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ABSTRACT

Recently, there has been a surge of interest in employing neural networks for graph
generation, a fundamental statistical learning problem with critical applications like
molecule design and community analysis. However, most approaches encounter
significant limitations when generating large-scale graphs. This is due to their
requirement to output the full adjacency matrices whose size grows quadratically
with the number of nodes. In response to this challenge, we introduce a new, simple,
and scalable graph representation named gap encoded edge list (GEEL) that has a
small representation size that aligns with the number of edges. In addition, GEEL
significantly reduces the vocabulary size by incorporating the gap encoding and
bandwidth restriction schemes. GEEL can be autoregressively generated with the
incorporation of node positional encoding, and we further extend GEEL to deal
with attributed graphs by designing a new grammar. Our findings reveal that the
adoption of this compact representation not only enhances scalability but also
bolsters performance by simplifying the graph generation process. We conduct
a comprehensive evaluation across ten non-attributed and two molecular graph
generation tasks, demonstrating the effectiveness of GEEL.

1 INTRODUCTION

Learning the distribution over graphs is a challenging problem across various domains, including
social network analysis (Grover et al., 2019) and molecular design (Li et al., 2018; Maziarka et al.,
2020). Recently, neural networks gained much attention in addressing this challenge by leveraging the
advancements in deep generative models, e.g., diffusion models (Ho et al., 2020), to show promising
results. These works are further categorized based on the graph representations they employ.

However, the majority of the graph generative models do not scale to large graphs, since they generate
the adjacency matrix-based graph representations (Simonovsky & Komodakis, 2018; Madhawa
et al., 2019; Liu et al., 2021; Maziarka et al., 2020). In particular, for large graphs with N nodes,
the adjacency matrix is hard to handle since they consist of N2 binary elements. For example,
employing a Transformer-based autoregressive model for all the binary elements requires O(N4)
computational complexity. Researchers have considered tree-based (Segler et al., 2018) or motif-
based representations (Jin et al., 2018; 2020) to mitigate this issue, but these representations constrain
the graphs being generated, e.g., molecules or graphs with motifs extracted from training data.

Intriguingly, a few works (Goyal et al., 2020; Bacciu & Podda, 2021) have considered generating the
edge list representations as a potential solution for large-scale graph generation. In particular, the list
contains M edges that are fewer than N2 elements in the adjacency matrix, a distinctive difference
especially for sparse graphs. However, such edge list-based graph generative models instead suffer
from the vast vocabulary size N2 for the possible edges. Consequently, they face the challenge
of learning dependencies over a larger output space and may overfit to a specific edge or an edge
combination appearing only in a few samples. Indeed, the edge list-based representations empirically
perform even worse than simple adjacency matrix-based models (You et al., 2018), e.g., see Table 1.

In this paper, we propose a simple, scalable, yet effective graph representation for graph generation,
coined Gap Encoded Edge List (GEEL). On one hand, grounded in edge lists, GEEL enjoys a
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Figure 1: Overview and advantages of gap encoded edge list (GEEL).

compact representation size that aligns with the number of edges. On the other hand, GEEL improves
the edge list representations by significantly reducing the vocabulary size with gap encodings that
replace the node indices with the difference between nodes, i.e., gap, as described in Figure 1a. We
also promote bandwidth restriction (Diamant et al., 2023) which further reduces the vocabulary size.
Next, we augment the GEEL generation with node positional encoding. Finally, we introduce a new
grammar for the extension of GEEL to attributed graphs.

The advantages of our GEEL are primarily twofold: scalability and efficacy. First, regarding
scalability, the reduced representation and the vocabulary sizes mitigate the computational and
memory complexity, especially for sparse graphs, as described in Figure 1b. Second, concerning the
efficacy, GEEL narrows down the search space to B2 via intra- and inter-edge gap encodings, where
the size of each gap is bounded by graph bandwidth B (Chinn et al., 1982). We reduce this parameter
via the bandwidth restriction scheme (Diamant et al., 2023). This prevents the model from learning
dependencies among a vast vocabulary of size N2. This improvement is more pronounced when
compared with the existing edge list representations, as described in Figure 1c.

We present an autoregressive graph generative model to generate the proposed GEEL with node
positional encoding. In detail, we observe that a simple LSTM (Hochreiter & Schmidhuber, 1997)
combined with the proposed GEEL exhibits O(M) complexity. Furthermore, combined with the node
positional encoding that indicates the current node index, our GEEL achieved superior performance
across ten general graph benchmarks while maintaining simplicity and scalability.

We further extend GEEL to attributed graphs by designing a new grammar and enforcing it to filter
out invalid choices during generation. Specifically, our grammar specifies the position of node-
and edge-types to be augmented in the GEEL representation. This approach led to competitive
performance for two molecule generation benchmarks.

In summary, our key contributions are as follows:

• We newly introduce GEEL, a simple and scalable graph representation that has a compact
representation size of M based on edge lists while reducing the large vocabulary size N2 of the
edge lists to B2 by applying gap encodings. We additionally reduce the graph bandwidth B by
the C-M ordering following Diamant et al. (2023).

• We propose to autoregressively generate GEEL by incorporating node positional encoding and
combining it with an LSTM of O(M) complexity.

• We extend GEEL to deal with attributed graphs by designing a new grammar that takes the node-
and edge-types into account.

• We validate the efficacy and scalability of the proposed GEEL and the resulting generative
framework by showing the state-of-the-art performance on twelve graph benchmarks.
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2 RELATED WORK

Adjacency matrix-based graph representation. The adjacency matrix is the most prevalent graph
representation, capturing straightforward pairwise relationships between nodes (Simonovsky &
Komodakis, 2018; Jo et al., 2022; Vignac et al., 2022; You et al., 2018; Niu et al., 2020; Shi et al.,
2020; Luo et al., 2021). For instance, You et al. (2018) proposed autoregressive generative models,
Luo et al. (2021); Shi et al. (2020) presented normalizing flow models, and Jo et al. (2022) applied
score-based models for graph generation. However, these methods suffer from the large representation
size associated with generating the full adjacency matrix, which is impractical for large-scale graphs.

To solve this problem, several works have introduced scalable graph generative models (Liao et al.,
2019; Dai et al., 2020; Diamant et al., 2023). Specifically, Liao et al. (2019) proposed a block-
wise generation which enabled efficiency-quality trade-off. Dai et al. (2020) proposed to avoid
consideration of every entry in the adjacency matrix, leveraging on the sparsity of graphs. Finally,
Diamant et al. (2023) proposed to constrain the bandwidth via C-M ordering for any graph generative
models, bypassing the out-of-bandwidth elements, which results in NB representation size.

Tree-based graph representation. Researchers have developed tree-based representations by
employing tree search algorithms (Segler et al., 2018; Ahn et al., 2022). Specifically, Segler et al.
(2018) employed SMILES, a sequential representation for molecules, constructed from the DFS
traversal of molecular graphs with omitted cycles. Complementing this, Ahn et al. (2022) designed a
new representation that exploits the inherent tree-like structure of molecules.

Motif-based graph representation. Researchers have investigated motif-based representations (Jin
et al., 2018; 2020; Guo et al., 2022), aiming to capture meaningful subgraphs with lower computational
costs. In detail, Jin et al. (2018; 2020) focused on extracting common fragments from datasets. Since
these techniques rely on domain-specific knowledge, Guo et al. (2022) introduced a domain-agnostic
methodology to learn motif-based vocabulary by running reinforcement learning. However, it is still
restricted to generating graphs with seen motifs that are included in the training set.

Edge list-based graph representation. A few works have presented edge list-based representa-
tions (Goyal et al., 2020; Bacciu & Podda, 2021). Employing an edge list as a graph representation
reduces the representation size to M , which is smaller than that of the adjacency matrix, N2. How-
ever, these methods suffer from the large vocabulary size N2, resulting in a large search space and
subsequently degrading the generation quality. They also face difficulties in capturing long-term
dependencies due to their reliance on depth-first search (DFS) traversal for edge construction. Specif-
ically, DFS traversal fails to closely place edges connected to the same node, so the model must span
a broader range of steps to account for edges connected to the same node.

3 METHOD

In this section, we introduce our new graph representation, termed gap encoded edge list (GEEL), and
autoregressive generation process with GEEL. GEEL has a small representation size M by employing
edge lists. In addition, GEEL enjoys a reduced vocabulary size with gap encodings and bandwidth
restriction, narrowing down the search space and resulting in high-quality graph generation.

3.1 GAP ENCODED EDGE LIST REPRESENTATION (GEEL)

First, we present our GEEL representation, which leverages the small representation size of edge
lists and the reduced vocabulary size with gap encoding and bandwidth restriction. Consider a graph
with N nodes, M edges, and graph bandwidth B (Chinn et al., 1982). The associated edge list has a
representation size of M which is smaller compared to the size of the adjacency matrix N2. However,
it has a large vocabulary size of N2, consisting of tuples of node indices. To address this, we reduce
the vocabulary size into B2 by replacing the node indices in the original edge list with gap encodings
as illustrated in Figure 1a. We encode two types of gaps: (1) the intra-edge gap between the source
and the target nodes and (2) the inter-edge gap between source nodes in a pair of consecutive edges.

To this end, consider a connected undirected graph G = (V, E) with N nodes and M edges. We
define the ordering as an invertible mapping π : V → {1, . . . , N} from a vertex into its rank for a
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particular order of nodes. Then we define the edge list τEL as a sequence of pairs of integers:

τEL = (s1, t1), (s2, t2), . . . , (sM , tM ),

where sm, tm ∈ {1, . . . , N} are the m-th source and target node indices that satisfy
(π−1(sm), π−1(tm)) ∈ E , respectively. Without loss of generality, we assume that sm < tm and the
edge list is sorted with respect to the ordering, i.e., if m < ℓ, then sm < sℓ or sm = sℓ, tm < tℓ. For
example, (1, 2), (1, 3), (2, 3), (3, 5) is a sorted edge list while (1, 2), (2, 3), (3, 5), (1, 3) is not.

Consequently, we define our GEEL τGEEL as a sequence of gap encoding pairs as follows:

τGEEL = (a1, b1), (a2, b2), . . . , (aM , bM ),

where am and bm are the inter- and intra-edge gap encodings, respectively. To be specific, the
inter-edge gap encoding indicates the difference between consecutive source indices as follows:

am = sm − sm−1, m = 1, . . . ,M, s0 = 0.

Furthermore, the intra-edge gap encoding bm indicates the difference between the associated source
and target node indices as follows:

bm = tm − sm, m = 1, . . . ,M.

Then one can recover the original edge list τEL from GEEL τGEEL as follows:

sm =

m∑
ℓ=1

aℓ, tm = bm +

m∑
ℓ=1

aℓ.

Note that the gap encodings are always positive and GEEL can be generalized to directed graphs by
allowing negative intra-edge gap encodings.
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Figure 2: Bandwidth of an adjacency matrix.

Reduction of the vocabulary size. In training
a generative model for edge lists and GEEL, the
vocabulary size of (sm, tm) and (am, bm) deter-
mines the complexity of the model. Here, we
show that the vocabulary size of our GEEL is
B2 for the graph bandwidth B, which is smaller
than the vocabulary size N2 of the original edge
list representation. Many real-world graphs,
such as molecules and community graphs, ex-
hibit low bandwidths as shown in Appendix C
and by Diamant et al. (2023).

The vocabulary size of our GEEL representation
is bounded by maxm am · maxm bm. On one
hand, the maximum intra-edge gap encoding coincides with the definition of the graph bandwidth, i.e.,
the maximum difference between a pair of adjacent nodes, denoted as maxm bm = B as described in
Figure 2. On the other hand, we can obtain the following upper bound for the inter-edge encoding:

max
m

am = max
m

(sm − sm−1) ≤ max
m

(
max
ℓ<m

tℓ − sm−1

)
≤ max

m
max
ℓ<m

(tℓ − sℓ) ≤ B,

where the first inequality is based on deriving sm ≤ maxℓ<m tℓ from the graph connectivity con-
straint: each source node index sm must appear as a target node index in prior for the graph to
be connected, i.e., sm = tℓ for some ℓ < m. Consequently, the vocabulary size of our GEEL
representation is upper-bounded by maxm am ·maxm bm ≤ B2.

Given that the vocabulary size of GEEL is bounded by B2, small bandwidth benefits graph generation
by reducing the computational cost and the search space. We follow Diamant et al. (2023) to restrict
the bandwidth via the Cuthill-McKee (C-M) node ordering (Cuthill & McKee, 1969). We also provide
an ablation study with various node orderings in Section 4.3.

3.2 AUTOREGRESSIVE GENERATION OF GEEL AND NODE POSITIONAL ENCODING

Autoregressive generation. We first describe our method for the autoregressive generation of GEEL.
To this end, we propose to maximize the evidence lower bound of the log-likelihood with respect to
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Figure 3: An example of attributed GEEL. The colored parts of the attributed GEEL denote the
node features (i.e., C and N) and edge features (i.e., single bond -). The shaded parts denote the
self-loops added to the original GEEL, where self-loops are added to the nodes that are not connected
to the nodes with larger node indices (i.e., nodes with indices 3 and 4).

the latent ordering. To be specific, following prior works on autoregressive graph generative models
(You et al., 2018; Liao et al., 2019; Dai et al., 2020), we maximize the following lower bound:

log p(G) ≥ Eq(π|G)[log p(G, π)] + C,

where C is a constant and q(π|G) is a variational posterior of the ordering given the graph G. Under
this framework, our choice of choosing the C-M ordering for each graph corresponds to a choice of
the variational distribution q(π|G). Fixing a particular ordering for each graph yields the maximum
log-likelihood objective for log p(G, π) = log p(τGEEL).

We generate GEEL using an autoregressive model formulated as follows:

p(τGEEL) = p(a1, b1)

M∏
m=2

p(am, bm|{aℓ}m−1
ℓ=1 , {bℓ}m−1

ℓ=1 ).

Notably, we treat each tuple (am, bm) as one token and generate a token at each step. Similar to text
generative models, we also introduce the begin-of-sequence (BOS) and the end-of-sequence (EOS)
tokens to indicate the start and end of the sequence generation process, respectively (Collins, 2003).

Finally, it is noteworthy that we train a long short-term memory (LSTM) model (Hochreiter &
Schmidhuber, 1997) to minimize the proposed objective. Adopting LSTM as our backbone ensures
an O(M) complexity for our generative model, due to the linear complexity of the LSTM. The model
architecture can be freely changed to other architectures as demonstrated in Section 4.3.

Source node positional encoding. While the gap encoding allows a significant reduction in vocabu-
lary size, it also complicates the inherent semantics since each source node index is represented by
the cumulative summation over the intra-edge gap encodings. Instead of burdening the generative
model to learn the cumulative summation, we directly supplement the token embeddings with the
node positional encoding of the source node index, i.e.,

∑m
ℓ=1 aℓ at the (m+ 1)-th step as:

ϕ
(
(am, bm)

)
= ϕtuple

(
(am, bm)

)
+ ϕPE

( m∑
ℓ=1

aℓ

)
,

where ϕ is the final embedding, ϕtuple is the token embedding, and ϕPE is the positional encoding.

3.3 GEEL FOR ATTRIBUTED GRAPHS

In this section, we elaborate on the extension of GEEL to attributed graphs. To this end, we augment
the GEEL representation with node- and edge-types. Our attributed GEEL follows a specific grammar
that filters out invalid choices of tokens.

Grammar of attributed GEEL. For the generation of attributed graphs with node- and edge-types,
we not only generate the edge-tuples (ak, bk) as in Section 3.1 but also generate node- and edge-types
according to the following rules. We provide an illustrative example of attribute GEEL in Figure 3.
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• Before describing edge-tuples starting with a new source node, add the paired node-type.

• After adding an edge-tuple, add the paired edge-type.

One can observe that our rules are intuitive: for each source node, we first describe the node-type
and then generate the associated edge-tuple and types. For nodes that are not associated with any
edge-tuple as a source node, we add a “dummy” edge-tuple with the node as its source. As a result, our
representation size for attributed graphs is at most 2M+N and the vocabulary size is 2B+ |X|+ |E|
where |X| denotes the number of node features and |E| denotes the number of edge features.

Autoregressive generation with grammar constraints. To enforce the attribute grammar, we
introduce an algorithm to filter out invalid choices of tokens.

• The first token is always the node-type token.

• The node-type tokens are always followed by edge-tuple tokens.

• The edge-tuple tokens are always followed by edge-type tokens.

• The edge-type tokens are always followed by node-type tokens or edge-tuple tokens.

These rules prevent the generation process from generating invalid GEEL such as the list that consists
of only node-types or the list that has an edge-tuple without a following edge-type token. This
procedure is done by computing the probability only over valid choices.

4 EXPERIMENT

4.1 GENERAL GRAPH GENERATION

Evaluation protocol. We adopt maximum mean discrepancy (MMD) as our evaluation metric to
compare three graph property distributions between test graphs and the same number of generated
graphs: degree, clustering coefficient, and 4-node-orbit counts. Results that are either superior
to or comparable with the MMD of training graphs are highlighted in bold in Table 1. The
comparability of MMD values is determined by examining whether the MMD falls within a range of
one standard deviation. Notably, our work stands out as a baseline for graph generative models, given
its comprehensive evaluation across ten diverse graph datasets and its state-of-the-art performance.
Further details regarding our experimental setup are in Appendix A.

We validate the general graph generation performance of our GEEL on eight general graph datasets
with varying sizes. Four small-sized graphs are: (1) Planar, 200 planar graphs, (2) Lobster, 100
Lobster graphs (Senger, 1997), (3) Enzymes (Schomburg et al., 2004), 587 protein tertiary structure
graphs, and (4) SBM, 200 stochastic block model graphs. Four large-sized graphs are: (5) Ego, 757
large Citeseer network dataset (Sen et al., 2008), (6) Grid, 100 2D grid graphs, (7) Proteins, 918
protein graphs, and (8) 3D point cloud, 41 3D point cloud graphs of household objects. Additional
results on two smaller datasets (Ego-small and Community-small) are provided in Appendix E.

We compare our GEEL with seventeen deep graph generative models. They can be categorized into
two according to the type of representation they use. On one hand, fifteen adjacency matrix-based
methods are: GraphVAE (Simonovsky & Komodakis, 2018), GraphRNN (You et al., 2018), GNF Liu
et al. (2019), GRAN (Liao et al., 2019), EDP-GNN (Niu et al., 2020), GraphAF (Shi et al., 2020),
GraphDF (Luo et al., 2021), SPECTRE (Martinkus et al., 2022), BiGG (Dai et al., 2020), GDSS (Jo
et al., 2022), DiGress (Vignac et al., 2022), GDSM (Luo et al., 2022), GraphARM (Kong et al., 2023),
BwR (Diamant et al., 2023), and SwinGNN (Yan et al., 2023). On the other hand, two edge list-based
methods are GraphGen (Goyal et al., 2020) and GraphGen-Redux (Bacciu & Podda, 2021). Note
that one graph compression-based method HGGT (Jang et al., 2024) is also included. We provide a
detailed implementation description in Appendix B.

Generation quality. We provide experimental results in Table 1. We observe that the proposed GEEL
consistently shows superior or competitive results across all the datasets. This verifies the ability
of our model to effectively capture the topological information of both large and small graphs. The
visualization of generated samples can be found in Appendix D. It is worth noting that the generation
performance on small graphs has reached a saturation point, yielding results that are either superior
or comparable to training graphs.
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Table 1: General graph generation performance. The baseline results are from prior works (Jo
et al., 2022; Kong et al., 2023; Martinkus et al., 2022; Dai et al., 2020; Diamant et al., 2023) or
obtained by running the open-source codes. Note that OOM indicates Out-Of-Memory and N.A.
indicates that the generated samples are all invalid. For each metric, the numbers that are superior
or comparable to the MMD of the training graphs are highlighted in bold. The comparability is
determined by whether the MMD falls within one standard deviation.

Planar Lobster Enzymes SBM

|V | = 64 10 ≤ |V | ≤ 100 10 ≤ |V | ≤ 125 31 ≤ |V | ≤ 187

Method Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

Training 0.001 0.002 0.000 0.005 0.000 0.007 0.006 0.018 0.007 0.016 0.002 0.047

GraphVAE - - - - - - 1.369 0.629 0.191 - - -
GraphRNN 0.005 0.278 1.254 0.000 0.000 0.000 0.017 0.062 0.046 0.006 0.058 0.079
GRAN 0.001 0.043 0.001 0.038 0.000 0.001 0.023 0.031 0.169 0.011 0.055 0.054
EDP-GNN - - - - - - 0.023 0.268 0.082 - - -
GraphGen 1.762 1.423 1.640 0.548 0.040 0.247 0.146 0.079 0.054 1.230 1.752 0.597
GraphGen-Redux 1.105 1.809 0.517 1.189 1.859 0.885 0.456 0.035 0.251 - - -
GraphAF - - - - - - 1.669 1.283 0.266 - - -
GraphDF - - - - - - 1.503 1.283 0.266 - - -
BiGG 0.002 0.004 0.000 0.000 0.000 0.000 0.010 0.018 0.011 0.029 0.003 0.036
GDSS 0.250 0.393 0.587 0.117 0.002 0.149 0.026 0.061 0.009 0.496 0.456 0.717
DiGress 0.000 0.002 0.008 0.021 0.000 0.004 0.011 0.039 0.010 0.006 0.051 0.058
GDSM - - - - - - 0.013 0.088 0.010 - - -
GraphARM - - - - - - 0.029 0.054 0.015 - - -
BwR 0.609 0.542 0.097 0.316 0.000 0.247 0.021 0.095 0.025 N.A.
HGGT 0.000 0.001 0.000 0.003 0.000 0.015 0.005 0.017 0.000 0.017 0.014 0.076

GEEL (ours) 0.001 0.010 0.001 0.002 0.000 0.001 0.005 0.018 0.006 0.025 0.003 0.026

(a) Small graphs (|V |max ≤ 187)

Ego Grid Proteins 3D point cloud

50 ≤ |V | ≤ 399 100 ≤ |V | ≤ 400 13 ≤ |V | ≤ 1575 8 ≤ |V | ≤ 5037

Method Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

Training 0.010 0.003 0.016 0.000 0.000 0.000 0.002 0.003 0.002 0.004 0.090 0.015

GraphVAE - - - 1.619 0.000 0.919 - - - OOM
GraphRNN 0.117 0.615 0.043 0.011 0.000 0.021 0.011 0.140 0.880 OOM
GRAN 0.026 0.342 0.254 0.001 0.004 0.002 0.002 0.049 0.130 0.018 0.510 0.210
EDP-GNN - - - 0.455 0.238 0.328 - - - - - -
GraphGen 0.578 1.199 0.776 1.550 0.017 0.860 1.392 1.743 0.866 OOM
GraphGen-Redux 1.088 0.702 0.155 - - - - - - - - -
SPECTRE - - - - - - 0.013 0.047 0.029 - - -
BiGG 0.010 0.017 0.012 0.000 0.000 0.001 0.001 0.026 0.023 0.003 0.210 0.007
GDSS 0.393 0.873 0.209 0.111 0.005 0.070 0.703 1.444 0.410 OOM
DiGress 0.063 0.031 0.024 0.016 0.000 0.004 OOM OOM
GDSM - - - 0.002 0.000 0.000 - - - - - -
BwR N.A. 0.385 1.187 0.083 0.092 0.229 0.489 1.820 1.295 0.869
SwinGNN - - - 0.000 0.000 0.000 0.002 0.016 0.003 - - -
HGGT N.A. 0.000 0.000 0.000 0.098 0.708 0.619 OOM

GEEL (ours) 0.053 0.017 0.016 0.000 0.000 0.000 0.003 0.005 0.003 0.002 0.081 0.020

(b) Large graphs (399 ≤ |V |max ≤ 5037)

Scalability analysis. Next, we empirically validate the time complexity of our model. We first verify
if the actual inference time aligns well with the theoretical O(M) curve. To this end, we generated
Grid graphs with varying numbers of nodes: [10, 100, 200, 500, 1k, 2k, 5k, 10k]. The results shown
in Figure 4 indicate an alignment between the actual inference time and the ideal curve.

Then we conduct further experiments to compare the inference time of our model with that of other
baselines. Note that we used the same computational resource for all models and other experimental
details are in Appendix B. The results presented in Table 2 represent the time required to generate a
single sample. Notably, our model shows a shorter inference time owing to the compactness of our
representation, GEEL, even compared to other scalable graph generative models (Liao et al., 2019;
Dai et al., 2020). This evidence underscores the scalability advantages of our GEEL.
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Figure 4: Infer. time on various graph sizes.

Table 2: Inference time (sec) to generate one graph.

Method Type Enzymes Planar Grid

GRAN Auto. Reg. 0.24 0.66 1.39
BiGG Auto. Reg. 2.70 0.61 3.58
GDSS Diffusion 15.21 15.25 30.89
DiGress Diffusion 8.82 12.09 32.29

GEEL (ours) Auto. Reg. 0.12 0.25 1.11

Table 4: Molecular graph generation performance of the QM9 and ZINC datasets. The baseline
results are from prior works (Jo et al., 2022; Ahn et al., 2022). The best results of molecule-specific
generative models and domain-agnostic generative models are both highlighted in bold.

QM9 ZINC250k

Method Val. (%) NSPDK FCD Scaf. SNN Frag. Val. (%) NSPDK FCD Scaf. SNN Frag.
(↑) (↓) (↓) (↑) (↑) (↑) (↑) (↓) (↓) (↑) (↑) (↑)

Molecule-specific generative models

CharRNN 99.57 0.0003 0.087 0.9313 0.5162 0.9887 96.95 0.0003 0.474 0.4024 0.3965 0.9988
CG-VAE 100.0 - 1.852 0.6628 0.3940 0.9484 100.0 - 11.335 0.2411 0.2656 0.8118
MoFlow 91.36 0.0169 4.467 0.1447 0.3152 0.6991 63.11 0.0455 20.931 0.0133 0.2352 0.7508
STGG 100.0 - 0.585 0.9416 0.9998 0.9984 100.0 - 0.278 0.7192 0.4664 0.9932

Domain-agnostic graph generative models

EDP-GNN 47.52 0.0046 2.680 0.3270 0.5265 0.8313 63.11 0.0485 16.737 0.0000 0.0815 0.0000
GraphAF 74.43 0.0207 5.625 0.3046 0.4040 0.8319 68.47 0.0442 16.023 0.0672 0.2422 0.5348
GraphDF 93.88 0.0636 10.928 0.0978 0.2948 0.4370 90.61 0.1770 33.546 0.0000 0.1722 0.2049
GDSS 95.72 0.0033 2.900 0.6983 0.3951 0.9224 97.01 0.0195 14.656 0.0467 0.2789 0.8138
DiGress 98.19 0.0003 0.095 0.9353 0.5263 0.0023 94.99 0.0021 3.482 0.4163 0.3457 0.9679
DruM 99.69 0.0002 0.108 0.9449 0.5272 0.9867 98.65 0.0015 2.257 0.5299 0.3650 0.9777
GraphARM 90.25 0.0020 1.220 - - - 88.23 0.0550 16.260 - - -

GEEL (ours) 100.0 0.0002 0.089 0.9386 0.5161 0.9891 99.31 0.0068 0.401 0.5565 0.4473 0.992

Table 3: Vocabulary and representation sizes.
The vocabulary size is B2 and the representation
size is M where B is bandwidth, N is the number
of nodes, and M is the number of edges.

Dataset Vocab. size Rep. size N2

Planar 676 181 4096
Lobster 2401 99 9604
Enzymes 361 149 15625
SBM 12321 1129 34969
Ego 58081 1071 > 106

Grid 361 684 467856
Proteins 62500 1575 > 106

3D point cloud 111556 10886 > 107

In addition, we provide the reduced represen-
tation and vocabulary sizes in Table 3. Note
that the vocabulary size of the original edge list
and the representation size of the adjacency ma-
trix are both N2. We can observe that GEEL is
efficient in both sizes.

4.2 MOLECULAR GRAPH GENERATION

Experimental setup. We use two molecular
datasets: QM9 (Ramakrishnan et al., 2014) and
ZINC250k (Irwin et al., 2012). Following the
previous work (Jo et al., 2022), we evaluate
10,000 generated molecules using six metrics:
(a) the ratio of valid molecules without correc-
tion (Val.), (b) neighborhood subgraph pairwise distance kernel (NSPDK), (c) Frechet ChemNet
Distance (FCD) (Preuer et al., 2018), (d) scaffold similarity (Scaf.), (e) similarity to the nearest
neighbor (SNN), and (f) fragment similarity (Frag.). We use the same split with Jo et al. (2022) for
a fair comparison. Note that in contrast to other general graph generation methods, our approach
uniquely facilitates the direct representation of ions by employing them as a node type. We provide
details in Appendix A.

Baselines. We compare GEEL with seven general deep graph generative models: EDP-GNN (Niu
et al., 2020), GraphAF (Shi et al., 2020), GraphDF (Luo et al., 2021), GDSS (Jo et al., 2022),
DiGress (Vignac et al., 2022), DruM (Jo et al., 2023), and GraphARM (Kong et al., 2023). In
addition, for further comparison, we also compare GEEL with four molecule-specific generative
models: CharRNN (Segler et al., 2018), CG-VAE (Jin et al., 2020), MoFlow (Zang & Wang, 2020),
and STGG (Ahn et al., 2022). We provide a detailed implementation description in Appendix B.

Results. The experimental results are reported in Table 4. We observe that our GEEL shows superior
results to domain-agnostic graph generative models and competitive results with molecule-specific
generative models. In particular, for the QM9 dataset, we observe that our GEEL shows superior

8
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Table 5: Average MMD results for
different model architectures.

Backbone Planar Enzymes Grid

LSTM 0.002 0.009 0.000
Transformer 0.003 0.008 0.000

Table 6: Average MMD for different representations.
We adopted LSTM as a model architecture and OOM de-
notes out-of-memory error.

Representation Repr. Vocab. Com.-small Grid Point

Flattened adj. N2 2 0.029 OOM OOM
Edge list M N2 0.010 0.000 OOM
Edge list + intra gap M NB 0.013 0.000 OOM

GEEL (ours) M B2 0.016 0.000 0.044

results on FCD and Scaffold scores even compared to the molecule-specific models. We also provide
the visualization of generated molecules in Appendix D.

4.3 ABLATION STUDIES

Different model architectures. Here, we discuss the results of generating GEEL with Transformers
(Vaswani et al., 2017). We evaluate four datasets: Planar, Lobster, Enzymes, and Grid, employing
three MMD metrics for assessment. As presented in Table 5, LSTM shows competitive results
to Transformers. Notably, LSTM achieves this performance with significantly reduced computa-
tional cost, having a linear complexity of O(n), in contrast to the quadratic complexity O(n2) of
Transformers, where n represents the sequence length.
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Figure 5: Training curve with various
node orderings.

Different representations. We discuss the results of gen-
erating graphs with various representations here. We com-
pare our GEEL with three alternative representations: flat-
tened adjacency matrix, the edge list, and the edge list
with intra-edge gap. The edge list is the edge list with
traditional edge encoding (without any gap encoding) and
the last one is an edge list wherein the target node of each
edge is substituted by its intra-edge gap. Note that the
edge lists are sorted in the same way we sort the edge list,
as explained in Section 3.1. The comparative results are in
Table 6. We can observe that GEEL effectively reduces the
vocabulary size compared to other representations. This
enables the generation of large-scale graphs, such as 3D point clouds, without memory constraints.
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Figure 6: Orbit MMD with various
graph sizes.

Different node orderings. We here assess the effect of
node ordering on graph generation. We compare our C-
M ordering to BFS, DFS, and random ordering using the
Grid dataset. As illustrated in Figure 5, the C-M order-
ing outperforms others with faster convergence of training
loss. Notably, the BFS also shows competitive loss con-
vergence with C-M as it mitigates the burden of long-term
dependency. Specifically, both C-M and BFS orderings
position edges related to the same node more closely than
other baselines. These results highlight the effectiveness
of C-M ordering on bandwidth reduction and generating
high-quality graphs. Note that the MMD performance
with any ordering eventually converges to the same levels of MMD as explained in Appendix H.

Quality with various graph sizes. We also evaluate the generated graph quality with respect to the
graph size. Following a prior work (Dai et al., 2020), we conduct experiments on grid data with
{0.5k, 1k, 5k, 10k} nodes and reported orbit MMD. The results are in Figure 6 and we can see GEEL
preserves high quality on large-scale graphs with up to 10k nodes.

5 CONCLUSION

In this work, we introduce GEEL, an edge list-based graph representation that is both simple and
scalable. By combining GEEL with an LSTM, our graph generative model achieves an O(M)
complexity, showing a significant enhancement in generation quality and scalability over prior graph
generative models.
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Reproducibility All experimental code related to this paper is available at https://github.
com/yunhuijang/GEEL. Detailed insights regarding the experiments, encompassing dataset and
model specifics, are available in Section 4. For intricate details like hyperparameter search, consult
Appendix A. In addition, the reproduced dataset for each baseline is in Appendix B.
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A EXPERIMENTAL DETAILS

In this section, we provide the details of the experiments.

A.1 GENERAL GRAPH GENERATION

Table 7: Hyperparameters of GEEL in general graph generation.

Planar Lobster Enzymes SBM Ego Grid Proteins 3D point cloud

Learning rate 0.001 0.0001 0.0005 0.0001 0.0001 0.001 0.0001 0.0012
Batch size 128 64 128 8 8 64 8 4

Table 8: Default hyperparameters of GEEL.

Input dropout rate Dim. of token embedding Num. of layers

0.1 512 3

We used the same split with GDSS (Jo et al., 2022) for Enzymes and Grid datasets, with DiGress
(Vignac et al., 2022) for Planar and SBM datasets, with BiGG (Dai et al., 2020) for Lobster, Proteins,
and 3D point cloud datasets, and with GraphRNN (You et al., 2018) for ego dataset. We perform
the hyperparameter search to choose the best learning rate in {0.0001, 0.0005, 0.001, and 0.0012}.
We select the model with the best MMD with the lowest average of three graph statistics: degree,
clustering coefficient, and 4-orbit count. In addition, we report the means of 5 different runs. It is
notable that GEEL samples a C-M ordering for a graph at each training step (instead of fixing a
unique ordering per graph). We found this to improve novelty without any decrease in performance
and changing the hyper-parameters. We provide the best learning rates in Table 7 and other default
hyperparameters that we have not tuned in Table 8.

A.2 MOLECULAR GRAPH GENERATION

We used the same split with GDSS (Jo et al., 2022) for a fair evaluation. Following general graph
generation, we perform the hyperparameter search to choose the best learning rate in {0.0001, 0.001}
and select the model with the best FCD score. The best learning rates are 0.001 for both QM9 and
ZINC datasets and other default hyperparameters are in Table 8 which is the same as the general
graph generation.

For ion tokenization, we used 13 node tokens for QM9: [C-], [CH-], [C], [F], [N+], [N-], [NH+],
[NH2+], [NH3+], [NH], [N], [O-], [O]. In addition, we used 29 tokens for ZINC: [Br], [CH-], [CH2-],
[CH], [C], [Cl], [F], [I], [N+], [N-], [NH+], [NH-], [NH2+], [NH3+], [NH], [N], [O+], [O-], [OH+],
[O], [P+], [PH+], [PH2], [PH], [P], [S+], [S-], [SH+], [S].
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B IMPLEMENTATION DETAILS

B.1 COMPUTING RESOURCES

We used Pytorch (Paszke et al., 2019) to implement GEEL and trained the LSTM (Hochreiter &
Schmidhuber, 1997) models on GeForce RTX 3090 GPU. Note that we used A100-40GB for the 3D
point cloud dataset. In addition, due to the CUDA compatibility issue of BiGG (Dai et al., 2020), we
used GeForce GTX 1080 Ti GPU and 40 CPU cores for all models for inference time evaluation in
Figure 1b and Table 2.

B.2 DETAILS FOR BASELINE IMPLEMENTATION

Table 9: Reproduced dataset for each baseline.

Planar Lobster Enzymes SBM Ego Grid Proteins 3D point cloud

GRAN - - ✓ - ✓ - - -
GraphGen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BiGG ✓ - ✓ ✓ ✓ - - -
GDSS ✓ ✓ - ✓ ✓ - ✓ ✓
DiGress - ✓ ✓ - ✓ ✓ ✓ ✓
BwR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

General graph generation. The baseline results from prior works are as follows. We reproduced
GRAN (Liao et al., 2019), GraphGen (Goyal et al., 2020), DiGress (Vignac et al., 2022), GDSS (Jo
et al., 2022), BiGG (Dai et al., 2020), and BwR (Diamant et al., 2023) for the datasets that are not
reported in the original paper using their open-source codes. The reproduced datasets are explained
in Table 9. Note that BwR results are based on the GraphRNN variant, which shows the best results
through three provided baselines. The other results for GraphVAE (Simonovsky & Komodakis,
2018), GNF (Liu et al., 2019), EDP-GNN (Niu et al., 2020), GraphAF (Shi et al., 2020), GraphDF
(Luo et al., 2021), and GDSS (Jo et al., 2022) are obtained from GDSS, while the results for GRAN
(Liao et al., 2019), GraphRNN (You et al., 2018), and BiGG (Dai et al., 2020) are from BiGG and
SPECTRE (Martinkus et al., 2022). Finally, the remaining results for SPECTRE and GDSM (Luo
et al., 2022) are derived from their respective paper. We used original hyperparameters when the
original work provided them.

Molecular graph generation. The baseline results from prior works are as follows. The results for
five domain-agnostic graph generative models: EDP-GNN (Niu et al., 2020), GraphAF (Shi et al.,
2020), GraphDF (Luo et al., 2021), GDSS (Jo et al., 2022), DruM (Jo et al., 2023) are from DruM,
and the GraphARM (Kong et al., 2023) result is extracted from the corresponding paper. Moreover,
we reproduced DiGress (Vignac et al., 2022) using their open-source codes.

In addition, for molecule generative models, the result of MoFlow (Zang & Wang, 2020) is from
DruM, the results of CG-VAE (Jin et al., 2020) and STGG (Ahn et al., 2022) is from STGG.
Furthermore, we reproduced CharRNN (Segler et al., 2018).

B.3 DETAILS FOR INFERENCE TIME ANALYSIS

We conducted the inference time analysis using the same GeForce GTX 1080 Ti GPU for all models.
The batch size is 10 and the inference time to generate a single graph is computed by dividing the
total inference time by the batch size.

B.4 DETAILS FOR THE IMPLEMENTATION

We adapted node ordering code from (Diamant et al., 2023), evaluation scheme from (Jo et al., 2022;
Martinkus et al., 2022), and NSPDK computation from (Goyal et al., 2020).
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C GRAPH STATISTICS OF DATASETS

C.1 GENERAL GRAPHS

Table 10: Statstics of general datasets.

Dataset # of graphs # of nodes Max. B Max. # of edges

Planar 200 |V | = 64 26 181
Lobster 100 10 ≤ |V | ≤ 100 49 99
Enzymes 587 10 ≤ |V | ≤ 125 19 149
SBM 200 31 ≤ |V | ≤ 187 111 1129
Ego 757 50 ≤ |V | ≤ 399 241 1071
Grid 100 100 ≤ |V | ≤ 400 19 684
Proteins 918 13 ≤ |V | ≤ 1575 125 1575
3D point cloud 41 8 ≤ |V | ≤ 5037 167 10886

Table 11: Standard deviation of MMD in training dataset.

Planar Lobster Enzymes SBM

Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

0.000 0.001 0.000 0.003 0.000 0.006 0.001 0.003 0.002 0.008 0.002 0.017

(a) Small graphs (|V |max ≤ 187)

Ego Grid Proteins 3D point cloud

Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb. Deg. Clus. Orb.

0.005 0.001 0.004 0.000 0.000 0.000 0.001 0.002 0.001 0.04 0.062 0.017

(b) Large graphs (399 ≤ |V |max ≤ 5037)

The statistics of general graphs are summarized in Table 10. It is notable that the bandwidths are
relatively low compared to the number of nodes for real-world graphs, which enables the reduction of
the vocabulary size of GEEL. In addition, we provide the standard deviations of MMD of training
graphs that we used as a criterion to verify comparability in Table 11.

C.2 MOLECULAR GRAPHS

Table 12: Statstics of molecular datasets: QM9 and ZINC250k.

Dataset # of graphs # of nodes Max. B Max. # of edges # of node types # of edge types

QM9 133,885 1 ≤ |V | ≤ 9 5 13 13 4
ZINC250k 249,455 6 ≤ |V | ≤ 38 10 45 29 4

The statistics of molecular graphs are summarized in Table 12. Note that the # of node types indicate
the number of ionized node type tokens as explained in Appendix A.
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D GENERATED SAMPLES

D.1 GENERAL GRAPH GENERATION

Planar

(a) Train (b) GDSS (c) GraphGen

(d) BiGG (e) DiGress (f) GEEL (ours)

Figure 7: Visualization of the graphs from the Planar dataset and the generated graphs.

Lobster

(a) Train (b) GraphGen

(d) DiGress (e) GEEL (ours)

(c) GDSS

Figure 8: Visualization of the graphs from the Lobster dataset and the generated graphs.
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Enzymes

(a) Train (b) GRAN (c) GraphGen

(d) BiGG (e) DiGress (e) GEEL (ours)

Figure 9: Visualization of the graphs from the Enzymes dataset and the generated graphs.

SBM

(a) Train (c) GraphGen

(d) BiGG (e) GEEL (ours)

(b) GDSS

Figure 10: Visualization of the graphs from the SBM dataset and the generated graphs.
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Ego

(a) Train (b) GRAN (c) GraphGen

(d) BiGG (e) GDSS (e) GEEL (ours)

Figure 11: Visualization of the graphs from the Ego dataset and the generated graphs.

Grid

(a) Train (b) GDSS

(d) DiGress (e) GEEL (ours)

(c) GraphGen

Figure 12: Visualization of the graphs from the Grid dataset and the generated graphs.
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Proteins

(a) Train (b) GraphGen

(d) GEEL (ours)(c) GDSS

Figure 13: Visualization of the graphs from the Proteins dataset and the generated graphs.

We present visualizations of graphs from the training dataset and generated samples from GRAN,
GraphGen, BiGG, GDSS, DiGress, and GEEL in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11,
Figure 12, and Figure 13. Note that we only provide the visualization that we have reproduced, which
is detailed in Appendix B. We additionally give the number of nodes and edges of each graph, where
n denotes the number of nodes and e denotes the number of edges.
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D.2 MOLECULAR GRAPH GENEREATION

Figure 14: Visualization of the molecules generated from the QM9 dataset.

Figure 15: Visualization of the molecules generated from the ZINC250k dataset.
We provide visualizations of generated molecules using GEEL in Figure 14 and Figure 15.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 GENERAL GRAPH GENERATION

Table 13: General graph generation on small graphs (|V |max ≤ 20)

Ego-small Community-small

4 ≤ |V | ≤ 18 12 ≤ |V | ≤ 20

Method Deg. Clus. Orb. Deg. Clus. Orb.

Training 0.025 0.035 0.012 0.020 0.044 0.003

GraphVAE 0.130 0.170 0.050 0.350 0.980 0.540
GraphRNN 0.090 0.220 0.003 0.080 0.120 0.040
GRAN 0.009 0.038 0.009 0.005 0.142 0.090
GNF 0.030 0.100 0.001 0.200 0.200 0.110
EDP-GNN 0.052 0.093 0.007 0.053 0.144 0.026
GraphGen 0.085 0.102 0.425 0.075 0.065 0.014
GraphAF 0.030 0.110 0.001 0.180 0.200 0.020
GraphDF 0.040 0.130 0.010 0.060 0.120 0.030
BiGG 0.013 0.030 0.005 0.004 0.005 0.000
GDSS 0.021 0.024 0.007 0.045 0.086 0.007
DiGress 0.021 0.026 0.024 0.012 0.025 0.002
GDSM - - - 0.011 0.015 0.001
GraphARM 0.019 0.017 0.010 0.034 0.082 0.004
SwinGNN 0.000 0.021 0.004 0.003 0.051 0.004
GEEL (ours) 0.020 0.035 0.012 0.020 0.022 0.006

We provide general graph generation results for smaller graph datasets: Ego-small and Community-
small. The Ego-small dataset consists of 300 small ego graphs from larger Citeseer network (Sen
et al., 2008) and Community-small dataset consists of 100 randomly generated community graphs.
We used the same split with GDSS (Jo et al., 2022) and the results are reported in Table 13.

E.2 MOLECULAR GRAPH GENERATION

We provide molecular graph generation results for MOSES benchmark (Polykovskiy et al., 2020) in
Table 14.
Table 14: Molecular graph generation performance of MOSES dataset. The baseline results are
from prior works (Polykovskiy et al., 2020; Ahn et al., 2022). The best results are highlighted in bold
and the second best are underlined.

MOSES

Method Validity (%) ↑ NSPDK ↓ FCD ↓ Scaf. ↑ SNN ↑ Frag. ↑
Molecule generative models

CharRNN 97.48 - 0.0732 0.9242 0.6015 0.9998
JT-VAE 100.00 - 0.3954 0.8964 0.5477 0.9965
STGG 100.00 - 0.0680 0.9416 0.6359 0.9998

Domain-agnostic graph generative models

DiGress 100.00 0.0005 0.6788 0.8653 0.5488 0.9988
GEEL (Ours) 99.99 0.0001 0.1603 0.8622 0.6310 0.9996
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F ADDITIONAL METRICS

F.1 GENERAL GRAPH GENERATION

We provide three additional metrics: validity, uniqueness, and novelty scores for general graph
generation in Table 15. GEEL achieves from 30% to 90% novelty, which is better than autoregressive
models like GRAN and BiGG, but lower than the diffusion-based graph generative models. This is
partially due to the inherent trade-off between novelty and the capability of generative models to
learn the data distribution faithfully. OOM indicates out-of-memory and N.A. for BwR indicates that
the generated samples are all invalid.
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F.2 MOLECULAR GRAPH GENERATION

We also provide the uniqueness and novelty scores for QM9 and ZINC in Table 16. We can observe
that our GEEL shows competitive novelty and uniqueness compared to the baselines. Notably, the
models make a tradeoff between the quality (e.g., NSPDK and FCD) and novelty of the generated
graph since the graph generative models that faithfully learn the distribution put a high likelihood on
the training dataset. In particular, the tradeoff is more significant in QM9 due to the large dataset size
(134k) compared to the relatively small search space (molecular graphs with only up to nine heavy
atoms).
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Table 15: The results of general graph generation include validity, uniqueness, and novelty. The
baseline results are from prior works (Martinkus et al., 2022; Vignac et al., 2022) or obtained by
running the open-source codes.

Planar Lobster

|V | = 64 10 ≤ |V | ≤ 100

Method Deg. (↓) Clu. (↓) Orb. (↓) Val. (↑) Uniq. (↑) Nov. (↑) Deg. (↓) Clu. (↓) Orb. (↓) Val. (↑) Uniq. (↑) Nov. (↑)
GraphRNN 0.005 0.278 1.254 0.0 100.0 100.0 0.000 0.000 0.000 - - -
GRAN 0.001 0.043 0.001 97.5 85.0 2.5 0.038 0.000 0.001 - - -
SPECTRE 0.001 0.079 0.001 25.0 100.0 100.0 - - - - - -
BiGG 0.002 0.004 0.000 100.0 85.0 0.0 0.000 0.000 0.000 - - -
GDSS 0.250 0.393 0.587 0.0 100.0 100.0 0.117 0.002 0.149 18.2 100.0 100.0
DiGress 0.000 0.002 0.008 85.0 100.0 100.0 0.021 0.000 0.004 54.5 100.0 100.0
BwR + GraphRNN 0.609 0.542 0.097 52.5 95.0 100.0 0.316 0.000 0.247 100.0 63.6 100.0
BwR + Graphite 0.971 0.562 0.636 3.4 100.0 100.0 0.076 1.075 0.060 0.0 100.0 100.0
BwR + EDP-GNN 1.127 1.032 0.066 0.0 100.0 100.0 0.237 0.062 0.166 0.0 100.0 100.0

GEEL (ours) 0.001 0.010 0.001 82.5 97.5 27.5 0.002 0.000 0.001 72.7 100 72.7
GEEL + No PE 0.002 0.006 0.001 92.5 92.5 15.0 0.007 0.001 0.006 81.8 100.0 81.8

Enzymes SBM

10 ≤ |V | ≤ 125 31 ≤ |V | ≤ 187

Method Deg. (↓) Clu. (↓) Orb. (↓) Uniq. (↑) Nov. (↑) Deg. (↓) Clu. (↓) Orb. (↓) Uniq. (↑) Nov. (↑)
GraphRNN 0.017 0.062 0.046 - - 0.006 0.058 0.079 100.0 100.0
GRAN 0.023 0.031 0.169 100.0 94.9 0.011 0.055 0.054 100.0 100.0
SPECTRE - - - - - 0.002 0.052 0.041 100.0 100.0
BiGG 0.010 0.018 0.011 78.8 4.2 0.029 0.003 0.036 92.5 10.0
GDSS 0.026 0.061 0.009 - - 0.496 0.456 0.717 100.0 100.0
DiGress 0.011 0.039 0.010 100.0 99.2 0.006 0.051 0.058 100.0 100.0
BwR + GraphRNN 0.021 0.095 0.025 97.5 100.0 N.A. N.A. N.A. N.A. N.A.
BwR + Graphite 0.213 0.270 0.056 100.0 100.0 1.305 1.341 1.056 100.0 100.0
BwR + EDP-GNN 0.253 0.118 0.168 100.0 100.0 0.657 1.679 0.275 100.0 100.0

GEEL (ours) 0.005 0.018 0.006 100.0 94.9 0.025 0.003 0.026 95.0 42.5
GEEL + No PE 0.005 0.014 0.002 100.0 93.2 0.013 0.002 0.028 100.0 35.0

Ego Proteins

50 ≤ |V | ≤ 399 13 ≤ |V | ≤ 1575

Method Deg. (↓) Clu. (↓) Orb. (↓) Uniq. (↑) Nov. (↑) Deg. (↓) Clu. (↓) Orb. (↓) Uniq. (↑) Nov. (↑)
GraphRNN 0.117 0.615 0.043 - - 0.011 0.140 0.880 100.0 100.0
GRAN 0.026 0.342 0.254 - - 0.002 0.049 0.130 100.0 100.0
SPECTRE - - - - - 0.013 0.047 0.029 100.0 100.0
BiGG 0.010 0.017 0.012 89.5 57.2 0.001 0.026 0.023 - -
GDSS 0.393 0.873 0.209 100.0 100.0 0.703 1.444 0.410 99.5 100.0
DiGress 0.063 0.031 0.024 100.0 100.0 OOM OOM OOM OOM OOM
BwR + GraphRNN N.A. N.A. N.A. N.A. N.A. 0.092 0.229 0.489 - -
BwR + Graphite 0.229 0.123 0.054 100.0 100.0 0.239 0.245 0.492 - -
BwR + EDP-GNN OOM OOM OOM OOM OOM 0.184 0.208 0.738 - -

GEEL (ours) 0.053 0.017 0.016 89.4 62.8 0.003 0.005 0.003 93.7 88.9

3d point cloud

8 ≤ |V | ≤ 5037

Method Deg. (↓) Clu. (↓) Orb. (↓) Uniq. (↑) Nov. (↑)
GraphVAE OOM OOM OOM OOM OOM
GraphRNN OOM OOM OOM OOM OOM
GRAN 0.018 0.510 0.210 - -
BiGG 0.003 0.210 0.007 - -
GDSS OOM OOM OOM OOM OOM
DiGress OOM OOM OOM OOM OOM
BwR + GraphRNN 1.820 1.295 0.869 100.0 100.0
BwR + Graphite OOM OOM OOM OOM OOM
BwR + EDP-GNN OOM OOM OOM OOM OOM

GEEL (ours) 0.002 0.081 0.020 100.0 80.0
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Table 16: Molecular graph generation performance of the QM9 and ZINC datasets including
novelty and uniqueness. The baseline results are from prior works (Jo et al., 2023; Ahn et al., 2022).
The best results of molecule generative models and domain-agnostic generative models are both
highlighted in bold.

QM9

Method Validity (%) (↑) NSPDK (↓) FCD (↓) Scaf. (↑) SNN (↑) Frag. (↑) Unique. (%) (↑) Novelty (%) (↑)
Molecule-specific generative models

CharRNN 99.57 0.0003 0.087 0.9313 0.5162 0.9887 - -
CG-VAE 100.0 - 1.852 0.6628 0.3940 0.9484 - -
MoFlow 91.36 0.0169 4.467 0.1447 0.3152 0.6991 98.65 94.72
STGG 100.0 - 0.585 0.9416 0.9998 0.9984 96.76 72.73

Domain-agnostic graph generative models

EDP-GNN 47.52 0.0046 2.680 0.3270 0.5265 0.8313 99.25 86.58
GraphAF 74.43 0.0207 5.625 0.3046 0.4040 0.8319 88.64 86.59
GraphDF 93.88 0.0636 10.928 0.0978 0.2948 0.4370 98.58 98.54
GDSS 95.72 0.0033 2.900 0.6983 0.3951 0.9224 98.46 86.27
DiGress 98.19 0.0003 0.095 0.9353 0.5263 0.0023 96.67 25.58
DruM 99.69 0.0002 0.108 0.9449 0.5272 0.9867 96.90 24.15
GraphARM 90.25 0.0020 1.220 - - - - -

GEEL (ours) 100.0 0.0002 0.089 0.9386 0.5161 0.9891 96.08 22.30

ZINC

Method Validity (%) (↑) NSPDK (↓) FCD (↓) Scaf. (↑) SNN (↑) Frag. (↑) Unique. (%) (↑) Novelty (%) (↑)
Molecule-specific generative models

CharRNN 6.95 0.0003 0.474 0.4024 0.3965 0.9988 - -
CG-VAE 100.0 - 11.335 0.2411 0.2656 0.8118 - -
MoFlow 91.36 0.0169 4.467 0.1447 0.3152 0.6991 99.99 100.00
STGG 63.11 0.0455 20.931 0.0133 0.2352 0.7508 99.99 99.89

Domain-agnostic graph generative models

EDP-GNN 63.11 0.0485 16.737 0.0000 0.0815 0.0000 99.79 100.00
GraphAF 68.47 0.0442 16.023 0.0672 0.2422 0.5348 98.64 99.99
GraphDF 90.61 0.1770 33.546 0.0000 0.1722 0.2049 99.63 100.00
GDSS 97.01 0.0195 14.656 0.0467 0.2789 0.8138 99.64 100.00
DiGress 94.99 0.0021 3.482 0.4163 0.3457 0.9679 99.97 99.99
DruM 98.65 0.0015 2.257 0.5299 0.3650 0.9777 99.97 99.98
GraphARM 88.23 0.0550 16.260 - - - - -

GEEL (ours) 99.31 0.0068 0.401 0.5565 0.4473 0.992 99.97 99.89
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G DISCUSSION

G.1 LIMITATION

In this section, we discuss the limitations of our GEEL. The limitation of GEEL is two-fold: (1)
unable to generate graphs with unseen tokens and (2) dependency on the bandwidth. Since GEEL
is based on the vocabulary with gap-encoded edge tokens, the model cannot generate the graphs
with unseen tokens, i.e., the graphs with larger bandwidth than the training graphs. Nonetheless, we
believe the generalization capability of our GEEL is strong enough in practice. In all the experiments,
we verified that our vocabulary obtained from the training dataset entirely captures the vocabulary
required for generating graphs in the test dataset.

Another limitation is the dependency on the bandwidth, i.e., the vocabulary size of GEEL is the
square of the bandwidth. It is true that the vocabulary size of GEEL is highly dependent on the
bandwidth. However, most of the real-world large-scale graphs have small bandwidths as described in
Table 12 so B being as large as N is rare in practice. Additionally, for larger graphs with B ≈ N , one
could consider (a) decomposing the graph into subgraphs with small bandwidth and (b) separately
generating the subgraphs using GEEL. This would be an interesting future avenue of research.

G.2 COMPARISON TO BWR

Here, we compare our GEEL to BwR (Diamant et al., 2023). Our work proposes a new edge list
representation with the vocabulary size of B2 with gap encoding. Although we promote reducing
the bandwidth B using the C-M ordering, as proposed by BwR, our key idea, the gap encoding edge
list is orthogonal to BwR. Our analysis of B2 vocabulary size simply follows the definition of graph
bandwidth. Moreover, one could also choose any bandwidth minimization algorithm (e.g., BFS
ordering used in GraphRNN) to reduce the vocabulary size B2.

In detail, we compare our GEEL to three variants of BwR. First, BwR+GraphRNN iteratively adds
a node to the graph by adding the neighbors independently at once using a multivariate Bernoulli
distribution. This ignores the dependencies between adjacent edges, which our GEEL captures
via the edge-wise updates. Next, BwR+Graphite is a VAE-based generative model that generates
the whole graph in a one-shot manner. This also does not consider the edge dependencies during
generation, while our GEEL does. Finally, BwR+EDP-GNN is a diffusion-based model that generates
the continuous relaxation of the adjacency matrix. It requires the generative model to learn the
complicated reverse diffusion process, which results in underfitting of the model. This issue is
especially significant since the BwR+EDP-GNN uses a small number of 200 diffusion steps.
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H ADDITIONAL RESULTS FOR ABLATION STUDY

Deg. Clus. Orb.

BFS 0.000 0.000 0.000
DFS 0.000 0.000 0.000

Random 0.000 0.000 0.000
C-M 0.000 0.000 0.000

Table 17: MMD on different node orderings
We provide the MMD performance of the ablation study on different orderings of Section 4.3 in
Table 17. We can observe that the generation with any ordering eventually converges to the same
levels of MMD.
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