generalization. https://rome.
baulab.info/, 2022c. Dataset introduced alongside ROME.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In International Conference on Learning Representations (ICLR), 2023.
URL https://openreview.net/forum?id=MkbcAHIYgyS.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Fast
model editing at scale. In International Conference on Learning Representations (ICLR), 2022a.
URL https://openreview.net/pdf?id=0DcZxeWfOPt.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn.
Memory-based model editing at scale. In Proceedings of the 39th International Conference
on Machine Learning (ICML), volume 162 of Proceedings of Machine Learning Research,
pp. 15828–15846. PMLR, 2022b. URL https://proceedings.mlr.press/v162/
mitchell22a.html.

Xuming Ran, Juntao Yao, Yusong Wang, Mingkun Xu, and Dianbo Liu. Brain-inspired continual
pre-trained learner via silent synaptic consolidation. ArXiv, abs/2410.05899, 2024. URL https:
//api.semanticscholar.org/CorpusID:273228983.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. URL https://arxiv.org/abs/1606.04671.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with
deep generative replay. In Advances in Neural Information Processing Systems 30
(NeurIPS 2017), pp. 2990–2999, 2017. URL https://papers.nips.cc/paper/
6892-continual-learning-with-deep-generative-replay.

Together Computer. RedPajama: An open dataset for training large language models, 2023. URL
https://www.together.ai/blog/redpajama.

11

https://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning
https://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning
https://openaccess.thecvf.com/content_cvpr_2018/papers/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.pdf
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.jmlr.org/papers/v24/22-0496.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://rome.baulab.info/
https://rome.baulab.info/
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/pdf?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://api.semanticscholar.org/CorpusID:273228983
https://api.semanticscholar.org/CorpusID:273228983
https://arxiv.org/abs/1606.04671
https://papers.nips.cc/paper/6892-continual-learning-with-deep-generative-replay
https://papers.nips.cc/paper/6892-continual-learning-with-deep-generative-replay
https://www.together.ai/blog/redpajama

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models. In Advances in Neural Information Processing Systems (NeurIPS), 2024a. doi:
10.48550/arXiv.2405.14768. URL https://arxiv.org/abs/2405.14768. NeurIPS
2024. Also available as arXiv:2405.14768.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowl-
edge editing for large language models: A survey. ACM Computing Surveys, 2024b. doi:
10.1145/3698590. URL https://dl.acm.org/doi/10.1145/3698590. Also available
as arXiv:2310.16218.

Zhenyi Wang, Zhen Zhang, Xiaojuan E, Ziyu Zhang, Zhipeng Luo, Zhipeng He, and Guangyao Li.
A comprehensive survey on continual learning: From definitions to applications. arXiv preprint
arXiv:2302.00487, 2023. URL https://arxiv.org/abs/2302.00487.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models, 2023. URL https://arxiv.org/abs/2306.
01708.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
Xi Chen, and Huajun Chen. Instructedit: Instruction-based knowledge editing for large lan-
guage models. In Proceedings of the 33rd International Joint Conference on Artificial Intelli-
gence (IJCAI 2024), 2024. doi: 10.24963/ijcai.2024/733. URL https://www.ijcai.org/
proceedings/2024/0733.pdf.

A STATEMENT

A.1 ETHICS STATEMENT

This work studies safe, auditable editing of large language models using only publicly available
datasets (ZsRE, WikiBigEdit, and a hallucination set) and off-the-shelf pretrained models; no human
subjects or personally identifiable data were collected. We follow all dataset/model licenses and the
double-blind review policy. Potential risks include misuse of editing to inject misinformation or to
weaken safety constraints, and unintended spillover of edits to unrelated behaviors. To mitigate these
risks, our framework emphasizes locality and closed-loop error checks before and after integration,
and we report reliability–generalization–and locality metrics to surface side effects. Upon release,
we will include guardrails such as edit logs, validation suites, reversible edits, and instructions for
responsible use. These design choices align with REPAIR’s stated goal of precise updates with
locality safeguards.

A.2 REPRODUCIBILITY STATEMENT

We will release our code, configs, and seeds to reproduce all results end-to-end after acceptance.
Scripts fetch data/models, fix environments, and regenerate all tables/figures with the exact metrics
(Rel./Gen./Loc./OP., PPL); hardware and hyperparameters are documented.

A.3 AI USAGE STATEMENT

We used large language model–based tools during writing and implementation for text polishing,
grammar and usage checks, and programming assistance (e.g., example code, refactoring, com-
ments, and script templates). All AI-generated suggestions were reviewed, revised, and validated
by the authors. The experimental design, data processing, result analysis, and conclusions were
conducted independently by the authors; AI tools do not constitute authorship or academic credit.
No sensitive or restricted data were provided to the tools, and they were not used to automatically
generate experimental results or to replace essential human judgment.

12

https://arxiv.org/abs/2405.14768
https://dl.acm.org/doi/10.1145/3698590
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2306.01708
https://www.ijcai.org/proceedings/2024/0733.pdf
https://www.ijcai.org/proceedings/2024/0733.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B RELATED WORK

B.1 CONTINUAL LEARNING

Continual Learning (CL)—also known as Incremental Learning or Lifelong Learning—aims to en-
able models to learn sequentially from a stream of tasks without forgetting previously acquired
knowledge. The core challenge in CL is catastrophic forgetting, where adapting to new tasks leads
to a significant degradation in performance on earlier tasks Kirkpatrick et al. (2017); McCloskey &
Cohen (1989). To address this, numerous methods have been proposed, which can be broadly cat-
egorized into five groups: regularization-based, replay-based, optimization-based, representation-
based, and architecture-based approaches.

Regularization-based methods mitigate forgetting by adding constraints to the loss function to pre-
serve important parameters or behaviors from previous tasks. For example, Elastic Weight Con-
solidation (EWC) leverages Fisher information to regularize parameter updates Kirkpatrick et al.
(2017), while Learning without Forgetting (LwF) uses knowledge distillation to maintain output
consistency Li & Hoiem (2018).

Replay-based methods retain or generate samples from previous tasks to approximate old data distri-
butions. Experience replay stores a subset of prior samples in a memory buffer Lopez-Paz & Ranzato
(2017), whereas generative replay synthesizes pseudo-samples using deep generative models such
as GANs or VAEs Shin et al. (2017).

Optimization-based methods manipulate the optimization process itself to avoid interference be-
tween tasks. Gradient Episodic Memory (GEM) projects gradients so as not to increase loss on
previous tasks Lopez-Paz & Ranzato (2017), while Orthogonal Gradient Descent (OGD) promotes
updates that are orthogonal to gradient directions associated with past tasks Farajtabar et al. (2020).

Representation-based methods focus on learning robust and transferable features that are less prone
to forgetting. Self-supervised learning Fini et al. (2022) and large-scale pre-training Mehta et al.
(2023) have been shown to bolster CL performance by providing more stable representations.

Architecture-based methods Ran et al. (2024); Rusu et al. (2016); Mallya & Lazebnik (2018)dynam-
ically expand or partition the network to allocate task-specific parameters. Progressive Networks add
new columns for each incoming task with lateral connections to prior columns Rusu et al. (2016),
while PackNet iteratively prunes and reuses weights to free capacity for new tasks Mallya & Lazeb-
nik (2018).

Recent trends extend CL to more realistic and challenging settings, including class-incremental
learning (CIL), task-free CL (TFCL), online CL (OCL), and applications across object detection,
semantic segmentation, reinforcement learning, and natural language processing Wang et al. (2023).

B.2 MODEL EDITING

Model editing targets post-hoc modification of a trained model’s behavior to insert, correct, or re-
move specific knowledge, ideally without harming unrelated capabilities. A common taxonomy
distinguishes (i) direct / training-free parameter edits, (ii) learning-based editors that predict weight
updates, and (iii) semi-parametric systems that externalize edits via retrieval or memory; recent
surveys consolidate definitions, benchmarks, and open challenges Wang et al. (2024b).

ROME locates causal mediators of factual associations in mid-layer feed-forward (MLP) modules
of Transformers and applies a rank-one update to edit a single fact Meng et al. (2022a). MEMIT
extends this idea to mass editing, deriving multi-layer closed-form updates that scale to thousands
of edits in large models while maintaining stronger locality than prior methods Meng et al. (2023).
Although effective, subsequent analyses highlight stability issues under sequential edits and propose
remedies Gupta et al. (2024).

Early work framed editing as learning a small hypernetwork to predict weight deltas from an edit
specification: KnowledgeEditor (KE) learns constrained updates to change a model’s factual predic-
tion while preserving behavior on paraphrases Cao et al. (2021). MEND trains lightweight editor
networks to transform fine-tuning gradients, enabling fast, local edits at scale across architectures

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Dataset statistics

Task Editing Data N Pre-edit(LLaMA/Qwen) Locality Data

QA ZsRE 1000 0.25/0.21 ACC NQ Kwiatkowski et al. (2019)
WikiBigEdit 500K 0.36/0.32 ACC NQ

Hallu. SelfCheckGPT 600 28.7/29.1 PPL RedPajama Together Computer (2023)

Table 6: Hyperparameter settings

ZsRE on LLaMA-3

HYPER VALUE HYPER VALUE HYPER VALUE

Mask ratio 0.20 Edit lr 0.90 Err Thresh 0.85
λa 1.00 λKD 1.00 Max iter 10000

Temperature 2.00 Act ratio 0.20 Layer ID 29.00
γ1 2.00 γ2 20.00 γ 10.00
niter 30.00 λ 0.20 Act ratio 0.30

ZsRE on Qwen2.5

Mask ratio 0.20 Edit lr 0.90 Err Thresh 0.85
λa 2.00 λKD 1.00 Max iter 10000

Temperature 2.00 Act ratio 0.88 Layer ID 23.00
γ1 5.00 γ20 20.00 γ 10.0
niter 50.00 λ 0.30 Act ratio 0.30

Selfcheck GPT on LLaMA-3-8B

Mask ratio 0.20 Edit lr 1.00 Err Thresh 0.85
λa 5.00 λKD 1.00 Max iter 5000

Temperature 2.00 Act ratio 0.88 Layer ID 27.00
γ1 5.00 γ2 20.00 γ 10.00
niter 50.00 λ 0.20 Act ratio 0.80

Mitchell et al. (2022a). Instruction-driven variants further condition edits on natural-language in-
structions to improve usability and control Zhang et al. (2024).

Semi-parametric approaches such as SERAC store edits in an external key–value memory and learn
to route between the base model and retrieved counterfactuals, achieving strong reliability and speci-
ficity without permanently altering base parameters Mitchell et al. (2022b). This design is attractive
when edits must be audited, reverted, or scoped to contexts.

Editing methods are typically assessed along reliability (does the change take effect), local-
ity/specificity (does unrelated behavior remain intact), and generalization (do edits transfer to para-
phrases and contexts). Standard benchmarks include CounterFact and zsRE Meng et al. (2022c);
Levy et al. (2017). Recent studies examine ripple effects beyond targeted facts, revealing broader
side impacts on reasoning and distributed knowledge, and call for more rigorous, stress-testing eval-
uations Cohen et al. (2024). Overall, direct, learning-based, and semi-parametric approaches offer
complementary trade-offs in edit scalability, controllability, and safety; combining precise local-
ization with guardrails (e.g., retrieval gating, edit scopes, or validation filters) remains an active
direction Wang et al. (2024b).

C EXPERIMENTS DETAILS

The experiment details are given in Table 5, and hyperparameters are in Table 6.

Under identical hardware and batch configurations, the WISE baseline exhibits lower per-unit over-
head. REPAIR demonstrates a similar scaling slope but with a higher intercept, primarily attributable
to:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Main results for QA on DeepSeek-R1-1.5B N : Num Edits.

Method N = 1 N = 30 N = 120 N = 1000

Rel. Gen. Loc. OP. Rel. Gen. Loc. OP. Rel. Gen. Loc. OP. Rel. Gen. Loc. OP.

DeepSeek-R1-1.5B (ZsRE)

FT-L 0.43 0.42 0.95 0.56 0.32 0.33 0.46 0.36 0.21 0.21 0.15 0.19 0.17 0.15 0.09 0.13
FT-EWC 0.97 0.94 0.15 0.52 0.82 0.81 0.02 0.24 0.63 0.64 0.02 0.20 0.57 0.56 0.02 0.19
MEND 0.95 0.94 0.98 0.96 0.42 0.42 0.18 0.32 0.18 0.12 0.07 0.11 0.8 0.03 0.00 0.00
ROME 0.87 0.87 0.99 0.91 0.66 0.64 0.72 0.67 0.17 0.18 0.09 0.14 0.01 0.01 0.01 0.01
MEMIT-M 0.88 0.87 0.99 0.91 0.71 0.72 0.92 0.78 0.63 0.65 0.78 0.68 0.48 0.47 0.53 0.49
DEFER 0.62 0.60 0.82 0.67 0.58 0.57 0.57 0.57 0.34 0.31 0.23 0.29 0.07 0.06 0.02 0.04
GRACE 0.98 0.31 0.99 0.67 0.92 0.22 0.98 0.58 0.89 0.13 1.00 0.49 0.83 0.05 0.94 0.34
WISE 0.92 0.90 1.00 0.94 0.86 0.85 0.92 0.88 0.72 0.72 0.87 0.77 0.49 0.47 0.47 0.48

REPAIR 0.93 0.93 1.00 0.95 0.91 0.89 0.87 0.89↑ 0.74 0.74 0.82 0.77↑ 0.59 0.57 0.61 0.59↑

Table 8: Main results for QA (ZeRE) on multi-model editing with error distribution.

Method N = 1 N = 30

Rel. Gen. Loc. Rel. Gen. Loc.

LLaMA-3-8B 0.94± 0.008 0.92± 0.01 1.00+0.00
−0.02 0.93± 0.003 0.90± 0.003 0.87± 0.004

Qwen2.5-7B 0.98± 0.02 0.95± 0.03 1.00+0.00
−0.02 0.93± 0.04 0.90± 0.03 0.93± 0.01

DeepSeek-R1 0.93± 0.02 0.92± 0.03 0.99± 0.01 0.91± 0.01 0.89± 0.03 0.87± 0.01
GPT2-XL 0.91± 0.03 0.92± 0.03 0.99± 0.01 0.88± 0.03 0.88± 0.02 0.84± 0.01

Method N = 120 N = 1000

Rel. Gen. Loc. Rel. Gen. Loc.

LLaMA-3-8B 0.76± 0.03 0.74± 0.02 1.00+0.00
−0.04 0.68± 0.05 0.65± 0.01 0.89± 0.04

Qwen2.5-7B 0.81± 0.04 0.80± 0.05 0.92± 0.03 0.72± 0.05 0.70± 0.04 0.67± 0.03
DeepSeek-R1 0.74± 0.03 0.74± 0.04 0.82± 0.05 0.59± 0.02 0.57± 0.01 0.61± 0.03
GPT2-XL 0.79± 0.02 0.77± 0.01 0.80± 0.03 0.61± 0.03 0.62± 0.01 0.68± 0.02

• Distribution-aware clustering and reorganization;

• Additional forward/backward passes for in-batch distillation;

• The triggering frequency and cost of closed-loop pruning and retraining at large scales;

• The final merging (TIES) cost.

As N increases, the runtime curves of ROME, MEND, and FT-L exhibit significantly steeper growth,
becoming substantially expensive or nearly infeasible at N = 103.

Throughput demonstrates that WISE maintains approximately∼ 1.8 edits/min at large N , followed
by GRACE. REPAIR achieves ∼ 0.8-0.9 edits/min at scale, lower than WISE and MEMIT-M,
consistent with expectations given its additional computational procedures.

Error bars (representing standard deviation across multiple runs) indicate that REPAIR exhibits
slightly higher variance than WISE, attributable to fluctuations in retriggering frequency and sample
distribution characteristics.

Relative overhead shows the time ratio of REPAIR to WISE increasing from ∼ 1.6× to ∼ 2.2×
with increasing scale.

D THEORETICAL ANALYSIS AND PROOF SKETCHES

We now provide theoretical justifications for the stability and convergence of the proposed REPAIR
framework. We introduce formal assumptions and derive lemmas and theorems that characterize the
behavior of our method.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Cost-Performance Assessment. The total runtime of each method scales approximately
linearly with the editing scale N , appearing as straight lines with slopes close to 1 in log-log coor-
dinates. This indicates that the primary overhead is proportional to the number of edited entries.

D.1 PRELIMINARIES

Assumption 1 (Standard Optimization Setting). We assume that the loss functionL(Θ) is L-smooth,
i.e.,

∥∇L(Θ1)−∇L(Θ2)∥ ≤ L∥Θ1 −Θ2∥,
and bounded below by L∗ > −∞. Learning rates satisfy ηt > 0 and

∑
t ηt =∞,

∑
t η

2
t <∞.

D.2 STABILITY OF MASKED GRADIENT UPDATES

Lemma 1 (Norm Bound under Masked Updates). Let gi = ∇W ′
v,i
L and Mi be a Bernoulli mask.

Then the masked update
∆W ′

v,i = −η(Mi ⊙ gi)

satisfies ∥∆W ′
v,i∥2 ≤ η∥gi∥2.

Proof. Since Mi is a coordinate projection, Mi⊙gi removes certain entries of gi and never increases
its magnitude. Hence ∥Mi ⊙ gi∥2 ≤ ∥gi∥2. Multiplying by η yields the claim.

Theorem 1 (Inter-Shard Stability). Assume masks {Mi} are sampled independently with overlap
probability ρ2. Then in expectation,

E[⟨Mi ⊙ gi,Mj ⊙ gj⟩] = ρ2⟨gi, gj⟩.

Thus, masking reduces the expected conflict between gradients of different shards.

Proof. For each coordinate p, Pr[Mi(p) = 1,Mj(p) = 1] = ρ2. Therefore, the expected inner
product between masked gradients is ρ2 times the original inner product. This reduces cross-shard
interference and improves stability.

D.3 CLOSED-LOOP RE-TRIGGER ANALYSIS

Assumption 2 (Error Reduction per Re-trigger). Suppose that each re-trigger reduces the error rate
of shard i by at least a fixed constant δ > 0, unless it is already below the pruning threshold τprune.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 2 (Linear Error Decrease). Let r(n)i denote the error rate after n re-triggers. Under As-
sumption 2,

r
(n)
i ≤ r

(0)
i − nδ.

Theorem 2 (Finite-Time Convergence). If r(0)i is the initial error rate, then after at most

N ≥ r
(0)
i − τprune

δ

re-triggers, the error rate satisfies r(N)
i ≤ τprune.

Proof. By Lemma 3, r(N)
i ≤ r

(0)
i − Nδ. Choosing N such that r(0)i − Nδ ≤ τprune ensures

convergence below threshold in finite time.

D.4 OVERALL CONVERGENCE INTUITION

Theorem 3 (Closed-Loop Stability of REPAIR). Under Assumptions 1 and 2, the iterative process
combining masked updates, intra-batch distillation, and closed-loop re-trigger forms a contractive
mapping in expectation. Consequently, the system converges to a stable edited state with a bounded
error rate and without catastrophic forgetting.

Proof Sketch. Masked updates reduce the variance of parameter updates, intra-batch distillation
aligns outputs across samples, and re-trigger guarantees finite-time reduction of shard-level error
rates. Together, these components yield monotone improvement. By standard stochastic contraction
arguments, the process converges to a fixed point characterized by consistent batch predictions and
an error rate below τprune.

Lemma 3 (Zero-variance at any global minimizer). Let µ = 1
m

∑m
i=1 oi and Lvar =

1
m

∑
i ∥oi −

µ∥2. If not all oi are equal, then Lvar > 0, while if o1 = · · · = om = v (with ∥v∥ = 1) then
Lvar = 0. Hence every global minimizer of LKD on (Sd−1)m must satisfy o1 = · · · = om =: v.
Lemma 4 (Unique global minimizer). Under the conclusion of Lemma 3, minimizing LKD(v) =
λ
(
1−⟨v, u⟩

)
over ∥v∥ = 1 gives the unique solution v⋆ = u. Therefore the unique global minimizer

of LKD on (Sd−1)m is S⋆ = [u, . . . , u].
Lemma 5 (Riemannian smoothness). LetM = (Sd−1)m and endow each block with the canonical
metric. Then LKD is LR-smooth onM in the Riemannian sense: there exists a constant

LR ≤
2λ

m
+

4ϑ

m

such that for all S, S′ ∈ M, ∥ gradLKD(S) − gradLKD(S
′)∥ ≤ LR distM(S, S′). Sketch. For

each block oi,∇oiLcos = −(λ/m)u (constant), and∇oiLvar = (2ϑ/m)(oi − µ) with µ depending
linearly on {oj}. Projecting to the tangent space by (I − oio

⊤
i) and using the Lipschitzness of the

projection map on Sd−1 yields the bound.
Theorem 4 (Convergence of cosine+variance KD on the sphere). Consider Riemannian gradient
descent onM = (Sd−1)m:

o
(t+1)
i = R

o
(t)
i

(
−ηt gradoi LKD(St)

)
(i = 1, . . . ,m),

with the retraction Ro(v) = (o + v)/∥o + v∥. If the step sizes satisfy either (a) a constant stepsize
0 < ηt < 2/LR, or (b) diminishing stepsizes

∑
t ηt =∞,

∑
t η

2
t <∞, then:

LKD(St) ↓ LKD(S
⋆), ∥ gradLKD(St)∥ → 0,

and every limit point of {St} is a Riemannian critical point. By Lemma 4, the unique global mini-
mizer is S⋆ = [u, . . . , u]; thus the sequence converges to S⋆.

Proof sketch. Riemannian smoothness (Lemma 5) on the compact manifoldM ensures the standard
descent lemma and monotone decrease for RGD under 0 < η < 2/LR, implying convergence of
function values and gradients to zero. By Lemmas 3–4, the only global minimizer is S⋆, hence all
limit points coincide with S⋆.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.5 STABILITY OF MASKED GRADIENT UPDATES

Let gi = ∇W ′
v,i
L ∈ Rd. A coordinate mask Mi ∈ {0, 1}d acts by (Mi ⊙ gi)p = Mi(p) gi,p.

Lemma 6 (Norm Bound under Masked Updates). For any stepsize η > 0, the masked update
∆W ′

v,i = −η(Mi ⊙ gi) satisfies
∥∆W ′

v,i∥2 ≤ η ∥gi∥2.

Proof. Coordinate-wise, |Mi(p) gi,p| ≤ |gi,p| because Mi(p) ∈ {0, 1}. Hence ∥Mi⊙gi∥2 ≤ ∥gi∥2,
and multiplying by η yields the claim.

Theorem 5 (Inter-Shard Inner-Product Scaling). Suppose that for each coordinate p, the masks
Mi(p),Mj(p) ∈ {0, 1} are sampled independently with

Pr[Mi(p) = 1] = Pr[Mj(p) = 1] = ρ, 0 ≤ ρ ≤ 1,

and masks are independent across coordinates and independent of gi, gj . Then, conditional on
gi, gj ,

E[⟨Mi ⊙ gi, Mj ⊙ gj⟩ | gi, gj] = ρ2 ⟨gi, gj⟩.
In particular, masking scales the expected cross-shard alignment/conflict by the factor ρ2.

Proof. By linearity of expectation and independence, for each coordinate p, E[Mi(p)Mj(p)] =
E[Mi(p)]E[Mj(p)] = ρ2. Summing over p yields the result.

D.6 CLOSED-LOOP RE-TRIGGER ANALYSIS

Assumption 3 (Error Reduction per Re-trigger). Let r(n)i denote the error rate of shard i after
n re-triggers. There exists δ > 0 such that each re-trigger reduces error by at least δ whenever
r
(n)
i > τprune.

Lemma 7 (Piecewise-Linear Error Decrease). Under Assumption 3, for all n ≥ 0,

r
(n)
i ≤ max

{
τprune, r

(0)
i − nδ

}
.

Proof. If r(k)i > τprune, then r
(k+1)
i ≤ r

(k)
i − δ. Once r

(k)
i ≤ τprune, the bound r

(n)
i ≤ τprune

propagates for all n ≥ k. Unrolling gives the stated maximum form.

Theorem 6 (Finite-Time Hitting the Pruning Threshold). Let

N⋆ =
⌈ (r(0)i − τprune)+

δ

⌉
where (x)+ := max{x, 0}.

After at most N⋆ re-triggers, we have r
(N⋆)
i ≤ τprune.

Proof. By Lemma 7, choose the smallest integer N⋆ such that r(0)i −N⋆δ ≤ τprune. Then r
(N⋆)
i ≤

τprune.

E ALGORITHMS

The pseudocode for error feedback, network pruning, sample knowledge distillation and reintegra-
tion, and the loss-based weighted ties merge strategy is as follows:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 REPAIR: Closed-Loop Lifelong Model Editing (Training)

Require: Pretrained model fθ0 ; target FFN value matrix Wv; #shards K; mask ratio ρ; thresh-
olds (ϵ, τE , τprune, τcorrect, ϵcons); margins (γ1, γ2, γ); KD weights (λ, ϑ) for Eq.(4); routing-loss
weight λa; batch size b; optional temperature T for soft KD.

1: Initialize side memories W ′
v,i ← Wv and masks Mi ∼ Bernoulli(ρ) for i = 1..K; feedback

pool E ← ∅; residual poolR ← ∅.
2: for each incoming edit triple (xe, ye, xloc) do
3: i⋆ ← ASSIGNSHARD(xe) ▷ Shard assignment by activation score
4: B ← FORMBATCHES({xe} ∪ R, b) ▷ Distribution-aware batching
5: for each batch B = {x(0), . . . , x(b−1)} ∈ B do
6: i← ASSIGNSHARD(x(0)) ▷ Target shard for this batch
7: Ledit ← AUTOREGCE(B) ▷ Autoregressive cross-entropy
8: LKD ← INTRABATCHKD(B, λ, ϑ, T) ▷ Eq.(4); optional soft KD
9: Lact ← ROUTINGMARGIN(B, γ1, γ2, γ) ▷ Eq.(7)

10: Lbatch ← Ledit + λaLact + LKD
11: MASKEDUPDATE(W ′

v,i,Mi, Lbatch) ▷ W ′
v,i ←W ′

v,i − η(Mi ⊙∇L)
12: FILTERANDRECLUSTER(B, ϵcons,R) ▷ Move high-LKD samples to residual pool
13: end for
14: (ŷ, c)← EVALUATE(xe, ye) ▷ c ∈ {0, 1} indicates success
15: if c = 0 then
16: E ← E ∪ {(xe, ye)}
17: end if
18: if |E| > τE or maxi ERRORRATE(E , i) > τprune then
19: RETRIGGER(E) ▷ Prune worst shard, rebuild, and retrain
20: end if
21: end for
22: LOSSAWARETIESMERGE({W ′

v,i}Ki=1, Wv) ▷ Loss-aware weighted TIES merge

Algorithm 2 REPAIR Inference with Dual-Memory Routing

1: function ROUTEANDPREDICT(x)
2: compute a(x)← FFNACTIVATION(x) ▷ Activation A(x) at the target FFN layer
3: for i = 1..K do
4: ∆

(i)
act (x)← ∥ a(x) · (W ′

v,i −Wv) ∥2
5: end for
6: if maxi ∆

(i)
act (x) ≤ ϵ then

7: return fθ0(x;Wv) ▷ Route to main memory
8: else
9: i⋆ ← argmaxi ∆

(i)
act (x)

10: return fθ0(x;W
′
v,i⋆) ▷ Route to side memory i⋆

11: end if
12: end function

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 Subroutines

1: function ASSIGNSHARD(x)
2: a← FFNACTIVATION(x); ∆(i) ← ∥a · (W ′

v,i −Wv)∥2, i = 1..K

3: return argmaxi ∆
(i) ▷ Use the most active shard during training

4: end function
5: function FORMBATCHES(S, b) ▷ Distribution-aware batching
6: oi ← Norm

(
ModelFeat(x(i))

)
for i = 0, . . . , b− 1

7: Greedy seeding: pick x(0) = argmaxx∈S
1
|S|

∑
x′ cos(o(x), o(x′))

8: Build B ← {x(0)} ∪ Top-(b−1) nearest by cosine; remove B from S
9: Repeat until S is empty; return list of batches B

10: end function
11: function AUTOREGCE(B) ▷ Autoregressive edit loss Ledit
12: L← 0
13: for x ∈ B with target sequence y do
14: L← L−

∑|y|
t=1 log pθ(yt | y<t, x)

15: end for
16: return L/|B|
17: end function
18: function INTRABATCHKD(B, λ, ϑ, T) ▷ Eq.(4); optional soft-KD
19: Compute oi ← Norm

(
ModelFeat(x(i))

)
for i = 0, . . . , b− 1

20: Lcos ← 1
b−1

∑b−1
i=1

(
1− o⊤i o0

∥oi∥∥o0∥

)
21: omean ← 1

b

∑b−1
i=0 oi; Lvar ← 1

b

∑b−1
i=0 ∥oi − omean∥22

22: L← λLcos + ϑLvar
23: if T > 0 then ▷ Optional: KL distillation for added stability
24: Get logits zi; pi = softmax(zi/T); L← L+ 1

b−1

∑b−1
i=1 KL(p0∥pi)

25: end if
26: return L
27: end function
28: function ROUTINGMARGIN(B, γ1, γ2, γ) ▷ Eq.(7)
29: L← 0
30: for each edit sample xe ∈ B do
31: sample unrelated xi; compute ∆e = ACTDELTA(xe), ∆i = ACTDELTA(xi)
32: L← L+max(0,∆i − γ1) + max(0, γ2 −∆e) + max(0, γ − (∆e −∆i))
33: end for
34: return L/|B|
35: end function
36: function MASKEDUPDATE(W ′

v,i,Mi, L) ▷ Masked gradient to reduce cross-shard interference
37: g ← ∇W ′

v,i
L; gm ←Mi ⊙ g ▷ Mi ∈ {0, 1}shape(Wv)

38: W ′
v,i ← OptimizerStep(W ′

v,i, gm) ▷ SGD/Adam, etc.
39: end function
40: function FILTERANDRECLUSTER(B, ϵcons,R)
41: for x ∈ B do
42: ℓKD(x)← per-sample KD vs. x(0)

43: if ℓKD(x) ≥ ϵcons then
44: move x toR
45: end if
46: end for
47: return
48: end function
49: function EVALUATE(xe, ye)
50: ŷ ← ROUTEANDPREDICT(xe); c← 1[ŷ = ye]
51: return (ŷ, c)
52: end function

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 4 Subroutines2

1: function ERRORRATE(E , i) ▷ Error rate for shard i

2: Ei ← {x ∈ E | argmaxj ∆
(j)
act (x) = i}

3: ri ← |{x∈Ei|CORRECTNESS(x)≤τcorrect}|
|Ei|

4: return ri
5: end function
6: procedure RETRIGGER(E) ▷ Closed-loop pruning and retraining
7: j ← argmaxi ERRORRATE(E , i) ▷ Identify worst-performing shard
8: Remove or reinitialize shard j: W ′

v,j ←Wv + σinit · N (0, 1); resample Mj

9: Build Eretrain from E ; form batches; retrain shards via MASKEDUPDATE + INTRABATCHKD
10: end procedure
11: function LOSSAWARETIESMERGE({W ′

v,i},Wv) ▷ Loss-aware weighted TIES merge
12: For each shard i: τi ←W ′

v,i −Wv; compute training loss Li on its assigned data

13: wi ← e−αLi∑
j e−αLj

14: for each parameter index p do
15: S ← {(i, τi[p], wi)}Ki=1
16: if all τi[p] share the same sign then
17: δ[p]←

∑
i wi τi[p] ▷ Consistent signs: weighted sum

18: else
19: i⋆ ← argmaxi{wi |τi[p]|}; δ[p]← τi⋆ [p] ▷ Conflict: keep most trustworthy shard
20: end if
21: end for
22: Wv ←Wv + δ; return Wv

23: end function
24: function FFNACTIVATION(x)
25: return activation A(x) at the target FFN layer
26: end function
27: function ACTDELTA(x)
28: return maxi ∥A(x) · (W ′

v,i −Wv)∥2
29: end function
30: function MODELFEAT(x)
31: return feature used for similarity (e.g., A(x) or last-token state)
32: end function
33: function NORM(v)
34: return v/∥v∥2
35: end function
36: function CORRECTNESS(x)
37: return predicted correctness score for x
38: end function

21

	Introduction
	Methodology
	Problem Setup
	Dual Memory Mechanism and Routing
	Distribution-Aware Intra-Batch Knowledge Distillation
	Closed-Loop Error Feedback and Memory Pruning
	Merging with Weighted TIES yadav2023tiesmerging

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusion
	Statement
	Ethics Statement
	Reproducibility Statement
	AI Usage Statement

	Related Work
	Continual Learning
	Model editing

	Experiments details
	Theoretical Analysis and Proof Sketches
	Preliminaries
	Stability of Masked Gradient Updates
	Closed-Loop Re-trigger Analysis
	Overall Convergence Intuition
	Stability of Masked Gradient Updates
	Closed-Loop Re-trigger Analysis

	Algorithms

