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a b s t r a c t

Humans and animals have the ability to continuously learn new information over their lifetime
without losing previously acquired knowledge. However, artificial neural networks struggle with this
due to new information conflicting with old knowledge, resulting in catastrophic forgetting. The
complementary learning systems (CLS) theory (McClelland and McNaughton, 1995; Kumaran et al.
2016) suggests that the interplay between hippocampus and neocortex systems enables long-term and
efficient learning in the mammalian brain, with memory replay facilitating the interaction between
these two systems to reduce forgetting. The proposed Lifelong Self-Supervised Domain Adaptation
(LLEDA) framework draws inspiration from the CLS theory and mimics the interaction between
two networks: a DA network inspired by the hippocampus that quickly adjusts to changes in data
distribution and an SSL network inspired by the neocortex that gradually learns domain-agnostic
general representations. LLEDA’s latent replay technique facilitates communication between these two
networks by reactivating and replaying the past memory latent representations to stabilize long-term
generalization and retention without interfering with the previously learned information. Extensive
experiments demonstrate that the proposed method outperforms several other methods resulting in
a long-term adaptation while being less prone to catastrophic forgetting when transferred to new
domains.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Deep neural networks have shown near human-level capabil-
ties in many fundamental computer vision tasks [1–5]. Humans
nd animals can continuously acquire new information over their
ifetime without catastrophically forgetting the prior knowledge
earned. This ability to continually learn over time by accom-
odating new knowledge while retaining the previously learned
nowledge is referred to as lifelong or continual learning (in
ur paper, we will continue to refer to it as lifelong learning).
owever, artificial neural networks lack these capabilities as new
nformation interferes with previously learned knowledge and
ometimes the old knowledge completely gets overwritten by the
ew one, leading to impaired performance [6]. The root cause of
atastrophic forgetting is that learning necessitates changes in the
eights of a neural network, however, these changes also result

n the forgetting of previous learning.
The focus of this paper is on lifelong domain adaptation, in

hich the model is trained on multiple sequential domains, con-
inuously adapting to new domains with changing distributions
s they become available, while maintaining its knowledge of
reviously encountered domains.

∗ Corresponding author.
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950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
Domain adaptation (DA) methods based on deep learning
have received significant attention in recent years for mitigating
the domain shift from the training domain to the inference
domain [7–10], and have even been suggested as transformative
technologies in settings such as agriculture [11,12] and arts [13].
However, current domain adaptation methods operate under the
assumption that datasets from both the source and the target
domains are accessible at the same time during training, which
may not be feasible in practice. In addition, DA algorithms require
fully labeled datasets, even state-of-the-art Unsupervised Domain
Adaptation (UDA) methods need access at least to the source
labeled dataset. Therefore, these algorithms require persistent
manual annotation, which is time-consuming, cumbersome and
expensive. Finally, just updating the underlying model will not be
sufficient, as the model would likely forget the past learned do-
main information resulting in catastrophic forgetting. Acknowl-
edging these issues, we propose LLEDA that addresses both catas-
trophic forgetting and domain-agnostic knowledge transfer using
solely unlabeled datasets with access to a single domain at any
given time.

The mammalian brain can continually acquire, process, con-
solidate, retrieve, and infer knowledge over time without catas-
trophically forgetting the previously learned information which
can be explained using CLS theory [14,15]. It suggests that ef-

ficient learning in the mammalian brain requires two learning
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ystems: the neocortex and the hippocampus. The first system
radually acquires structured generalized knowledge, while the
econd system quickly learns the specific experiences, and the in-
erplay between these two systems enables long-term retention.
t also implies that memory replay is the mechanism that facili-
ates interaction between these two systems to consolidate and
tabilize new memories for long-term generalization to reduce
atastrophic forgetting.
Recently, a study by [16] identified that the existing life-

ong learning techniques are missing few biological elements.
hey highlight that many existing approaches solely focus on
odeling the cortex directly and do not have a rapid learn-

ng network which is essential for facilitating effective lifelong
earning in the brain. Additionally, the study also points out
hat none of the current methods employs information from
he neocortex-inspired network to influence the training of the
ippocampal-inspired network, whereas, in biological networks,
he neocortex influences learning in the hippocampus and vice
ersa.
Our proposed LLEDA network attempts to solve the first is-

ue by utilizing two distinct networks, DA network for rapid
earning and the SSL network for gradual acquisition. LLEDA
imics the interplay between the neocortex and the hippocam-
us, where the hippocampal-inspired DA network functions as
rapid acquisition mechanism to adapt the distribution shift
etween the given data stream and the data from memory, and
he neocortex-inspired SSL network works like a gradual learn-
ng mechanism to generalize the representations by gradually
cquiring structured knowledge using self-supervised techniques
nabling effective lifelong learning. LLEDA’s Latent memory re-
lay facilitates communication between these two networks by
eactivating the neural activity patterns representing previous
xperiences to stabilize new memories for long-term general-
zation and retention without interfering with the previously
earned information. LLEDA attempts to address the second issue
y querying the information from the neocortex to influence the
raining of the hippocampal-inspired network during training.

Overall, our framework reduces catastrophic forgetting, while
acilitating domain-agnostic knowledge transfer without access-
ng labeled data both from the source and target domains at any
iven time. To the best of our knowledge, this is an area of domain
daptation that has not yet been explored. In summary, our work
akes the following contributions:

1. Inspired by the CLS theory, LLEDA mimics the interplay
between the DA network which helps to rapidly adapt
the distribution shifts between domains, and the SSL net-
work that helps with the gradual acquisition of domain-
agnostic general representations, and the latent represen-
tations replay technique helps to replay the past memory
representations, instead of raw image pixels to overcome
catastrophic forgetting.

2. Our proposed self-supervised based approach does not re-
quire access to either source or target labels, hence saving
time and effort to annotate data and assisting with the
labeling bias.

3. Extensive empirical results demonstrate that our method
performs competitively across several benchmarks, when
compared against other approaches.

The rest of the paper is organized into several sections. Sec-
ion 2 offers an extensive literature review on Domain Adaptation
DA), Self-Supervised Learning (SSL), and Continual Learning (CL).
n the Section 3, we present a detailed explanation of our LLEDA
ramework, which comprises three main components: General-
zed Feature Learning, Domain-Specific Representation Learning,
nd Latent Replay. The Section 4 discusses the datasets used,
2

training methodology, implementation details, and presents re-
sults, analysis, and ablation studies. Finally, Section 5 provides a
summary of the paper’s findings and outlines potential directions
for future research.

2. Related work

Domain Adaptation: Under the assumption of independent
nd identically distributed (iid) data, a deep neural network
rained on one set of data is expected to perform well on a new,
nseen set of data. However, this assumption may not always
old in real-world applications due to the discrepancy between
omain distributions, and applying the trained model to the
ew dataset may also result in negative performance. Domain
daptation is a special case of transfer learning where the goal
s to learn a discriminative model in the presence of domain
hift between source and target datasets. Various methods have
een introduced to minimize the domain discrepancy in or-
er to learn domain-invariant features. Some involve adversarial
ethods like DANN [9], ADDA [17] that help align source and

arget distributions. Other methods propose aligning distributions
hrough minimizing divergence using popular methods like max-
mum mean discrepancy [3,7,8,10,18–21], correlation alignment
22–24], and the Wasserstein metric [25,26]. MMD was first
ntroduced for the two-sample tests of the hypothesis that two
istributions are equally based on observed samples from the
wo distributions [18], and this is currently the most widely
sed metric to measure the distance between two feature dis-
ributions. The Deep Domain Confusion Network proposed by
zeng et al. [27] learns both semantically meaningful and domain
nvariant representations, while Long et al. proposed DAN [7] and
AN [19] which both perform domain matching via multi-kernel
MD (MK-MMD) or a joint MMD (J-MMD) criteria in multiple
omain-specific layers across domains.
Self-Supervised Learning: Self-Supervised Learning (SSL) is a

aradigm developed to learn visual features from unlabeled data.
ecently, numerous SSL approaches have shown significant per-
ormance sometimes even surpassing, the performance of super-
ised baselines [28–39]. These methods use image augmentation
echniques to generate multiple views of a given image and
earn a model that is invariant to these augmentations. Most
ecent approaches are divided into two main categories, con-
rastive and non-contrastive methods. Contrastive methods learn
n embedding space where positive pairs are pulled together,
hilst negative pairs are pushed away from each other [28–
0]. Non-contrastive methods on the other hand remove the
eed for explicit negative pairs either by using distillation or
y regularization of the variance and covariance of the embed-
ings [32–35]. However, none of these works studied the ability
f SSL methods to learn continually and adaptively if they are
pplied directly. Moreover, very few works have attempted to
se SSL in the lifelong domain adaptation setting, e.g. [40] is
esigned using contrastive learning, so it lacks the capability to
dapt using other SSL paradigms. [41] trains model stepwise by
enerating pseudo labels and fine-tuning on intermediate do-
ains until it reaches the target domain, this model can adapt
ell only if the domain shift is small between the intermediate
omains, and it also uses source-labeled data. In this paper,
e present a general-purpose framework to incorporate self-
upervised learning approaches into the lifelong learning process
o extract generalized representations.

Continual learning: Continual learning strategies aim to find
he right balance between preventing catastrophic forgetting and
cquiring new information. According to [42], catastrophic for-
etting can be mitigated using model regularization, memory
eplay or by expanding and training the network. Regularization
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Fig. 1. Overview of the proposed LLEDA architecture. LLEDA consists of rapid learning DA network and gradual learning SSL network. The SSL network learns
eneric representations using self-supervised learning and DA network helps to overcome domain shift by optimizing DA loss at two levels, DA1- MMD loss between
he representations of d4 and s4 , and DA2 - MMD loss between memory representations and current data representations.
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ethods identify the network weights that contribute signifi-
antly to retaining knowledge about a previously learned task and
hen consolidate them when the model is updated to learn the
ubsequent tasks [43–45]. On the other hand, dynamic architec-
ures modify the model’s underlying architecture by dynamically
ccommodating neural resources as it learns new patterns [46–
8]. Alternatively, the model can be expanded progressively to
earn the new tasks using added weights that propose ways of
onstraining the tasks’ objectives to avoid forgetting [49–51]. CLS
nd replay methods rely on memory replay by storing samples
rom old distributions and regularly feeding them back to the
odel to overcome catastrophic forgetting. Some of the existing
L methods [52–54] store raw inputs of previous data in the
emory, however, replaying raw pixels is not biologically plau-
ible. Generative replay methods involve training a generative
odel like an auto-encoder or a generative adversarial network to
roduce samples from previously learned data [55,56]. However,
hese approaches are very difficult to train due to issues such
s convergence and mode collapse, additionally scaling up gen-
rative replay to complex datasets is challenging. Latent replay
ethods involve storing compressed representations at a specific

ayer, rather than keeping duplicate copies of input patterns as
aw data. These compressed representations capture the essential
eatures of the input data, making them efficient for replay. Uti-
izing latent replay in LLEDA is not only the most efficient but also
biologically plausible approach [57–59]. We summarize LLEDA
s follows:

• Existing research on combining the lifelong learning and
domain adaptation is limited. While some studies like [60]
focus on continual and supervised adaptation using labeled
data, others such as [61,62] address continual domain adap-
tation but assume gradual target shifts, making them less
practical.

• We present a novel solution called LLEDA, which draws
inspiration from the mammalian brain and the CLS theory.
LLEDA addresses the issue of catastrophic forgetting and
facilitates domain-agnostic knowledge transfer, operating
3

exclusively with unlabeled datasets, allowing learning from
a single domain at a time.

• LLEDA lies at the intersection of lifelong learning, self-
supervised learning, and domain adaptation.

. Methodology

Our overall objective is to continually update a model to
earn distributional shifts while retaining knowledge about past
earnings. We propose a novel lifelong domain adaptation frame-
ork (depicted in Fig. 1 and algorithm 1), which has three key
omponents and is motivated by the CLS theory [14]. The DA
etwork in LLEDA swiftly adapts to changes in the data distri-
ution between the current domain and previously encountered
omains. The SSL network learns to generalize representations
hrough self-supervised learning of domain-agnostic data, while
he latent memory component facilitates the interaction between
he two networks. By replaying and reactivating past experiences,
his component stabilizes new memories for long-term retention
nd generalization. The combined operation of the DA and SSL
etworks integrates new information into the long-term network
ithout compromising previous knowledge.
The LLEDA framework process involves the following steps:

irst, the SSL network learns the visual features and their re-
ationships from the unlabeled input data using self-supervised
echniques. As the SSL network is not task-specific, the learned
epresentations are more general, capturing the underlying struc-
ure of the data. Next, the DA network uses Maximum Mean
iscrepancy (MMD) loss to address domain shift between the
urrent domain and previous domains stored in memory. This
oss is backpropagated to both networks for consolidation and to
revent interference. The latent memory component stores and
eplays past experiences as representations, rather than raw input
ixels, to aid interaction between the two networks. All learning
ccurs in a synchronous and interleaved manner.



M. Thota, D. Yi and G. Leontidis Knowledge-Based Systems 279 (2023) 110959

n

3

t
t
n
o
c
l
w
s

e
S
s
t
c
a
a
n
V
a
d

l

i

L

3

t
o
i

Fig. 2. Overview of latent replay. Demonstration of the flow of latent representations, the arrows in blue show the latent representation flow from memory to the
etwork and arrows in pink show the flow of latent representations from network to memory.
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.1. Generalized feature learning

LLEDA employs the SSL network to gradually learn and cap-
ure the visual features, underlying structure, and their rela-
ionship. As this network is trained independently from the DA
etwork, it does not interfere with the new learnings. More-
ver, self-supervised learning provides the model with additional
ontext and information about the input data, enabling it to
earn more generic and transferable representations in situations
here labeled data is not accessible, which is the case in our
cenario.
LLEDA’s SSL backbone network is compatible with all the

xisting SSL models (SimCLR [28], BYOL [34], etc.,), so any generic
SL model can be used as the backbone. However, we have con-
idered VICReg [63] as our backbone to reduce the SSL loss due
o its simplicity, additionally it does not require a memory bank,
ontrastive samples, or a large batch size. We have conducted
blation studies using alternative SSL models like SimCLR [28]
nd BYOL [34] as our background network to reduce the SSL
etwork’s loss, which has been discussed later in Section 4.5.
ICReg model uses the weighted average of invariance, variance
nd covariance to calculate the loss between . The SSL loss is
efined as follows:

(zi, zj) = λs(zi, zj) + µ[υ(zi) + υ(zj)] + ν[c(zi) + c(zj)] (1)

Where λ, µ, ν are the hyper-parameters controlling the impor-
tance of each term in the loss. s(zi, zj) is the Invariance, c(zi), c(zj)
s covariance and υ(zi), υ(zj) is variance.

The overall objective is given by

=

∑
IϵD

∑
ti,tj∼T

l(zi, zj) (2)

.2. Domain-specific representations learning

The goal of the DA network is to rapidly learn to reduce
he domain discrepancy for the incoming domains, simultane-
usly working well on the previous domains without catastroph-
cally forgetting the learnings. The DA network uses Maximum
4

ean Discrepancy (MMD) loss to address domain shift. The DA
etwork, inspired by Dualnet [54], also interacts with the SSL
etwork and acquires generic representations that influence its
earning in a manner akin to biological networks, improving its
apacity to reduce discrepancy between domains. It reduces the
iscrepancy in two stages: The DA network uses Maximum Mean
iscrepancy (MMD) loss to address domain shift. It calculates
MD loss using representations from block 4 of the Resnet (DA1).

t again calculates the MMD loss between the memory represen-
ations and the current data stream propagation (DA2) following
he element-wise multiplication. Calculating the MMD loss at two
tages (DA1 and DA2), as seen in Fig. 2, helps to effectively reduce
he domain shift, compared to a single domain adaptation loss.

Let s4 be the feature representation from the SSL network’s
esidual block, and d4 be the feature representation from the DA
etwork’s residual block as shown in Fig. 2, the adapted feature
s obtained during network interaction as follows:
′

4 = d4 ⊗ s4 (3)

where ⊗ denotes the element-wise multiplication, the output
of the rapid DA network d4, gradual SSL network s4 and the
transformed feature d4′ all have the same dimension.

The final layer’s transformed feature d4′ will be fed into the DA
network’s head to calculate the DA2 loss using MMD. The rapid
DA network takes advantage of the gradual SSL learner’s general-
ized feature representations resulting in quick adaptation leading
to reduced domain shift and improved generalization leading to
better identification of classes in the downstream classification
task.

MMD defines the distance between the two distributions with
their mean embeddings in the Reproducing Kernel Hilbert Space
(RKHS). MMD is a two-sample kernel test to determine whether
to accept or reject the null hypothesis p = q [18], where p and q
are source and target domain probability distributions. In short,
the MMD between the distributions of two datasets is equivalent
to the distance between the sample means in a high-dimensional
feature space and is computed by the following equation:

LMMD =

 1
N

N∑
φ(xsi ) −

1
M

M∑
φ(xtj )


2

(4)

i=1 j=1 H
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(5)

where: φ (.) is the mapping to the RKHS H; and k (., .) =

⟨φ (.) , φ (.)⟩ is the universal kernel associated with this mapping,
and N,M are the total number of items in the source and target
respectively.

3.3. Latent replay

The mammalian brain has successfully evolved to resist catas-
trophic forgetting by reactivating, replaying, and recreating the
experience preserved in memories [64,65]. It retains compressed
versions of the crucial information from past experiences and
reactivates by replaying these neural activity patterns of prior ex-
periences. Inspired by this, LLEDA stores feature representations
from a specific layer instead of raw input pixels. By doing so, it
reactivates and replays these representations to overcome catas-
trophic forgetting. To achieve this, we freeze the layers below
the chosen layer, effectively preventing them from being updated
during training.

We implement parameter freezing by freezing the layers be-
low block-1, which effectively disables gradient updates for these
layers. As a result of this process, the weights in the frozen layers
remain unchanged, while the weights in the unfrozen (trainable)
layers are allowed to adapt based on the new data. This strategy
ensures the preservation of integrity for these layers, promoting
stability and accuracy during the replay of stored representations,
while also mitigating any potential aging effect [57]. Freezing the
network also helps with the stability of the stored representa-
tions, else they will differ from the feature representations that
would have been generated while feed-forwarding from the input
layer. In LLEDA, we save the representations from block-1 of our
backbone ResNet network into memory and freeze the network
layers below block-1 (below the latent replay layer) to prevent
them from being updated during the subsequent training on a
new task or dataset and to ensure the stability and accuracy of
the representations and to prevent the aging effect.

As our model does not have access to labels, we follow a
simple approach of storing a random subset of past latent repre-
sentations in memory and train the network while interleaving
with new domain representations [66]. While selective replay
has shown promising results in few settings, several studies have
found that random sampling works equally well [58,67], achiev-
ing similar performance making it a computationally efficient
choice, hence we store random subset of representations in the
memory. Following that, we save the latent representations from
both the DA and the self-supervised networks for the given ran-
dom image. During memory consolidation, these memories are
interleaved with new latent representations to form a more gen-
eral representation supporting long-term retention and general-
ization when encountering new domain experiences. To avoid
inefficiency, we store only a limited number of latent represen-
tations per domain in the memory buffer until it reaches a given
number, known as the latent memory size. In our experiments,
we tested two sizes: 100 and 250 latent representations. This
ensures that the buffer contains a manageable amount of past
random experiences at any given time, as depicted in algorithm
2.
 d

5

Algorithm 1: Pseudocode for the proposed Lifelong Domain
Adaptation
Input : Current Domain Data D, Memory M, SSL θ , DA φ

Output: updated θ , φ
for sampled minibatch (Sd, Sm) from D and M do

Calculate LSSL loss on Sd using equation: (2) to update θ

Calculate LDA1 loss on Sd using equation: (5) to update φ

and θ

if domain > 1 then
Calculate LDA1 loss on Sm using equation: (5) to update
φ and θ

Calculate LDA2 loss on Sd and Sm using equation: (5) to
update φ and θ

end if
Add latent representations to memory using algorithm:2

nd for

Algorithm 2: Pseudocode for saving random latent represen-
tations to memory
Input : Memory M , Representations R, Sample Size s
Output: Memory M
M = θ

tm = len(M)
cm = 0
for each repbatch from R do

δ = tm − cm
h = min(s, δ)
Radd = random sampling of size h from repbatch
if cm < tm then

M = M ∪ Radd
cm+ = h

else
Rreplace = random sampling of size s from M
M = (M − Rreplace) ∪ Radd

end if
nd for

4. Experiments & results

4.1. Datasets

We compare and evaluate our method against baseline ap-
proaches on a number of benchmark domain adaptation data-
sets, such as Digits, Office-Home [68], Office-CalTech [69] and
ImageCLEF-DA.

Digit Dataset: We consider the standard digits dataset broadly
adopted by the computer vision community. MNIST [70] and
USPS [71] are hand-written grey-scale images, with relatively
small domain differences. SVHN [72] contains images of street
numbers with more than one digit in each image. We conducted
experiments on two tasks: SVHN → USPS → MNIST and MNIST
→ USPS → SVHN and reported the average accuracy of the
trained model in the context of lifelong learning setting. These
two scenarios will allow us to reflect on the performance of
lifelong learning scenarios starting from easy datasets, moving to
harder ones and vice versa. Sample images of the digit dataset are
presented in Fig. 3.

Office-Home [68]: The office-home data consists of four visual
omains: Art (A), Clipart (C), Real World (R), and Product (P) each
onsisting of images from 65 visual categories totaling 15,500
mages in office and home settings leading to the possibility of

efining 12 pair-wise binary UDA tasks. We conducted several
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Fig. 3. Sample images from digits dataset.
Fig. 4. Sample images from office-home dataset.
xperiments on two tasks: Art → Realworld → Clipart → Prod-
ct and Product → Clipart → Realworld → Art and reported the
verage accuracy of the trained model in the context of lifelong
earning setting. Sample images of the office-home dataset are
resented in Fig. 4.
Office-CalTech [69]: This dataset is an extension of the Office-

1 [73] with 10 common categories shared by Office-31 and the
alTech-256 dataset [74]. This dataset has four domains: Web-
am (W), DSLR (D), Amazon (A), and CalTech (C). We conducted
everal experiments on two tasks: DSLR → Webcam → Amazon

Caltech and Caltech → Amazon → Webcam → DSLR and
eported the average accuracy of the trained model in the context
f lifelong learning setting. Sample images of the office-caltech
atasets are presented in Fig. 5.
ImageCLEF-DA: This dataset has four domains with twelve

ategories each: Caltech-256, ImageNet ILSVRC 2012, and Pascal
OC 2012. We conducted several experiments on two tasks:
altech → ImageNet → Pascal and Pascal → ImageNet → Cal-

tech and reported the average accuracy of the trained model in
6

the context of lifelong learning setting. Sample images of the
ImageCLEF dataset are presented in Fig. 6.

4.2. Training methods

We benchmark LLEDA against the baseline method which uses
a single network and finetunes the model as the new train-
ing domains come along, we then compare our LLEDA method-
ology with DANN [9] and DAN [7], both of them are classic
domain adaptation methods and both these methods have ac-
cess to source and target data during training. We also compare
LLEDA with CUA [62] and GRCL [40] which are continual learning
replay-based methods. It is important to note that both methods
have access to source-labeled data, unlike LLEDA which operates
without labeled data from either the source or target domains.
We made an exciting observation during experimentation by
increasing the size of latent representations stored in memory
from 100 to 250, resulting in impressive results. Consequently,
we tested LLEDA-100 and LLEDA-250, with 100 and 250 latent
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Fig. 5. Sample images from office-caltech dataset.
Fig. 6. Sample images from ImageCLEF-DA dataset.
representations stored in the memory respectively. It is worth
mentioning that other papers typically use a memory size of 2000
images/representations. Furthermore, we compare these methods
with the supervised version of our approach, LLEDA-S. Most of the
methods provide the results in the domain adaptation setting, but
we have provided our results in the context of lifelong learning
setting.

4.3. Implementation details

Our implementation involves three stages. In the first stage,
we pre-train the model on ImageNet which serves as the founda-
tion for subsequent stages, which we call as a pre-trained model.
In the second stage, we use the pre-trained model and further
train the LLEDA model as outlined in the methodology section. In
the final stage, we freeze the trained network and train a linear
classifier on top of the fixed representation, while removing the
MMD projection head. This trained linear classifier is used for
evaluation purposes.

For the pretraining phase, we employ the ResNet18 [75] ar-
chitecture as our backbone model, pretrained on the ImageNet
dataset. During this phase, we use two nodes, each equipped
with 4 V100 GPUs. The training process is carried out using the
LARS optimizer [76] with a batch size of 512, and we apply a

weight decay of le-6 training for a total of 100 epochs. During

7

the subsequent training phase, we use the pretrained network ob-
tained from the previous stage as a starting point. We incorporate
the stored latent representations from the layer-1 and combine
it with the current domain data representations. Finally, during
finetuning phase, we freeze the trained network and further
train a linear classifier on top of this fixed representations whilst
discarding the MMD part of the network. We use the resulting
network to evaluate on the domain datasets to assess its perfor-
mance. Similar to most self-supervised models [28,29,29,30,32–
35,77], we report performance by training a linear classifier on
top of a fixed representation to evaluate representations which is
a standard benchmark that has been adopted by many papers in
the literature.

4.4. Results and analysis

Our primary objective is to evaluate the performance of our
proposed LLEDA framework in lifelong learning domain adap-
tation scenarios. This assessment involves sequentially training
the model on different domains. This sequential training process,
which we refer to as a ‘‘cycle’’, involves training the model on
one domain, followed by training it on the next domain, and so
on. Upon the completion of each cycle, we consider the resulting
model as the ‘‘final model’’. This final model is then tested on
all the domains it was trained on, and the corresponding results
are presented. Additionally, we calculate the average performance
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Table 1
Comparison of the proposed LLEDA method on
Digit datasets comprising MNIST, USPS and SVHN
domains with state-of-the-art methods, using Av-
erage Accuracy (Avg) across the domains as the
performance metric. LLEDA-100 and 250 repre-
sent the latent memory size of 100 and 250.
LLEDA-S is a supervised model with access to
labels. The best average is indicated in bold.
Dataset Method Avg

Digits

Baseline 56.7
DANN 74.5
DAN 72.9
CUA 82.1
GRCL 85.3
LLEDA-S 89.0
LLEDA-100 86.6
LEDA-250 89.5

Table 2
Comparison of the proposed LLEDA method on
Office-Home datasets comprising Art, Clipart,
Product and Real-World datasets with state-of-
the-art methods, using Average Accuracy (Avg)
across the domains as the performance metric.
LLEDA-100 and 250 represent the latent memory
size of 100 and 250. LLEDA-S is a supervised
model with access to labels. The best average is
indicated in bold.
Dataset Method Average

Office-Home

Baseline 28.7
DANN 57.6
DAN 56.3
CUA 58.6
LLEDA-S 60.3
LLEDA-100 58.2
LLEDA-250 62.1

of the final model across each domain within every cycle. It is
crucial to note that the other state-of-the-art methods, which
we refer to, operate based on the UDA evaluation criteria. These
methods are trained on a labeled source dataset and tested on an
unlabeled target dataset, but they are not continually trained as
in our case. Therefore, our results reflect the challenging scenario
where testing is performed within cycles, and without access to
any labeled data.

Baseline: Initially, we train a basic model, denoted as Mi,
on the domain Di. As new domains become available, we fine-
tune the model by training it on the subsequent domain, Di+1.
However, we observe that at the end of the cycle, this approach
tends to exhibit poor performance on earlier domains due to
a phenomenon known as CF. This outcome serves as our base-
line for comparison in this study. In our experiments, we use
Resnet18 as the baseline model and to assess the effectiveness
of our proposed method, we evaluate its performance against the
baseline.

Digits dataset: The Table 1 presented in this study show-
cases the average performance of different methods on the Digits
dataset, encompassing MNIST, USPS, and SVHN domains in the
lifelong learning scenario cycle. The proposed method, LLEDA,
exhibits a remarkable advantage over other approaches by ef-
fectively handling sequential training in lifelong learning adapta-
tion scenarios. LLEDA achieves an impressive average accuracy of
89.5%, surpassing the baseline accuracy of 56.7%, and outperforms
several state-of-the-art methods, including DANN (74.5%), DAN
(72.9%), CUA (82.1%), and GRCL (85.3%). These results underscore
the superior performance of LLEDA in the context of lifelong
learning, highlighting its adaptability and sequential learning ca-
pabilities. It is worth noting that LLEDA-S demonstrates improved
8

performance compared to LLEDA-100, which can be attributed
to the availability of labeled data. Additionally, the performance
gap between LLEDA-100 and LLEDA-250 can be linked to the
amount of additional memory representations saved. With more
representations stored and replayed, LLEDA-250 accumulates a
diverse set of samples from various domains or tasks, enabling
the model to develop more robust and generalizable features,
resulting in enhanced performance on new data.

Office-Home dataset: The Table 2 presents the average per-
formance of different methods on the Office-Home dataset in-
volving Art, Clipart, Product and Real-world domains, and focuses
on the lifelong domain adaptation cycle. The baseline method
achieves an average accuracy of 28.7%, which is relatively low. In
contrast, our proposed LLEDA method without access to labels,
achieves a substantial increase in average accuracy, rising from
28.7% to an impressive 62.1%. Similar to the findings in the dig-
its dataset, LLEDA-S outperforms LLEDA-100 as expected. More-
over, LLEDA-250 achieves the highest average accuracy among
the other state-of-the-art methods suggesting its superior per-
formance effectively handling the lifelong learning adaptation
scenarios on the Office-Home dataset.

Office-Caltech dataset: The Table 3 presents the average accu-
racy of various methods on the Office-Caltech dataset, along with
Amazon, Caltech, DSLR and Webcam domains. It summarizes the
average performance of different methods on the Office-Caltech
dataset. The baseline method achieves an average accuracy of
52.3%, while DANN performs significantly better at 81.7%. EWC
and CUA further improve the results with average accuracies of
84.5% and 84.8%, respectively. GRCL shows even higher perfor-
mance with 87.2% accuracy, and LLEDA-S follows closely with
87.5% accuracy. LLEDA-100 achieves an average accuracy of 86.1%,
and the top-performing method in this dataset is LLEDA-250,
achieving an impressive average accuracy of 90.3% without uti-
lizing any labeled data. These results demonstrate the superiority
of LLEDA in effectively addressing lifelong learning adaptation
scenarios within the Office-Caltech dataset, outperforming other
state-of-the-art methods and indicating its potential as a robust
approach for continual domain adaptation tasks.

ImageCLEF-DA dataset: The Table 4 presents the average ac-
uracy of various methods on the ImageCLEF dataset, along with
ascal VOC, ImageNet, and Caltech domains. It summarizes the
verage performance of different methods on the ImageCLEF-DA
ataset. The results indicate that the ImageCLEF Baseline method
chieved the lowest average accuracy of 51.3%, suggesting lim-
ted performance in handling domain shifts. DANN and DAN,
hich employ domain adaptation techniques, showed significant

mprovement with average accuracies of 82.2% and 82.4%, respec-
ively. However, their performance was surpassed by the LLEDA-
50 method, which achieved an impressive average accuracy of
2.6%. Both LLEDA-100 and LLEDA-250 outperformed DANN and
AN, with average accuracies of 89.7% and 92.6%, respectively.
imilar to the domains above LLEDA-S has an increased perfor-
ance in comparison to LLEDA-100 due to the access of labeled
ata. LLEDA-250 emerged as the top-performing method across
ll datasets, suggesting its superiority in addressing continual
omain adaptation tasks effectively.
The experimental results conducted on the Digits, Office-

ome, Office-Caltech and ImageCLEF-DA datasets consistently
emonstrate the superior performance of the LLEDA framework
ver other state-of-the-art methods in addressing lifelong learn-
ng scenarios. LLEDA effectively tackles challenges such as catas-
rophic forgetting and domain shift through sequential access to
nlabeled data, showcasing its adaptability. Despite variations
n evaluation setups, LLEDA showcases impressive performance
n handling domain shifts even without label access, resulting
n consistently high average accuracy. These results affirm the
obustness and potential of the LLEDA framework in addressing
ifelong learning challenges across diverse datasets.
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Table 3
Comparison of the proposed LLEDA method on
Office-Caltech datasets comprising Amazon, Cal-
tech, DSLR and webcam domains with state-of-
the-art methods, using Average Accuracy (Avg)
across the domains as the performance metric.
LLEDA-100 and 250 represent the latent memory
size of 100 and 250. LLEDA-S is a supervised
model with access to labels. The best average is
indicated in bold.
Dataset Method Average

Office-Caltech

Baseline 52.3
DANN 81.7
EWC 84.5
CUA 84.8
GRCL 87.2
LLEDA-S 87.5
LLEDA-100 86.1
LLEDA-250 90.3

Table 4
Comparison of the proposed LLEDA method on
ImageCLEF-DA datasets comprising Caltech, Im-
ageNet ILSVRC, and Pascal-VOC domains with
state-of-the-art methods, using Average Accuracy
(Avg) across the domains as the performance
metric. LLEDA-100 and 250 represent the latent
memory size of 100 and 250. LLEDA-S is a su-
pervised model with access to labels. The best
average is indicated in bold.
Dataset Method Average

ImageCLEF

Baseline 51.3
DANN 82.2
DAN 82.4
LLEDA-S 90.3
LLEDA-100 89.7
LLEDA-250 92.6

Table 5
Comparison of the proposed LLEDA’s SSL network using state-of-the-art
self-supervised methods as building blocks.
Method CYCLE-1 CYCLE-2 Avg

SVHN USPS MNIST MNIST USPS SVHN

LLEDA-VICReg 71.3 93.3 94.1 86.7 85.9 88.7 86.6
LLEDA-SimCLR 73.6 94.8 93.8 78.9 87.2 90.5 86.4
LLEDA-BYOL 70.9 95.5 92.6 86.3 88.9 87.5 86.9

Table 6
Comparison of LLEDA’s DA and SSL network interaction
using various element-wise operations. The best average
is indicated in bold.
Dataset Method Average

Digits

Elementwise multiplication 86.6
Elementwise addition 75.3
Elementwise maximum 39.3
Elementwise mean 71.9

4.5. Ablation studies

Ablation: LLEDA’s SSL network using state-of-the-art self-
upervised methods as building blocks We evaluated the ef-
ectiveness of LLEDA by replacing the LLEDA’s SSL network with
ome of the state-of-the-art SSL networks. Our objective is to
ssess the LLEDA’s performance in lifelong learning scenarios
y sequentially training on different domains. To assess lifelong
earning performance, we start by training the image samples
rom one domain, followed by training on the next domain, and
o on. We call this sequential training process as a cycle. For
xample, in cycle-1 (SVHN - USPS - MNIST), we trained the
LEDA model on the SVHN, followed by training on the USPS,
9

and finally on the MNIST. Similarly, in cycle-2 (MNIST - USPS
- SVHN), we trained on MNIST followed by training on USPS,
and finally training on SVHN. Each cycle represents a sequential
training process on different datasets.

We analyzed the accuracy of LLEDA to investigate the impact
of the SSL network selection on gradual learning network. In
Table 5, we compare three SSL methods- SimCLR [28], BYOL [34]
and VICReg. We chose these SSL networks as all three methods
feature different losses and use different techniques to avoid
collapse such as negative samples, redundancy reduction, etc.
Additionally, the former is a contrastive-based method, whereas
the latter two are non-contrastive ones.

Table 5 shows that the average performance of VICReg is
robust in comparison to the average performance of contrastive-
based SimCLR [28] as the latter requires large amounts of con-
trastive pairs and a higher batch size to converge. The aver-
age performance of VICReg slightly underperforms compared to
BYOL [34]. Overall, the comparative performance of all three
SSL methods with respect to the LLEDA framework is almost
relatively similar, with minor variations in accuracy across dif-
ferent datasets and cycles. This similarity can be attributed to
the fact that SSL is not directly employed for the downstream
task in LLEDA. Instead, element-wise multiplication balances the
contributions of both SSL and DA networks. This network in-
tegration into the downstream tasks may explain the compa-
rable performance across various SSL techniques. Consequently,
these findings suggest that LLEDA’s gradual learning network
can effectively accommodate the substitution of any generic SSL
method, ensuring its efficiency and adaptability to different SSL
approaches.

LLEDA SSL and DA network interaction using element-wise
operations: We analyzed different types of operations used for
interactions and influence between the DA network and the
SSL network. We considered element-wise addition, element-
wise maximum value, and element-wise mean besides adapting
element-wise multiplication to test the generalization ability. Ta-
ble 6 demonstrates that the element-wise maximum value seems
like a poor choice since the interaction between the two networks
appears more competitive than complementary.
Element-wise multiplication excels at emphasizing agreement
between networks, resulting in a combined representation that
is more domain-invariant and robust. In contrast, element-wise
addition and element-wise show some promise compared to
element-wise maximum value, but fall short in capturing com-
plementary features and striking an optimal balance between
SSL and DA networks, ultimately leading to subpar model per-
formance. Therefore, the adapted element-wise multiplication
emerges as the most favorable choice offering superior general-
ization capabilities.

5. Conclusion & future work

Inspired by how the human brain works and the CLS theory,
we developed LLEDA, a model that can perform competitively
in a lifelong domain adaptation setting across several standard
benchmark datasets. Our experiments demonstrate that LLEDA
can effectively tackle downstream domain adaptation tasks with-
out access to labeled data, outperforming several other existing
methods. This is a very exciting line of work, as in many real-
life settings, e.g. healthcare and agriculture, one does not have
the luxury of large, curated and labeled data. With methods like
LLEDA, we can leverage such datasets to learn continuously and
improve performance.

We believe our work will encourage future research in lifelong
domain adaptation using unlabeled source and target domain
data, as this is a more realistic scenario in several real-life set-
tings. As our next step, we aim to investigate efficient lossy and
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ossless compression techniques for compressing latent represen-
ations in LLEDA, as well as show how LLEDA performs in larger
atasets, which require extensive computational resources. An-
ther line of work will involve exploring techniques, e.g. through
istillation and quantization, that will reduce the computational
verhead required.
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