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Abstract

A reliable estimate of the full conditional distribution of a multivariate response
given a set of covariates is essential in many decision-making applications. How-
ever, misspecified or miscalibrated models can lead to poor approximations of
the joint distribution, resulting in unreliable predictions and suboptimal decisions.
Standard recalibration methods are largely restricted to univariate settings, and
while conformal prediction techniques yield multivariate regions with coverage
guarantees, they do not provide an explicit form of the underlying probability distri-
bution. We address this gap by first introducing a novel notion of latent calibration,
which assesses probabilistic calibration in the latent space of conditional invertible
generative models such as normalizing flows and flow matching. Second, we
propose latent recalibration (LR), a post-hoc model recalibration method that learns
a transformation of the latent space with finite-sample bounds on latent calibration.
Unlike existing recalibration methods, LR produces a recalibrated distribution
with an explicit multivariate density function while remaining computationally
efficient. Extensive experiments on both tabular and image datasets show that LR
consistently improves latent calibration error and the negative log-likelihood of the
recalibrated models.

1 Introduction

Generating reliable uncertainty estimates is essential for trustworthy decision-making across a wide
range of applications (Gawlikowski et al., 2023). Multi-output regression problems, in particular,
arise frequently in domains such as weather forecasting (Setiawan et al., 2024), energy consumption
prediction (Makaremi, 2025), and healthcare resource utilization (Cui et al., 2018). While flexible
models like neural networks can achieve high predictive accuracy, their uncertainty estimates are
often poorly calibrated, meaning predicted probabilities or confidence regions do not align with
empirical frequencies (Guo et al., 2017; Dheur and Ben Taieb, 2023). Furthermore, most recalibration
methods are designed for the single-output setting (Gneiting et al., 2007; Song et al., 2019; Sahoo
et al., 2021; Kuleshov and Deshpande, 2021; Dewolf et al., 2022; Fakoor et al., 2023; Marx et al.,
2023; Chung et al., 2023; Gneiting and Resin, 2023).

Noting the general lack of methods for assessing and recalibrating multi-output models, Chung et al.
(2024) leveraged highest-density regions (HDRs) (Hyndman, 1996) to introduce the notion of HDR
calibration and propose the sampling-based HDR recalibration (HDR-R) method. Recently, multi-
output conformal prediction (CP) methods have also been developed to construct joint prediction
sets (Wang et al., 2023; Feldman et al., 2023; Fang et al., 2025; Dheur et al., 2025). However, both
HDR-R and CP approaches fail to provide an explicit form for the underlying recalibrated probability
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distribution, with HDR-R further involving computationally intensive sampling and binning at test
time.

To overcome these limitations, we introduce the latent recalibration (LR) method, based on a new
notion of latent calibration, which recalibrates invertible generative models (e.g., normalizing flows
(NFs) or flow matching (FM)) by operating within their latent space. The core idea is to learn a
transformation of the latent space such that the resulting model achieves latent calibration. Compared
to set-based CP methods and sampling-based recalibration approaches such as HDR-R, LR (i) yields a
fully recalibrated generative model with an explicit multivariate probability density function (PDF),
(ii) provides finite-sample latent calibration guarantees, and (iii) enables efficient density evaluation
and sampling, which are essential for many applications and support improved decision-making
(Klein, 2024).

Our main contributions are:

• We introduce latent calibration, a new notion of calibration evaluated within the latent space
of an invertible generative model, based on the distribution of latent norms.

• We propose LR, a recalibration method that yields a multivariate predictive distribution with
an explicit PDF, offers finite-sample latent calibration guarantees, and remains computation-
ally efficient.

• We empirically demonstrate, across 29 multi-output tabular datasets and one high-
dimensional image dataset, that LR consistently improves latent calibration and reduces
negative log-likelihood (NLL). A public codebase is provided to ensure reproducibility.1

2 Background

We consider a multi-output distributional regression setting, where the goal is to predict the distri-
bution of a d-dimensional response variable Y ∈ Y ⊆ Rd from a p-dimensional input vector
X ∈ X ⊆ Rp. We assume access to a dataset D = {(X(j), Y (j))}Nj=1, where the samples
(X(j), Y (j)) are drawn i.i.d. from PXY , the true joint distribution over X × Y . The dataset is
partitioned into three disjoint subsets: a training set Dtrain, a test set Dtest, and a calibration set
Dcal = {(X(i), Y (i))}ni=1. The true conditional distribution of Y given X = x is denoted by
PY |X=x. Similarly the true cumulative distribution function (CDF) is denoted FY |X=x, and the cor-
responding PDF, assumed to exist for all x ∈ X , is denoted fY |X=x. More generally, we denote the
distribution, CDF and PDF of any random variable A by PA, FA, and fA, respectively. Additionally,
estimates are denoted P̂A, F̂A, and f̂A.

2.1 Normalizing Flows for predictive density estimation

UsingDtrain, our goal is to estimate the conditional PDF fY |X=x for inputs x ∈ X . NFs offer a flexible
framework for modeling complex distributions over continuous random variables. Specifically, an
NF defines a learnable bijective (conditional) transformation T̂ : Z ×X → Y between a latent space
Z ⊆ Rd and the output space Y ⊆ Rd. For any y ∈ Y and x ∈ X , the transformation satisfies
T̂ (T̂−1(y;x);x) = y. Given an input x ∈ X , the NF maps a latent random variable Z ∈ Z (typically
drawn from a known base distribution, such as N (0, Id)) to a new random variable T̂ (Z;x). The
resulting conditional PDF is computed using the change-of-variables formula:

f̂Y |X=x(y) = fZ(T̂
−1(y;x))

∣∣det (∇yT̂
−1(y;x)

)∣∣ , (1)

where fZ denotes the density of the latent variable Z. NFs are typically trained by minimizing
the NLL over the training dataset using mini-batch stochastic gradient descent. For details on NF
architectures, we refer the reader to Papamakarios et al., 2021.

For brevity, the main text focuses on normalizing flows, but our method is also compatible with flow
matching, as shown in Section L.

1https://github.com/Vekteur/latent-recalibration
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2.2 Statistical calibration

While training with strictly proper scoring rules such as the NLL encourages accurate predictions,
it does not guarantee that the resulting predictions are reliable or calibrated, meaning they are
statistically aligned with the true distribution of the observations (Gneiting et al., 2007). This issue is
particularly relevant under limited data or model misspecification, and it has gained renewed attention
with the observation that modern neural network classifiers are often miscalibrated and overconfident
(Guo et al., 2017).

Probabilistic calibration. For real-valued outcomes (d = 1), probabilistic calibration (Gneiting
et al., 2007) builds on the probability integral transform (PIT). Denote F̂Y |X a predictive CDF for Y
whose value depends on the random variable X . Assuming F̂Y |X=x is continuous for any x ∈ X ,
probabilistic calibration requires that

FY |X(Y ) ∼ U(0, 1). (2)

Multivariate calibration. Compared to the univariate case, calibration for vector-valued outcomes
has been relatively underexplored. Moreover, assessing calibration in the multivariate setting (d ≥ 2)
is inherently more challenging, as the PIT is no longer uniformly distributed (Genest and Rivest,
2001). While probabilistic calibration can be assessed separately for each dimension, this approach
may miss important dependencies between outputs (Chung et al., 2024).

The primary approach to assessing multivariate calibration involves reducing multivariate predictions
and observations to univariate summary statistics, and then evaluating the uniformity of the PITs
of these transformed values (Allen et al., 2024). Let (X,Y ) ∼ PX,Y and (X, Ŷ ) ∼ PX P̂Y |X , and
define a transformation function (also known as a pre-rank function) g : X ×Y → R. If G = g(X,Y )

and Ĝ = g(X, Ŷ ), then by the probability integral transform, the random variable Û = FĜ(G) is
uniformly distributed whenever Ĝ

d≈ G. In this case, we say that P̂Y |X is probabilistically calibrated
with respect to the transformation g. Chung et al. (2024) introduced HDR calibration as a special case,
where g(x, y) = −f̂Y |X=x(y). In that case, the corresponding PIT Û = FĜ(G) = HPD

f̂Y |X
(Y )

is the highest predictive density (HPD; Box and Tiao, 1992). This form of calibration ensures that
HDRs derived from the predictive distribution achieve correct empirical coverage at all nominal
probability levels.

2.3 Recalibration methods

Recalibration methods adjust a potentially miscalibrated base predictor (e.g., F̂Y |X ) to produce an
updated predictor (e.g., F̂ ′

Y |X ) that satisfies a desired calibration property.

Quantile recalibration. For the univariate case (d = 1), quantile recalibration (QR) (Kuleshov et al.,
2018) is a recalibration method that enforces probabilistic calibration. Let Û = F̂Y |X(Y ), and define
FÛ , the CDF of Û , as the calibration map. The recalibrated CDF is given by F̂ ′

Y |X = FÛ ◦ F̂Y |X .
By construction, F̂ ′

Y |X(Y ) is uniformly distributed over [0, 1]. Specifically, for any α ∈ (0, 1):

P(F̂ ′
Y |X(Y ) ≤ α) = P(F̂Y |X(Y ) ≤ F−1

Û
(α)) = FÛ (F

−1

Û
(α)) = α. (3)

HDR recalibration. For d ≥ 1, Chung et al. (2024) proposed a sampling-based HDR recalibration
method (HDR-R) that targets HDR calibration. Let Û = FĜ(G), and define FÛ as the calibration map.
Given a new input xtest, K candidates samples {Ŷ (k)}Kk=1 are drawn from P̂Y |X=xtest , with pre-rank
values Ĝ(k) = −f̂Y |X=xtest(Ŷ

(k)), k = 1, . . . ,K. Based on binning, HDR-R resamples from the set
of candidate samples, producing a new set of recalibrated samples {Ŷ ′(k)}Kk=1 with pre-rank values
Ĝ′(k) = −f̂Y |X=xtest(Ŷ

′(k)). This resampling process induces a new random variable Ŷ ′ and its
pre-rank Ĝ′ = −f̂Y |X=xtest(Ŷ

′). The number of samples in each bin is determined such that

FĜ′(−f̂Y |X(Y )) ∼ U(0, 1). (4)
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Table 1: Comparison of calibration notions, the associated calibration statistic Û (uniform under calibration),
recalibration methods, and related conformal conformity scores.

Calibration notion Calibration statistic Recalibration method Conformal method

Probabilistic (d = 1) F̂Y |X(Y ) Quantile recalibration (QR) DCP
HDR (d ≥ 1) HPD

f̂Y |X
(Y ) HDR recalibration (HDR-R) HPD-split

Latent (d ≥ 1) FρZ(Z)(ℓT̂ (Y ;X)) Latent recalibration (LR) CONTRA/L-CP

For completeness, we provide an exact algorithm in Section E.2. While effective in calibrating
HDRs, HDR-R has several limitations: (i) it does not produce an explicit recalibrated PDF f̂ ′

Y |X ; (ii)
it generates duplicate samples; (iii) it is subject to discretization errors when estimating FG|x; and
(iv) it is computationally expensive, as it requires generating K initial samples for every recalibrated
output.

Estimating the calibration map. In practice, the ideal calibration map FÛ is unknown and is
estimated based on the calibration statistics {Ûi}ni=1 with Ûi ∼ FÛ . A standard estimator is the
empirical CDF F̂ Û (α) =

1
n

∑n
i=1 1(Ûi ≤ α) but differentiable estimators can also be employed

(Marx et al., 2022; Dheur and Ben Taieb, 2024).

2.4 Conformal prediction

Conformal prediction (CP) constructs distribution-free prediction sets R̂α(X) with finite-sample
marginal coverage guarantees, i.e., P(Y ∈ R̂α(X)) ≥ 1 − α for any desired significance level
α ∈ (0, 1) (Vovk et al., 2005; Angelopoulos and Bates, 2021). A common variant, Split CP (SCP)
(Papadopoulos et al., 2002), partitions the data into a training set Dtrain and a calibration set Dcal. A
base predictor is trained on Dtrain, and then a conformity score s : X × Y → R, where lower values
indicate better agreement between the model’s predictions and the observations. SCP constructs
the prediction set by computing the empirical (1− α)-quantile of the conformity scores evaluated
on the calibration set, i.e., {s(X(1), Y (1)), . . . , s(X(n), Y (n)),+∞}, denoted by F̂−1

S (1− α). The
resulting prediction region is R̂α(x) = {y ∈ Y : s(x, y) ≤ F̂−1

S (1 − α)}, which satisfies the
marginal coverage guarantee.

Notably, specific choices of conformity scores correspond to recalibration statistics: Distributional
Conformal Prediction (DCP) (Chernozhukov et al., 2021) uses sDCP(x, y) = F̂Y |X=x(y), while HPD-
split (Izbicki et al., 2022) uses sHPD-split(x, y) = HPD

f̂Y |X=x

(y); these match the transformations

used in QR and HDR-R, respectively. This highlights a unified framework connecting conformal
prediction and recalibration, summarised in Table 1.

3 A New Latent Recalibration Method for Normalizing Flows

We propose a new recalibration method, called latent recalibration (LR), for conditional NFs. LR
operates in the latent space and is specifically designed to achieve our newly introduced notion of
multivariate latent calibration.

3.1 A New Notion of Multivariate Latent Calibration

Recall that, given a latent variable Z ∈ Z with a known distribution and an input x ∈ X , condi-
tional NFs estimate the conditional distribution of Y , FY |X=x, by learning a conditional bijective
transformation T̂ : Z → Y such that the PDF f̂Y |X of the transformed variable T̂ (Z;x) approx-
imates fY |X=x. However, model misspecification or significant estimation errors in the learned
transformation T̂ can lead to poor calibration of the induced distribution of T̂ (Z;x).

We propose to leverage the simple structure of the latent space Z and assess calibration directly
in this space, a notion we refer to as latent calibration. By definition, if the NF is well-specified
for FY |X=x, then the inverse transformation T̂−1 satisfies T̂−1(Y ;X)

d≈ Z, where
d≈ denotes

4



approximate equality in distribution. Building on this observation, we define a norm ρZ : Z → R+

over Z (e.g., ρZ(z) := ∥z∥). The goal is to test whether ρZ(T̂−1(Y ;X))
d≈ ρZ(Z).

Since the distribution of Z is known and standard (e.g., standard Gaussian), the distribution of ρZ(Z)
is often known in closed-form. For instance, if Z ∼ N (0, Id) and ρZ(z) = ∥z∥, then ρZ(Z) follows
a Chi distribution with d degrees of freedom (χd), whose PDF, CDF, and quantile function can be
computed efficiently. As another example, if Z ∼ U(Bd) is uniformly distributed over the unit
hyperball and ρZ(z) = ∥z∥, then ρZ(Z) follows a Beta(d, 1) distribution.
Definition 1. Consider a NF defined by a latent variable Z and a bijective transformation T̂ . For a
pair (X,Y ), define the latent norm w.r.t. T̂ as

L̂ = ℓ
T̂
(Y ;X) = ρZ(T̂

−1(Y ;X)). (5)

The NF is said to be latent calibrated w.r.t. Z and the norm ρZ if the PIT of the latent norm follows a
standard uniform distribution, i.e.,

Û = FρZ(Z)(L̂) ∼ U(0, 1). (6)

To assess whether a model is latent calibrated, we define the latent expected calibration error (L-ECE)
as the L1 distance between the CDF of the PIT variable Û and the CDF of the uniform distribution:

L-ECE(T̂ ) =
∫ 1

0

∣∣FÛ (α)− α
∣∣ dα, (7)

The L-ECE is minimized at 0 when T̂ is perfectly latent calibrated, and has a maximum value of 0.5.

3.2 Multivariate Latent Recalibration

We propose a multivariate latent recalibration method, called LR, which performs a post-hoc adjust-
ment of the latent space of a NF to ensure that the resulting model is latent calibrated. Key advantages
of LR are that it yields a recalibrated distribution with an explicit PDF, remains computationally
efficient, and has finite-sample guarantees on latent calibration (see Section 3.3).

Latent space transformation. LR uses the CDF FL̂ as its calibration map. We define a scalar
strictly increasing transformation r : R+ → R+ using the quantile function F−1

L̂
, which maps the

original latent norms l ∈ R+ to recalibrated norms as follows:

r(l) = F−1

L̂
(FρZ(Z)(l)). (8)

We also define a vector-valued transformation R : Z → Z based on the scalar transformation r,
which maps latent vectors z such that ρZ(R(z)) = r(ρZ(z)). When using the Euclidean norm
ρZ(z) = ∥z∥, R is a radial transformation:

R(z) =
r(∥z∥)
∥z∥ · z (with R(0) = 0). (9)

The transformation R rescales each vector z along its original direction by replacing its norm ∥z∥
with r(∥z∥). This procedure defines a new latent variable Z ′ = R(Z), and the associated recalibrated
NF T̂ (Z ′;X).
Proposition 1. The recalibrated NF T̂ (Z ′;X) defined with the new latent variable Z ′ = R(Z) is
latent calibrated, i.e. Û ′ = FρZ(Z′)(L̂) ∼ U(0, 1).

Proof. Consider the inverse transformation r−1(l) = F−1
ρZ(Z)

(
FL̂(l)

)
for a latent norm l ∈ R+.

Then, using ρZ(R(z)) = r(ρZ(z)) the following identity holds:

FρZ(Z′)(l) = Fr(ρZ(Z))(l) = FρZ(Z)

(
r−1(l)

)
= FL̂(l), ∀l ∈ R+. (10)

Then, it follows that

P(Û ′ ≤ α) = P(FρZ(Z′)(L̂) ≤ α) = P(FL̂(L̂) ≤ α) = α. (11)
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Figure 1: Illustration of LR for a bivariate output. The first column shows the latent distribution, the second
column displays the predictive PDF, and the third and fourth columns show reliability diagrams for latent and
HDR calibration, respectively. The first row corresponds to an uncalibrated NF, and the second is the same
model after LR. Calibration points and their projections in the latent space are shown in blue. The PDF for both
the latent distribution and the predictive distribution is shown in orange. Level sets of the PIT of the latent norm
at levels 0.01, 0.1, 0.5, and 0.9 are indicated with black contours in the second column, and their corresponding
preimages are shown in the first column. LR improves both latent calibration (third column) and HDR calibration
(fourth column). Additional prediction examples on real-world datasets are presented in Section G.

Recalibrated predictive density. A distinctive feature of our LR recalibration procedure is that it
produces a recalibrated distribution with an explicit multivariate PDF.

Note that the recalibrated NF can be interpreted as a composite transformation T̂ ′ = T̂ ◦R, applied
to the original latent variable Z with density fZ , typically a standard multivariate Gaussian. Given
x ∈ X and y ∈ Y , assuming the transformation R is differentiable, the recalibrated predictive
density f̂ ′

Y |X=x(y) can be computed using the change of variables formula. Let z′ = T̂−1(y;x) and
z = R−1(z′). Then, we have

f̂ ′
Y |X=x(y) = fZ (z) |det (∇zR(z))|−1 ∣∣det (∇yT̂

−1(y;x)
)∣∣ . (12)

Let us consider the case where ρZ(z) = ∥z∥. The inverse transformation takes the form R−1(z′) =
r−1(∥z′∥)

∥z′∥ · z′ and the Jacobian determinant of R can be computed efficiently as:

|det (∇zR(z))| =
(
r(l)

l

)d−1

· ∂r(l)
∂l

, with l = ∥z∥. (13)

A detailed proof is provided in Section C.1. The term ∂r(l)
∂l in (13) is computed using the chain rule

as:
∂r(l)

∂l
=

∂F−1

L̂
(l′)

∂l′
· ∂FρZ(Z)(l)

∂l
, where l′ = FρZ(Z)(l). (14)

To compute ∂FρZ(Z)(l)/∂l, we leverage the fact that ρZ(Z) ∼ χd, whose PDF is available in
closed-form and can be evaluated efficiently.

In practice, FL̂ is estimated by computing latent norms L̂i = ℓ
T̂
(X(i), Y (i)) using samples

(X(i), Y (i)) from the calibration set Dcal. Section D details how this can be achieved using ker-
nel density estimation or monotonic splines, resulting in a differentiable estimate F̂ L̂ of FL̂. All
operations are carried out in log-space to ensure numerical stability. Figure 1 illustrates LR, with the
recalibrated predictive density f̂ ′

Y |X shown in the second column of the second row.

3.3 Useful Properties of Multivariate Latent Recalibration

We present finite-sample coverage guarantees for LR and highlight its connections to conformal
prediction methods. We assume that R depends on an estimate F̂ L̂ of FL̂ based on latent norms
L̂1, . . . , L̂n.
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Finite-sample coverage guarantees for recalibrated latent norms. Let us assume that the
estimated calibration map F̂ L̂ maps the i-th order statistic L̂(i) of L̂1, . . . , L̂n within a margin
λ/(n+ 1) ≥ 0 of the target quantile i/(n+ 1), that is,

F̂ L̂(L̂(i)) ∈
[
i− λ

n+ 1
,
i+ λ

n+ 1

]
. (15)

Then, letting ϵ = 1+λ
n+1 , Theorem 1 of Marx et al., 2022 yields the following finite-sample coverage

guarantee for the recalibrated latent norms:

P
(
FρZ(Z′)

(
ℓ
T̂
(Y ;X)

)
≤ α

)
= P

(
F̂ L̂(L̂) ≤ α

)
∈ [α− ϵ, α+ ϵ] , (16)

where we used (10) for the first equality and the probabilities are taken over X , Y , and the recalibrated
latent norms L̂1, . . . , L̂n.

Equivalence with conformal prediction sets. We observe that the prediction sets derived from
the recalibrated predictive density of LR coincide exactly with those obtained by the multivariate
conformal methods CONTRA (Fang et al., 2025) and L-CP (Dheur et al., 2025). Specifically, this
equivalence holds when LR uses the empirical CDF of the calibration scores L = {L̂1, . . . , L̂n,+∞}
as its calibration map, i.e., F̂ L̂(l) =

1
n+1

∑n
i=1 1(L̂i ≤ l).

CONTRA and L-CP are conformal methods that construct prediction sets using the conformity score
sCONTRA(x, y) = sL-CP(x, y) = ℓ

T̂
(y;x). Under this choice of calibration map, for any x ∈ X and

α ∈ (0, 1), we have
{y ∈ Y : FρZ(Z′)(ℓT̂ (y;x)) ≤ α} = {y ∈ Y : F̂ L̂(ℓT̂ (y;x)) ≤ α} (17)

= {y ∈ Y : sCONTRA(x, y) ≤ F̂−1

L̂
(α)}, (18)

where F̂−1

L̂
(α) = L̂(⌈α(n+1)⌉) denotes the (1− α) right empirical quantile of the calibration scores

L. This shows that the α-sublevel sets of the PIT of the latent norm of LR (17) correspond exactly
to the conformal prediction sets produced by CONTRA and L-CP at coverage α (18). While this
equivalence is notable, it is important to point out that the chosen calibration map F̂ L̂, being non-
differentiable, does not yield a well-defined recalibrated predictive density function f̂ ′

Y |X . This
equivalence is summarized in the last row of Table 1.

Equivalence of LR and QR in the single-output setting. QR is a special case of LR where d = 1,
Z = [0, 1], Z ∼ U(0, 1), T̂−1(y;x) = F̂Y |X=x(y) and ρZ(z) = z. In this case, R = F̂−1

L̂
and thus

T̂ ′−1(·;x) = R−1 ◦ T̂−1(·;x) = F̂ L̂ ◦ F̂Y |X=x = F̂ ′
Y |X=x, showing that both methods perform

exactly the same transformation.

4 Related work

Our work builds upon and contributes to generative modeling, calibration, conformal prediction,
and methods that combine these concepts in the context of multi-output regression. An extended
description of related works is available in Section B.

Various notions of calibration have been studied, including probabilistic (Gneiting et al., 2007),
marginal (Gneiting et al., 2007) and HDR (Chung et al., 2024) calibration. Ziegel and Gneiting
(2014) and Allen et al. (2024) also proposed multivariate notions of calibration but, to our knowledge,
no calibration methods for these notions have been proposed.

While traditional CP focuses on univariate intervals (Romano et al., 2019; Sesia and Romano, 2021),
recent multivariate CP methods create flexible regions. HPD-split (Izbicki et al., 2022) uses HPD
values as scores. PCP (Wang et al., 2023) uses balls around samples. ST-DQR (Feldman et al., 2023)
selects samples based on a region in a latent space and creates balls around these samples. CONTRA
(Fang et al., 2025) and L-CP (Dheur et al., 2025) operate in the latent space of NFs.

Some methods explicitly merge CP and recalibration. Vovk et al. (2020) and Vovk et al. (2019)
developed conformal predictive systems for calibrated univariate distributions. MCC (Marx et al.,
2022) unified univariate recalibration methods under a CP lens. Our work extends this direction to
multivariate outputs via a transformation in the latent space.
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5 Experiments

We present an extensive experimental study using 29 tabular datasets widely used in prior research
(Tsoumakas et al., 2011; Cevid et al., 2022; Chung et al., 2024; Feldman et al., 2023; Wang et al.,
2023; Barrio et al., 2024; Camehl et al., 2024). Furthermore, while recent work on model recalibration
(Chung et al., 2024; Fang et al., 2025) has primarily focused on data modalities with relatively low
output dimensionality, we also include a high-dimensional output setting with an image dataset with
a larger output dimension (Choi et al., 2020).

5.1 Datasets

Tabular datasets. The tabular datasets range in size from 103 to 50,000 data points, with the
number of input features (p) varying from 1 to 368, and the number of output variables (d) ranging
from 2 to 16. A detailed summary of these datasets is provided in Table 3 in Appendix A. Following
the protocol of Chung et al. (2024), we use a 65/20/15 split for training, validation, and testing. All
input features and output targets are normalized to have zero mean and unit variance on the training
set. Experiments are repeated 10 times with a different random splitting. For each run, we compare
the same base model with or without recalibration.

Image dataset. We use the AFHQ dataset (Choi et al., 2020), which consists of high-resolution
animal face images. The input x ∈ X = {0, 1, 2} indicates one of three classes (cat, dog, or wild
animal), and the output is a 256× 256 RGB image y ∈ Y = [−1, 1]3×256×256, resulting in an output
dimension of d = 196,608. We follow the standard split with 14,630 training instances and 1,500
test instances. To improve sample quality, Zhai et al. (2024) add Gaussian noise ϵ ∼ N (0, 0.072) to
each image y during training.

5.2 Experimental setup

(Non-recalibrated) base model. For the tabular datasets, we consider convex potential flows
(Huang et al., 2020), masked autoregressive flows (MAFs, Papamakarios, Pavlakou, et al., 2017) and
flow matching (FM, Lipman et al., 2022). A notable difference from the setup of Chung et al. (2024)
is that their predictive distributions are restricted to multivariate Gaussians with diagonal covariance,
whereas NFs can model dependencies between output dimensions. For the image dataset, we use the
TarFlow model (Zhai et al., 2024), a transformer-based conditional NF pre-trained on AFHQ, which
achieves state-of-the-art likelihood performance. As is standard, all aforementioned NFs use a latent
variable Z ∼ N (0, I). Details on these base models are provided in Section I, with hyperparameter
tuning details for convex potential flows in Section E. Results for MAFs and FM are deferred to
Sections K and L. In the following, we denote the non-recalibrated base model as BASE.

Compared methods. For our latent recalibration method, LR, we use the Euclidean norm ρZ(z) =
∥z∥ and estimate FL using kernel density estimation with a Gamma kernel; details are provided
in Section D. For both tabular and image datasets, we compare LR with the base model BASE.
Additionally, we include HDR-R for tabular datasets only, as it becomes computationally prohibitive
for TarFlow. For tabular datasets, following Chung et al. (2024), the recalibration map is learned on
the validation set. This avoids using additional data for calibration and ensures a fair comparison with
BASE, but sacrifices finite-sample guarantees. For the image dataset, since no separate calibration set
is available, calibration is performed on the training data. This also sacrifices finite-sample guarantees,
but we will show below that it still leads to substantial improvements in calibration.

Error metrics. We consider several error metrics to compare the different methods. For the tabular
datasets, we evaluate model calibration using the latent expected calibration error (L-ECE) and
the HDR expected calibration error (HDR-ECE). Both metrics range from 0 (best) to 0.5 (worst).
Predictive accuracy is assessed using two strictly proper scoring rules: negative log-likelihood (NLL)
and the energy score (ES). Notably, LR yields a recalibrated density with a closed-form PDF, enabling
direct computation of the NLL, which is not possible with HDR-R. Since the scales of NLL and ES
vary across datasets, we report relative values, defined as the difference with the score achieved by
BASE. All metrics are negatively oriented. Exact definitions are provided in Section E.1. For the
image dataset, we report L-ECE and the bits per dimension (BPD), following Zhai et al. (2024). BPD
corresponds to a rescaled version of the NLL (details in Section E.1).
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5.3 Results
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Figure 2: Relative NLL and ES on datasets sorted by size, using a
convex potential flow model.

Tabular datasets. Figure 2 presents
the normalized difference relative to
BASE for NLL and ES. We observe
that LR reduces the NLL on the ma-
jority of datasets. Since the NLL is
a strictly proper scoring rule, this in-
dicates that the recalibrated density
f̂ ′
Y |X produced by LR generally pro-

vides a better fit to the true data distri-
bution than the original model f̂Y |X .
In contrast to the NLL, the ES of
LR and HDR-R is largely unchanged.
In Section J.3, we attribute this phe-
nomenon to the metric’s weaker dis-
criminative ability relative to misspecifications in variance, correlation, and overall dependency
structure. A notable exception is the increased ES on the blog_data (BLO) dataset, where one
output is discrete and a single value is repeated across 64% of the instances. Based on this observation,
we suggest not using LR on datasets with discrete outputs.

Figure 3 also shows the L-ECE (as a measure of latent calibration) and HDR-ECE (as a measure of
HDR calibration), respectively. We see that BASE exhibits significant latent miscalibration across
many datasets, with L-ECE values reaching up to 0.25 out of a maximum of 0.5. In contrast, LR
consistently and substantially reduces L-ECE, demonstrating its effectiveness in achieving the desired
latent calibration. Moreover, L-ECE tends to decrease as dataset size increases, which aligns with the
finite-sample guarantees discussed in Section 3.3. Reliability diagrams in Section H further confirm
this improvement. Additional experiments on a misspecified model are provided in Section M, with
significant improvements given by LR across all metrics including ES.
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Figure 3: L-ECE and HDR-ECE on datasets sorted by size, using a convex potential flow model.

In Figure 3, while LR does not explicitly target HDR calibration, we observe that it significantly
improves HDR-ECE compared to BASE on most datasets, often performing on par with HDR-R. As
expected, HDR-R achieves low HDR-ECE values by design. These results suggest that improving
latent calibration also enhances the calibration of HDRs.

Access to a full, calibrated PDF is crucial for any task requiring estimation of the probability mass
within an arbitrary, non-standard region of the output space, a capability that set-based methods (like
CP) or pure sampling-based methods (like HDR-R) do not provide. A direct application is anomaly
detection, where low-density points are classified as anomaly (Rozner et al., 2024; Perini et al., 2024).
Other examples include risk assessment in engineering, targeted material design, or optimal control.
To make the benefits of a full PDF concrete, we provide an experiment on a decision-making task in
Section F.

Further detailed results with the same convex potential flow base predictor are provided in Section J.
Section J.1 shows that the primary NLL gain obtained by LR is due to finding more “plausible” latent
codes for the observed data under the base latent distribution. Section J.2 shows that LR significantly
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Table 2: Performance of LR compared to BASE on the AFHQ dataset with TarFlow (standard errors across 20
evaluations).

L-ECE BPD
BASE LR BASE LR

0.4740.000625 0.008950.00160 5.4773.523e-05 5.4651.772e-05

improves the time to compute the calibration map compared to HDR-R. Section J.3 hypothesizes
through theoretical and empirical considerations that the reason the ES remains largely unchanged
after LR is due to its relative insensitivity to misspecifications in variance and correlation.

Image dataset. The goal of our image data experiment is to understand the behaviour of latent
calibration and recalibration with high-dimensional outputs. Table 2 shows that BASE suffers from
severe latent miscalibration, with L-ECE values approaching the maximum of 0.5. LR dramatically
improves latent calibration, reducing L-ECE to below 0.01. We also report the bits-per-dimension
(BPD), a scaled version of the NLL. Notably, LR does not degrade the original NLL; in fact, it slightly
reduces it. LR preserves the visual quality of the samples from the base model, with no perceptually
visible changes, which aligns with the very small change we observed in NLL.

6 Conclusion and limitations

We introduced latent recalibration (LR), a novel post-hoc method for calibrating conditional normaliz-
ing flows in multi-output regression. By transforming the latent space based on calibration scores
derived from latent distances, LR achieves latent calibration, ensuring that prediction regions defined
in the latent space have correct coverage. Unlike many conformal prediction methods that only output
sets, and unlike sampling-based recalibration methods, LR yields a fully specified, recalibrated PDF.
This offers significant advantages in terms of computational efficiency and applicability to tasks
requiring density estimates. Our extensive experiments on tabular and high-dimensional image data
demonstrate that LR consistently improves NLL, latent calibration, and HDR calibration.

We identify the main limitations of LR as follows. Firstly, LR intentionally adjusts only the magnitude
of latent vectors, not their direction, and thus cannot fix miscalibration arising from errors in the
orientation of the learned latent manifold. While LR can only perform simple adjustments, this allows
simplifying the difficult multivariate calibration problem into a tractable univariate one (calibrating
norms). This enables connections with conformal prediction and recalibration methods, and has good
empirical performance. Secondly, LR requires the norm of the latent distribution to follow a simple
distribution. This is usually the case, as normalizing flows predominantly use a standard Gaussian
latent variable. Thirdly, LR requires an invertible transformation between the response and latent
spaces, and a latent random variable with a known, tractable density, which makes it incompatible
with models such as variational auto-encoders (Kingma and Welling, 2014) or denoising diffusion
probabilistic models (Ho et al., 2020). Instead, NF and FM models are natural fits for LR. Despite
these considerations, LR provides a practical and effective tool for obtaining reliable, calibrated
multivariate predictive distributions from generative models.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full details are provided in the main text and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard error is reported in both bar plots and tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is provided in Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The method does not present ethical concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The method targets improving the reliability of conditional normalizing flows,
which does not present direct negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Authors are properly credited for each dataset in the Appendix. Credits are
also given in the README of the code base. MEPS datasets require approving a specific
license as mentioned in the README.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

Table 3 shows the datasets considered in our experiments, with associated reference papers. The
datasets are characterized by their total number of instances, number of features p and number of
outcomes d. The preprocessing follows the setup described in Grinsztajn et al., 2022.

Table 3: Lists of evaluated tabular datasets.

Total size p d
Paper Dataset Abbreviation

Tsoumakas et al., 2011 slump SLU 103 7 3
edm EDM 154 16 2
atp7d AT2 296 355 6
sf1 SF1 323 31 3
oes97 OE2 334 263 16
atp1d AT1 337 354 6
jura JUR 359 15 3
oes10 OE1 403 298 16
enb ENB 768 3 2
wq WQ 1060 16 14
sf2 SF2 1066 31 3
scpf SCP 1137 8 3

Barrio et al., 2024 ansur2 ANS 1986 1 2
Camehl et al., 2024 households HO2 7207 14 4
Tsoumakas et al., 2011 scm20d SC2 8966 60 16

rf1 RF1 9005 64 8
scm1d SC1 9803 279 16

Cevid et al., 2022 births2 BI2 10000 24 4
air AIR 10000 15 6
births1 BI1 10000 23 2
wage WAG 10000 78 2

Feldman et al., 2023 meps_21 ME3 15656 138 2
meps_19 ME1 15785 138 2
meps_20 ME2 17541 138 2
house HO1 21613 17 2
bio BIO 45730 8 2
blog_data BLO 50000 269 2

Barrio et al., 2024 calcofi CAL 50000 1 2
Wang et al., 2023 taxi TAX 50000 4 2

B Extended related work

Normalizing flows. Various NF architectures exist, including RealNVP (Dinh et al., 2016), MAF
(Papamakarios, Pavlakou, et al., 2017), Glow (Kingma and Dhariwal, 2018), spline flows (Durkan
et al., 2019), convex potential flows (Huang et al., 2020) and transformer flows (Zhai et al., 2024).
NFs are well-suited for LR due to their invertible mapping and explicit density. Radial flows (Rezende
and Mohamed, 2015) are a special case of (9) with r(t) = t · (α + t + β)/(α + t) where α ∈ R+

and β ∈ R are learned parameters.

Conditional notions of calibration. Multiple extensions of notions of calibration have been pro-
posed by imposing different conditions, including group calibration (Pleiss et al., 2017), distribution
calibration (or auto-calibration) (Song et al., 2019; Tsyplakov, 2013), individual calibration (Zhao
et al., 2020), and threshold calibration (Sahoo et al., 2021). Latent calibration could be extended by
imposing similar conditions.

Calibration methods. Improving calibration often involves post-hoc recalibration or regularization
during training. Recalibration methods adjust pre-trained models. Notable methods include Kuleshov
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et al., 2018; Kuleshov and Deshpande, 2022; Chung et al., 2024. Regularization methods incorporate
calibration objectives into training (Utpala and Rai, 2020; Marx et al., 2023; Dheur and Ben Taieb,
2023). However, these methods target univariate settings and can trade off predictive accuracy (NLL,
CRPS) for calibration (Yoon et al., 2023; Dheur and Ben Taieb, 2023). Dheur and Ben Taieb (2024)
integrated QR end-to-end into training, followed by post-hoc recalibration.

C Proofs

C.1 Jacobian determinant of the radial transform

Recall that the transformation R is defined as

R(z) =
r(l)

l
z (19)

where l = ∥z∥, for z ̸= 0. It maps z to a new vector R(z) such that its norm becomes r(l) while its di-
rection z/l is preserved (for z ̸= 0). We analyze this transformation using hyperspherical coordinates
(l, ω1, . . . , ωd−1), where l = ∥z∥ is the radial distance and (ω1, . . . , ωd−1) are the angular coordi-
nates. The transformation R maps these coordinates from (l, ω1, . . . , ωd−1) to (r(l), ω1, . . . , ωd−1),
as only the radial distance is altered.

The Cartesian volume element ddz is related to the hyperspherical volume element by ddz =
ld−1dl dΩd−1, where dΩd−1 is the surface element on the unit (d− 1)-sphere. Under the transfor-
mation R, the new radial coordinate is l′ = r(l), so its differential is dl′ = ∂r(l)

∂l dl. The angular part
dΩd−1 remains unchanged. The transformed volume element ddR(z) is thus given by:

ddR(z) = (r(l))d−1

(
∂r(l)

∂l
dl

)
dΩd−1. (20)

The Jacobian determinant |det (∇zR(z))| is the ratio of the transformed volume element ddR(z) to
the original volume element ddz:

|det (∇zR(z))| = (r(l))d−1 ∂r(l)
∂l dl dΩd−1

ld−1dl dΩd−1
=

(
r(l)

l

)d−1
∂r(l)

∂l
, (21)

which corresponds to (13). This holds for l = ∥z∥ > 0. Since r : R+ → R+, r(l) ≥ 0. Furthermore,
r(l), as defined by (8), is a composition of non-decreasing functions (a CDF and an inverse CDF),
making it non-decreasing, so ∂r(l)

∂l ≥ 0. Thus, the expression is inherently non-negative.

D Differentiable calibration maps using density estimation

To obtain a differentiable calibration map F̂ L̂, we estimate the PDF f̂ L̂ of the calibration data using
density estimation. We identified two approaches that performed well in our experiments.

As an implementation detail for both approaches, density estimation was generally improved by first
applying the transformation g(t) = t1/3 to the calibration scores {L̂i}ni=1. After density estimation
in the transformed space, the data is rescaled using the inverse transformation g−1(t) = t3.

D.1 Kernel density estimation with Gamma kernels

We found that kernel density estimation (KDE) with Gamma kernels is effective because the Gamma
distribution has positive support, which is appropriate for the calibration scores L̂i ≥ 0. Let Γ(ζ, λ)
denote a Gamma distribution with shape ζ > 0 and rate λ > 0. A Gamma distribution Γ(µλ, λ) has a
mean of µ. We center a Gamma kernel at each calibration score L̂i, using the distribution Γ(L̂iλ, λ),
which has a mean of L̂i.

The resulting estimated CDF F̂ L̂(t) is given by the average of the individual kernel CDFs:

F̂ L̂(t) =
1

n

n∑
i=1

FΓ(L̂iλ,λ)
(t). (22)
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The rate parameter λ is chosen by minimizing the NLL of the calibration dataset under the KDE model.

This is done using 10-fold cross-validation over the grid
{
10−5+10· i

99

}99

i=0
. This hyperparameter

selection process is efficient and performed once per run.

Figure 4 shows an example fit on all datasets, illustrating the empirical and estimated smooth CDFs
(left y axis) and the estimated log PDF (right y axis).
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Figure 4: Density estimation using KDE with a Gamma kernel.

D.2 Rational Quadratic Splines

Rational Quadratic Splines (Durkan et al., 2019) provide a flexible framework for defining invertible
and differentiable transformations. A base spline Φ maps [−1, 1] to [−1, 1]. To handle the unbounded
domain of the latent norms, we use the transformation Ψ = tanh−1 ◦ Φ ◦ tanh, which maps R to R
and retains invertibility and differentiability. This transformation is used to model the distribution of
the latent norms by learning a mapping from a standard Gaussian distribution to the data distribution.

For training, the data is normalized to have zero mean and unit variance. The parameters of the spline
are optimized to minimize the NLL of the calibration dataset under the defined model. Optimization
is performed using Adam (Kingma and Ba, 2014). To maximize data information, we perform
early stopping on the training dataset itself and stop if the loss did not improve by 1e-4 for 50
epochs. Overfitting is prevented by limiting the number of bins and thus the flexibility of the spline.
Specifically, we use 4 bins if n ≤ 30, 5 bins if n ≤ 50, 6 bins if n ≤ 70, 7 bins if n ≤ 80, 8 bins if
n ≤ 90, and 9 bins if n ≤ 100.

Similar to Figure 4, Figure 5 shows an example fit for all datasets.
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Figure 5: Density estimation using a rational quadratic spline.

D.3 Challenges with numerical precision

In this section, we address a potential alternative approach and explain why it is impractical due to
numerical precision constraints. Theoretically, one could attempt to estimate the calibration map F̂ Û

using density estimation on the quantity Û = FρZ(Z)(ℓT̂ (Y ;X)). Since Û is expected to follow a
standard uniform distribution under ideal conditions, estimating its density might appear practical.

However, this approach faces significant numerical precision issues, particularly when the latent space
dimensionality d is large. When d is large, the CDF FρZ(Z) for ρZ(Z) ∼ χd becomes extremely
steep around its mode

√
d− 1. For example, in our image application with d = 196, 608, a proportion

99% of the probability mass is concentrated in the narrow interval [440.7, 446.2]. In single-precision
floating-point arithmetic, the CDF saturates quickly: Fχd

(t) is numerically 0.0 for t < 433.4 and 1.0
for t > 447.2.

If the latent model is miscalibrated, the values of ℓ
T̂
(Y ;X) for the calibration data can fall outside

this narrow range where the CDF has fine-grained variation. This results in many Û values being
numerically 0.0 or 1.0. For smaller dimensions, similar issues can occur, although less frequently. For
instance, with d = 1, Fχ1

(t) is numerically 1.0 for t > 5.54 in single precision. When a significant
portion of the calibration data for Û consists of values numerically identical to 0.0 or 1.0, accurate
density estimation becomes impossible.

For this reason, in Section 3.2, we based our calibration map on density estimation of L̂ = ℓ
T̂
(Y ;X)

directly, using F̂ L̂.
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E Additional details on experimental setup

Computing the main tabular data results requires approximately 24 hours on an RTX A6000 GPU,
and reproducing the image results requires approximately 6 hours on an RTX 6000 GPU. Experiments
can require up to 48 GB of VRAM, primarily due to large batch sizes during sampling for evaluation
metrics. Decreasing the batch size reduces VRAM requirements but increases computation time.

For tabular datasets, we tune hyperparameters using grid search, selecting those that yield the lowest
NLL on the validation set. For the convex potential flow, the number of units in the input convex
neural network is chosen from [10, 20, 40], the number of layers from [2, 3, 5], and the learning rate
from [5 × 10−3, 10−3, 2 × 10−4]. All models are trained by minimizing the NLL with the Adam
optimizer (Kingma and Ba, 2014) using a batch size of 1024.

E.1 Evaluation metrics

NLL. We compute the average NLL over the test set as Dtest:

N̂LL =
1

|Dtest|
∑

(X,Y )∈Dtest

− log f̂Y |X=X(Y ). (23)

L-ECE. For each test point (X(i), Y (i)) ∈ Dtest, we compute the PIT of the latent norm Ûi =

FρZ(Z)

(
ℓ
T̂
(Y (i);X(i))

)
. The Latent Expected Calibration Error (L-ECE) is then estimated as the

L1 distance between the empirical CDF of {Ûi}|Dtest|
i=1 and the uniform CDF:

L̂-ECE =
1

|Dtest|

|Dtest|∑
j=1

∣∣∣∣Û(j) −
j

|Dtest|+ 1

∣∣∣∣ , (24)

where Û(j) denotes the j-th order statistic of the computed PIT values.

Energy Score. For each test point (X,Y ) ∈ Dtest, we generate two independent sets of K samples,
Sx and S ′x, from the predictive distribution f̂Y |X=x(·). The Energy Score (ES) is estimated as:

ÊS =
1

|Dtest|
∑

(X,Y )∈Dtest

 1

K

∑
ŷ∈Sx

∥ŷ − Y ∥ − 1

2K2

∑
ŷ∈Sx,ŷ′∈S′

x

∥ŷ − ŷ′∥

 . (25)

In our experiments, we use K = 100.

HDR-ECE. For each test point (X(i), Y (i)) ∈ Dtest, we compute Gi = HPDf̂
Y |X=X(i)

(Y (i)), as

defined in Table 1. The HDR Expected Calibration Error (HDR-ECE) is estimated similarly to
L-ECE:

̂HDR-ECE =
1

|Dtest|

|Dtest|∑
j=1

∣∣∣∣G(j) −
j

|Dtest|+ 1

∣∣∣∣ , (26)

where G(j) is the j-th order statistic of the computed HDR pre-ranks. Note that computing the
HDR-ECE for HDR-R exactly is not possible as HDR-R does not yield an explicit recalibrated density
f̂ ′
Y |X . Following Chung et al. (2024), we use the density f̂Y |X of the original (non-recalibrated)

model for HDR-R when evaluating its HDR-ECE.

BPD. For image datasets, we report the Bits Per Dimension (BPD), calculated as in Zhai et al.
(2024). where d is the output dimensionality (e.g., d = 3× 256× 256 for AFHQ). The BPD is then:

B̂PD = (N̂LL/d+ log 128)/ log 2. (27)

Here, the log 128 term accounts for the scaling of pixel values from [0, 255] to [−1, 1], and division
by log 2 converts the NLL from nats to bits.
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Algorithm 1 Pre-rank recalibration.

1: Input: Calibration dataset Dcal, pre-rank g : X × Y → R, number of samples K, number of
bins B, base predictor with predictive distribution P̂Y |X , test input xtest.

2: Calibration:
3: for (X(i), Y (i)) ∈ Dcal
4: for k = 1 to K
5: Ŷ (k,i) ∼ P̂Y |X=X(i)

6: Ĝ(k,i) ← g
(
X(i), Ŷ (k,i)

)
7: Define F̂Ĝ|X=X(i)(c) =

1
K

∑K
k=1 1

(
Ĝ(k,i) ≤ c

)
8: Ûi ← F̂Ĝ|X=X(i)

(
g
(
X(i), Y (i)

))
9: Define F̂Û (u) =

1
|Dcal|

∑|Dcal|
i=1 1

(
Ûi ≤ u

)
// Calibration map

10: Prediction:
11: for k = 1 to K
12: Ŷ (k) ∼ P̂Y |X=xtest

13: Ĝ(k) ← g
(
xtest, Ŷ

(k)
)

14: Define a permutation π such that Ĝ(π(1)) ≤ · · · ≤ Ĝ(π(K))

15: S ′ ← ∅ // Initial set of samples
16: for b = 1 to B
17: nb ← ⌊KF̂Û (

b
B )⌋ − ⌊KF̂Û (

b−1
B )⌋ // Number of resamples

18: if nb > 0

19: Bb ←
{⌊

K(b−1)
B

⌋
+ 1, . . . ,

⌊
Kb
B

⌋}
20: Sb ← {Ŷ (π(k))}k∈Bb

// Samples pool
21: {Ỹ (k)}nb

k=1 ∼ PSb
// Resampling with replacement

22: S ′ ← S ′ ∪ {Ỹ (k)}nb

k=1
23: return recalibrated predictive samples S ′

Relative NLL or ES. To better visualize improvements in NLL or ES relative to the baseline model
BASE, we report the difference in these scores, normalized by the absolute value of the score of BASE.
For example, the relative NLL for LR is computed as (N̂LLLR − N̂LLBASE)/|N̂LLBASE|. A negative
value indicates improvement by LR.

E.2 HDR recalibration

For completeness, Algorithm 1 provides the exact recalibration procedure of the HDR-R baseline
(Chung et al., 2024) introduced in Section 2.3. Instead of the HDR recalibration algorithm in Chung
et al., 2024, we present a direct generalization to any pre-rank g : X × Y → R, which we call
pre-rank recalibration. HDR-R is a special case when g(x, y) = −f̂Y |X=x(y).

F Decision-making experiment

To make the benefits of a full PDF concrete, we have conducted an experiment on a decision-making
task.

Experiment setup. We use the SLUMP dataset, where inputs are ingredients for producing concrete
and outputs Y = (S, F,C) ∈ R3 are three concrete properties. A manufacturer must decide among
3 actions A = {A,B,D} whether a given batch of ingredients is suitable for one of two projects
(A or B), each with specific requirement regions, or if it should be discarded (D). The decision has
different financial utilities and risks:

• Requirements for Project A: 7 ≤ S ≤ 20, 55 ≤ F ≤ 65, 25 ≤ C ≤ 40.

• Requirements for Project B: 20 ≤ S ≤ 29, 70 ≤ F ≤ 100, 15 ≤ C ≤ 30.
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Table 4: Comparison of estimation strategies and methods. The best performing combination is highlighted in
bold.

Method Estimation Strategy Average Utility
BASE Sampling 62.53 ± 11.33
HDR-R Sampling 32.38 ± 10.81
BASE PDF (Numerical Integration) 76.23 ± 11.99
LR PDF (Numerical Integration) 113.31 ± 12.91

The expected utility for an agent with policy a : X → A is given by

E[u(Y, a(X))] with u(y, a) =



2000, if a = A and y ∈ RegionA
−30, if a = A and y ̸∈ RegionA

1500, if a = B and y ∈ RegionB

−15, if a = B and y ̸∈ RegionB

−10, if a = C.

(28)

The optimal action is chosen by maximizing the estimated expected utility. This requires estimating
the probabilities P̂ (Y ∈ RegionA | X) and P̂ (Y ∈ RegionB | X), which are computed using two
approaches: (1) Monte Carlo estimation with 125 samples, or (2) numerical integration of the PDF
over a 5x5x5 grid via the trapezoidal rule.

The agent acts according to the policy a∗(X) = argmaxa∈{A,B,C} ua(X) with

uA(X) = 2000P̂ (Y ∈ RegionA | X)− 30P̂ (Y ̸∈ RegionA | X)

uB(X) = 1500P̂ (Y ∈ RegionB | X)− 15P̂ (Y ̸∈ RegionB | X)

uC(X) = −10.

Results. Table 4 show two key observations:

1. Using the PDF via numerical integration leads to better decisions (higher utility) than relying
on a finite number of samples.

2. The improved calibration from LR provides a more accurate PDF, leading to a significant
further increase in utility. HDR-R, which relies on resampling from the original uncalibrated
density, actually harmed decision quality in this task.

This demonstrates a concrete scenario where an explicit, calibrated PDF is not just a theoretical
advantage but a practical necessity for optimal decision-making.

G Examples of predictive distributions on real-world tabular datasets

Figures 6 and 7 display examples of predictive PDFs on real-world tabular datasets with two-
dimensional outputs (d = 2). Each row corresponds to a different dataset. For each dataset, two
random test instances, (x(1), y(1)) and (x(2), y(2)) from Dtest, are shown.

Columns 1 and 3 show the predictive densities from the uncalibrated base predictor BASE (i.e.,
f̂Y |X=x(1)(·) and f̂Y |X=x(2)(·)). Columns 2 and 4 show the corresponding predictive densities from
the LR-recalibrated model (i.e., f̂ ′

Y |X=x(1)(·) and f̂ ′
Y |X=x(2)(·)). All densities are visualized in orange.

The true target observations (y(1) and y(2)) are marked with a blue dot. The negative log-likelihood
of the true target under the respective predictive density is provided in the bottom right corner of each
plot. Black contour lines indicate level sets of the PIT of the latent norm (FρZ(Z′)(ℓT̂ (y;x)) for the
LR model, and FρZ(Z)(ℓT̂ (y;x)) for the BASE model) at probability levels 0.01, 0.1, 0.5, and 0.9.

In many cases, when the BASE model is already reasonably well-calibrated, LR applies a subtle
adjustment that is difficult to perceive visually. In other instances, the recalibration effect is more
pronounced, visibly altering the shape and spread of the predictive distribution to better align with
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latent calibration. Note that two-dimensional datasets often benefit from smaller NLL improvements
according to Table 10, suggesting that stronger adjustments should be perceived in higher dimensions.
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Figure 6: Examples of 2D predictive densities on real-world datasets for random test points (x, y) ∈ Dtest.
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Figure 7: Examples of 2D predictive densities on real-world datasets for random test points (x, y) ∈ Dtest.

H Reliability diagrams

Figure 8 shows reliability diagrams for latent calibration. These diagrams plot the nominal probability
levels α ∈ [0, 1] against the empirical probabilities F̂Û (α), where Û = FρZ(Z)

(
ℓ
T̂
(Y ;X)

)
are the

PIT values computed on the test set. We also report 90% consistency bands, represented by the
shaded area around the diagonal, as described by Gneiting et al. (2023). The BASE model often
exhibits miscalibration (deviations from the diagonal), whereas LR consistently aligns closely with
the diagonal, demonstrating significantly improved latent calibration.
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Figure 8: Latent calibration diagrams

Figure 9 shows reliability diagrams for HDR calibration. These diagrams plot nominal probability
levels α against empirical probabilities F̂Û (α), where Û = HPDf̂Y |X

(Y ) are the HDR pre-rank
values from the test set. Again, the BASE model frequently shows miscalibration. Both LR and HDR-R
improve HDR calibration, though for LR this improvement is a beneficial side effect rather than a
direct optimization target, unlike its consistent improvement of latent calibration shown in Figure 8.

30



0.0

0.2

0.4

0.6

0.8

1.0

F̂
U

(α
)

SLU (17) EDM (24) AT2 (45) SF1 (50) OE2 (51)

0.0

0.2

0.4

0.6

0.8

1.0

F̂
U

(α
)

AT1 (51) JUR (55) OE1 (62) ENB (116) WQ (159)

0.0

0.2

0.4

0.6

0.8

1.0

F̂
U

(α
)

SF2 (161) SCP (171) ANS (299) HO2 (1082) SC2 (1346)

0.0

0.2

0.4

0.6

0.8

1.0

F̂
U

(α
)

RF1 (1351) SC1 (1472) AIR (1500) BI2 (1500) BI1 (1500)

0.0

0.2

0.4

0.6

0.8

1.0

F̂
U

(α
)

WAG (1500) ME3 (2349) ME1 (2368) ME2 (2632) HO1 (3243)

0.00 0.25 0.50 0.75 1.00

α

0.0

0.2

0.4

0.6

0.8

1.0

F̂
U

(α
)

BIO (6860)

0.00 0.25 0.50 0.75 1.00

α

BLO (7501)

0.00 0.25 0.50 0.75 1.00

α

CAL (7501)

0.00 0.25 0.50 0.75 1.00

α

TAX (7501)

BASE HDR-R LR

Figure 9: HDR-calibration diagrams

I Base predictors

This section provides details on the base predictors considered in this paper.

I.1 Convex potential flows

Convex potential flows (Huang et al., 2020) parameterize the bijective transformation T̂ via a strongly
convex potential whose gradient yields the inverse map. Given x ∈ X , let the model define a scalar
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potential V̂ : Y × X → R where V̂ (·;x) is strongly convex for every fixed x. The associated
transformation is the gradient

T̂−1(y;x) = ∇yV̂ (y;x) ∈ Rd.

To ensure convexity in y, V̂ (·;x) is parameterized by an input-convex neural network (ICNN, Amos
et al., 2017). A small quadratic term α

2 ∥y∥2 enforces strong convexity of V̂ (·;x).

Since V̂ (·;x) is strongly convex, T̂−1(·;x) is a bijection Y → Z with inverse T̂ (·;x). Generating
new conditional samples requires inverting T̂−1(·;x). Given z ∈ Z , one recovers T̂ (z;x) as the
unique minimizer of the convex objective

T̂ (z;x) ∈ argmin
y∈Y

{
V̂ (y;x)− z⊤y

}
. (29)

Indeed, since V̂ (·;x) is differentiable and strongly convex, the minimum is attained when

∇y

(
V̂ (y;x)− z⊤y

)
= 0 ⇐⇒ ∇yV̂ (y;x) = z ⇐⇒ T̂−1(y;x) = z ⇐⇒ y = T̂ (z;x). (30)

In practice, (29) can be solved efficiently with gradient-based convex optimization (e.g., L-BFGS),
and strong convexity ensures convergence to a unique solution.

The Hessian ∇2
yV̂ (y;x) of is positive definite, with∣∣∣det∇yT̂

−1(y;x)
∣∣∣ = det

(
∇2

yV̂ (y;x)
)
.

One approach to compute this determinant is by explicitly forming the Hessian H = ∇2
yV̂ (y;x).

Concretely, T̂−1(y;x) = ∇yV̂ (y;x) is first evaluated with a single forward pass and backpropagation,
and then the Hessian is formed as

H =

(
∂T̂−1(y;x)

∂y1
, . . . ,

∂T̂−1(y;x)

∂yd

)
∈ Rd×d,

requiring d additional backpropagations. Finally, the determinant can be computed explicitly in
O(d3) (e.g., via Cholesky). Hence, the overall computational complexity is O

(
dCbackprop + d3

)
where Cbackprop denotes the cost of a single backpropagation. This brute-force approach is practical
for small d but becomes prohibitive as d grows; more efficient strategies for large d are discussed in
Huang et al., 2020.

I.2 Masked autoregressive flows (MAFs)

Masked autoregressive flows (Papamakarios, Pavlakou, et al., 2017) implement T̂−1 as an autoregres-
sive affine transformation. For each coordinate i ∈ [d], the model uses two autoregressive NNs (e.g.
MADE, (Germain et al., 2015)) to parameterize

µ̂i : Ri−1 ×X → R, ρ̂i : Ri−1 ×X → R,

and σ̂i(y<i, x) = exp(ρ̂i(y<i, x)) ensures positive outputs. The masking mechanism ensures that
µ̂i(y<i, x) and σ̂i(y<i, x) depend only on the preceding coordinates y<i = (y1, . . . , yi−1) and the
conditioning variable x.

The inverse transformation for each coordinate is then

zi =
yi − µ̂i(y<i;x)

σ̂i(y<i;x)
, i = 1, . . . , d.

Since this mapping is triangular in y, the Jacobian of T̂−1 is also triangular, which makes the
determinant computation efficient:

∣∣det∇yT̂
−1(y;x)

∣∣ = d∏
i=1

1

σ̂i(y<i;x)
.
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I.3 Flow matching (FM)

Flow matching (Lipman et al., 2022) is a recent generative modeling paradigm which has rapidly
been gaining popularity. The key motivation behind flow matching is to combine the strengths of
normalizing flows (NFs) and diffusion models while alleviating their main limitations. NFs enable
exact likelihood estimation and efficient sampling but often suffer from limited expressiveness due to
architectural constraints. Diffusion models, on the other hand, offer remarkable expressiveness and
stability but typically require slow iterative sampling and do not provide tractable likelihoods. Flow
matching addresses these issues by framing generative modeling as the learning of a continuous-time
flow that transports noise to data, enabling both efficient training and fast sampling while retaining
theoretical connections to likelihood-based methods.

Given x ∈ X , we model the conditional predictive PDF f̂ using a transformation defined by
the ordinary differential equation (ODE) dỹ

dt = v̂ (t, ỹ, x), with a NN-parameterized vector field
v̂ : [0, 1]× Y × X → Y . Training uses the straight-line interpolant between latent z ∼ N (0, I) and
data y ∼ f̂(· | x),

ỹ(t) = (1− t) z + ty,

whose target velocity is constant with respect to t:

d

dt
ỹ(t) = y − z.

The Conditional Flow Matching objective is

min
v̂

E ∥v̂ (t, (1− t)Z + tY,X)− (Y − Z)∥2 (31)

where the expectation is over t ∼ U (0, 1), (X,Y ) ∼ PX,Y , and Z ∼ N (0, I). After training,
forward numerical integration generates samples from f̂Y |X=x (Chen et al., 2018):

T̂ (z;x) = ỹ (1) = z +

∫ 1

0

v̂ (t, ỹ (t) , x) dt, ỹ (0) = z. (32)

Reverse-time integration encodes y into its latent z:

T̂−1 (y;x) = ỹ (0) = y +

∫ 0

1

v̂ (t, ỹ (t) , x) dt, ỹ (1) = y. (33)

For y ∈ Y , set z = T̂−1 (y;x). The log-likelihood follows from the instantaneous change-of-
variables formula along the unique ODE path ỹ (t) with ỹ (0) = z and ỹ (1) = y:

log f̂Y |X=x(y) = log fZ (z)−
∫ 1

0

Tr (∇ỹ v̂ (t, ỹ (t) , x)) dt. (34)

The trace of the Jacobian can be computed using d backpropagations, which can be prohibitive if d is
large. It can also be efficiently approximated using Hutchinson’s estimator:

Tr (∇ỹ v̂ (t, ỹ (t) , x)) = Eϵ∼N (0,I)

[
ϵ⊤ (∇ỹ v̂ (t, ỹ (t) , x)) ϵ

]
≈ 1

K

K∑
k=1

ϵ⊤k (∇ỹ v̂ (t, ỹ (t) , x)) ϵk,

(35)
with independent ϵk ∼ N (0, I), which enables practical likelihood computation.

J Additional results with convex potential flows

J.1 Investigating the NLL performance gain

To investigate the source of the NLL improvement, we consider the decomposition of the NLL of the
recalibrated model:

− log f̂ ′
Y |X=x(y) = − log fZ (z)− log |det (∇zR(z))|−1 − log

∣∣∣det(∇yT̂
−1(y;x)

)∣∣∣ (36)
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with z′ = T̂−1(y;x) and z = R−1(z′). The third term is identical for both BASE and LR. We analyze
the contributions of the first two terms across the largest tabular datasets to avoid the table being too
large. All reported terms are averaged over the test set and over 10 runs.

Table 5: Analysis of the NLL of LR compared to BASE with the terms described in (36).

BASE LR LR BASE LR
− log fZ(z) − log fZ(z

′) − log |det (∇zR(z))|−1 − log f̂Y |X=x(y) − log f̂ ′
Y |X=x(y)

SLU 5.00 4.16 1.04 3.09 3.63
EDM 3.91 2.72 1.26 0.788 0.855
AT2 11.7 8.47 1.67 5.42 4.31
SF1 8.11 4.29 0.900 1.77 -1.58
OE2 38.3 22.8 3.70 23.2 12.2
AT1 10.6 8.44 1.47 2.58 2.22
JUR 5.39 4.29 0.817 2.87 2.80
OE1 52.7 22.8 2.22 33.6 6.13
ENB 2.90 2.78 0.119 -0.626 -0.674
WQ 41.1 19.8 3.19 25.6 4.94
SF2 8.02 4.30 -0.703 -2.43 -7.39
SCP 14.3 4.21 -0.548 4.29 -6.75
ANS 2.87 2.78 0.102 1.81 1.85
HO2 6.02 5.68 0.356 2.66 2.67
SC2 25.2 22.7 2.26 1.63 0.970
RF1 3.33e+02 11.3 0.345 3.13e+02 -10.0
SC1 23.9 22.7 0.333 -1.94 -3.14
AIR 9.25 8.50 0.627 3.84 3.65
BI2 6.44 5.71 0.0988 -9.09 -10.5
BI1 3.11 2.84 0.190 0.153 0.145
WAG 3.19 2.81 0.341 -1.68 -1.87
ME3 3.28 2.85 0.288 -1.63 -1.97
ME1 3.26 2.83 0.222 -1.32 -1.65
ME2 3.24 2.83 0.241 -1.76 -2.08
HO1 3.15 2.83 0.282 -0.357 -0.411
BIO 3.14 2.82 0.209 -0.928 -1.16
BLO 5.16 2.84 0.275 -0.439 -2.74
CAL 2.85 2.81 0.0361 0.600 0.593
TAX 2.93 2.84 0.0979 1.60 1.57

The table reveals a clear pattern. The NLL improvement from LR is primarily driven by the first term.
By radially transforming the latent codes z′ to new points z that are more consistent with the base
density fZ , the latent density term − log fZ(z) is significantly reduced. The recalibration Jacobian
(second term) typically adds a small penalty (increases NLL), but this is almost always outweighed
by the large gains from the first term. This confirms that LR works by finding more “plausible” latent
codes for the observed data under the base latent distribution.

J.2 Computational efficiency

The difference in computation time can be measured in two aspects:

• For calibration, the computational complexity of HDR-R is O(MFn) and LR is O(Rn)
where M = 100 corresponds to the number of samples of HDR-R per instance, F the time
for the forward mapping T̂ and R the time for the reverse mapping T̂−1.

• For inference, it is a bit more subtle. Given a test insance x, HDR-R requires to sample at
least M times (O(MF )) to obtain a recalibrated sample, which can be a weakness, e.g., if
only one conditional sample is needed. LR only incurs a low fixed cost C for evaluating the
recalibration map (O(C + F )). Thus, the inference time is not directly comparable.

We report the calibration time of HDR-R and LR in seconds on the largest datasets using the convex
potential flow model and averaged over 10 runs.
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Table 6: Calibration times (part 1)

Method HO2 SC2 RF1 SC1 AIR BI2 BI1 WAG

HDR-R 1.56 2.78 4.90 2.57 4.86 18.80 8.80 15.00
LR 0.232 0.185 0.156 0.187 0.149 0.142 0.133 0.133

Table 7: Calibration times (part 2)

Method ME3 ME1 ME2 HO1 BIO BLO CAL TAX

HDR-R 9.98 12.70 19.30 7.19 37.70 168.00 8.53 10.50
LR 0.152 0.153 0.163 0.192 0.290 0.328 0.482 0.324

On CIFAR-10 with TarFlow, the time difference is larger and can be prohibitive for HDR-R:

Method CIFAR-10

HDR-R 183182
LR 1259

J.3 Discriminative ability of the energy score and NLL

For a comprehensive evaluation of LR, we report the ES in addition to the NLL. While LR often leads
to improved NLL, the ES remains largely unchanged. We hypothesize that this stems from the score’s
fundamental limitations in discriminative ability.

Theoretical considerations. As established in Pinson and Tastu, 2013 and corroborated by Alexan-
der et al., 2022, the ES is sensitive to shifts in the mean but notoriously insensitive to misspecifications
in variance, correlation, and overall dependency structure. LR is a post-hoc procedure that primarily
corrects the shape and spread of the predictive distribution. Therefore, the ES is fundamentally
ill-suited to capture the specific improvements LR provides.

In contrast, the NLL is uniquely suited for this evaluation. As the only local strictly proper scoring
rule, its value depends only on the probability density at the precise location of the observed outcome
(Du, 2021). This locality makes it highly discerning of the very improvements LR makes to the
distributional shape, which is why we observe significant and consistent NLL reductions.

Empirical illustration. To provide a clear, empirical illustration, we designed a controlled synthetic
experiment based on the dataset in Figure 1. The goal here is to isolate this specific property of the
scoring rules in a setting free from the confounding variables of complex, real-world data.

We use an oracle predictor that knows the true data-generating distribution from Figure 1 for every-
thing except the spread around the arc, which is controlled by a standard deviation parameter σ. In
Table 8, we then evaluate the predictor’s NLL and ES (based on 100 samples) as we vary its estimate
of σ. The metrics are averaged over 10 runs, and the true value is σ = 0.05.

This experiment clearly illustrates the issue:

• The NLL shows a sharp, clear minimum at the true value of σ = 0.05, correctly identifying
the best model.

• The ES remains almost completely flat for a wide range of σ values (from 0.01 to 0.10). It
fails to reliably distinguish a model with the correct variance from one that is substantially
over- or under-confident.

This insensitivity is so profound that detecting a statistically significant signal with the ES requires an
impractically large number of samples. The table below shows that only with 5000 runs does the ES
minimum align with the true σ, and even then the differences are minuscule:

This controlled experiment, therefore, proposes an explanation for the insentivity of the ES to LR.
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Table 8: Metrics averaged over 10 runs, with standard error

σ NLL ES

0.01 12.010.195 0.87330.00298
0.03 1.2740.0222 0.87240.00267
0.04 0.92320.0129 0.87230.00295

0.05 (True) 0.85570.00870 0.87400.00171
0.06 0.87810.00629 0.87410.00182
0.07 0.93650.00483 0.87530.00214
0.10 1.1610.00272 0.87410.00163
0.20 1.7740.00106 0.87820.00176

Table 9: Metrics averaged over 5000 runs, with standard error

σ NLL ES

0.01 11.910.00773 0.87540.000139
0.03 1.2630.000868 0.87510.000139
0.04 0.91770.000495 0.87510.000139
0.05 (True) 0.84870.000323 0.87500.000139

0.06 0.87320.000231 0.87510.000138
0.07 0.93290.000176 0.87510.000138
0.10 1.1590.000104 0.87560.000137
0.20 1.7746.91e-05 0.87970.000133

J.4 Additional tables

For reference, Tables 10 and 11 provide the precise mean values and standard errors for NLL, Energy
Score, L-ECE, and HDR-ECE across all tabular datasets when using convex potential flows as the
base predictor. For each metric and dataset, all values that are statistically indistinguishable to the
best value according to a Z-test at significance level 0.1 are highlighted in bold.

Table 10: Full comparative table, using a convex potential flow model.

NLL Energy score
BASE LR BASE HDR-R LR

SLU 2.610.19 2.290.14 0.7910.038 0.7950.033 0.7850.033
EDM -0.03500.46 -0.1231.3 0.6470.049 0.6480.050 0.6350.044
AT2 4.050.88 1.860.42 0.8610.044 0.8700.044 0.8620.042
SF1 4.413.2 -0.3813.6 0.6730.086 0.6390.093 0.6700.085
OE2 37.63.0e+01 6.461.3 1.250.083 1.260.083 1.260.085
AT1 1.630.46 0.07830.29 0.5820.032 0.5870.031 0.5910.030
JUR 2.160.24 1.870.15 0.6170.034 0.6180.033 0.6180.034
OE1 80.06.9e+01 2.930.71 1.230.15 1.230.15 1.170.15
ENB -1.080.11 -1.120.10 0.2490.010 0.2500.010 0.2490.010
WQ 60.83.7e+01 7.953.6 2.470.025 2.490.024 2.470.024
SF2 -3.373.0 -11.10.63 0.5870.044 0.5930.046 0.5980.045
SCP 20.12.6e+01 -8.550.49 0.3890.094 0.3830.095 0.3820.095
ANS 1.760.022 1.790.020 0.5290.0052 0.5310.0047 0.5290.0053
HO2 2.390.034 2.380.035 0.8620.0076 0.8660.0075 0.8620.0076
SC2 0.7950.17 0.1890.15 1.250.011 1.280.012 1.260.011
RF1 9.54e+026.8e+02 -4.501.5 0.5340.073 0.5280.071 0.5290.072
SC1 -1.860.080 -2.630.075 0.8240.0047 0.8330.0045 0.8250.0045
AIR 3.030.30 2.910.30 1.170.0086 1.190.0090 1.180.0084
BI2 -11.50.71 -13.00.61 0.8330.013 0.8480.015 0.8340.014
BI1 -2.270.26 -2.400.26 0.7080.0056 0.7110.0053 0.7080.0057
WAG -3.250.31 -3.340.32 0.8020.048 0.8030.043 0.8050.046
ME3 -2.600.13 -2.690.12 0.3580.0082 0.3620.0082 0.3600.0083
ME1 -2.000.13 -2.170.13 0.3570.0075 0.3700.0095 0.3650.0087
ME2 -3.000.12 -3.220.13 0.3610.0041 0.3620.0039 0.3620.0040
HO1 -0.2990.038 -0.3640.029 0.3460.0074 0.3510.0079 0.3400.012
BIO -1.120.072 -1.250.019 0.2070.0038 0.2100.0039 0.2040.0051
BLO 3.112.8 -2.110.25 0.3050.029 0.3650.037 0.4730.081
CAL 0.5750.0097 0.5750.0088 0.4190.0014 0.4210.0015 0.4190.0014
TAX 1.530.0069 1.530.0068 0.6920.0019 0.6960.0021 0.6900.0027
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Table 11: Full comparative table, using a convex potential flow model.

L-ECE HDR-ECE
BASE LR BASE HDR-R LR

SLU 0.1460.026 0.1060.016 0.1290.022 0.1160.014 0.1020.013
EDM 0.1220.016 0.09050.016 0.1280.014 0.1010.019 0.1690.014
AT2 0.1290.0076 0.06370.010 0.1490.0094 0.08170.0095 0.06880.012
SF1 0.2790.026 0.07010.0082 0.3210.022 0.1710.019 0.07860.0096
OE2 0.1360.011 0.07850.0076 0.1290.0098 0.07680.012 0.07660.0079
AT1 0.1240.013 0.06680.0098 0.1250.012 0.09060.0095 0.06430.012
JUR 0.08830.011 0.05200.0052 0.08660.011 0.05150.0063 0.05370.0049
OE1 0.1970.044 0.05890.0068 0.1950.044 0.1440.049 0.06360.0074
ENB 0.02720.0034 0.02920.0034 0.03750.0049 0.03470.0039 0.03970.0061
WQ 0.08830.0048 0.04790.0044 0.09750.0032 0.04430.0060 0.04320.0086
SF2 0.2720.0084 0.04340.0050 0.3120.0061 0.1640.015 0.07970.010
SCP 0.2180.025 0.05020.0060 0.2230.025 0.05430.010 0.06140.0093
ANS 0.01900.0029 0.02540.0036 0.01990.0030 0.02340.0026 0.02490.0037
HO2 0.01620.0024 0.01580.0018 0.01790.0023 0.01220.00080 0.01210.0017
SC2 0.1010.0034 0.01220.00087 0.1050.0030 0.02230.00081 0.01170.0011
RF1 0.1120.021 0.02600.0049 0.1290.024 0.01930.0034 0.02880.0045
SC1 0.08450.0015 0.01060.0013 0.08570.0017 0.02290.0011 0.01160.0016
AIR 0.05270.0059 0.01620.0010 0.04490.0083 0.01600.0012 0.02860.0052
BI2 0.1220.016 0.01700.0022 0.1670.019 0.02190.0023 0.07310.011
BI1 0.02790.0023 0.01020.00084 0.1110.026 0.05800.024 0.09230.023
WAG 0.04780.0082 0.01370.0018 0.2670.050 0.1610.071 0.2900.046
ME3 0.07320.012 0.009570.00084 0.05200.010 0.008990.00064 0.03230.0042
ME1 0.08530.010 0.01030.00078 0.07790.010 0.009760.00092 0.04320.0050
ME2 0.04970.0099 0.01010.00066 0.04150.0061 0.01360.0023 0.04170.0061
HO1 0.01660.0023 0.009500.0013 0.01030.0014 0.007820.00071 0.01090.0018
BIO 0.01780.0019 0.005610.00076 0.02200.0027 0.006670.00051 0.007270.0015
BLO 0.2310.036 0.007350.0010 0.2070.040 0.04850.024 0.1140.014
CAL 0.007490.00096 0.005020.00074 0.007600.00079 0.005550.00026 0.005430.00064
TAX 0.009490.0013 0.005220.00053 0.005840.00063 0.006840.00050 0.005610.00086

K Results with MAFs

For completeness, this section reports results using a MAF (Papamakarios, Pavlakou, et al., 2017) as
the base predictor. The architecture consists of stacked flow layers, where each layer’s conditioner is
a masked autoencoder (Germain et al., 2015) parameterizing rational quadratic spline transformations
(Durkan et al., 2019). We tune hyperparameters using grid search. The number of stacked flows is
chosen from [3, 5, 8], the number of hidden units per flow from [32, 64], and the number of hidden
layers per flow from [2, 3]. The learning rate is selected from [5× 10−3, 10−3]. Each flow learns a
rational quadratic spline transformation.

The findings, illustrated in Figure 10 and Figure 11 (and detailed in Tables 12 and 13), are consistent
with the main tabular results reported in Section 5. Specifically, LR provides notable improvements in
L-ECE, NLL, and HDR-ECE, while achieving an energy score comparable to that of the BASE model.
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Figure 10: Latent calibration and NLL on datasets sorted by size, using a MAF model.
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Figure 11: Latent calibration and NLL on datasets sorted by size, using a MAF model.

Table 12: Full comparative table, using a MAF model.

NLL Energy score
BASE LR BASE HDR-R LR

SLU 4.500.37 5.080.52 0.8310.051 0.9450.034 0.8580.025
EDM 0.2020.30 0.5900.35 0.5770.035 0.6020.033 0.5780.022
AT2 7.450.52 6.220.24 0.9700.054 1.110.044 1.050.029
SF1 -1.470.39 -3.420.26 0.6980.087 0.7100.085 0.7000.053
OE2 22.42.6 16.80.90 1.670.13 1.850.13 1.790.087
AT1 4.630.61 3.800.32 0.6980.049 0.8150.043 0.7540.029
JUR 3.990.29 3.650.15 0.6800.037 0.7100.031 0.6860.022
OE1 16.92.7 9.680.75 1.310.13 1.510.12 1.480.080
ENB -0.9390.10 -0.8770.071 0.2730.0080 0.2730.0077 0.2750.0054
WQ 0.9440.91 -1.230.57 2.500.035 2.560.030 2.470.019
SF2 -6.211.3 -8.720.77 0.6400.051 0.6370.048 0.6410.034
SCP -5.172.2 -7.580.51 0.3920.099 0.3980.099 0.4000.069
ANS 1.890.025 1.910.017 0.5310.0053 0.5360.0049 0.5320.0036
HO2 3.060.052 2.870.029 0.8810.0077 0.8940.0068 0.8810.0050
SC2 1.880.25 0.9360.12 1.010.0091 1.170.0096 1.090.0060
RF1 -14.31.3 -15.50.28 0.2030.023 0.2100.023 0.2080.016
SC1 -4.482.9 -5.002.0 2.620.19 2.520.18 2.650.14
AIR 4.290.15 3.740.10 1.210.0097 1.230.0090 1.210.0065
BI2 -11.60.27 -12.30.16 0.8310.018 0.8390.017 0.8300.011
BI1 0.6220.12 0.4430.077 0.7190.0049 0.7220.0049 0.7180.0034
WAG -2.120.089 -2.220.060 0.7210.0045 0.7160.0037 0.7100.0027
ME3 -1.950.097 -2.370.049 0.4010.0080 0.4030.0078 0.3980.0054
ME1 -1.510.36 -1.960.23 0.5310.066 0.5170.052 0.5400.053
ME2 -1.940.076 -2.350.045 0.4120.0047 0.4120.0045 0.4090.0033
HO1 -0.1530.045 -0.3230.023 0.3270.0068 0.3350.0070 0.3300.0048
BIO -1.100.075 -1.420.016 0.2030.0040 0.2070.0040 0.2040.0027
BLO -3.370.35 -3.850.24 0.3720.015 0.3720.018 0.3620.0093
CAL 0.5810.0083 0.5780.0055 0.4190.0014 0.4210.0014 0.4190.00094
TAX 1.620.0069 1.540.0042 0.6960.0023 0.6980.0021 0.6950.0015
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Table 13: Full comparative table, using a MAF model.

L-ECE HDR-ECE
BASE LR BASE HDR-R LR

SLU 0.1460.024 0.1010.013 0.3280.026 0.1100.014 0.2770.020
EDM 0.1280.020 0.07340.0064 0.1530.021 0.08490.010 0.08890.013
AT2 0.2620.019 0.06510.0070 0.3760.014 0.1180.016 0.2080.010
SF1 0.1760.0083 0.04870.0044 0.1950.013 0.1290.012 0.09350.0062
OE2 0.3000.015 0.05950.0048 0.4180.011 0.2010.021 0.2200.013
AT1 0.2580.013 0.05660.0069 0.3420.011 0.1060.010 0.1590.011
JUR 0.1850.013 0.05400.0042 0.3140.011 0.07170.0094 0.2120.010
OE1 0.2920.013 0.06760.0043 0.3910.0097 0.1740.016 0.1530.015
ENB 0.02770.0044 0.03460.0035 0.03620.0059 0.04280.0085 0.04610.0060
WQ 0.3280.0095 0.03120.0037 0.3490.0067 0.1340.0083 0.1880.0052
SF2 0.1740.014 0.03100.0026 0.1970.018 0.1230.016 0.07260.0042
SCP 0.08850.029 0.03970.0038 0.08130.020 0.04450.0052 0.04640.0051
ANS 0.02120.0032 0.02720.0020 0.04430.0055 0.02530.0021 0.04780.0036
HO2 0.08060.0038 0.01390.00094 0.1310.0043 0.01570.0018 0.07120.0023
SC2 0.2500.011 0.01660.0015 0.3130.0083 0.06720.0061 0.1360.0032
RF1 0.09230.0046 0.01720.0038 0.08600.0062 0.01390.0012 0.01890.0028
SC1 0.1120.013 0.009130.00061 0.4170.017 0.1630.013 0.3940.013
AIR 0.09360.0028 0.01320.0013 0.1440.0049 0.01930.0012 0.07900.0037
BI2 0.06070.0068 0.01220.0013 0.08850.0062 0.01560.0014 0.03850.0024
BI1 0.04080.0039 0.01050.00081 0.07390.0064 0.01280.00080 0.04630.0027
WAG 0.1130.0050 0.01180.0010 0.1940.0036 0.01340.00090 0.1190.0015
ME3 0.07440.0058 0.007960.00065 0.09190.0046 0.01280.0011 0.03950.0022
ME1 0.06730.013 0.01130.00091 0.09320.016 0.02740.0093 0.07660.016
ME2 0.07160.0057 0.008010.00052 0.08480.0034 0.01350.00087 0.03330.0018
HO1 0.08430.0019 0.006930.00053 0.09860.0030 0.008960.00069 0.02920.0014
BIO 0.07130.0048 0.006150.00056 0.08500.0054 0.007230.00034 0.02300.0016
BLO 0.1050.019 0.005650.00068 0.1020.016 0.01520.0026 0.02850.0034
CAL 0.004910.00067 0.005910.00065 0.005430.00065 0.005290.00036 0.004160.00027
TAX 0.02350.00098 0.005630.00050 0.04240.0017 0.007970.00075 0.02350.0012

L Results with Flow Matching

While our paper focuses on normalizing flows, LR is fully compatible with flow matching (FM)
models (Section I.3), which also learn invertible mappings and assume a known latent distribution. For
these models, we tune hyperparameters using grid search. The number of hidden units is chosen from
[32, 64], the number of hidden layers from [2, 3, 5], and the learning rate from [5× 10−3, 10−3, 2×
10−4].

The FM results are aligned with the NFs results, with LR standing out particularly on the L-ECE and
NLL metrics.
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Figure 12: Latent calibration and NLL on datasets sorted by size, using a FM model.
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Figure 13: Latent calibration and NLL on datasets sorted by size, using a FM model.

Table 14: Full comparative table, using a FM model.

NLL Energy score
BASE LR BASE HDR-R LR

SLU 2.160.20 2.090.13 0.7560.033 0.7590.033 0.7540.029
EDM 2.200.18 2.360.35 0.6420.036 0.6390.037 0.6430.033
AT2 4.760.52 2.930.21 0.7700.036 0.7700.032 0.7560.032
SF1 2.380.59 0.9010.17 0.8450.091 0.8260.092 0.8410.084
OE2 9.531.1 8.941.4 1.200.066 1.220.066 1.180.061
AT1 1.460.30 1.220.24 0.5710.032 0.5730.032 0.5710.031
JUR 2.450.25 2.020.11 0.6130.027 0.6150.027 0.6130.026
OE1 3.991.4 2.240.83 0.8610.057 0.8660.058 0.8550.057
ENB 0.1390.041 0.1720.035 0.3130.0042 0.3160.0047 0.3130.0041
WQ 15.00.27 14.30.25 2.400.026 2.440.023 2.410.025
SF2 2.303.0 -1.060.36 0.6680.043 0.6480.043 0.6620.041
SCP -2.040.59 -3.300.18 0.3910.092 0.3950.097 0.3860.096
ANS 1.780.023 1.770.021 0.5290.0053 0.5330.0048 0.5290.0052
HO2 2.530.029 2.530.029 0.8520.0069 0.8560.0066 0.8520.0068
SC2 2.200.17 1.820.17 1.020.0089 1.020.0090 1.020.0089
RF1 0.5702.7 -4.530.20 0.3670.018 0.3670.018 0.3640.018
SC1 0.5250.14 0.07190.13 0.8180.0077 0.8250.0078 0.8190.0078
AIR 4.210.039 4.200.040 1.160.0090 1.170.0089 1.160.0090
BI2 -4.200.17 -4.310.18 0.7880.013 0.7960.013 0.7920.013
BI1 2.110.013 2.100.010 0.7030.0057 0.7060.0053 0.7030.0056
WAG 0.3460.036 0.3080.035 0.6990.0032 0.7000.0034 0.6970.0031
ME3 -0.3500.073 -0.4230.069 0.3920.0087 0.3930.0090 0.3910.0086
ME1 -0.4440.067 -0.5180.070 0.3840.0077 0.3840.0078 0.3830.0076
ME2 -0.3420.058 -0.4220.054 0.3950.0045 0.3970.0048 0.3960.0045
HO1 -0.6190.021 -0.6360.018 0.2140.0036 0.2160.0038 0.2150.0036
BIO -0.5610.040 -0.5700.036 0.2360.0050 0.2360.0051 0.2360.0049
BLO -1.060.030 -1.140.026 0.2580.0031 0.2590.0030 0.2570.0030
CAL 0.6450.0065 0.6430.0064 0.4210.0014 0.4220.0014 0.4210.0014
TAX 1.660.0079 1.660.0077 0.6930.0021 0.6960.0020 0.6930.0021
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Table 15: Full comparative table, using a FM model.

L-ECE HDR-ECE
BASE LR BASE HDR-R LR

SLU 0.1050.022 0.08090.0088 0.1090.021 0.08880.0089 0.07610.0092
EDM 0.09060.015 0.07760.0057 0.09260.014 0.08200.0097 0.06540.0042
AT2 0.1600.030 0.06210.010 0.1650.030 0.07840.016 0.06050.0097
SF1 0.1190.015 0.05930.0072 0.1120.017 0.06040.0090 0.05720.0078
OE2 0.1990.036 0.06150.0063 0.2100.036 0.07220.0098 0.06260.0072
AT1 0.09590.012 0.05970.0074 0.08310.0089 0.06790.0057 0.06150.0051
JUR 0.09180.015 0.05960.011 0.08650.014 0.06390.011 0.05900.010
OE1 0.1090.019 0.06470.0049 0.08630.017 0.05140.0078 0.06180.0077
ENB 0.03300.0037 0.03140.0021 0.03400.0044 0.03120.0042 0.03180.0048
WQ 0.1100.0086 0.03490.0049 0.08420.0061 0.04370.0078 0.03850.0042
SF2 0.2390.016 0.03390.0023 0.2260.015 0.03970.0051 0.04000.0030
SCP 0.2680.020 0.04570.0070 0.2530.019 0.04830.0053 0.06070.0067
ANS 0.02220.0042 0.02360.0027 0.02310.0040 0.02440.0025 0.02360.0033
HO2 0.02320.0038 0.01380.0011 0.01800.0028 0.01090.0011 0.01160.0013
SC2 0.05900.0028 0.01290.0017 0.05320.0032 0.01420.0011 0.01270.0012
RF1 0.08430.0078 0.02730.0037 0.07400.0082 0.01250.0021 0.03530.0039
SC1 0.05730.0056 0.01330.0020 0.07200.0066 0.01560.0021 0.02670.0037
AIR 0.01300.0027 0.01510.0023 0.01580.0027 0.01320.0021 0.02200.0035
BI2 0.1090.014 0.009790.0014 0.09160.013 0.01120.0016 0.02880.0059
BI1 0.02430.0023 0.009240.00093 0.02490.0020 0.009270.00061 0.01010.0013
WAG 0.04070.0051 0.01440.0013 0.04190.0050 0.01200.0014 0.03070.0031
ME3 0.04120.0077 0.009650.0011 0.03300.0065 0.01040.00098 0.01760.0029
ME1 0.02990.0086 0.009150.0014 0.02510.0075 0.009350.00058 0.01430.0020
ME2 0.05370.0060 0.008830.0013 0.05410.0063 0.008920.00094 0.01560.0014
HO1 0.02850.0046 0.009900.0016 0.02390.0043 0.009740.0011 0.01190.0016
BIO 0.02530.0053 0.007660.0019 0.02210.0058 0.007260.00062 0.01020.0016
BLO 0.03460.010 0.004980.00047 0.04020.0099 0.006480.00050 0.01530.0018
CAL 0.009510.0014 0.003950.00043 0.01120.0018 0.005470.00030 0.007460.0011
TAX 0.01100.0018 0.005050.00059 0.01220.0017 0.006600.00054 0.01330.0022

M Results with a misspecified convex potential flow

Tables 16 and 17 along with Figure 14 and Figure 15 present results for a deliberately misspecified
convex potential flow. This misspecification was induced by training the base predictor for only two
epochs, ensuring it has low predictive accuracy and is likely poorly calibrated.

We observe that, in this additional scenario, LR also leads to improved L-ECE and NLL on most
datasets, indicating enhanced predictive accuracy compared to the BASE misspecified model. LR
achieves similar or improved HDR-ECE and ES compared to HDR-R. These results highlight LR’s
ability to improve misspecified base predictors.
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Figure 14: Latent calibration and NLL on datasets sorted by size, using a misspecified convex potential flow
model.
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Figure 15: Latent calibration and NLL on datasets sorted by size, using a misspecified convex potential flow
model.

Table 16: Full comparative table, using a misspecified convex potential flow model.

NLL Energy score
BASE LR BASE HDR-R LR

SLU 3.860.13 3.930.16 1.010.043 1.030.050 1.010.047
EDM 2.840.059 1.530.32 0.8800.028 0.8790.029 0.8710.029
AT2 7.990.29 6.030.14 1.390.051 1.360.051 1.340.054
SF1 4.050.39 0.7360.22 0.8570.075 0.7540.083 0.7530.079
OE2 23.12.2 13.50.80 2.240.14 2.240.15 2.070.16
AT1 7.680.38 5.990.26 1.420.070 1.400.078 1.390.076
JUR 4.190.13 4.090.075 1.080.034 1.080.036 1.080.034
OE1 23.82.1 11.10.65 2.140.13 2.120.14 1.910.15
ENB 2.050.093 2.020.090 0.8150.020 0.8230.020 0.8140.019
WQ 20.00.15 19.60.15 2.590.027 2.610.028 2.590.027
SF2 4.710.55 0.2980.25 0.8210.038 0.7030.039 0.6880.038
SCP 5.062.1 1.250.36 0.7380.10 0.6570.11 0.6580.11
ANS 2.610.021 2.610.020 0.8170.0089 0.8190.0087 0.8170.0090
HO2 5.460.020 5.180.021 1.230.0063 1.230.0070 1.220.0067
SC2 22.20.12 20.80.12 2.670.019 2.690.020 2.660.021
RF1 10.80.84 16.87.5 1.690.026 1.700.026 1.690.032
SC1 21.40.099 20.00.10 2.560.023 2.580.024 2.540.023
BI2 5.620.10 3.510.085 1.080.016 1.030.016 1.020.016
BI1 2.660.030 2.390.020 0.7790.0057 0.7760.0057 0.7730.0055
AIR 8.330.068 7.580.044 1.500.0089 1.500.0089 1.490.0090
WAG 2.780.0069 2.430.17 0.8760.0029 0.8750.0027 0.8680.0029
ME3 2.310.045 1.120.046 0.6020.010 0.5480.0087 0.5490.0091
ME1 2.200.046 1.100.048 0.5880.0092 0.5390.0073 0.5400.0073
ME2 2.150.027 1.130.038 0.5910.0055 0.5450.0059 0.5460.0058
HO1 2.460.029 2.340.030 0.7430.0068 0.7430.0072 0.7410.0071
BIO 0.9630.14 0.3020.046 0.3350.0085 0.3080.0058 0.3110.0062
CAL 1.370.043 1.280.035 0.4720.0061 0.4680.0050 0.4680.0052
BLO 1.210.033 0.7850.036 0.6850.0024 0.6910.0030 0.6870.0029
TAX 2.290.019 2.310.11 0.7240.0024 0.7250.0024 0.7230.0024
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Table 17: Full comparative table, using a misspecified convex potential flow model.

L-ECE HDR-ECE
BASE LR BASE HDR-R LR

SLU 0.1200.018 0.1070.017 0.1270.018 0.1190.017 0.1010.015
EDM 0.1350.0052 0.07340.0068 0.1280.0051 0.07780.0097 0.08460.012
AT2 0.3190.0075 0.05930.0083 0.3270.0078 0.06730.011 0.06420.0095
SF1 0.3510.011 0.1100.0094 0.3540.011 0.08380.012 0.1770.014
OE2 0.3790.012 0.07730.0067 0.3790.012 0.3350.013 0.07690.0071
AT1 0.2780.010 0.05330.0051 0.2970.011 0.1000.0080 0.05650.0063
JUR 0.07850.0070 0.04940.0064 0.08190.0078 0.05180.0062 0.05010.0068
OE1 0.4100.013 0.07330.0057 0.4100.013 0.3950.013 0.07490.0054
ENB 0.04580.0030 0.03260.0028 0.08540.0099 0.03670.0049 0.1140.010
WQ 0.1120.0060 0.04050.0054 0.1140.0060 0.04670.0051 0.03910.0053
SF2 0.3860.0057 0.08690.0087 0.3870.0057 0.1500.0090 0.1390.011
SCP 0.3610.013 0.08080.0082 0.3690.013 0.05170.0063 0.1150.014
ANS 0.04280.0043 0.01720.0012 0.05240.0047 0.01620.0011 0.01830.0019
HO2 0.1250.0038 0.01550.0019 0.1300.0035 0.01550.0016 0.01560.0020
SC2 0.1500.0030 0.01230.00093 0.1530.0032 0.04910.00096 0.01240.00095
RF1 0.1730.0076 0.01720.0024 0.1860.0081 0.04220.0030 0.01800.0025
SC1 0.1640.0033 0.008880.0010 0.1700.0040 0.05410.0016 0.01030.0014
BI2 0.2860.0034 0.01330.0014 0.2870.0034 0.06160.0019 0.01460.0013
BI1 0.09610.0039 0.009620.0014 0.1000.0040 0.01260.0016 0.01020.00095
AIR 0.1780.0034 0.01460.0016 0.1810.0033 0.01510.0013 0.01400.0016
WAG 0.1160.0011 0.01270.0021 0.1130.0011 0.01580.0019 0.01660.0033
ME3 0.2870.0047 0.01050.0016 0.2940.0040 0.03040.0025 0.01400.0022
ME1 0.2870.0029 0.01100.0011 0.2950.0027 0.02370.0031 0.01490.0020
ME2 0.2820.0031 0.008930.00095 0.2900.0030 0.02200.0021 0.01440.0017
HO1 0.08010.0046 0.01020.0012 0.08800.0041 0.009890.00082 0.01200.0024
BIO 0.2000.0086 0.006950.00065 0.2130.0080 0.009850.00048 0.009160.0013
CAL 0.07110.013 0.005490.00046 0.08830.013 0.006810.00041 0.01690.0024
BLO 0.09720.0039 0.006570.00092 0.1170.0025 0.008430.00092 0.02410.0033
TAX 0.04440.0032 0.004900.00060 0.05650.0020 0.008040.00053 0.009180.0015
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